A Mild and Practical Method for Deprotection of Aryl Methyl/Benzyl/Allyl Ethers with HPPh₂ and ^{*t*}BuOK

Wenjing Pan,^a Chenchen Li,^a Haoyin Zhu,^a Fangfang Li,^{b,*} Tao Li^{a,*} and Wanxiang Zhao^{a,*}

- ^a State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
 E-mail: litao 0922@hnu.edu.cn; zhaowanxiang@hnu.edu.cn
- ^b The Department of Dermatology, Xiangya Hospital, Central South University, Changsha Hunan 410008, China.

E-mail: xuebingfanger@126.com

Supporting Information

Table of Contents

I. General Information	S2
II. Synthesis and Characterization of Substrates	S3
General procedure A for the synthesis of 4-heteroarylphenols	S3
General procedure B for the synthesis of aryl benzyl ethers	S5
General procedure C for the synthesis of aryl allyl ethers	S10
General procedure D for the synthesis of aryl dialkyl ethers	S15
III. References	S16
IV. Copies of NMR Spectra of Ph ₂ PMe	S17
V. Copies of NMR Spectra of Unknown Aryl Benzyl/Allyl Ether	S19
VI. Copies of NMR Spectra of Deprotection Products Aryl Phenols	S42

I. General Information

All air or moisture-sensitive manipulations were performed under nitrogen atmosphere, using an oven-dried vial with a magnetic stirrer. HPPh₂, anhydrous DMF, anhydrous THF, anhydrous toluene, anhydrous 'BuOK, Pd(PPh₃)₄ were purchased from Energy Chemicals Inc and used as received. Analytical thin layer chromatography (TLC) was performed using silica gel plates. Visualisation was performed by ultraviolet fluorescence, and/or phosphomolybdic acid, and/or KMnO₄.

¹H-Nuclear Magnetic Resonance (¹H-NMR) and ¹³C-Nuclear Magnetic Resonance (¹³C-NMR) spectra were recorded on Bruker 400 MHz at 20 °C with CDCl₃, DMSO-*d*₆ or (CD₃)₂CO as solvent. The chemical shifts of ¹H NMR spectra were referenced to TMS or internal solvent resonances and the chemical shifts of ¹³C NMR spectra were referenced to internal solvent resonances: ¹H NMR reference for CDCl₃ was 7.26 ppm, DMSO-*d*₆ was 2.50 ppm and (CD₃)₂CO was 2.05 ppm; ¹³C NMR reference for CDCl₃ was 77.16 ppm, DMSO-*d*₆ was 39.52 ppm and (CD₃)₂CO was 29.84 ppm. The data are reported as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant *J* (Hz), and integration. High resolution mass spectra were recorded on a Bruker Maxis System. IR spectra were collected on a Spectrum BX FTIR from Perkin-Elmer and reported in unit of cm⁻¹.

II. Synthesis and Characterization of Substrates

Aryl methyl ether **1a-aa**¹, **1ac-ad**¹, Aryl benzyl ethers **2a-c**², **2g-k**², **2n**², **2q-r**², **2 v-w**², Aryl allyl ether **3a-c**³, **3e**³, **3g**³, **3n-r**³, **3v-w**³ and **3ab**⁴ were prepared following the reported procedure.

General procedure A for the synthesis of 4-heteroarylphenols

1-Iodo-4-(methoxymethoxy)benzene was synthesized according to the method reported in the literature.⁵

In the glove box, $Pd(PPh_3)_4$ (0.45 mmol, 0.05 equiv), anhydrous K_3PO_4 (27 mmol, 3 equiv) and DMF (15 mL) were added to a 35 mL pressure bottle pre-filled with 1iodo-4-(methoxymethoxy)benzene (9 mmol, 1 equiv) and heteroarylboronic acid (10.8 mmol, 1.2 equiv). The mixture was stirred at 80 °C for 24 h, and then the resulting solution was quenched with water (100 mL). The aqueous solution was extracted with ethyl acetate (3 × 50 mL), and the combined organic phases were dried over MgSO₄, filtered, and concentrated under reduced pressure. The desired product 1-heteroaryl-4-(methoxymethoxy)benzene was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 60:1).

To a solution of 1-heteroaryl-4-(methoxymethoxy)benzene (6.5 mmol) in methanol (82 mL) was added concentrated HCl (1.3 mL), and the reaction solution was stirred at 65 °C for 2 h. The reaction was quenched with water (100 mL), and the aqueous phase was extracted with ethyl acetate (3×50 mL). The combined organic phases were dried over MgSO₄, and the solvent were removed under reduced pressure. The residue were separated by column chromatography (eluent: petroleum ether/EtOAc).

