Supplementary Information

Efficient synthesis of isoindolones by intramolecular cyclisation of pyridinylbenzoic acids

Atena B. Solea,^{a,b} Sining Wang,^c Xiao-Song Xue,^c Aurelien Crochet,^b Katharina M. Fromm,^b Kendall N. Houk,^c Olimpia Mamula,^{a*} Christophe Allemann^{a*}

^a University of Applied Sciences of Western Switzerland, HES-SO, HEIA-FR, Pérolles 80, CH-1705 Fribourg, Switzerland;

^b University of Fribourg, Department of Chemistry, Chemin du Musée 9, CH-1700 Fribourg, Switzerland

^c Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States

Contents

Experimental section	2
Structures, Emission, and UV-VIS spectra and ¹ H-NMR spectra of compounds 2, 3 and 5	7
NMR spectra	19
NMR spectra of 2	19
NMR spectra of 3	21
NMR spectra of P4	23
NMR spectra of 4	25
NMR spectra of 5	27
NMR spectra of P6	29
NMR spectra of 6	31
NMR spectra of P7	33
NMR spectra of 7	35
NMR spectra of P8	37
NMR spectra of 8	
NMR spectra of 14	41
HRMS spectra	43
HRMS spectrum of 2	43
HRMS spectrum of 3	44
HRMS spectrum of P4	45
HRMS spectrum of 4	46
HRMS spectrum of 5	47
HRMS spectrum of P6	48
HRMS spectrum of 6	49
HRMS spectrum of P7	50

Efficient synthesis of isoindolones by intramolecular cyclisation of pyridinylbenzoic acids
HRMS spectrum of 751
HRMS of P8
HRMS of 853
HRMS of 14
IR spectra
Computational study56
Computational methodologies56
Supplemental Figures57
B3LYP-D3/6-31G(d), SMD(CH3CN) Calculated Cartesian Coordinates and Thermal Corrections58
X-Ray data96
References

Experimental section

General Information. Reagent grade chemicals were purchased from Sigma Aldrich and Acros Organics and used without further purification. Yields reported are for isolated, spectroscopically pure compounds. (-)-Pinocarvone,¹ (1-(2-(2-bromophenyl)-2-oxoethyl)pyridin-1-ium iodide) and 1 (5S,7S)-2-(2bromophenyl)-6,6-dimethyl-5,6,7,8-tetrahydro-5,7-methanoquinoline) were obtained as described in the literature.² When inert conditions were required, the reactions were performed under Ar atmosphere using glassware dried overnight at 120°C. Analytical thin layer chromatography (TLC) was performed on SiO₂ plates GF254 (0.25 mm layer thickness). Flash chromatography purifications were performed on a CombiFlash EZ Prep from Teledyne®. Optical rotations were measured on an Anton Paar Modular Circular Polarimeter MCP 100. The measurements were carried out in a quartz vessel (λ = 100 mm) with the sodium D line of a sodium lamp (589 nm) using spectroscopic-grade solvents. $[\alpha]_{D}^{20}$ values are given in 10⁻¹ deg cm² g⁻¹. IR spectra were recorded as solids between 4000 – 400 cm⁻¹ on a Bruker ALPHA FTIR. UV-Vis spectra were recorded at 20°C on an Evolution 220 spectrometer equipped with a thermostat. Fluorescence spectra were recorded at 20°C on a Fluoromax 4 spectrometer from HORIBA equipped with a thermostat. NMR spectra were recorded on a Bruker Advance DPX 300 spectrometer using TMS or the residual solvent proton as internal standard. HRMS spectra were recorded on FTMS 4.7T BioAPEX II and Waters SynaptG2-Si or at the Spectrometry Service of University of Bern. Crystallographic data were collected on a STOE IPDS-II diffractometer.

Synthesis of 2-((55,75)-6,6-dimethyl-5,6,7,8-tetrahydro-5,7-methanoquinolin-2-yl)benzoic acid (2). Under inert atmosphere, a solution of 1 (4.07 g, 12.4 mmol, 1 eq) in anhydrous THF (40 mL) was cooled at -78°C. n-BuLi (5.7 mL, 12.4 mmol, 2.2M in hexane, 1 eq) was added dropwise. The solution turned dark red. The reaction mixture was stirred at -78°C for 2h. Then, gaseous CO₂ was bubbled into the solution until complete discoloration. The reaction mixture was left to warm to RT and quenched with H₂O (0.9 mL). The solvents were removed under reduced pressure, and 20 mL of HCl 1M were added. Afterwards the solution was extracted with CH₂Cl₂ (3x 40 mL). The organic phase was dried over MgSO₄ and the solvent was removed under reduced pressure. Trituration of the crude compound with pentane gave the desired

compound **2** as a white solid (2.37 g, yield: 65%). ¹H NMR (300 MHz, CDCl₃) δ_{H} 8.34 – 8.21 (m, 1H, H3), 7.70 – 7.39 (m, 5H, H4, H5, H6, H9, H10), 3.23 (d, J = 2.9 Hz, 2H, H15), 2.91 (t, J = 5.6 Hz, 1H, H12), 2.79 (dt, J = 9.8, 5.8 Hz, 1H, H13a), 2.46 (tt, J = 5.9, 2.9 Hz, 1H, H14), 1.47 (s, 3H, H18), 1.35 (d, J = 9.9 Hz, 1H, H13b), 0.71 (s, 3H, H19). ¹³C NMR (75 MHz, CDCl₃) δ_{C} 170.2 (C1), 154.3 (C16), 154.1 (C11), 142.8 (C2), 136.4 (Carom), 136.2 (Carom), 134.3 (C3), 133.3 (Carom), 131.7 (Carom), 130.8 (Carom), 129.3 (Carom), 121.8 (Carom), 46.3 (C17) 46.2 (C12), 39.9 (C14), 34.9 (C15), 32.0 (C13), 26.0 (C18), 21.5 (C19). HRMS (ESI) *m/z* calcd. for C₁₉H₂₀NO₂⁺ [M+H]⁺ 294.1489, found 294.1478. [α]_p²⁰ -90° (c 1 in CH₂Cl₂).

Synthesis of (2S,4S)-3,3-dimethyl-3,4-dihydro-2,4-methanoisoindolo[2,1-a]quinolin-11(2H)-one (3). Under inert atmosphere, 2 (50 mg, 0.186 mmol, 1 eq.) was added into a 3-neck 10 mL flask. K₂CO₃ (327 mg, 2.366 mmol, 12.8 eq) and anhydrous MeCN (5 mL) were added successively. The suspension was stirred for 5 minutes at RT. Afterwards, p-TsCl (36 mg, 0.186 mmol, 1 eq.) was added in one portion. The suspension turned orange. The reaction mixture was stirred for 2h at RT. Then, the solvent was removed under high vacuum. CH₂Cl₂ was added and the suspension was filtered under Ar. The filtrate was concentrated under vacuum. After drying the solid under high vacuum, the desired isoindolone 3 was obtained as an orange solid (51 mg, yield: 95%). ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$ 7.93 (dt, J = 7.5, 1.0 Hz, 1H, H3), 7.69 (dt, J = 7.7, 1.0 Hz, 1H, H6), 7.58 (td, J = 7.5, 1.2 Hz, 1H, H5), 7.49 (td, J = 7.4, 1.1 Hz, 1H, H4), 7.41 (dd, J = 6.9, 1.7 Hz, 1H, H15), 6.37 (d, J = 6.4 Hz, 1H, H9), 5.99 (dd, J = 6.5, 1.7 Hz, 1H, H10), 2.84 (t, J = 5.9 Hz, 1H, H12), 2.68 - 2.61 (m, 1H, H13b), 2.58 (dd, J = 6.7, 5.5 Hz, 1H, H14), 1.69 (d, J = 8.3 Hz, 1H, H13a), 1.42 (s, 3H, H18), 0.93 (s, 3H, H19). ¹³C NMR (75 MHz, CDCl₃) δ_C 165.5 (C1), 145.1 (C16), 134.6 (C11), 132.7 (C8), 131.5 (C5), 131.4 (C2), 128.9 (C4), 128.1 (C7), 123.4 (C3), 119.6 (C6), 116.5 (C15), 113.8 (C10), 104.5 (C9), 50.8 (C12), 44.4 (C17), 42.8 (C14), 35.3 (C13), 26.4 (C18), 22.6 (C19). HRMS (ESI) m/z calcd. for C₁₉H₁₈NO⁺ [M+H]⁺ 276.1383, found 276.1383. [α]²⁰_D -359 (c 0.276 in CH₂Cl₂). IR (neat, cm⁻¹): 2924 (C-H), 1661 (C=O), 1429, 1203, 1126, 800, 758, 722, 696. UV-Vis (THF): λ_{max}(ε): 288 nm (7200 M⁻¹cm⁻¹), 470 nm (2600 M⁻¹cm⁻¹).

