Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

SUPPORTING INFORMATION

Carbon Tetrachloride-Free Allylic Halogenation-Mediated Glycosylations of Allyl Glycosides

Anupama Das and Narayanaswamy Jayaraman* Department of Chemistry, Indian Institute of Science, Bangalore-560012, India. E-mail: jayaraman@iisc.ac.in.

Contents

1.	HPLC traces of the glycosylation reaction mixture	S-2
2.	¹ H and ¹³ C NMR spectra of new compounds	S-33
3.	ESI Mass of xylo-trisaccharide 39	S-45
4.	¹ H and ¹³ C NMR spectra of the inseparable mixture of 38 and 39	S-46
5.	¹ H and ¹³ C NMR spectra of known compounds	S-47

HPLC Traces of the Glycosylations

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	6.731	4063	12.432	
2	27.861	28618	87.568	
Total		32681	100.000	

Figure S1. HPLC trace of the one-pot glycosylation reaction mixture, corresponding to the synthesis of **26** (RT 6.731) using TMSOTf as promotor. RT 27.861 refers to lactol.

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	6.901	11113	40.668	
2	27.637	16213	59.332	
Total		27326	100.000	

Figure S2. HPLC trace of the one-pot glycosylation reaction mixture, corresponding to the synthesis of 26 (RT 6.901) using TMSOTf + Tf_2O as promotor. RT 27.637 refers to lactol.

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	6.891	44889	51.016	
2	27.605	43101	48.984	
Total		87990	100.000	

Figure S3. HPLC trace of the one-pot glycosylation reaction mixture, corresponding to the synthesis of 26 (RT 6.891) using Tf₂O as promotor. RT 27.605 refers to lactol.

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	6.788	7201	44.213	
2	20.373	9086	57.787	
Total		16287	100.000	

Figure S4. HPLC trace of the one-pot glycosylation reaction mixture, corresponding to the synthesis of **27** (RT 6.788) using TMSOTf as promotor. RT 20.373 refers to lactol.

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	6.912	18920	79.811	
2	20.427	4786	20.189	
Total		23706	100.000	

Figure S5. HPLC trace of the one-pot glycosylation reaction mixture, corresponding to the synthesis of **27** (RT 6.912) using TMSOTf + Tf₂O as promotor. RT 20.427 refers to lactol.

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	6.688	32539	58.595	
2	20.352	22993	41.405	
Total		55532	100.000	

Figure S6. HPLC trace of the one-pot glycosylation reaction mixture, corresponding to the synthesis of 27 (RT 6.688) using Tf₂O as promotor. RT 20.352 refers to lactol.

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	7.051	3891	7.742	
2	23.360	46367	92.258	
Total		50258	100.000	

Figure S7. HPLC trace of the one-pot glycosylation reaction mixture, corresponding to the synthesis of **28** (RT 7.051) using TMSOTf as promotor. RT 23.360 refers to lactol.

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	7.051	11760	36.018	
2	23.360	20890	63.982	
Total		32650	100.000	

Figure S8. HPLC trace of the one-pot glycosylation reaction mixture, corresponding to the synthesis of **28** (RT 7.051) using TMSOTf + Tf₂O as promotor. RT 23.360 refers to lactol.

ΡI	JА	Chl	25	4nm

Peak#	Ret. Time	Area	Area%
1	7.083	1796	7.559
2	22.411	21963	92.441
Total		23759	100.000

Figure S9. HPLC trace of the one-pot glycosylation reaction mixture, corresponding to the synthesis of 28 (RT 7.083) using Tf₂O as promotor. RT 22.411 refers to lactol.

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	27.818	15135	100.000	
Total		15135	100.000	

Figure S10. HPLC trace of the one-pot glycosylation reaction mixture, corresponding to the synthesis of **29** using TMSOTf as promotor. RT 27.818 refers to lactol.

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	27.818	15135	100.000	
Total		15135	100.000	

Figure S11. HPLC trace of the one-pot glycosylation reaction mixture, corresponding to the synthesis of 29 using TMSOTf + Tf_2O as promotor. RT 27.818 refers to lactol.

PDA Ch1 254nm

Peak#	Ret. Time	Area	Area%
1	6.773	856	3.734
2	27.477	22064	96.266
Total		22920	100.000

Figure S12. HPLC trace of the one-pot glycosylation reaction mixture, corresponding to the synthesis of 29 (RT 6.773) using Tf₂O as promotor. RT 27.477 refers to lactol.