4-(Furan-3-yl)phenol

4-(furan-3-yl)phenol was prepared as a white solid in 82% yield (0.85 g, eluent: petroleum ether/EtOAc = 10:1) following the general procedure A.

m.p. 146-147 °C

 $\mathbf{R}_{f} = 0.45$ (petroleum ether/EtOAc = 5:1)

¹**H NMR (400 MHz, DMSO)** δ 9.47 (s, 1H), 7.98 (s, 1H), 7.66 (s, 1H), 7.41 (d, *J* = 7.6 Hz, 2H), 6.90–6.75 (m, 3H).

¹³C NMR (101 MHz, DMSO) δ 156.55, 143.91, 137.75, 126.83, 125.92, 122.86, 115.67, 108.71.

HRMS (ESI⁺): calcd for C₁₀H₈O₂ [M-H]⁺: 159.0446, found: 159.0450.

IR (neat, cm⁻¹): 3414, 3152, 3134, 2925, 1611, 1522, 1450, 1260, 1161, 1053, 875, 834, 781, 594, 521.

4-(Thiophen-3-yl)phenol

4-(thiophen-3-yl)phenol was prepared as a white solid in 90% yield (1.03 g, eluent: petroleum ether/EtOAc = 10:1) following the general procedure A.

m.p. 185-186 °C

 $\mathbf{R}_f = 0.41$ (petroleum ether/EtOAc = 5:1)

¹**H NMR (400 MHz, DMSO)** δ 9.50 (s, 1H), 7.61 (s, 1H), 7.57–7.48 (m, 3H), 7.44 (d, *J* = 4.8 Hz, 1H), 6.82 (d, *J* = 8.2 Hz, 2H).

¹³C NMR (101 MHz, DMSO) δ 156.70, 141.61, 127.28, 126.63, 126.42, 125.96, 118.50, 115.61.

HRMS (ESI⁺): calcd for C₁₀H₈OS [M-H]⁺: 175.0218, found: 175.0221.

IR (neat, cm⁻¹): 3413, 3100, 3033, 2925, 1608, 1536, 1504, 1449, 1380, 1259, 1200, 834, 776, 714, 518.

General procedure B for the synthesis of aryl benzyl ethers

Anhydrous K₂CO₃ (10 mmol, 2 equiv), aryl phenol (7.5 mmol, 1.5 equiv) and benzylbromide (5 mmol, 1 equiv) were sequentially added to a 35 mL sealed tube equipped with a stir bar. Acetone (10 mL) was then added, and the mixture was stirred at 70 °C for 12 h. The resulting solution was then filtered, washed with ethyl acetate, and concentrated under reduced pressure. The desired product was obtained by silica gel column chromatography (eluent: petroleum ether/ethyl acetate).

1-Benzyloxy-2-ethylbenzene

2d was prepared as a colorless oil in 90% yield (0.95 g, eluent: petroleum ether) following the general procedure B.

 $\mathbf{R}_f = 0.80$ (petroleum ether)

¹**H NMR (400 MHz, CDCl₃)** δ 7.47 (d, *J* = 7.4 Hz, 2H), 7.41 (t, *J* = 7.3 Hz, 2H), 7.34 (t, *J* = 7.1 Hz, 1H), 7.18 (dd, *J* = 16.7, 7.7 Hz, 2H), 6.93 (t, *J* = 8.7 Hz, 2H), 5.11 (s, 2H), 2.74 (q, *J* = 7.5 Hz, 2H), 1.25 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 156.73, 137.83, 133.28, 129.31, 128.74, 127.93, 127.30, 126.99, 121.01, 111.80, 70.05, 23.64, 14.46.

HRMS (ESI⁺): calcd for C₁₅H₁₆O [M+Na]⁺: 235.1093, found: 235.1092.

IR (neat, cm⁻¹): 3033, 2966, 2931, 2872, 1493, 1451, 1236, 1124, 1043, 1020, 741, 695.

1-Benzyloxy-2-isopropylbenzene

2e was prepared as a colorless oil in 95% yield (1.08 g, eluent: petroleum ether)

following the general procedure B.

 $\mathbf{R}_f = 0.75$ (petroleum ether)

¹**H NMR (400 MHz, CDCl₃)** δ 7.44 (d, J = 7.4 Hz, 2H), 7.38 (t, J = 7.3 Hz, 2H), 7.31 (t, J = 7.1 Hz, 1H), 7.24 (d, J = 7.8 Hz, 1H), 7.14 (t, J = 7.7 Hz, 1H), 6.98–6.87 (m, 2H), 5.08 (s, 2H), 3.42 (heptet, J = 6.9 Hz, 1H), 1.24 (d, J = 6.9 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 156.04, 137.73, 137.52, 128.65, 127.84, 127.23, 126.67, 126.29, 121.05, 111.87, 70.12, 27.00, 22.86.

HRMS (ESI⁺): calcd for C₁₆H₁₈O [M+Na]⁺: 249.1250, found: 249.1248.

IR (neat, cm⁻¹): 3033, 2961, 2869, 1598, 1491, 1450, 1382, 1289, 1234, 1088, 1022, 746, 696.