Synthesis of ethyl 2-(5,6,7,8-tetrahydroquinolin-2-yl)benzoate (**P4**). Under inert atmosphere, a solution of 2-ethoxycarbonylphenyl boronic acid (1.44 g, 7.44 mmol, 1.05 eq) was mixed with degassed toluene (50 mL) and EtOH (15 mL) at RT. A solution of K_2CO_3 (6.60 g, 47.73 mmol, 6.74 eq) in water (22 mL), a degassed solution of Pd(PPh₃)₄ (0.21 g, 0.177 mmol, 0.025 eq) in EtOH (1 mL) and 2-bromo-5,6,7,8-tetrahydroquinoline (1.50 g, 7.08 mmol, 1 eq) were added successively. The reaction mixture was refluxed under inert atmosphere for 16h and then cooled to RT and extracted with CH₂Cl₂ (3x 50 mL). The organic phase was dried over MgSO₄. The purification of the crude compound by column chromatography on SiO₂ (eluent: heptane/EtOAc = 4/1 (Rf = 0.3)) gave the compound **P4** as a translucent oil (0.14 g, yield: 21%). ¹H NMR (300 MHz, CDCl₃) δ_H 7.82 – 7.73 (m, 1H, H5), 7.57 – 7.46 (m, 2H, H1, H8), 7.45 – 7.37 (m, 2H, H6, H9), 7.20 (dt, J = 7.9, 0.8 Hz, 1H, H2), 4.16 (q, J = 7.1 Hz, 2H, H20), 2.93 (t, J = 6.3 Hz, 2H, H16), 2.81 (t, J = 6.3 Hz, 2H, H13), 1.98 – 1.76 (m, 4H, H14, H15), 1.10 (t, J = 7.1 Hz, 3H, H21). ¹³C NMR (75 MHz, CDCl₃) δ_C 169.2 (C17), 156.7 (C7), 155.7 (C10), 141.3 (C4), 137.1 (C6), 132.1 (C3), 131.0 (C1), 130.7 (C11), 129.8 (C5), 129.7 (C8), 128.0 (C9), 120.0 (C2), 60.9 (C20), 32.8 (C16), 28.7 (C13), 23.3 (C15), 22.9 (C14), 14.1 (C21). HRMS (ESI) *m/z* calcd. for C₁₈H₂₀NO₂⁺ [M+H]⁺, 282.1494, found 282.1504.

Synthesis of 2-(5,6,7,8-tetrahydroquinolin-2-yl)benzoic acid (4). A solution of P4 (100 mg, 0.355 mmol, 1 eq) in MeOH (10 mL) was mixed with a solution of NaOH (250 mg, 6.25 mmol, 17.6 eq) in H₂O (5 mL). The reaction mixture was stirred at RT for 16h. The MeOH was removed under reduced pressure. After pH adjustment to 2 with HCl 10%, water was removed under reduced pressure. The purification of the residue by column chromatography (eluent: EtOAc) gave the desired acid **4** as a white solid (48 mg, yield: 53%). ¹H NMR (300 MHz, DMSO-d₆) $\delta_{\rm H}$ 7.65 (d, J = 7.4 Hz, 1H, H5), 7.59 – 7.53 (m, 2H, H1, H2), 7.53 – 7.42 (m,

2H, H6, H8), 7.29 (d, J = 7.9 Hz, 1H, H9), 2.79 (q, J = 6.6 Hz, 4H, H13, H16), 1.89 – 1.70 (m, 4H, H14, H15). ¹³C NMR (75 MHz, DMSO-d6) δ_{C} 170.0 (C17), 155.7 (C4), 154.6 (C_{arom}), 139.8 (C3), 137.0 (C6), 133.1 (C_{arom}), 130.4 (C_{arom}), 130.3 (C2), 129.6 (C1), 128.8 (C5), 127.9 (C8), 112.0 (C9), 31.9 (C16), 27.8 (C13), 22.6 (C15), 22.3 (C14). HRMS (ESI) *m/z* calcd. for C₁₆H₁₆NO₂⁺ [M+H]⁺, 254.1181, found 254.1195.

Synthesis of 3,4-dihydroisoindolo[2,1-a]quinolin-11(2H)-one (**5**). Under inert atmosphere, 4 (9 mg, 0.0335 mmol, 1 eq.) was added into a 3-neck 10 mL flask. K₂CO₃ (59 mg, 0.4288 mmol, 12.8 eq), anhydrous MeCN (3 mL) and anhydrous acetone (3 mL) were added successively. The suspension was stirred for 5 minutes at RT. Then, p-TsCl (7 mg, 0.0335 mmol, 1 eq.) was added in one portion. The reaction mixture was stirred for 2h at RT, and the solvent was removed under high vacuum. After the addition of CH₂Cl₂ the suspension was filtered under Ar. The filtrate was concentrated under vacuum. Drying the resulting solid under high vacuum gave the desired isoindolone **5** as an orange solid (10 mg, yield: 95%). ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$ 7.94 – 7.88 (m, 1H, H5), 7.67 (dt, J = 7.7, 1.0 Hz, 1H, H2), 7.57 (td, J = 7.5, 1.3 Hz, 1H, H1), 7.49 (td, J = 7.4, 1.2 Hz, 1H, H6), 7.40 (td, J = 5.2, 1.8 Hz, 1H, H16), 6.33 (d, J = 6.4 Hz, 1H, H7), 5.98 (dtt, J = 7.3, 1.7, 0.9 Hz, 1H, H8), 2.60 (ddd, J = 12.7, 6.2, 1.7 Hz, 3H, H13), 2.50 – 2.42 (m, 2H, H15), 1.84 – 1.74 (m, 2H, H14). ¹³C NMR (75 MHz, CDCl₃) $\delta_{\rm C}$ 165.6 (C17), 136.9 (C9), 134.8 (C4), 133.5 (C10), 132.1 (C12), 131.3 (C1), 128.8 (C6), 128.00 (C3), 123.2 (C5), 119.3 (C2), 116.4 (C8), 110.5 (C16), 104.3 (C7), 31.17 (C13), 25.4 (C15), 21.6 (C14). HRMS (ESI) *m/z* calcd. for C₁₆H₁₄NO⁺ [M+H]⁺ 236.1075, found 236.1077. IR (neat) v_{max} (cm⁻¹) 2933 (C-H), 1681 (C=O), 1457, 1334, 1125, 754, 542. UV-Vis (THF): $\lambda_{max}(\epsilon)$: 284 nm (9700 M⁻¹cm⁻¹) 322 nm (3500 M⁻¹cm⁻¹), 470 nm (2500 M⁻¹cm⁻¹).

Synthesis of 2-(2-bromophenyl)-6-methylpyridine (P6). Under inert atmosphere, a solution of 2-bromo-6methyl pyridine (0.53 mL, 4.7 mmol) in anhydrous THF (20 mL) was cooled to -78°C. A 2.2M n-BuLi solution in hexane (2.4 mL, 5.7 mmol) was added. The solution became red. The reaction mixture was stirred at -78°C for 30 minutes and afterwards a cold solution (0°C) of ZnCl₂ (0.769 g, 5.64 mmol) in anhydrous THF (6.5 mL) was added dropwise. The reaction mixture was brought to RT and stirred for 30 minutes. Separately, in a 100 mL 3-necked flask equipped with a condenser and a dropping funnel, under inert atmosphere, Pd(PPh₃)₄ (90 mg, 0.078 mmol), 2-bromo-iodobenzene (0.5 mL, 3.9 mmol) and anhydrous THF (20 mL) were mixed. To this, the aryl-zinc compound was added dropwise at RT with the dropping funnel. The reaction mixture was then refluxed under inert atmosphere overnight. After cooling to RT, 20 mL NH₄Cl sat. was added. The mixture was extracted with CH₂Cl₂ (3x50 mL) and washed twice with 15 mL of NH₄Cl (saturated aqueous solution) and 15 mL H₂O. The combined organic phases were dried over anhydrous MgSO4 and the solvent was eliminated under reduced pressure. Hexane was added over the crude solid and the precipitate (NH₄Cl) was filtered off. The solvent was removed under reduced pressure. After purification by column chromatography on SiO₂ (eluent: hexane/EtOAc=4/0.5. Rf=0.5), the compound P6 was obtained as a yellow oil (0.37 g, yield: 38%). ¹H NMR (300 MHz, CDCl3) δ_{H} 7.69 – 7.61 (m, 2H, H3, H10), 7.51 (dd, J = 7.6, 1.8 Hz, 1H, H7), 7.43 – 7.34 (m, 2H, H4, H9), 7.22 (dd, J = 7.6, 1.8 Hz, 1H, H8), 7.16 (d, J = 7.8 Hz, 1H, H2), 2.63 (s, 3H, H12). 13 C NMR (75 MHz, CDCl3) δ_{c} 158.3 (C11), 157.9 (C1), 141.7 (C6), 136.2 (C10), 133.4 (C3), 131.5 (C7), 129.7 (C8), 127.7 (C9), 122.1 (C2), 122.0 (C5), 121.8 (C4), 24.8 (C12). HRMS (ESI) *m/z* calcd. for C₁₂H₁₁NBr+ [M+H]+ 248.0075 , found 248.0082.

Synthesis of 2-(6-methylpyridin-2-yl)benzoic acid (6). Under inert atmosphere, a 2.2M BuLi solution (3.6 mL, 7.98 mmol) in hexane was added dropwise to a solution of P6 (1.80 g, 7.25 mmol) in anhydrous THF (30mL) at-78°C. The solution turned dark red, and was stirred for 2h at -78°C. Into this was bubbled gaseous CO_2 until the colour changed from dark red to yellow. The mixture was warmed up to RT and stirred for 1h. H₂O (0.3 mL) was added for quenching. The solvent was removed under reduced pressure

and the light brown solid was dissolved in CH_2Cl_2 . The solution was treated with HCl 1M until pH 4. After the evaporation of the solvent under reduced pressure and purification by column chromatography on SiO₂ (eluent: EtOAc/MeOH=9/1) the acid **6** was obtained (0.71 g, yield: 45%) ¹H NMR (300 MHz, CD₃OD) δ_H 7.92 (dd, J = 7.6, 1.5 Hz, 1H, H10), 7.80 (t, J = 7.8 Hz, 1H, H3), 7.66 – 7.47 (m, 3H, H7, H8, H9), 7.36 (d, J = 7.8 Hz, 1H, H4), 7.29 (d, J = 7.8 Hz, 1H, H2), 2.57 (s, 3H, H12). ¹³C NMR (75 MHz, CD₃OD) δ_C 170.2 (C13), 158.0 (C11), 156.8 (C1), 140.0 (C5), 137.8 (C3), 132.34 (C6), 130.8 (C_{arom}), 129.9 (C_{arom}), 129.7 (C10), 128.3 (C_{arom}), 122.1 (C2), 120.8 (C4), 21.9 (C12). HRMS (ESI) *m/z* calcd. for C₁₃H₁₁NO₂Na⁺ [M+Na]⁺, 236.0687, found 236.0695.