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	6.251	7023	19.233	
2	6.720	6384	17.483	
3	20.032	23108	63.284	
Total		36515	100.000	

Figure S13. HPLC trace of the one-pot glycosylation reaction mixture, corresponding to the synthesis of **30** (RT 6.251 & 6.720) using TMSOTf as promotor. RT 20.032 refers to lactol.

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	6.261	24347	35.238	
2	6.720	9343	13.522	
3	20.011	35404	51.240	
Total		69094	100.000	

Figure S14. HPLC trace of the one-pot glycosylation reaction mixture, corresponding to the synthesis of 30 (RT 6.261 & 6.720) using TMSOTf + Tf₂O as promotor. RT 20.011 refers to lactol.

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	6.251	16143	19.417	
2	6.741	14676	17.652	
3	20.000	52321	62.931	
Total		83140	100.000	

Figure S15. HPLC trace of the one-pot glycosylation reaction mixture, corresponding to the synthesis of **30** (RT 6.251 & 6.741) using Tf₂O as promotor. RT 20.000 refers to lactol.

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	7.099	18923	29.077	
2	21.041	46157	70.923	
Total		65080	100.000	

Figure S16. HPLC trace of the one-pot glycosylation reaction mixture, corresponding to the synthesis of **31**(RT 7.099) using TMSOTf as promotor. RT 20.041 refers to lactol.

PDA Ch1	254nm
---------	-------

Peak#	Ret. Time	Area	Area%
1	7.147	31660	88.003
2	21.088	4316	11.997
Total		35976	100.000

Figure S17. HPLC trace of the one-pot glycosylation reaction mixture, corresponding to the synthesis of **31** (RT 7.147) using TMSOTf + Tf₂O as promotor. RT 21.088 refers to lactol.

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	6.987	11367	26.573	
2	20.928	31409	73.427	
Total		42776	100.000	

Figure S18. HPLC trace of the one-pot glycosylation reaction mixture, corresponding to the synthesis of 31 (RT 6.987) using Tf₂O as promotor. RT 20.928 refers to lactol.

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	7.061	2440	9.312	
2	29.663	23762	90.688	
Total		26202	100.000	

Figure S19. HPLC trace of the one-pot glycosylation reaction mixture, corresponding to the synthesis of **32** (RT 7.061) using TMSOTf as promotor. RT 29.663 refers to lactol.

PDA Ch1 254nm

Peak#	Ret. Time	Area	Area%	
1	7.093	10818	14.988	
2	29.803	61362	85.012	
Total		72180	100.000	

Figure S20. HPLC trace of the one-pot glycosylation reaction mixture, corresponding to the synthesis of **32** (RT 7.093) using TMSOTf + Tf₂O as promotor. RT 29.803 refers to lactol.

PDA Ch1 254nm

Peak#	Ret. Time	Area	Area%
1	29.675	22483	100.000
Total		22483	100.000

Figure S21. HPLC trace of the one-pot glycosylation reaction mixture, corresponding to the synthesis of 32 using Tf_2O as promotor. RT 29.675 refers to lactol.

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	7.552	24825	31.454		
2	7.829	19282	24.431		
3	21.184	34818	44.115		
Total		78925	100.000		

Figure S22. HPLC trace of the one-pot glycosylation reaction mixture, corresponding to the synthesis of **33** (RT 7.552 & 7.829) using TMSOTf as promotor. RT 21.184 refers to lactol.

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	7.531	26766	40.785	
2	7.776	27213	41.466	
3	21.035	11648	17.749	
Total		65627	100.000	

Figure S23. HPLC trace of the one-pot glycosylation reaction mixture, corresponding to the synthesis of 33 (RT 7.531 & 7.776) using TMSOTf + Tf_2O as promotor. RT 21.035 refers to lactol.

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	7.509	27049	34.782	
2	7.819	22280	28.649	
3	20.875	28439	36.569	
Total		77768	100.000	

Figure S24. HPLC trace of the one-pot glycosylation reaction mixture, corresponding to the synthesis of **33** (RT 7.509 & 7.819) using Tf₂O as promotor. RT 20.875 refers to lactol.

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	6.645	4889	10.268	
2	6.891	4908	10.308	
3	22.997	37817	79.424	
Total		47614	100.000	

Figure 25. HPLC trace of the one-pot glycosylation reaction mixture, corresponding to the synthesis of **34** (RT 6.645 & 6.891) using TMSOTf as promotor. RT 22.997 refers to lactol.