1-Benzyloxy-2-tert-butylbenzene

2f was prepared as a colorless oil in 93% yield (1.12 g, eluent: petroleum ether) following the general procedure B.

 $\mathbf{R}_f = 0.83$ (petroleum ether)

¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 7.4 Hz, 2H), 7.42 (t, J = 7.3 Hz, 2H), 7.38– 7.31 (m, 2H), 7.19 (t, J = 7.7 Hz, 1H), 6.97–6.92 (m, 2H), 5.14 (s, 2H), 1.44 (s, 9H).
¹³C NMR (101 MHz, CDCl₃) δ 157.70, 138.48, 137.59, 128.67, 127.83, 127.45, 127.15, 126.86, 120.68, 112.58, 70.21, 35.02, 29.98.

HRMS (ESI⁺): calcd for C₁₇H₂₀O [M+Na]⁺: 263.1406, found: 263.1405.

IR (neat, cm⁻¹): 3033, 2956, 2912, 2869, 1489, 1443, 1225, 1094, 1021, 746, 697.

4-(Benzyloxy)-N,N-dimethylbenzamide

21 was prepared as a white solid in 90% yield (1.15 g, eluent: petroleum ether/EtOAc =

1:1) following the general procedure B.

m.p. 84-85 °C

 $R_f = 0.40$ (EtOAc)

¹**H NMR (400 MHz, CDCl₃)** δ 7.47–7.29 (m, 7H), 6.97 (d, *J* = 8.0 Hz, 2H), 5.07 (s, 2H), 3.04 (d, *J* = 13.0 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 171.46, 159.75, 136.55, 129.18, 128.67, 128.13, 127.50, 114.46, 70.00, 39.83, 35.57.

HRMS (ESI⁺): calcd for C₁₅H₁₆O [M+H]⁺: 256.1332, found: 256.1331.

IR (neat, cm⁻¹): 3034, 2927, 1625, 1605, 1386, 1240, 1171, 1079, 838, 696.

4-Benzyloxy-2-methyl-1-methylsulfanylbenzene

2m was prepared as a white solid in 84% yield (1.03 g, eluent: petroleum ether) following the general procedure B.

m.p. 46-47 °C

 $\mathbf{R}_{f} = 0.45$ (petroleum ether)

¹**H NMR (400 MHz, CDCl₃)** δ 7.50–7.27 (m, 5H), 7.25–7.13 (m, 1H), 6.90–6.70 (m, 2H), 5.02 (d, *J* = 6.4 Hz, 2H), 2.37 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 157.35, 139.14, 137.16, 129.36, 128.67, 128.60, 128.04, 127.54, 117.13, 112.95, 70.18, 20.58, 17.22.

HRMS (ESI⁺): calcd for C₁₅H₁₆OS [M+Na]⁺: 267.0814, found: 267.0813.

IR (neat, cm⁻¹): 3032, 2979, 2917, 2865, 1595, 1477, 1294, 1232, 1170, 1027, 801, 733, 697.

2-Benzyloxy-1,3-diisopropylbenzene

20 was prepared as a white solid in 86% yield (1.15 g, eluent: petroleum ether) following the general procedure B.

m.p. 36-37 °C

 $\mathbf{R}_f = 0.66$ (petroleum ether)

¹**H NMR (400 MHz, CDCl₃)** δ 7.53 (d, J = 7.4 Hz, 2H), 7.44 (t, J = 7.4 Hz, 2H), 7.37 (t, J = 7.1 Hz, 1H), 7.16 (s, 3H), 4.84 (s, 2H), 3.43 (heptet, J = 6.9 Hz, 2H), 1.27 (d, J = 6.9 Hz, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 153.28, 142.08, 137.91, 128.70, 128.05, 127.52, 124.87, 124.21, 76.53, 26.73, 24.26.

HRMS (ESI⁺): calcd for C₁₉H₂₄O [M+Na]⁺: 291.1719, found: 291.1717.

IR (neat, cm⁻¹): 3031, 2962, 2929, 2868, 1447, 1324, 1253, 1181, 1048, 1016, 760, 733, 697.

1-Benzyloxy-2,3-dimethylbenzene

2p was prepared as a colorless oil in 90% yield (0.96 g, eluent: petroleum ether) following the general procedure B.

 $\mathbf{R}_{f} = 0.83$ (petroleum ether)

¹**H NMR (400 MHz, CDCl₃)** δ 7.48 (d, *J* = 7.4 Hz, 2H), 7.41 (t, *J* = 7.3 Hz, 2H), 7.34 (t, *J* = 7.1 Hz, 1H), 7.07 (t, *J* = 7.8 Hz, 1H), 6.81 (t, *J* = 8.6 Hz, 2H), 5.09 (s, 2H), 2.32 (s, 3H), 2.24 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 156.86, 138.14, 137.83, 128.62, 127.81, 127.27, 125.91, 125.68, 122.67, 109.59, 70.32, 20.24, 11.95.