General procedure for P7 and P8

Under inert atmosphere, a solution of 2-ethoxycarbonylphenyl boronic acid (548 mg, 2.82 mmol, 1.05 eq) was mixed with degassed toluene (25 mL), H₂O (10 mL) and EtOH (7 mL) at RT. K₂CO₃ (2.506 g, 18.13 mmol, 6.74 eq) is afterwards added, followed by 6-bromo-2,3-dimethylpyridine (for P7) or 2-bromo-6ethylpyridine (for P8) (2.69 mmol, 1 eq) and [Pd(PPh₃)₄] (78 mg, 0.067 mmol, 0.025 eq). The reaction mixture was refluxed under inert atmosphere for 16h and then cooled to RT. The two phases were separated and the ageous phase was extracted with EtOAc (3x25 mL). The combined organic phases were dried over MgSO₄. The purification of the crude compound by column chromatography on SiO₂ (eluent: heptane/EtOAc = 4/1-> EtOAc 100% (Rf = 0.1)) gave the compound P7 as a yellow oil (100 mg, yield: 15%), respectively **P8** as a light yellow oil (100 mg, yield: 15%). **P7:** ¹H NMR (300 MHz, CDCl₃) δ_H 7.77 (d, J = 7.6 Hz, 1H, H5), 7.57 – 7.50 (m, 2H, H1, H2), 7.50 – 7.38 (m, 2H, H6, H8), 7.23 (d, J = 7.7 Hz, 1H, H9), 4.16 (q, J = 7.2 Hz, 2H, H18), 2.52 (s, 3H, H13), 2.32 (s, 3H, H14), 1.10 (t, J = 7.1 Hz, 3H, H19). ¹³C NMR (75 MHz, $CDCl_3$) δ_C 169.19, 156.27, 155.32, 140.98, 137.34, 132.06, 130.82, 129.73, 129.58, 129.48, 127.84, 119.99, 60.80, 22.62, 18.92, 13.90. HRMS (ESI) calcd. for C₁₆H₁₈NO₂⁺ [M+H]⁺, 256.1338, found 256.1357. **P8:** ¹H NMR (300 MHz, CDCl₃) δ_{H} 7.83 – 7.77 (m, 1H, H5), 7.66 (t, J = 7.7 Hz, 1H, H9), 7.57 – 7.51 (m, 2H, H1, H2), 7.44 (ddd, J = 7.6, 5.7, 3.2 Hz, 1H, H6), 7.28 (d, J = 7.9 Hz, 1H, H8), 7.13 (d, J = 7.7 Hz, 1H, H10), 4.12 (q, J = 7.2 Hz, 2H, H18), 2.85 (q, J = 7.6 Hz, 2H, H13), 1.36 – 1.28 (m, 3H, H14), 1.04 (t, J = 7.1 Hz, 3H, H19). ¹³C NMR (75 MHz, CDCl₃) δ_C 162.82, 141.28, 136.51, 132.08, 130.90, 129.69, 129.66, 128.05, 120.20, 119.83, 60.80, 31.41, 29.70, 13.89, 13.81. HRMS (ESI) m/z calcd. for C₁₆H₁₈NO₂⁺ [M+Na]⁺, 278.0865, found 278.1012.

General procedure for 7 and 8

A solution of **P7** or **P8** (0.355 mmol, 1 eq) in MeOH (10 mL) was mixed with a solution of NaOH (220 mg, 6.25 mmol, 17.6 eq) in H₂O (10 mL). The reaction mixture was refluxed for 16h. The MeOH was removed under reduced pressure. After pH adjustment to 2 with HCl 1 M, the water was removed under reduced pressure. 20 mL were added over the crude product and the suspension was filtered, The filtrate was concentrated under reduced pressure and the obtained solid was further dried under high vacuum to give **7** as an off-white solid (70 mg,yield: 88%), respectively **8** and a white solid (49 mg,yield: 61%). **7**: ¹H NMR (300 MHz, CD₃OD) $\delta_{\rm H}$ 7.98 – 7.93 (m, 1H, H5), 7.78 (d, *J* = 7.9 Hz, 1H, H8), 7.69 – 7.53 (m, 3H, H1, H2, H6), 7.42 (d, *J* = 7.9 Hz, 1H, H9), 2.59 (s, 3H, H13), 2.43 (s, 3H, H14). ¹³C NMR (75 MHz, CD₃OD) $\delta_{\rm C}$ 154.79, 139.42, 138.53, 133.36, 131.38, 130.58, 129.85, 129.80, 128.41, 121.50, 19.49, 17.16. HRMS (ESI) calcd. for C₁₄H₁₄NO₂⁺ [M+H]⁺, 228.1015, found 228.1019. **8**: ¹H NMR (300 MHz, CD₃OD) $\delta_{\rm H}$ 7.90 – 7.80 (m, 2H, H5, H9), 7.65 – 7.48 (m, 3H, H1, H2, H6), 7.40 (dd, *J* = 7.8, 1.0 Hz, 1H, H8), 7.31 (dd, *J* = 7.8, 0.9 Hz, 1H, H10), 2.85 (q, *J* = 7.6 Hz, 2H, H13), 1.36 – 1.27 (m, 3H, H14). ¹³C NMR (75 MHz, CD₃OD) $\delta_{\rm C}$ 162.05, 157.38,

Efficient synthesis of isoindolones by intramolecular cyclisation of pyridinylbenzoic acids 139.58, 138.02, 130.39, 129.78, 129.41, 128.24, 121.01, 120.77, 29.98, 13.11. HRMS (ESI) m/z calcd. for $C_{14}H_{14}NO_2^+$ [M+H]⁺, 228.1015, found 228.1019.

Synthesis of 4-methylpyrido[2,1-a]isoindol-6(2H)-one 14

Compound **14** was synthesised by following a reported procedure.³ Under inert atmosphere, 2-bromo-6methylpyridine (860 mg, 5 mmol, 1 eq) and Pd(PPh₃)₄ (787 mg, 5.25 mmol, 1.05 eq) were disolved in degassed toluene (20 mL). Over this, a solution of (2-formylphenyl)boronic acid (787 mg, 5.25 mmol, 1.05 eq) in degassed EtOH (10 mL) was added over, followed by a degassed Na₂CO₃ (1.060 g, 5 mmol, 1 eq) aqeous solution (5 mL. The reaction mixture was refluxed under inert atmosphere for 16h and then cooled to RT. 10 mL H₂O were added. The two phases were separated and the aqeous phase was extracted with EtOAc (3x25 mL). The combined organic phases were dried over Na₂SO₄. The purification of the crude compound by column chromatography on SiO₂ (eluent: heptane/EtOAc = 95/5 (Rf = 0.3) gave **14** as an orange solid (337 mg, yield: 34%). ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$ 7.81 (dt, *J* = 7.5, 1.1 Hz, 1H, H5), 7.62 (dt, *J* = 7.6, 1.1 Hz, 1H, H2), 7.55 (td, *J* = 7.4, 1.2 Hz, 1H, H1), 7.46 (td, *J* = 7.3, 1.3 Hz, 1H, H6), 5.89 (td, *J* = 4.1, 1.7 Hz, 1H, H8), 4.76 (tp, *J* = 3.0, 1.5 Hz, 1H, H10), 3.05 (tq, *J* = 3.8, 1.9 Hz, 2H, H9), 2.45 (q, *J* = 1.8 Hz, 3H, H13). ¹³C NMR (75 MHz, CDCl₃) $\delta_{\rm c}$ 164.37 (C14), 134.67 (C7), 133.47 (C3), 133.27 (C4), 131.83 (C1), 130.06 (C11), 129.09 (C6), 123.25 (C5), 119.19 (C2), 104.94 (C8), 104.63 (C10), 24.99 (C9), 20.03 (C13). HRMS (ESI) *m/z* calcd. for C₁₃H₁₀NO⁺ [M+H]⁺, 196.0753, found 196.0757.

Procedures for the titrations of **6-8** with TsCl

0.025 mmol (1eq.) of the corresponding substrate was dissolved in anhydrous acetone-d6 and treated with anhydrous Et₃N (8 uL, 0.055 mmol, 2.2 eq). Additions of 1.2 mg solid TsCl were made, corresponding to 0.25 eq.

Structures, Emission, and UV-VIS spectra and ¹H-NMR spectra of compounds 2, 3 and 5

Figure S1. Asymmetric unit of the structure of **2**, with depiction of the intermolecular H bonding and O1-H1-N2 angle with ellipsoids at 30% probability

Figure S2. Molecular structure of 2 determined by single-crystal X-Ray diffraction with ellipsoids at 30% probability with atom numbering scheme and bond order values in red. The H atoms were omitted for clarity.

