SUPPORTING INFORMATION

Selective Binding of Highly Hydrophilic Anions by Incarceration into Rigidified Nanojars: Sulfate vs. Carbonate

Wisam A. Al Isawi,^{a†} Austin Z. Salome,^{a†} Basil M. Ahmed,^a Matthias Zeller^b and Gellert Mezei^{a*}

^a Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, USA
^b Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
†These authors contributed equally to this work
*Corresponding author. Email: gellert.mezei@wmich.edu

CONTENTS	PAGE	
1. ¹ H NMR spectra (Figures S1–S16)	S2-S9	
2. Hydrogen-bonding data and packing diagrams		
(Table S1, Figures S17–S19)	S10-S11	
3. Mass spectrometric data (Figures S20–S32)	S12-S18	

Figure S1. ¹H-NMR spectrum of 1,9-bis(dimethylamino)nona-1,8-diene-3,7-dione in CDCl₃.

Figure S2. ¹³C-NMR spectrum of 1,9-bis(dimethylamino)nona-1,8-diene-3,7-dione in CDCl₃.

Figure S3. ¹H-NMR spectrum of 1,3-di(pyrazol-3(5)-yl)propane in DMSO-*d*₆.

Figure S4. ¹³C-NMR spectrum of 1,3-di(pyrazol-3(5)-yl)propane in DMSO-d₆.

Figure S5. ¹H-NMR spectrum of 1,4-bis(1-(tetrahydropyran-2-yl)pyrazol-5-yl)butane in CDCl₃.

Figure S6. ¹³C-NMR spectrum of 1,4-bis(1-(tetrahydropyran-2-yl)pyrazol-5-yl)butane in CDCl₃.

Figure S7. 1H-NMR spectrum of 1,5-bis(1-(tetrahydropyran-2-yl)pyrazol-5-yl)pentane in CDCl₃.

Figure S8. ¹³C-NMR spectrum of 1,5-bis(1-(tetrahydropyran-2-yl)pyrazol-5-yl)pentane in CDCl₃.

Figure S9. ¹H-NMR spectrum of 1,4-di(pyrazol-3(5)-yl)butane in CDCl₃.

Figure S10. ¹³C-NMR spectrum of 1,4-di(pyrazol-3(5)-yl)butane in CDCl₃.

Figure S11. ¹H-NMR spectrum of 1,5-di(pyrazol-3(5)-yl)pentane in CDCl₃.

Figure S12. ¹³C-NMR spectrum of 1,5-di(pyrazol-3(5)-yl)pentane in CDCl₃.

Figure S13. ¹H-NMR spectrum of the product obtained from the reaction of (1-(tetrahydropyran-2-yl)pyrazol-5-yl)lithium with 1,3-diiodopropane (2:1 molar ratio) containing ~37% H₂L3, ~10% 5-iodo-1-(tetrahydropyran-2-yl)pyrazole and ~53% unreacted 1-(tetrahydropyran-2-yl)pyrazole.

Figure S14. ¹H-NMR spectrum of the product obtained from the reaction of (1-(tetrahydropyran-2-yl)pyrazol-5-yl)lithium with 1,2-diiodoethane (4:1 molar ratio) containing ~14% 5-iodo-1-(tetrahydropyran-2-yl)pyrazole and ~86% unreacted 1-(tetrahydropyran-2-yl)pyrazole.

Figure S15. Zoomed-in region of the ¹H-NMR spectrum of the product obtained from the reaction of (1-(tetrahydropyran-2-yl)pyrazol-5-yl)lithium with 1,2-diiodoethane (4:1 molar ratio) showing the signal of the proton from the 3-position of 5-iodo-1-(tetrahydropyran-2-yl)pyrazole.

Figure S16. ¹H-NMR spectrum of the product obtained from the reaction of (1-(tetrahydropyran-2-yl)pyrazol-5-yl)lithium with 1,2-diiodoethane (1:2 molar ratio) showing almost pure 5-iodo-1-(tetrahydropyran-2-yl)pyrazole.

D–H···A	D–H/(Å)	H…A∕(Å)	D…A/(Å)	D–H···A/°	Symmetry operator for A
N1—H1N···N2	0.91(2)	2.24(2)	2.986(2)	138(2)	-x+1, -y+2, -z+2
N1—H1N…N3	0.91(2)	2.39(2)	3.036(2)	127(2)	x+1, y, z+1
N4—H4N…N2	0.89(2)	2.29(2)	3.127(2)	158(2)	x, y, z-1

Table S1. Hydrogen bonding data for H2L4.

Figure S17. Packing diagram of H₂L4.

Figure S18. Packing diagram of (THP)₂L4 (only one position is shown for the disordered THPmoieties).