HRMS (ESI⁺): calcd for C₁₅H₁₆O [M+Na]⁺: 235.1093, found: 235.1092.

IR (neat, cm⁻¹): 3032, 2921, 2864, 1583, 1457, 1381, 1307, 1257, 1102, 1014, 766, 735, 696.

3-(4-Benzyloxyphenyl)furan

2s was prepared as a white solid in 80% yield (1.00 g, eluent: petroleum ether/EtOAc

= 60:1) following the general procedure B.

m.p. 117-118 °C

 $\mathbf{R}_f = 0.52$ (petroleum ether/EtOAc = 30:1)

¹**H NMR (400 MHz, CDCl₃)** δ 7.67 (s, 1H), 7.41 (m, 8H), 7.01 (d, *J* = 8.2 Hz, 2H), 6.67 (s, 1H), 5.10 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 158.09, 143.64, 137.84, 137.12, 128.73, 128.11, 127.60, 127.17, 126.20, 125.48, 115.37, 109.00, 70.22.

HRMS (ESI⁺): calcd for C₁₇H₁₄O₂ [M+H]⁺: 251.1067, found: 251.1065.

IR (neat, cm⁻¹): 3040, 2912, 2861, 1587, 1516, 1291, 1248, 1159, 1016, 874, 828, 781, 741, 695, 594.

3-(4-Benzyloxyphenyl)thiophene

2t was prepared as a white solid in 81% yield (1.09 g, eluent: petroleum ether/EtOAc

= 60:1) following the general procedure B.

m.p. 146-147 °C

 $\mathbf{R}_f = 0.52$ (petroleum ether/EtOAc = 30:1)

¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 8.0 Hz, 2H), 7.50–7.28 (m, 8H), 7.02 (d, J = 8.1 Hz, 2H), 5.11 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 158.22, 142.11, 137.11, 129.14, 128.74, 128.13, 127.70, 127.61, 126.37, 126.20, 119.13, 115.30, 70.24.

HRMS (ESI⁺): calcd for C₁₇H₁₄OS [M+H]⁺: 267.0838, found: 267.0838.

IR (neat, cm⁻¹): 3100, 3040, 2918, 2861, 1608, 1535, 1501, 1381, 1290, 1247, 1182, 1014, 838, 776, 740, 692.

General procedure C for the synthesis of aryl allyl ethers

Anhydrous potassium carbonate (10 mmol, 2 equiv), phenol (5 mmol, 1 equiv), allylbromide (7.5 mmol, 1.5 equiv) and acetone (10 mL) were sequentially added to a 35 mL sealed tube, and the mixture was stirred at 60 °C for 12 h. After cooling to room temperature, the resulting solution was filtered, extracted with ethyl acetate, and concentrated under reduced pressure. The desired product was obtained by silica gel column chromatography (eluent: petroleum ether/ethyl acetate).

1-Allyloxy-2-ethylbenzene

3d was prepared as a colorless oil in 80% yield (0.65 g, eluent: petroleum ether) following the general procedure C.

 $\mathbf{R}_f = 0.77$ (petroleum ether)

¹**H NMR (400 MHz, CDCl₃)** δ 7.16 (t, *J* = 8.9 Hz, 2H), 6.91 (t, *J* = 7.3 Hz, 1H), 6.84 (d, *J* = 8.0 Hz, 1H), 6.09 (m, 1H), 5.45 (d, *J* = 17.2 Hz, 1H), 5.28 (d, *J* = 10.5 Hz, 1H), 4.56 (d, *J* = 4.4 Hz, 2H), 2.70 (q, *J* = 7.5 Hz, 2H), 1.23 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 156.50, 133.83, 133.11, 129.17, 126.81, 120.78, 116.87, 111.64, 68.78, 23.50, 14.32.

HRMS (EI⁺): calcd for C₁₁H₁₄O [M]: 162.1045, found: 162.1049.

IR (neat, cm⁻¹): 2962, 2926, 2857, 1492, 1455, 1240, 1127, 1023, 999, 924, 749.

1-Allyloxy-2-tert-butylbenzene

3f was prepared as a colorless oil in 82% yield (0.78 g, eluent: petroleum ether) following the general procedure C.

 $\mathbf{R}_f = 0.87$ (petroleum ether)

¹**H NMR (400 MHz, CDCl₃)** δ 7.31 (d, *J* = 7.7 Hz, 1H), 7.18 (t, *J* = 7.7 Hz, 1H), 6.90 (dd, *J* = 17.5, 8.0 Hz, 2H), 6.13 (m, 1H), 5.47 (d, *J* = 17.3 Hz, 1H), 5.30 (d, *J* = 10.6 Hz, 1H), 4.59 (d, *J* = 4.1 Hz, 2H), 1.43 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 157.58, 138.50, 133.81, 127.07, 126.79, 120.60, 117.06, 112.67, 68.96, 35.01, 29.93.