Figure S3. Depiction of the π - π stacking interactions (with the centrodi-centroid distances in black) in the crystal of **3**, with ellipsoids at 30% probability. The H atoms were omitted for clarity.

Figure S4. IR spectra of **3** (blue) and **5** (red)

Figure S5. Stacked ¹H-NMR spectra of **2** (top) and **3** (bottom)

Figure S6. UV-Vis spectrum of **3** in THF (0.04 mM in THF)

Figure S9. UV-Vis spectrum of 5 in THF (0.04 mM in THF)

Figure S10. Emission spectrum of **5** in THF (0.04 mM, λ_{ex} =470 nm)

Figure S11. ¹H-NMR spectrum of the titration of **6** with TsCl in the presence of 2.2 eq. Et₃N, in acetone-d6

Figure S12. Aromatic region of the 1 H-NMR spectrum of the titration of **6** with TsCl in the presence of 2.2 eq. Et₃N, in acetone-d6

Figure S13. ¹H-NMR spectrum of the titration of **7** with TsCl in the presence of 2.2 eq. Et₃N, in acetone-d6

Figure S14. Aromatic region of the ¹H-NMR spectrum of the titration of **7** with TsCl in the presence of 2.2 eq. Et₃N, in acetone-d6

Figure S15. ¹H-NMR spectrum of the titration of **8** with TsCl in the presence of 2.2 eq. Et₃N, in acetone-d6

Figure S16. Aromatic region of the 1 H-NMR spectrum of the titration of **8** with TsCl in the presence of 2.2 eq. Et₃N, in acetone-d6

Figure S17. (+)-ESI-MS spectrum of **9** ([M+H]⁺ at 196.1)

15

Figure S19. ¹H-NMR spectrum of **Complex-1** in CD₃CN

Figure S20. Stacked ¹H-NMR spectra of TsOK (top), TsCl (middle) and **Complex-1** in CD₃CN

ATE467.1.fic 1H MeCN depro

Figure 21. Aromatic region of the ¹H-NMR spectra of R-COOK (top) and **Complex-1** in CD₃CN

Figure S23. ¹³C-NMR spectrum of **2** in CDCl₃

Figure S24. ¹H-NMR spectrum of **3** in CDCl₃

Figure S25. ¹³C-NMR spectrum of **3** in CDCl₃

Figure S26. ¹H-NMR spectrum of **P4** in CDCl₃

Figure S27. ¹³C-NMR spectrum of **P4** in CDCl₃

Supporting Information

Figure S29. ¹³C-NMR spectrum of **4** in DMSO-d6

NMR spectra of 5

Supporting Information

Figure S31. ¹³C-NMR spectrum of **5** in CDCl₃

Figure S32. ¹H-NMR spectrum of **P6** in CDCl₃

Supporting Information

Figure S33. ¹³C-NMR spectrum of **P6** in CDCl₃

Figure S34. ¹H-NMR spectrum of **6** in CD₃OD

NMR spectra of P7

Supporting Information

Figure S37. ¹³C-NMR spectrum of **P7** in CDCl₃

Figure S38. ¹H-NMR spectrum of **7** in CD₃OD

Figure S39. ¹³C-NMR spectrum of **7** in CD₃OD
NMR spectra of P8

Supporting Information

Figure S41. ¹³C-NMR spectrum of **P8** in CDCl₃

Figure S43. ¹³C-NMR spectrum of **8** in CD₃OD

Figure S44. ¹H-NMR spectrum of **14** in CDCl₃

Supporting Information

Figure S45. ¹³C-NMR spectrum of **14** in CDCl₃

HRMS spectra

HRMS spectrum of 2

Ion mass = 294.1477860

Charge = +1

#	С	Н	N	0	mass	DBE	error
* * *	Mass	Analysis	for	mass 294.	1477860		
1	19	20	1	2	294.1488553	10.5	1.069e-03
2	7	24	3	9	294.1507058	-2.5	2.920e-03
3	14	20	3	4	294.1448326	6.5	2.953e-03
4	11	22	2	7	294.1421525	2.0	5.634e-03
5	12	24	1	7	294.1547286	1.5	6.943e-03
6	8	24	1	10	294.1394724	-2.5	8.314e-03
7	15	22	2	4	294.1574086	6.0	9.623e-03
8	18	18	2	2	294.1362793	11.0	1.151e-02
9	18	20	3	1	294.1600887	10.5	1.230e-02
10	15	20	1	5	294.1335992	6.5	1.419e-02

HRMS spectrum of 3

Ion	mass	s = 2	76.13	82870		Ion mass = 276.1382870									
Cha	rge =	= +1													
#	С	Н	N	0	mass	DBE	error								
***	Mass	Analysis	s for m	ass 276	.1382870										
1	19	18	1	1	276.1382906	11.5	3.625e-06								
2	7	22	3	8	276.1401411	-1.5	1.854e-03								
3	14	18	3	3	276.1342679	7.5	4.019e-03								
4	12	22	1	6	276.1441639	2.5	5.877e-03								
5	11	20	2	6	276.1315878	3.0	6.699e-03								
6	15	20	2	3	276.1468439	7.0	8.557e-03								
7	8	22	1	9	276.1289077	-1.5	9.379e-03								
8	18	16	2	1	276.1257146	12.0	1.257e-02								
9	8	24	2	8	276.1527172	-2.0	1.443e-02								
10	15	18	1	4	276.1230345	7.5	1.525e-02								

HRMS spectrum of P4

282.0555

282.0191

94.9

131.3

336.3 16.5

17.5

465.4

1794.5

1848.8

3.43

57.735 0.00

C19 H8 N O2

C18 H4 N O3

HRMS spectrum of 4

cyclo-COOH 20200616_SOL	E4434 41 (0.769)	AM2 (Ar,4	0000.0,556	.28,0.00,	LS 10); ABS					1: TOF MS ES+ 1 44e+007
100 252.1026	252.9195_253.	1416 253	254.1 .6630	195254	.3384 255.12	17 255.314	8 256.1254	256.9151_257.1296	257.9167258.0895	258.4117
252.00	253.00)	254.00	0.000	255.00		256.00	257.00	258.00	259.00
Minimum: Maximum:		100.0	1000.0	-1.5 50.0						
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula		
254.1195	254.1181 254.1545 254.0817 254.1756 254.0606 254.2120 254.0242 253.9878	1.4 -35.0 37.8 -56.1 58.9 -92.5 95.3 131.7	5.5 -137.7 148.7 -220.8 231.8 -364.0 375.0 518.3	9.5 8.5 10.5 3.5 15.5 2.5 16.5 17.5	1887.7 1886.6 1888.7 1889.7 1886.9 1888.9 1888.9 1888.1 1936.6	2.064 0.946 3.089 4.000 1.215 3.284 2.445 50.957	12.70 38.82 4.56 1.83 29.68 3.75 8.67 0.00	C16 H16 N 02 C17 H20 N 0 C15 H12 N 03 C14 H24 N 03 C18 H8 N 0 C15 H28 N 02 C17 H4 N 02 C16 N 03		

HRMS spectrum of 5

1. TOF MS ES+

Efficient synthesis of isoindolones by intramolecular cyclisation of pyridinylbenzoic acids