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	6.912	2692	9.607		
2	23.008	25328	90.393		
Total		28020	100.000		

Figure S26. HPLC trace of the one-pot glycosylation reaction mixture, corresponding to the synthesis of **34** (RT 6.912) using TMSOTf + Tf_2O as promotor. RT 23.008 refers to lactol.

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	23.019	35184	100.000	
Total		35184	100.000	

Figure S27. HPLC trace of the one-pot glycosylation reaction mixture, corresponding to the synthesis of 34 using Tf_2O as promotor. RT 23.019 refers to lactol.

Yield = 74% (α : β = 1:1.3)

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	7.328	56210	45.196	
2	7.787	35225	28.323	
3	19.744	32934	26.481	
Total		124369	100.000	

Figure S28. HPLC trace of the one-pot glycosylation reaction mixture, corresponding to the synthesis of **33** (RT 7.328 & 7.787) using Sc(OTf)₃ as promotor. RT 19.744 refers to lactol.

PDA Ch1 254nm					
Ret. Time	Area	Area%			
7.317	40914	70.597			
19.744	17040	29.403			
	57954				
	254nm Ret. Time 7.317 19.744	254nm Ret. Time Area 7.317 40914 19.744 17040 57954			

Figure S29. HPLC trace of the one-pot glycosylation reaction mixture, corresponding to the synthesis of **33** (RT 7.317) using Cu(OTf)₂ as promotor. RT 19.744 refers to lactol.

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	7.339	42215	74.852		
2	19.723	14183	25.148		
Total		56398	100.000		
-					

Figure S30. HPLC trace of the one-pot glycosylation reaction mixture, corresponding to the synthesis of 33 (RT 7.339) using $Zn(OTf)_2$ as promotor. RT 19.723 refers to lactol.

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	7.371	22256	52.458	
2	19.755	20170	47.542	
Total		42426	100.000	

Figure S31. HPLC trace of the one-pot glycosylation reaction mixture, corresponding to the synthesis of **33** (RT 7.371) using AgOTf as promotor. RT 19.755 refers to lactol.

¹H and ¹³C NMR Spectra of New Compounds

Figure S32. ¹H NMR spectrum of 13 (400 MHz, CDCl₃).

Figure S33. ¹³C NMR spectrum of 13 (100 MHz, CDCl₃).

Figure S34. ¹H NMR spectrum of 16 (400 MHz, CDCl₃).

Figure S35. ¹³C NMR spectrum of 16 (100 MHz, CDCl₃).

Figure S36. ¹H NMR spectrum of 26 (400 MHz, CDCl₃).

Figure S37. ¹³C NMR spectrum of 26 (100 MHz, CDCl₃).

Figure S38. ¹H NMR spectrum of 27 (400 MHz, CDCl₃).

Figure S39. ¹³C NMR spectrum of 27 (100 MHz, CDCl₃).

Figure S40. ¹H NMR spectrum of 28 (400 MHz, CDCl₃).

Figure S41. ¹³C NMR spectrum of 28 (100 MHz, CDCl₃).

Figure S42. ¹H NMR spectrum of 29 (400 MHz, CDCl₃).

Figure S43. ¹³C NMR spectrum of 29 (100 MHz, CDCl₃).

Figure S44. ¹H NMR spectrum of **30** (400 MHz, CDCl₃).

Figure S45. ¹³C NMR spectrum of **30** (100 MHz, CDCl₃).

Figure S46. ¹H NMR spectrum of 31 (400 MHz, CDCl₃).

Figure S47. ¹³C NMR spectrum of 31 (100 MHz, CDCl₃).

Figure S48. ¹H NMR spectrum of 32 (400 MHz, CDCl₃).

Figure S49. ¹³C NMR spectrum of 32 (100 MHz, CDCl₃).

Figure S50. ¹H NMR spectrum of 33 (400 MHz, CDCl₃).

Figure S51. ¹³C NMR spectrum of 33 (100 MHz, CDCl₃).

Figure S52. ¹H NMR spectrum of 34 (400 MHz, CDCl₃).

Figure S53. ¹³C NMR spectrum of 34 (100 MHz, CDCl₃).

Figure S54. ESI-Mass spectrum of 38.

Figure S55. ¹H NMR spectrum of **38** (400 MHz, CDCl₃).

Figure S56. ¹³C NMR spectrum of 38 (100 MHz, CDCl₃).