HRMS (ESI⁺): calcd for C₁₃H₁₈O [M+Na]⁺: 213.1250, found: 213.1249.

IR (neat, cm⁻¹): 2957, 2915, 2869, 1489, 1443, 1229, 1093, 1023, 996, 926, 748.

6-Allyloxy-1,2,3,4-tetrahydronaphthalene

3h was prepared as a colorless oil in 88% yield (0.83 g, eluent: petroleum ether) following the general procedure C.

 $\mathbf{R}_{f} = 0.66$ (petroleum ether)

¹**H NMR (400 MHz, CDCl₃)** δ 7.00 (d, *J* = 8.3 Hz, 1H), 6.73 (d, *J* = 8.4 Hz, 1H), 6.67 (s, 1H), 6.09 (m, 1H), 5.44 (d, *J* = 17.2 Hz, 1H), 5.31 (d, *J* = 10.5 Hz, 1H), 4.54 (d, *J* = 4.6 Hz, 2H), 2.76 (d, *J* = 15.6 Hz, 4H), 1.82 (s, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 156.51, 138.23, 133.78, 129.99, 129.55, 117.44, 114.81, 112.63, 68.94, 29.82, 28.69, 23.56, 23.29.

HRMS (ESI⁺): calcd for C₁₃H₁₆O [M+Na]⁺: 211.1093, found: 211.1092.

IR (neat, cm⁻¹): 3016, 2925, 2857, 1611, 1500, 1424, 1248, 1230, 1158, 1029, 923, 825, 799.

1-Allyloxy-3-fluorobenzene

3j was prepared as a light yellow oil in 89% yield (0.68 g, eluent: petroleum ether) following the general procedure C.

 $\mathbf{R}_f = 0.70$ (petroleum ether)

¹**H** NMR (400 MHz, CDCl₃) δ 7.27–7.16 (m, 1H), 6.74–6.58 (m, 3H), 6.04 (m, 1H), 5.41 (d, J = 17.3 Hz, 1H), 5.30 (d, J = 10.5 Hz, 1H), 4.51 (d, J = 5.3 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 163.71 (d, *J* = 246.4 Hz), 160.04 (d, *J* = 11.1 Hz), 132.89, 130.29 (d, *J* = 10.1 Hz), 118.11, 110.64, 107.74 (d, *J* = 21.2 Hz), 102.54 (d, *J* = 24.2 Hz), 69.12.

¹⁹F NMR (**376** MHz, CDCl₃) δ -111.72.

HRMS (ESI⁺): calcd for C₉H₁₀OF [M+H]⁺: 153.0710, found: 153.0719.

IR (neat, cm⁻¹): 2925, 2855, 1610, 1593, 1489, 1282, 1264, 1169, 1134, 1028.

1-Allyloxy-3-trifluoromethylbenzene

3k was prepared as a light yellow oil in 91% yield (0.92 g, eluent: petroleum ether) following the general procedure C.

 $\mathbf{R}_f = 0.73$ (petroleum ether)

¹**H NMR (400 MHz, CDCl₃)** δ 7.39 (t, *J* = 8.0 Hz, 1H), 7.21 (d, *J* = 7.7 Hz, 1H), 7.15 (s, 1H), 7.09 (d, *J* = 8.3 Hz, 1H), 6.06 (m, 1H), 5.44 (d, *J* = 17.3 Hz, 1H), 5.33 (d, *J* = 10.5 Hz, 1H), 4.58 (d, *J* = 5.2 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 158.79, 132.70, 131.93 (q, J = 32.3 Hz), 130.08, 124.10 (q, J = 273.4 Hz), 118.36, 118.27, 117.64 (q, J = 4.0 Hz), 111.63 (q, J = 4.0 Hz), 69.12.
¹⁹F NMR (376 MHz, CDCl₃) δ -62.72.

HRMS (ESI⁺): calcd for C₁₀H₉F₃O [M+H]⁺: 203.0678, found: 203.0680.

IR (neat, cm⁻¹): 2927, 2855, 1450, 1328, 1168, 1128, 1067, 1028, 697.

4-Allyloxy-*N*,*N*-dimethylbenzamide

31 was prepared as a light yellow oil in 88% yield (0.90 g, eluent: petroleum ether/EtOAc = 1:1) following the general procedure C.

 $R_f = 0.45$ (EtOAc)

¹**H NMR (400 MHz, CDCl₃)** δ 7.35 (d, *J* = 7.9 Hz, 2H), 6.87 (d, *J* = 8.0 Hz, 2H), 6.01 (m, 1H), 5.37 (d, *J* = 17.3 Hz, 1H), 5.26 (d, *J* = 10.5 Hz, 1H), 4.52 (d, *J* = 5.1 Hz, 2H), 3.01 (d, *J* = 12.2 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 170.25, 159.59, 132.86, 129.13, 128.55, 117.96, 114.32, 68.80, 39.82, 35.57.

HRMS (ESI⁺): calcd for $C_{12}H_{15}O_2N [M+H]^+$: 206.1176, found: 206.1177.