HRMS spectrum of P6

Me-Br 20200616_SOLE4433 46 (0.854) AM2 (Ar,40000.0,556.28,0.00,LS 10); ABS

						1.020+00
248 247.0302	.0082	250.0062	251.0093	252.0126	253.0265 254.09	74 255.0226 255.499
247.0 24	18.0 249.0	250.0	251.0	252.0	253.0 254.0	255.0
0 0 0	100.0 1000.0	-1.5 50.0				
Calc. Mass	mDa PPM	DBE i-	FIT Norm	Conf(%)	Formula	
00 248.0075 247.9898 248.0500 247.9473 248.0837 248.1014 248.1439 247.8534 248.2378 2 250.00231 250.0231 250.0657 249.9292 250.0993 250.1170	0.7 2.8 18.4 74.2 -41.8 -168.5 60.9 245.6 -75.5 -304.4 -93.2 -375.8 135.7 -547.2 154.8 624.2 -229.6 -925.8 0.8 3.2 -16.9 -67.6 -59.5 -238.0 77.0 308.0 -93.1 -372.4 -110.9 -443.2 -41.2 -443.2 -44.2 -44.2 -44.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	65.4 1.684 65.4 1.727 65.3 1.619 65.6 1.849 65.2 1.481 66.6 2.921 76.4 12.708 99.9 36.225 82.0 18.262 39.2 1.284 39.4 1.471 48.3 10.385 43.7 5.786 38.7 0.713	18.57 17.77 19.80 15.73 22.73 5.39 0.00 0.00 0.00 27.69 22.97 0.00 0.31 49.03 0.00	C12 H11 N 79Br C12 H9 N 81Br C19 H6 N C5 H14 N 79Br 8: C11 H21 N 81Br C11 H23 N 79Br C18 H18 N C6 H2 N 79Br 811 C17 H30 N C12 H11 N 81Br C12 H13 N 79Br C13 H N 79Br C11 H23 N 81Br C11 H23 N 81Br	lBr Br
	248 247.0302 247.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	248.0082 249.0114 247.0302 249.0114 247.0302 249.0114 247.0302 249.0114 247.0302 249.0114 247.0302 249.0114 247.0302 249.0114 247.0302 249.0114 00 100.0 1000.0 00 100.0 1000.0 Calc. Mass mDa PPM 00 248.0075 0.7 2.8 247.9698 18.4 74.2 248.0500 248.0500 -41.8 -168.5 6 248.0837 -75.5 -304.4 248.1014 -93.2 -375.8 247.8534 154.8 624.2 248.2378 -229.6 -925.8 250.0054 0.8 3.2 250.0054 0.8 3.2 250.0054 0.8 3.2 250.0024 -67.6 250.0923 -77.0 308.0 250.0933 -93.1 -372.4 250.1170 -110.8 -443.2 24	248.0082 249.0114 250.0062 247.0302 249.0114 249.0 250.0 247.0 248.0 249.0 250.0 0 -1.5 0 -1.5 00 100.0 1000.0 50.0 Calc. Mass mDa PPM DBE i- 00 248.0075 0.7 2.8 7.5 20 247.9898 18.4 74.2 8.5 20 248.0500 -41.8 -168.5 17.5 20 248.0837 -75.5 -304.4 1.5 20 248.1014 -93.2 -375.8 0.5 20 248.1034 -135.7 -547.2 10.5 20 248.1034 -135.7 -547.2 10.5 20 248.1034 -135.7 -547.2 10.5 20 248.2378 -229.6 -925.8 3.5 20 248.20557 -59.5 -238.0 16.5 18 250.005	248.0082 249.0114 251.0093 2 247.0302 249.0114 251.0093 2 247.0302 249.0114 251.0093 2 247.0302 249.0114 251.0093 2 247.0302 249.0114 251.0093 2 247.0302 249.0 250.0 251.0 00 100.0 1000.0 50.0 2 00 248.0075 0.7 2.8 7.5 2065.4 1.684 247.9898 18.4 74.2 8.5 2065.4 1.619 247.9473 60.9 245.6 -1.5 2065.6 1.849 248.0837 -75.5 -304.4 1.5 2065.2 1.481 248.1014 -93.2 -375.8 0.5 2066.6 2.921 248.1014 -93.2 -375.8 0.5 2066.6 2.921 248.1039 -135.7 -547.2 10.5 2076.4 12.708 247.8534 154.8 624.2	248.0082 249.0114 251.0093 252.0126 247.0302 249.0 249.0 250.0 251.0 252.0 247.0 248.0 249.0 250.0 251.0 252.0 0 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 00 100.0 1000.0 50.0 -1.5 -1.5 -1.5 00 248.0075 0.7 2.8 7.5 2065.4 1.684 18.57 247.9898 18.4 74.2 0.5 2065.4 1.727 17.77 248.0500 -41.8 -168.5 17.5 2065.4 1.619 19.80 247.9473 60.9 245.6 -1.5 2065.6 1.849 15.73 248.0837 -75.5 -304.4 1.5 2065.2 1.481 22.73 248.1014 -93.2 -375.8 0.5 2066.6 2.921 5.39 248.2378 -229.6 -925.8 3.5 2082.0 18.262	248.0082 250.0062 251.0093 252.0126 253.0265 254.09 247.0 248.0 249.0 250.0 251.0 252.0 253.0 254.0 247.0 248.0 249.0 250.0 251.0 252.0 253.0 254.0 00 -1.5 -1.6 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.6 -1.5 -1.5

HRMS spectrum of 6

Me-COOH 20200616_SOLE4432 37 (0.702) AM2 (Ar,40000.0,556.28,0.00,LS 10); ABS

1: TOF MS ES+ 8.09e+006

100	232.9774 23	3.9785	235.1707	236.0695	237.0725	238.0750	239.079	240.0703	241.0461	242.0267	_243.1028	n/z
232.0	233.0 2	234.0	235.0	236.0	237.0	238.0	239.0	240.0	241.0	242.0	243.0	
Minimum: Maximum:		100.0	1000.0	-1.5 50.0								
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula				
236.0695	236.0687 236.1051 236.0324 236.1263 236.0112 236.1626 236.1990	0.8 -35.6 37.1 -56.8 58.3 -93.1 -129.5	3.4 -150.8 157.2 -240.6 247.0 -394.4 -548.6	8.5 7.5 9.5 2.5 14.5 1.5 0.5	1822.0 1821.4 1826.5 1829.5 1829.1 1827.4 1851.3	1.029 0.452 5.516 8.500 8.101 6.404 30.307	35.73 63.65 0.40 0.02 0.03 0.17 0.00	C13 H11 N C14 H15 N C12 H7 N C C11 H19 N C15 H3 N C C12 H23 N C13 H27 N	02 Na 0 Na 03 Na 03 Na 0 Na 02 Na 0 Na			

ATE428 20210222_SOLE4695 3 (0.087) Cm (3:100)

1: TOF MS ES+ 1.59e+008

100 247.02	52 248.0407 250.08	251.0999	254.1003	256.13	57 257.1390	261.08	46 262.1430	264.1030 266.0510	270.1512 271.1	471_272.06	77_274.0592
0 1 1 1	247.5 250.0	252.	5 255	5.0	257.5	260.0	262.5	265.0 267.5	270.0	272.5	275.0
Minimum: Maximum:		100.0	1000.0	-1.5 50.0							
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula			
256.1357	256.1338 256.1396 256.1410 256.1297 256.1450 256.1257 256.1257 256.1509 256.1185 256.1185	1.9 -3.9 -5.3 6.0 -9.3 10.0 -15.2 15.9 17.2 -19.2	7.4 -15.2 -20.7 23.4 -36.3 39.0 -59.3 62.1 67.2 -75.0	8.5 -0.5 4.5 4.5 8.5 0.5 -0.5 9.5 4.5 3.5	1507.3 1516.6 1514.3 1512.2 1507.3 1518.6 1517.2 1506.6 1510.8 1508.5	1.502 10.711 8.457 6.392 1.493 12.740 11.340 0.754 4.922 2.620	22.27 0.00 0.02 0.17 22.48 0.00 0.00 47.05 0.73 7.28	C16 H18 N 02 C9 H22 N 07 C10 H18 N5 03 C11 H18 N3 04 C15 H18 N3 0 C6 H18 N5 06 C8 H22 N3 06 C13 H14 N5 0 C12 H18 N 05 C13 H22 N 04			

20210222_SOL	E4694 4 (0.104) (Cm (4:101)									1: TOF MS ES+ 5.14e+008
100 225.0999	226.0874	227.1020	227.8761	228.1019	229.10)52 2	30.1081	231.1119	232.0733	233.0749	233.5659
225.00	226.00	227.0	0 2	228.00	229.00	2	30.00	231.00	232.00	233.00	234.00
Minimum: Maximum:		100.0	1000.0	-1.5 50.0							
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula			
228.1019	228.1025 228.0984 228.1083 228.0944 228.1097 228.1137 228.0885 228.0872 228.1196 228.0832	-0.6 3.5 -6.4 7.5 -7.8 -11.8 13.4 14.7 -17.7 18.7	-2.6 15.3 -28.1 32.9 -34.2 -51.7 58.7 64.4 -77.6 82.0	8.5 4.5 -0.5 4.5 8.5 9.5 4.5 -0.5 0.5	1481.9 1494.1 1497.2 1498.7 1495.6 1480.9 1490.1 1493.1 1497.7 1497.7	1.277 13.531 16.558 18.093 15.007 0.327 9.461 12.522 17.049 17.085	27.89 0.00 0.00 0.00 72.10 0.01 0.00 0.00 0.00	C14 H14 N 0 C9 H14 N3 0 C7 H18 N 07 C4 H14 N5 0 C8 H14 N5 0 C13 H14 N5 0 C11 H10 N5 0 C10 H14 N 0 C6 H18 N3 0 C5 H14 N3 0	2 4 5 5 5 6 7		

HRMS spectrum of 7

Maximum:		100.0	1000.0	50.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula
278.1012	278.1018 278.1004 278.0964 278.1077 278.1117 278.0905 278.1157 278.0865 278.0852 278.0852 278.1216	-0.6 0.8 4.8 -6.5 -10.5 10.7 -14.5 14.7 16.0 -20.4	-2.2 2.9 17.3 -23.4 -37.8 38.5 -52.1 52.9 57.5 -73.4	9.5 4.5 0.5 4.5 9.5 8.5 8.5 0.5 -0.5	1459.0 1459.1 1459.9 1460.1 1459.3 1458.8 1458.4 1459.6 1459.8 1459.7	2.039 2.213 2.991 3.153 2.391 1.831 1.490 2.687 2.848 2.747	13.01 10.93 5.03 4.27 9.16 16.03 22.54 6.81 5.80 6.41	C13 H13 N5 O Na C12 H17 N O5 Na C7 H17 N3 O7 Na C6 H17 N5 O6 Na C11 H17 N3 O4 Na C14 H13 N3 O2 Na C16 H17 N O2 Na C9 H13 N5 O4 Na C8 H17 N O8 Na C9 H21 N O7 Na

HRMS of 8

Figure S47. IR spectrum of 5

Computational study

Computational methodologies

The bond orders for component **3** have been calculated with MOPAC2016⁴ with the AM1 Hamiltonian and a Molecular Mechanics correction. The interface Mercury⁵ has been used. Calculations have been performed on the x-ray crystal structure without structure optimization. All density functional theory (DFT) calculations were performed using Gaussian 16, Revision C.01.⁶ Geometry optimizations, as well as frequency and single-point energy calculations, were performed using the B3LYP⁷ functional augmented with Grimme's D3⁸ empirical dispersion term and the 6-31G(d) basis set. Solvation effects were included in the optimization and single-point calculations using the SMD⁹ solvation model with acetonitrile as the solvent. Gibbs free energies were obtained by summing the thermal correction and single point energies obtained from DFT. No scaling was applied for the ΔG values. Normal vibrational mode analysis was used to verify the structures of minima (zero imaginary frequencies) and transition states (single imaginary frequency). Intrinsic reaction coordinate (IRC) calculations were also used to verify transition state structures, and that they indeed connected the reactants and products. Mixed torsional/Low-Mode conformational sampling in gas phase was performed for the reactant, key intermediates, and transition states, where applicable, using the Merck molecular force field (MMFF94) implemented in MacroModel,¹⁰ followed by DFT optimization. Conformers obtained from each run that fell within 10 kcal/mol of the lowest energy conformer were selected and reoptimized using DFT. GaussView 6.0.16 was used to render optimized structures as well as construct the initial structures used in our calculations.¹¹ Conformational search calculations were set up and rendered in the Maestro GUI.¹² 3D renderings of minima and transition state structures were generated with CYLview 1.0.¹³

Supplemental Figures

Figure S48. Schematic and energetics of the deprotonation of **2**.