Figure S57. ESI-Mass spectrum of 39.

Figure S58. ¹H NMR spectrum of the inseparable mixture of **38** and **39** (400 MHz, CDCl₃), in \sim 60:40 ratio, on the basis of the integrations.

Figure S59. ¹³C NMR spectrum of the inseparable mixture of **38** and **39** (100 MHz, CDCl₃).

¹H and ¹³C NMR Spectra of Known Compounds

Figure S60. ¹H NMR spectrum of 1 (400 MHz, CDCl₃).

Figure S61. ¹³C NMR spectrum of 1 (100 MHz, CDCl₃).

Figure S62. ¹H NMR spectrum of 2 (400 MHz, CDCl₃).

Figure S63. ¹³C NMR spectrum of 2 (100 MHz, CDCl₃).

Figure S64. ¹H NMR spectrum of 3 (400 MHz, CDCl₃).

Figure S65. ¹³C NMR spectrum of 3 (100 MHz, CDCl₃).

Figure S66. ¹H NMR spectrum of 4 (400 MHz, CDCl₃).

Figure S67. ¹³C NMR spectrum of 4 (100 MHz, CDCl₃).

Figure S68. ¹H NMR spectrum of 5 (400 MHz, CDCl₃).

Figure S69. ¹³C NMR spectrum of 5 (100 MHz, CDCl₃).

Figure S70. ¹H NMR spectrum of 6 (400 MHz, CDCl₃).

Figure S71. ¹³C NMR spectrum of 6 (100 MHz, CDCl₃).

Figure S72. ¹H NMR spectrum of 11 (400 MHz, CDCl₃).

Figure S73. ¹³C NMR spectrum of 11 (100 MHz, CDCl₃).

Figure S74. ¹H NMR spectrum of **12** (400 MHz, CDCl₃).

Figure S75. ¹³C NMR spectrum of **12** (100 MHz, CDCl₃).

Figure S76. ¹H NMR spectrum of 14 (400 MHz, CDCl₃).

Figure S77. ¹³C NMR spectrum of 14 (100 MHz, CDCl₃).

Figure S78. ¹H NMR spectrum of 15 (400 MHz, CDCl₃).

Figure S79. ¹³C NMR spectrum of 15 (100 MHz, CDCl₃).

Figure S80. ¹H NMR spectrum of 17 (400 MHz, CDCl₃).

Figure S81. ¹³C NMR spectrum of 17 (100 MHz, CDCl₃).

Figure S82. ¹H NMR spectrum of 18 (400 MHz, CDCl₃).

Figure S83. ¹³C NMR spectrum of 18 (100 MHz, CDCl₃).

Figure S84. ¹H NMR spectrum of 19 (400 MHz, CDCl₃).

Figure S85. ¹³C NMR spectrum of 19 (100 MHz, CDCl₃).

Figure S86. ¹H NMR spectrum of 20 (400 MHz, CDCl₃).

Figure S87. ¹³C NMR spectrum of 20 (100 MHz, CDCl₃).

Figure S88. ¹H NMR spectrum of 21 (400 MHz, CDCl₃).

Figure S89. ¹³C NMR spectrum of 21 (100 MHz, CDCl₃).

Figure S90. ¹H NMR spectrum of 22 (400 MHz, CDCl₃).

Figure S91. ¹³C NMR spectrum of 22 (100 MHz, CDCl₃).

Figure S92. ¹H NMR spectrum of 23 (400 MHz, CDCl₃).

Figure S93. ¹³C NMR spectrum of 23 (100 MHz, CDCl₃).

Figure S94. ¹H NMR spectrum of 24 (400 MHz, CDCl₃).

Figure S95. ¹³C NMR spectrum of 24 (100 MHz, CDCl₃).

Figure S96. ¹H NMR spectrum of 25 (400 MHz, CDCl₃).

Figure S97. ¹³C NMR spectrum of 25 (100 MHz, CDCl₃).

Figure S98. ¹H NMR spectrum of 35 (400 MHz, CDCl₃).

Figure S99. ¹³C NMR spectrum of 35 (100 MHz, CDCl₃).

Figure S100. ¹H NMR spectrum of 36 (400 MHz, CDCl₃).

Figure S101. ¹³C NMR spectrum of 36 (100 MHz, CDCl₃).

Figure S102. ¹H NMR spectrum of 37 (400 MHz, CDCl₃).

Figure S103. ¹³C NMR spectrum of 37 (100 MHz, CDCl₃).