IR (neat, cm⁻¹): 2928, 1625, 1605, 1387, 1242, 1221, 1173, 1080, 840, 763.

4-Allyloxy-2-methyl-1-methylsulfanylbenzene

3m was prepared as a colorless oil in 85% yield (0.83 g, eluent: petroleum ether) following the general procedure C.

 $\mathbf{R}_{f} = 0.57$ (petroleum ether)

¹**H NMR (400 MHz, CDCl₃)** δ 7.20 (d, *J* = 8.4 Hz, 1H), 6.85–6.69 (m, 2H), 6.05 (m, 1H), 5.41 (d, *J* = 17.3 Hz, 1H), 5.28 (d, *J* = 10.5 Hz, 1H), 4.51 (d, *J* = 4.4 Hz, 2H), 2.39 (d, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 157.18, 139.16, 133.45, 129.42, 128.45, 117.69, 117.01, 112.90, 69.02, 20.59, 17.28.

HRMS (ESI⁺): calcd for C₁₁H₁₄OS [M+Na]⁺: 217.0658, found: 217.0657.

IR (neat, cm⁻¹): 2980, 2919, 2856, 1595, 1478, 1429, 1294, 1233, 1171, 1027, 992, 925, 801.

3-(4-Allyloxyphenyl)furan

3s was prepared as a light yellow solid in 81% yield (0.82 g, eluent: petroleum ether) following the general procedure C.

m.p. 74-75 °C

 $\mathbf{R}_f = 0.34$ (petroleum ether)

¹**H NMR (400 MHz, CDCl₃)** δ 7.66 (s, 1H), 7.46 (s, 1H), 7.41 (d, J = 7.9 Hz, 2H), 6.94 (d, J = 8.0 Hz, 2H), 6.66 (s, 1H), 6.08 (m, 1H), 5.43 (d, J = 17.3 Hz, 1H), 5.31 (d, J = 10.5 Hz, 1H), 4.56 (d, J = 5.1 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 157.90, 143.64, 137.83, 133.40, 127.14, 126.22, 125.38, 117.84, 115.25, 109.00, 69.03.

HRMS (ESI⁺): calcd for C₁₃H₁₂O₂ [M+Na]⁺: 223.0730, found: 223.0728.

IR (neat, cm⁻¹): 3128, 2921, 2865, 1737, 1590, 1518, 1244, 1158, 1015, 835, 786.

3-(4-Allyloxyphenyl)thiophene

3t was prepared as a white solid in 80% yield (0.87 g, eluent: petroleum ether) following the general procedure C.

m.p. 102-103 °C

 $\mathbf{R}_f = 0.34$ (petroleum ether)

¹**H NMR (400 MHz, CDCl₃)** δ 7.53 (d, *J* = 8.0 Hz, 2H), 7.35 (s, 3H), 6.96 (d, *J* = 8.0 Hz, 2H), 6.09 (m, 1H), 5.45 (d, *J* = 17.3 Hz, 1H), 5.31 (d, *J* = 10.5 Hz, 1H), 4.58 (d, *J* = 4.9 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 158.02, 142.11, 133.39, 129.03, 127.65, 126.36, 126.18, 119.09, 117.85, 115.16, 69.02.

HRMS (ESI⁺): calcd for C₁₃H₁₂OS [M+Na]⁺: 239.0501, found: 239.0500.

IR (neat, cm⁻¹): 3053, 2926, 2858, 1609, 1538, 1502, 1263, 1017, 997, 836, 779, 735.

General procedure D for the synthesis of aryl dialkyl ethers

NaH (25 mmol, 5 equiv) was dissolved in 10 ml of dry THF under N_2 and placed in an ice bath, a phenol (5 mmol, 1 equiv, dissolved in 10 ml dry THF) solution was added dropwised, and the reaction mixture was stirred for 30 min. Allylbromide (50 mmol, 10 equiv) or benzylbromide (50 mmol, 10 equiv) was added to the above solution, and the mixture was further stirred at 40 °C for 24 h. Upon completion, the solution was cooled to room temperature, and carefully added ice-water. After the effervescence ceased, the mixture was extracted with ethyl acetate, and the organic layer was separated and concentrated under reduced pressure. The desired product was obtained by silica gel column chromatography (eluent: petroleum ether/ethyl acetate).

1-benzyloxy-4-(2-benzyloxyethyl)benzene

2ab was prepared as a white solid in 90% yield (1.43 g, eluent: petroleum ether/EtOAc= 60:1) following the general procedure D.

m.p. 87-88 °C

 $\mathbf{R}_f = 0.43$ (petroleum ether/EtOAc = 20:1)

¹**H NMR (400 MHz, CDCl₃)** δ 7.48 – 7.25 (m, 10H), 7.19 – 7.13 (m, 2H), 6.96 – 6.89 (m, 2H), 5.06 (s, 2H), 4.54 (s, 2H), 3.67 (t, *J* = 7.2 Hz, 2H), 2.89 (t, *J* = 7.2 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 157.44, 138.57, 137.32, 131.46, 130.02, 128.70, 128.49, 128.03, 127.75, 127.66, 127.59, 114.89, 73.08, 71.60, 70.17, 35.62.
HRMS (ESI⁺): calcd for C₂₂H₂₂O₂Na [M+Na]⁺: 341.1517, found: 341.1520.