Figure S49. Scan of rotation about the tosyl ester bond in int-1a. Energies shown are single point energies; scan coordinate refers to dihedral angles.

Efficient synthesis of isoindolones by intramolecular cyclisation of pyridinylbenzoic acids B3LYP-D3/6-31G(d), SMD(CH3CN) Calculated Cartesian Coordinates and Thermal Corrections

Reactant (deprotonated)

* For all 3D renderings, hydrogens are omitted for clarity.

С	4.69131300	-0.08823100	0.24013900
С	3.36663400	0.35636400	0.11599700
С	2.34401200	-0.60398700	-0.06415300
С	2.68028300	-1.96996400	-0.07632700
С	3.99868100	-2.39515300	0.07974000
С	5.01350400	-1.44579700	0.23578200
С	3.09893200	1.86509700	0.24756000
0	3.57749800	2.58411200	-0.66867800
0	2.44916000	2.20842100	1.26457500
С	0.92066800	-0.22278300	-0.28560700
С	0.56895400	0.91304900	-1.03113600
Ν	-0.01793000	-1.05684400	0.21513400
С	-0.77843900	1.19150900	-1.25481400
С	-1.30698600	-0.78306300	-0.00429900
С	-1.74865500	0.33503400	-0.74076300
С	-2.35912800	-1.70491000	0.59360500
С	-3.23783100	0.48705000	-0.91827700
С	-3.77489300	-1.23864500	0.20814900
С	-3.96731700	0.29967300	0.47092800
С	-3.35039700	0.92610100	1.72273000
С	-5.44322900	0.71713800	0.40255700
С	-3.79644000	-0.91650200	-1.31247100
Н	5.47823700	0.65381000	0.35717500
Н	1.88856900	-2.69994300	-0.22018300
Н	4.23313700	-3.45668700	0.06665500
Н	6.04799100	-1.76194000	0.35008900
Н	1.34288700	1.55844400	-1.43185600
Н	-1.07150200	2.06427100	-1.83440200
Н	-2.23689500	-1.73319900	1.68456900
Н	-2.19065200	-2.72955600	0.23556600
Н	-3.50209600	1.35994700	-1.52416300
Н	-4.53989300	-1.91261200	0.60952100
Н	-3.87276000	0.57107600	2.62058000

Н	-2.28794900	0.70117300	1.84547500
Н	-3.45289800	2.01868600	1.69035500
Н	-5.52852100	1.81061500	0.36216400
Н	-5.96990600	0.31206100	-0.46663600
Н	-5.97427400	0.37433700	1.30004400
Н	-3.16508900	-1.53077300	-1.96394600
Н	-4.80413100	-0.87395000	-1.73016400

Zero-point correction=	0.326923 (Hartree/Particle)
Thermal correction to Energy=	0.345038
Thermal correction to Enthalpy=	0.345982
Thermal correction to Gibbs Free Ene	ergy= 0.280336
Sum of electronic and zero-point Ene	ergies= -939.915887
Sum of electronic and thermal Energi	ies= -939.897772
Sum of electronic and thermal Enthal	lpies= -939.896828
Sum of electronic and thermal Free E	inergies= -939.962475
Single point energy:	-940.242810398
Total free energy:	-939.962474398
Number of imaginary frequencies:	0

Number of imaginary frequencies:

Reactant (deprotonated) alternative conformations

Thermal correction to Gibbs Free Energy= Single point energy: Total free energy: ΔG (relative to lowest energy conformer): 0.281174 (Hartree/Particle) -940.242823439 -939.961649439 0.5 kcal/mol

Reactant (protonated)

Ŷ	5		
Q			
C	4.54987400	0.52007200	0.07190900
C	3.14793800	0.56197100	-0.01966100
С	2.42422200	-0.66236100	-0.00470000
С	3.15369500	-1.86103300	0.11637700
С	4.54089800	-1.87777900	0.22799500
С	5.24753800	-0.67566700	0.20658300
Н	5.08987600	1.45960500	0.03267800
Н	2.61239300	-2.80131800	0.14550000
Н	5.06181900	-2.82498300	0.33598100
Н	6.33036100	-0.66672600	0.29211500
C	2.60291000	1.97048000	-0.18131400
0	1.42668600	2.28547400	0.35362600
0	3.268/4100	2.82/92/00	-0.74183600
	0.94382800	-0.80452900	-0.12561700
	0.37111300	-1.82343700	-0.89008800
C	-1 01788400	-1 95836400	-0 92749900
н	0.99961600	-2.48946800	-1.47661700
C	-1.16489800	-0.06809300	0.53793600
C	-1.81258600	-1.08289200	-0.19403300
H	-1.47788300	-2.73874100	-1.52840200
С	-2.01176700	0.94464200	1.28466100
Н	-1.73531500	0.93618500	2.34701700
Н	-1.78168700	1.95033400	0.90861200
С	-3.31655600	-1.10267500	-0.12567400
Н	-3.75128400	-1.93108500	-0.69305200
С	-3.50675700	0.61499900	1.12285100
Н	-4.13075000	1.32377500	1.67716700
С	-3.87948700	0.35332000	-0.38197500
C	-3.23802600	1.21604400	-1.47057100
Н	-3.62923400	2.24012700	-1.41885000
Н	-2.14859400	1.27471000	-1.40089300
H	-3.48223500	0.81688600	-2.46346200
	-5.39/59600	0.34318/00	-0.608/2300
Н	-5./918/900	1.36612200	-0.55/13900
Н	-5.63060/00	-0.05480200	-1.60445300

Н	-5.94325500	-0.25826600	0.12426200
С	-3.70884200	-0.90571900	1.37252800
Н	-4.74631400	-1.17437000	1.57771900
Н	-3.06157200	-1.38197200	2.11706300
Н	0.93466800	1.45863300	0.68372700

Zero-point correction=	0.34032	5 (Hartree/Par	ticle)
Thermal correction to Energy=	0.35	8049	
Thermal correction to Enthalpy=	0.3	58994	
Thermal correction to Gibbs Free Ene	ergy=	0.294897	
Sum of electronic and zero-point Ene	ergies=	-940.39831	L5
Sum of electronic and thermal Energ	ies=	-940.38059	0
Sum of electronic and thermal Entha	lpies=	-940.37964	16
Sum of electronic and thermal Free E	inergies=	-940.4437	742
Single point energy:		-94	0.73863

Single point energy:	-940.738639147
Total free energy:	-940.443842147

Number of imaginary frequencies:

0

Number of imaginary frequencies:

TsCl

0

Int-1a

\sim			
Ϋ́Ι			
γ	20		
2.8	32		
II		o	
- 74 5 -	2.82	0-s=0	
		Ĵ,	
4	T	a line	
С	-0.32001500	3.11661100	1.39070000
С	0.38675600	4.32115600	1.55606600
С	1.46648800	4.59087900	0.70342300
С	1.84187800	3.69162500	-0.29505800
С	1.11251700	2.51179600	-0.43418600
С	0.03066600	2.20951100	0.39862500
S	1.54814500	1.36343900	-1.71455300
0	0.35768800	0.92600700	-2.44103500
0	2.72814800	1.82972100	-2.43914800
	-0.02752500	5.30334000	2.62113800
0	2.01454900	0.115/1500	-0.66958200
	2.331/5300	1 26002200	-1.1/641900
C C	2.48500500	-1.30092200	-2.33077900
C	3 83093800	-2 74705200	-0.03077500
C	1 71681200	-2 25517200	1 03587300
C	4.21771200	-3.56695000	0.97178700
C	2.12499500	-3.08519000	2.08946000
C	3.36498500	-3.72533300	2.06598700
С	0.34943600	-1.67532500	1.01864000
С	-0.27712700	-1.21010000	2.17997700
Ν	-0.26167400	-1.64998200	-0.18557300
С	-1.57961700	-0.71387300	2.09107300
С	-1.50534700	-1.17514900	-0.26559600
С	-2.21761300	-0.68814600	0.85461200
С	-2.20176000	-1.17314600	-1.61499700
С	-3.60357900	-0.15834500	0.59433200
С	-3.60948000	-0.56136900	-1.49806300
C	-4.41178700	-1.18324100	-0.29754900
C	-4.28240900	-2.6/999600	-0.00885300
C	-5.90534200	-0.83300200	-0.355/2200
	-3.51450500	0.75164900	-0.6/191600
н	-1.1535/900		2.04912300
п	2.02526900	2 00101500	0.82215000
н	2.00243700	2.201212000	-0.94/40300 0 2822/200
н Ц	0.31031400	1.20213000	0.20324200
11	0.74039400	0.00044100	2.73700200