Figure S19. Packing diagram of (THP)₂L5.

Figure S20. ESI-MS(–) spectrum in CH₃CN of the nanojar mixture formed by Cu(NO₃)₂, H₂L3, NaOH and (Bu₄N)₂CO₃ in a 28:14:54:2 molar ratio in THF.

Figure S21. ESI-MS(–) spectrum in CH_3CN of the tetranuclear complex obtained from $Cu(NO_3)_2$, H_2L3 and NaOH in a 28:14:42 molar ratio in THF.

Figure S22. ESI-MS(–) spectrum in CH_3CN of the nanojar obtained from $Cu(NO_3)_2$, H_2L3 and Bu_4NOH in a 28:28:63 molar ratio in THF.

Figure S23. ESI-MS(–) spectrum in DMF of the nanojar mixture $[SO_4 \subset Cu_n(OH)_n(L4)_y(pz)_{n-2y}]^{2-1}$ formed by L4 in mixture with pz (1:2 molar ratio). Cu_n abbreviations show the nuclearity of the nanojars, and the molar ratio between L4 and pz in a given nanojar is indicated by y:n-2y.

Figure S24. ESI-MS(−) spectrum in CH₃CN of the nanojar mixture [CO₃⊂Cu_n(OH)_n(L5)_y(pz)_{n-2y}]²⁻ formed by L5 in mixture with pz (1:2 molar ratio). Cu_n abbreviations show the nuclearity of the nanojars, and the molar ratio between L5 and pz in a given nanojar is indicated by y:n-2y.

Figure S25. ESI-MS(–) spectrum in DMF of the nanojar mixture $[SO_4 \subset Cu_n(OH)_n(L5)_y(pz)_{n-2y}]^{2-1}$ formed by L5 in mixture with pz (1:2 molar ratio). Cu_n abbreviations show the nuclearity of the nanojars, and the molar ratio between L5 and pz in a given nanojar is indicated by y:n–2y.

Figure S26. ESI-MS(−) spectrum in CH₃CN of the nanojar mixture [CO₃⊂Cu_n(OH)_n(**L6**)_y(pz)_{n-2y}]^{2−} formed by **L6** in mixture with pz (1:2 molar ratio). Cu_n abbreviations show the nuclearity of the nanojars, and the molar ratio between **L6** and pz in a given nanojar is indicated by y:n-2y.

Figure S27. ESI-MS(−) spectrum in CH₃CN of the nanojar mixture [SO₄⊂Cu_n(OH)_n(**L6**)_y(pz)_{n-2y}]^{2−} formed by **L6** in mixture with pz (1:2 molar ratio). Cu_n abbreviations show the nuclearity of the nanojars, and the molar ratio between **L6** and pz in a given nanojar is indicated by y:n-2y.

Figure S28. ESI-MS(–) spectrum in CH₃CN of the nanojar mixture $[SO_4 \subset Cu_n(OH)_n(L6)_y(pz)_{n-2y}]^{2-}$ formed by L6 in mixture with pz (1:2 molar ratio), showing additional peaks at m/z 1918–2000 and 3094–3175.

Figure S30. ESI-MS(–) spectrum in CH₃CN of the nanojar mixture $[CO_3/SO_4 \subset Cu_n(OH)_n(L4)_y(pz)_{n-2y}]^{2-}$ formed by L4 in mixture with pz (1:2 molar ratio) and an equimolar mixture of $(Bu_4N)_2CO_3$ and $(Bu_4N)_2SO_4$ in THF. Cu_n abbreviations show the nuclearity of the nanojars, and the molar ratio between L4 and pz in a given nanojar is indicated by y:n-2y.

Figure S31. ESI-MS(–) spectrum in CH₃CN of the nanojar mixture $[CO_3/SO_4 \subset Cu_n(OH)_n(L5)_y(pz)_{n-2y}]^{2-}$ formed by L5 in mixture with pz (1:2 molar ratio) and an equimolar mixture of $(Bu_4N)_2CO_3$ and $(Bu_4N)_2SO_4$ in THF. Cu_n abbreviations show the nuclearity of the nanojars, and the molar ratio between L5 and pz in a given nanojar is indicated by y:n-2y.

Figure S32. ESI-MS(–) spectrum in CH₃CN of the nanojar mixture $[CO_3/SO_4 \subset Cu_n(OH)_n(L6)_y(pz)_{n-2y}]^{2-}$ formed by L6 in mixture with pz (1:2 molar ratio) and an equimolar mixture of $(Bu_4N)_2CO_3$ and $(Bu_4N)_2SO_4$ in THF. Cu_n abbreviations show the nuclearity of the nanojars, and the molar ratio between L6 and pz in a given nanojar is indicated by y:n-2y.