IR (neat, cm⁻¹): 2919.42, 2852.69, 1611.47, 1510.81, 1453.61, 1238.97, 1098.81, 1026.6, 733.58, 695.54.

1-allyloxy-4-(2-allyloxyethyl)benzene

3ac was prepared as a light yellow oil in 85% yield (0.93 g, eluent: petroleum ether) following the general procedure D.

 $\mathbf{R}_f = 0.52$ (petroleum ether/EtOAc = 20:1)

¹**H NMR (400 MHz, CDCl₃)** δ 7.18–7.12 (m, 2H), 6.90–6.82 (m, 2H), 6.07 (ddd, J = 12.0, 10.5, 5.2 Hz, 1H), 5.90 (d, J = 10.4 Hz, 1H), 5.42 (dq, J = 17.2, 1.7 Hz, 1H), 5.33 – 5.23 (m, 2H), 5.18 (dq, J = 10.4, 1.5 Hz, 1H), 4.52 (dt, J = 5.2, 1.6 Hz, 2H), 4.00 (dt, J = 5.6, 1.5 Hz, 2H), 3.63 (t, J = 7.2 Hz, 2H), 2.86 (t, J = 7.3 Hz, 2H). ¹³**C NMR (101 MHz, CDCl₃)** δ 157.20, 134.98, 133.57, 131.29, 129.90, 117.60, 116.89, 114.74, 71.95, 71.56, 68.92, 35.56. **HRMS (ESI⁺):** calcd for C₁₄H₁₉O₂ [M+H]⁺: 219.1385, found: 219.1389.

IR (neat, cm⁻¹): 2921.01, 2856.22, 1612.29, 1511.55, 1241.16, 1177.76, 1099.09, 1024.62, 997.64, 923.89, 827.18

III. References

(a) D. Zhu, L. Lv, C. C. Li, S. Ung, J. Gao and C. J. Li, *Angew. Chem. Int. Ed.*, 2018,
 57, 16520; (b) M. J. Harper, E. J. Emmett, J. F. Bower and C. A. Russell, *J. Am. Chem. Soc.*, 2017, 139, 12386; (c) W. X. Xue, G. X. Zhang, D. Q. Zhang and D. B. Zhu, *Org. Lett.*, 2010, 12, 2274; (d) D. P. Zhang, Y. J. Fan, H. Chen, S. Trepout and M. H. Li, *Angew. Chem. Int. Ed.*, 2019, 58, 10260; (e) F. Ratsch, W. Schlundt, D. Albat, A. Zimmer, J. M. Neudorfl, T. Netscher and H. G. Schmalz, *Chem. Eur. J.*, 2019, 25, 4941.
 L. Bering, K. Jeyakumar and A. P. Antonchick, *Org. Lett.*, 2018, 20, 3911.
 M. Chouhan, K. Kumar, R. Sharma, V. Grover and V. A. Nair, *Tetrahedron Lett.*,

4. T.-Z. Li, C.-A. Geng and J.-J. Chen, Tetrahedron Lett., 2019, 60, 151059.

5. K. Gebauer and A. Furstner, Angew. Chem. Int. Ed., 2014, 53, 6393.

IV. Copies of NMR Spectra of Ph₂PMe

methyldiphenylphosphane

¹H NMR (400 MHz, CDCl₃) δ 7.50–7.40 (m, 4H), 7.35 (d, J = 6.4 Hz, 6H), 1.66 (d,

 $J_{P,H} = 3.5$ Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 140.29 (d, $J_{P,C}$ = 12.1 Hz), 132.24 (d, $J_{P,C}$ = 18.2 Hz),

128.51 (d, $J_{P,C}$ = 7.1 Hz), 128.50, 12.66 (d, $J_{P,C}$ = 14.1 Hz).

³¹P NMR (162 MHz, CDCl₃) δ -26.83.

GCMS : calcd for C₁₃H₁₃P [M+H]⁺: 200.07, found: 200.1.