н	-0 94519800	5 82792800	2 32392800
н	-0 24079600	1 793022000	3 56723300
	-0.24075000	4.75502200	0.00020500
н	4.48941400	-2.59887600	-0.93820500
Н	5.17697200	-4.07508000	0.94234000
Н	1.44729900	-3.25954200	2.91984800
Н	3.65387100	-4.36555800	2.89478000
Н	0.24768100	-1.21947700	3.12961900
Н	-2.08736000	-0.33883800	2.97636200
Н	-2.24756300	-2.20117200	-1.99772100
Н	-1.59340100	-0.59770800	-2.32244100
Н	-4.08236200	0.22629900	1.50043100
Н	-4.11177800	-0.52984800	-2.47102100
Н	-4.76408300	-3.26108500	-0.80575100
Н	-3.24779000	-3.02339100	0.07191700
Н	-4.78594300	-2.92968500	0.93412400
Н	-6.39712400	-1.41371700	-1.14672000
Н	-6.39309300	-1.08414100	0.59478200
Н	-6.09673700	0.22529400	-0.55635700
н	-2.60583800	1.35170500	-0.78577200
Н	-4.38501600	1.39921900	-0.78984400

Zero-point correction=	0.457872 (Hartree/Particle)
Thermal correction to Energy=	0.485954
Thermal correction to Enthalpy=	0.486898
Thermal correction to Gibbs Free Ene	ergy= 0.397716
Sum of electronic and zero-point Ene	ergies= -1759.245146
Sum of electronic and thermal Energi	ies= -1759.217064
Sum of electronic and thermal Enthal	lpies= -1759.216119
Sum of electronic and thermal Free E	Energies= -1759.305301

Single point energy:	-1759.70301746
Total free energy:	-1759.30530146

Number of imaginary frequencies:

0

Int-1a alternative conformations

Thermal correction to Gibbs Free Energy= Single point energy: Total free energy: ΔG (relative to lowest energy conformer): 0.397753 (Hartree/Particle) -1759.70214757 -1759.30439457 0.6 kcal/mol

Thermal correction to Gibbs Free Energy= Single point energy: Total free energy: ΔG:

0.397522 (Hartree/Particle) -1759.70156833 -1759.30404633 0.8 kcal/mol

Thermal correction to Gibbs Free Energy=0.39744Single point energy:Total free energy: ΔG :0.9 kcal/mol

0.397442 (Hartree/Particle) -1759.70136351 -1759.30392151

Cl⁻ Cl 0.0000000 0.0000000 0.0000000

Zoro point correction-	0.000000 (Hartrag (Dartiala)
zero-point correction=	0.000000 (Hartree/Particle)
Thermal correction to Energy=	0.001416
Thermal correction to Enthalpy=	0.002360
Thermal correction to Gibbs Free Ene	ergy= -0.015023
Sum of electronic and zero-point Ene	rgies= -460.360860
Sum of electronic and thermal Energi	ies= -460.359444
Sum of electronic and thermal Enthal	pies= -460.358500
Sum of electronic and thermal Free E	nergies= -460.375883
Single point energy:	-460.360860002
	400 275002002
Total free energy:	-460.375883002
Number of imaginary frequencies:	0

	9			
	B B			
	SA Y I		1	1
			~ 1	
	2.53		U.	
	38.	2.	53 - 10-S 0	
0	ĬĨ		L.Υ.	
	Jeron .		- int	
С	0.66742100)	-0.18468200	1.80184600
0	0.3961490	0	-0.24089700	2.97190100
С	1.28431000)	1.00270700	1.13095600
С	2.55599400)	1.35657400	1.59865100
С	0.64853900	C	1.76417500	0.12721300
С	3.23760700)	2.43564700	1.04089100
С	1.34889400	C	2.85543000	-0.41174400
С	2.62997000)	3.18182600	0.02829300
С	-0.7291050	0	1.42115000	-0.29428900
С	-1.3192860	0	1.87953200	-1.47738800
Ν	-1.3789860	0	0.58687900	0.53888500
С	-2.6039480	0	1.44027000	-1.80143400
С	-2.5966770	0	0.15546300	0.22412400
С	-3.2635990	0	0.55430600	-0.95435900
С	-3.3087890	0	-0.79214500	1.17312500
C	-4.6235500	0	-0.04692800	-1.19341100
C	-4.6779550	0	-1.19926100	0.59962600
C	-5.49/36/00	0	0.05405600	0.12001000
C	-5.4460750	0	1.34016/00	0.94663900
C	-6.9699150	0	-0.28678300	-0.14855100
C	-4.4977000	0	-1.5/5/3400	-0.89783400
н	3.0203420	0	0.76139600	2.37879200
п	4.2324800	0	2.09003800	1.39395900
п	2 1475620	0	3.47439900	-1.10830800
п	5.1475020	0	4.02997700	-0.41070000
п	-0.7646220	0	2.55795200	-2.13512500
п	-3.0609700	0	-0.21106800	2.72014900
н	-2 6828110	0 0	-0.31100800	1 32768/00
н	-2.0020110	0 0	0.28416000	-2 13623300
н	-5 1906600	0	-1 90875000	1 25802400
н	-5 9680250	0	1,19691500	1.90152200
н	-4 4303550	0	1.67587300	1.17127600
н	-5.9507420	0	2.15528100	0.41186300
Н	-7.5026080	0	-0.42721100	0.80081000

			2
Н	-7.45898300	0.53478700	-0.68728300
Н	-7.10472400	-1.19718400	-0.74011000
Н	-3.55457100	-2.05434500	-1.18400600
Н	-5.32955400	-2.15686900	-1.29961800
С	4.50330300	0.14353600	-1.44119300
С	5.44817600	-0.36178800	-0.53555400
С	5.04174400	-1.33780700	0.38961700
С	3.72730000	-1.79291000	0.42475900
С	2.80912100	-1.25282100	-0.48010900
С	3.18069800	-0.29149300	-1.42067500
S	1.12373800	-1.80563400	-0.43063400
0	1.06519400	-3.26548900	-0.39767900
0	0.62474200	-1.42688100	1.12333900
С	6.86081300	0.16234200	-0.53001600
0	0.33168300	-1.06660900	-1.40987600
Н	4.80328300	0.89627400	-2.16495100
Н	5.76445500	-1.74427100	1.09175600
Н	3.42270200	-2.54420000	1.14640100
Н	2.44837600	0.11869300	-2.10641500
Н	7.18245700	0.45617800	-1.53459100
Н	6.93199800	1.05242700	0.10982500
Н	7.56365200	-0.58038400	-0.13918500

Zero-point correction=	0.457440 (Hartree/Particle)
Thermal correction to Energy=	0.485454
Thermal correction to Enthalpy=	0.486399
Thermal correction to Gibbs Free End	ergy= 0.397883
Sum of electronic and zero-point Ene	ergies= -1759.238527
Sum of electronic and thermal Energ	gies= -1759.210513
Sum of electronic and thermal Entha	alpies= -1759.209568
Sum of electronic and thermal Free E	Energies= -1759.298084

Single point energy: Total free energy: -1759.69596697 -1759.29808397

Number of imaginary frequencies:

0

С	0.16842500	0.13962600	1.63006300
0	-0.26534700	0.10227800	2.75710500
С	1.16953500	1.13113800	1.10372200
С	2.42613000	1.28380900	1.68277800
С	0.76832800	1.93558300	0.02792700
С	3.30359400	2.23568100	1.15673300
С	1.64605400	2.88999200	-0.49356800
С	2.91448100	3.03083200	0.07210900
С	-0.60104900	1.65085700	-0.42439400
С	-1.31393600	2.22487400	-1.47177400
Ν	-1.15055800	0.67489300	0.32051500
С	-2.60128600	1.74454000	-1.73674500
С	-2.36435200	0.19425500	0.08948500
С	-3.14193100	0.71694400	-0.96688200
С	-2.92808500	-0.91380400	0.95271400
С	-4.48528900	0.06928000	-1.17479200
С	-4.31919600	-1.32025600	0.43562400
С	-5.24040500	-0.06687400	0.20751800
С	-5.18112400	1.09410200	1.20194600
С	-6.71121400	-0.46050300	0.01358700
С	-4.25117700	-1.47458500	-1.10966800
Н	2.72143400	0.65670900	2.51822400
Н	4.29284700	2.35406300	1.58907700
Н	1.34438000	3.51541500	-1.32843700
Н	3.60380700	3.76606500	-0.33304400
Н	-0.87476500	3.01382700	-2.07260000
Н	-3.18012500	2.16619100	-2.55413200
Н	-2.96455000	-0.57721100	1.99534600
Н	-2.24192900	-1.76868600	0.92716500
Н	-5.02965700	0.49757800	-2.02151400
Н	-4.73263900	-2.14441900	1.02585700
Н	-5.61035200	0.78817900	2.16452000
Н	-4.16825100	1.45856600	1.39316900
Н	-5.76999500	1.94225400	0.82971900