1.65

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -2 f1 (ppm)

V. Copies of NMR Spectra of Unknown Aryl Benzyl/Allyl Ether

1. 4-(furan-3-yl)phenol

-156.70-141.61127.28126.63126.63125.96-118.50-118.50

3. 1-benzyloxy-2-ethylbenzene (2d)

4. 1-benzyloxy-2-isopropylbenzene (2e)

5. 1-benzyloxy-2-tert-butylbenzene (2f)

6. 4-benzyloxy-*N*,*N*-dimethylbenzamide (21)

7. 4-benzyloxy-2-methyl-1-methylsulfanylbenzene (2m)

8. 2-benzyloxy-1,3-diisopropylbenzene (20)

9. 1-benzyloxy-2,3-dimethylbenzene (2p)

10. 3-(4-benzyloxyphenyl)furan (2s)

-158.09-143.64-143.64-137.13-137.13-137.13-127.60-125.48-115.37-125.48-115.37-109.00-109.00

11. 3-(4-benzyloxyphenyl)thiophene (2t)

12. 1-benzyloxy-4-(2-benzyloxyethyl)benzene (2ab)

13. 1-allyloxy-2-ethylbenzene (**3d**)

14. 1-allyloxy-2-*tert*-butylbenzene (3f)

S32

f1 (ppm)

16. 1-allyloxy-3-fluorobenzene (3j)

17. 1-allyloxy-3-trifluoromethylbenzene (3k)

19. 4-allyloxy-2-methyl-1-methylsulfanylbenzene (3m)

-69.03

22. 1-allyloxy-4-(2-allyloxyethyl)benzene (3ac)

$\begin{array}{c} 7.16\\ 6.87\\ 6.87\\ 7.116\\ 6.87\\ 7.114\\ 6.88\\ 7.114\\ 6.88\\ 6.$

VI. Copies of NMR Spectra of Deprotection Products Aryl Phenols

1. *p*-cresol (4a)

S43

3. [1,1'-biphenyl]-4-ol (4c)

-157.96 141.75 133.13 122.56 1228.80 127.20 -116.53

S45

5. 2-isopropylphenol (4e)

6. 2-tert-butylphenol (4f)

7. 3,5-dimethylphenol (4g)

8. 5,6,7,8-tetrahydro-2-naphthol (4h)

9. 4-(1,2,2-triphenylvinyl)phenol (4i)

155.93 143.69 144.55 144.57 144.57 139.12 133.69 135.69 15.69 15.69 15.69 15.69 15.69 15.69 15.69 15.69 15.69 15.69 15.60

 $\begin{array}{c} 7.21\\ 7.19\\ 7.19\\ 7.19\\ 7.19\\ 6.68\\ 6.68\\ 6.66\\ 6.66\\ 6.66\\ 6.65\\ 6.66\\ 6.57\\ 6.53\\ 6.57\\ 6.53\\ 6.57\\ 6.53\\ 6.57\\ 6.53\\ 6.57\\ 6.53\\ 6.57\\ 6.53\\ 6.57\\ 6.53\\ 6.57\\ 6.53\\ 6.57\\ 6.53\\ 6.57\\ 6.53\\$

11. 3-trifluoromethylphenol (4k)

13. 3-methyl-4-methylthiophenol (4m)

15. 2,6-diisopropylphenol (40)

16. 2,3-dimethylphenol (4p)

S58

17. 2-naphthalenol (4q)

7.77 7.77 7.77 7.77 7.47 7.43 7.43 7.7.45 7.7.45 7.7.35 7.7.45 7.7.35 7.7.16 7.7.16 7.7.16 7.7.16 7.7.116

-153.37 134.70 134.70 1230.00 123.78 117.86 -109.68

18. 1-naphthalenol (4r)

-151.44 134.89 126.57 125.96 125.41 125.41 121.64 120.84

21. 4-(2-methoxyethyl)phenol (4u)

22. 4-methoxyphenol (4v)

23. 4,4'-(1-methylethylidene)diphenol (4w)

24. 4-(2-(4-methoxyphenyl)-1,2-diphenylvinyl)phenol (4x)

159.08 156.81 156.83 156.81 156.83 156.81 145.32 145.32 145.32 145.32 145.32 145.35 137.14 137.14 133.25 133.23

25. 4,4'-(1,2-diphenylethene-1,2-diyl)diphenol (4y)

8.30 8.26 8.25 8.25 7.19 7.19 7.114 7.114 7.114 7.110 7.7.00 6.83 6.63 6.57 6.57

26. [1,1'-biphenyl]-2,2'-diol (4z)

7.33 7.29 7.27 7.06 7.01 7.01 7.01

-152.91-131.52 $\wedge 130.02$ -124.03 $\wedge 121.79$ -116.82

27. 1-(2-hydroxynaphthalen-1-yl)naphthalen-2-ol (4aa)

7.93 7.91 7.87 7.87 7.87 7.87 7.87 7.33 7.23 7.23 7.23 7.23 7.21 7.21 7.21 7.21 7.21 7.21 7.21 7.23

29. 4-(2-allyloxyethyl)phenol (4ac)

$\begin{array}{c} 7.09\\ 7.70\\ 7.70\\ 7.70\\ 7.70\\ 7.70\\ 7.70\\ 7.70\\ 8.52\\$

30. 4-Benzyloxyphenol (4ad)

9.00 7.704 6.55 6.649 6.649 6.649 6.648 6.649 6.64