Н	-7.28745400	0.39411800	-0.36278400			
Н	-6.85087300	-1.28908200	-0.68693000			
Н	-7.14848500	-0.76183200	0.97400700			
Н	-3.31219200	-1.84653800	-1.53426400			
Н	-5.08277600	-2.04695200	-1.52360800			
С	4.40880000	-0.05064400	-1.41600800			
С	5.31868900	-0.54652300	-0.47193400			
С	4.85524900	-1.45222400	0.49695100			
С	3.52048800	-1.84424500	0.53475900			
С	2.63490000	-1.31843400	-0.41032000			
С	3.06696700	-0.42841800	-1.39244500			
S	0.91906500	-1.80066400	-0.35359100			
0	0.83809800	-3.26419800	-0.27492200			
0	0.41144900	-1.30607700	1.09856800			
С	6.75476900	-0.08805000	-0.47004600			
0	0.20514200	-1.11212700	-1.43557600			
Н	4.75114800	0.64797100	-2.17481400			
Н	5.54972100	-1.85219000	1.23115300			
Н	3.17293100	-2.54102800	1.29100600			
Н	2.36375900	-0.02892600	-2.11415900			
Н	7.42582600	-0.87228500	-0.10403400			
Н	7.08134000	0.21262300	-1.47092700			
Н	6.87679500	0.78125900	0.19043600			
Zero-point correction= 0 456855 (Hartree/Particle)						
Thermal correction to Energy= 0.484192						
Thermal correction to Enthalpy= 0.485137						
Thermal correction to Gibbs Free Energy= 0.397928						

inermal correction to Globs Free Energy=	0.397928	
Sum of electronic and zero-point Energies=	-1759.234696	
Sum of electronic and thermal Energies=	-1759.207359	
Sum of electronic and thermal Enthalpies=	-1759.206414	
Sum of electronic and thermal Free Energies=	-1759.293623	

Single point energy: Total free energy: -1759.69155109 -1759.29362309

Number of imaginary frequencies:

1	
Frequencies -	169.8427
Red. masses -	- 10.5269
Frc consts	0.1789
IR Inten	289.0098

TS1 alternative conformations

Thermal correction to Gibbs Free Energy= Single point energy: Total free energy: ΔG (relative to lowest energy conformer): 0.399527 (Hartree/Particle) -1759.69309030 -1759.2935633 0.04 kcal/mol

Thermal correction to Gibbs Free Energy= Single point energy: Total free energy: ΔG : 0. 0.400004 (Hartree/Particle) -1759.69313692 -1759.29313292

0.3 kcal/mol

Thermal correction to Gibbs Free Energy=0.39960Single point energy:Total free energy: ΔG :0.3 kcal/mol

0.399603 (Hartree/Particle) -1759.69271515 -1759.29311215

Complex-1

0	0.81515100	-2.02125700	2.22924600
С	-1.15107000	-2.06225400	0.78435700
С	-2.17488400	-2.68285300	1.48878700
С	-1.29957100	-1.68206800	-0.55741200
С	-3.37811500	-2.91282100	0.81230700
С	-2.48944700	-1.91598500	-1.23541800
С	-3.52898400	-2.53501900	-0.52899500
С	-0.05522200	-1.05664900	-1.00238600
С	0.32626500	-0.52557800	-2.21306300
Ν	0.82568300	-1.05055800	0.05336200
С	1.61105100	0.02363400	-2.32653000
С	2.04471300	-0.48314800	-0.00410600
С	2.46719000	0.06499500	-1.23235700
С	2.94595900	-0.40166500	1.19861600
С	3.82416000	0.71686800	-1.22298400
С	4.23440700	0.35504500	0.83261500
С	4.87192400	-0.20845800	-0.48828200
С	4.84524400	-1.71563800	-0.75069600
С	6.30826600	0.29037400	-0.69524600
С	3.86044700	1.63757800	0.03991400
Н	-2.04321900	-2.97140500	2.52678300
Н	-4.20471200	-3.38781500	1.33144900
Н	-2.61488300	-1.62157100	-2.27184100
Н	-4.47270900	-2.72284200	-1.03236400
Н	-0.36489500	-0.53640900	-3.04777200
Н	1.93497900	0.44291400	-3.27443200
Н	3.16090000	-1.40856100	1.57057700
Н	2.39232400	0.11149500	1.99402500
Н	4.08749200	1.12625700	-2.20201300
Н	4.88481900	0.44647400	1.70794300
Н	5.51546600	-2.23094500	-0.05127700
Н	3.85443000	-2.16740100	-0.64875000
Н	5.19709900	-1.92829100	-1.76812500
Н	6.98662600	-0.22776800	-0.00575700
Н	6.64152400	0.07488100	-1.71812500
---	-------------	-------------	-------------
Н	6.42357600	1.36502900	-0.52743700
Н	2.92239100	2.13395000	0.30212100
Н	4.66957200	2.36808400	-0.00014700
С	-3.43555600	1.58621400	-1.66369600
С	-4.52134600	1.04202600	-0.96496400
С	-4.36061900	0.76378700	0.40245500
С	-3.15245700	1.01095600	1.04924700
С	-2.07922200	1.55216000	0.33400000
С	-2.22136400	1.84342900	-1.02276200
S	-0.52861100	1.90172000	1.18815000
0	-0.75426000	3.14682200	1.97126600
0	-0.29893500	0.70042300	2.05470700
С	-5.81656800	0.71330600	-1.66541300
0	0.49036900	2.04312300	0.10644500
Н	-3.53815600	1.80603500	-2.72401800
Н	-5.18924600	0.33327600	0.96004500
Н	-3.03270700	0.76609500	2.10017100
Н	-1.37864100	2.25055400	-1.57166000
Н	-5.90803300	1.24834800	-2.61639100
Н	-5.87735100	-0.36187900	-1.88329300
Н	-6.68337900	0.96424700	-1.04333200

Zero-point correction=	0.458872	(Hartree/I	Particle)
Thermal correction to Energy=	0.486	5720	
Thermal correction to Enthalpy=	0.48	7664	
Thermal correction to Gibbs Free Ene	ergy=	0.400634	
Sum of electronic and zero-point Ene	ergies=	-1759.26	1117
Sum of electronic and thermal Energi	ies=	-1759.233	3269
Sum of electronic and thermal Enthal	lpies=	-1759.23	2325
Sum of electronic and thermal Free E	nergies=	-1759.3	19355
Cingle agint energy			1750 7100000
Single point energy:		-	1/59./199889
Total free energy:		-;	1759.3193549

Number of imaginary frequencies:

Н	6.38738900	0.49956800	-1.65384800
Н	6.56187500	1.30484500	-0.08532800
Н	6.35988200	-0.44999900	-0.16369900
Н	3.07508800	-1.69971700	0.84188100
Н	4.83889500	-1.60212800	0.59684200
С	-3.51099400	-0.88609600	1.02956500
С	-4.13616000	-1.07428200	-0.21087800
С	-3.41101700	-1.69992100	-1.23766800
С	-2.10636400	-2.14323100	-1.03333500
С	-1.50958700	-1.94914900	0.21503800
С	-2.20367800	-1.31757900	1.24920100
S	0.12200700	-2.60492900	0.55339600
0	-0.00786800	-4.03821300	0.86905900
0	0.88537400	-2.46785100	-0.80738200
С	-5.55550400	-0.61977800	-0.44036800
0	0.73081000	-1.73807000	1.58216400
Н	-4.04702500	-0.38125600	1.82870400
Н	-3.87310300	-1.83430600	-2.21252000
Н	-1.54991300	-2.61264500	-1.83757200
Н	-1.72015900	-1.15008200	2.20596400
Н	-6.25738800	-1.45190700	-0.29374300
Н	-5.83747900	0.17721500	0.25452700
Н	-5.69595400	-0.25312200	-1.46281200
Zero-point	correction=	0	.452782 (Hartree/Particle)
Thermal co	prrection to En	ergy=	0.480177
		U /	

•	
Thermal correction to Energy=	0.480177
Thermal correction to Enthalpy=	0.481121
Thermal correction to Gibbs Free Energy=	= 0.395635
Sum of electronic and zero-point Energies	s= -1759.231733
Sum of electronic and thermal Energies=	-1759.204338
Sum of electronic and thermal Enthalpies	-1759.203394
Sum of electronic and thermal Free Energ	gies= -1759.288879

Single point energy: Total free energy: -1759.68451445 -1759.28887945

Number of imaginary frequencies:

Frequencies1428.0717
Red. masses 1.2064
Frc consts 1.4496
IR Inten 10320.3909

Thermal correction to Gibbs Free Energy= Single point energy: Total free energy: ΔG (relative to lowest energy conformer): 0.394365 (Hartree/Particle) -1759.6829728 -1759.2886078 0.2 kcal/mol

Thermal correction to Gibbs Free Energy= Single point energy: Total free energy: ΔG: 0.393034 (Hartree/Particle) -1759.68058554 -1759.28755154

0.8 kcal/mol

Thermal correction to Gibbs Free Energy= Single point energy: Total free energy: ΔG: 0.391846 (Hartree/Particle) -1759.67888435 -1759.28703835

1.2 kcal/mol

Complex-2a

Н	-6.57687000	-0.71380700	-1.28309400
Н	-6.61564800	-1.22307300	0.41330200
Н	-6.40376300	0.48399500	0.00471900
Н	-3.03942700	1.80565000	0.49973100
Н	-4.81602000	1.69335800	0.42990900
С	3.40060200	0.78727900	1.24903700
С	4.15707500	0.89586800	0.07445900
С	3.57992400	1.52536600	-1.04127400
С	2.29552100	2.05693600	-0.98523700
С	1.57077100	1.94210000	0.20527800
С	2.10915300	1.30687100	1.32545800
S	-0.01168500	2.74340700	0.36322000
0	0.16809700	4.19636100	0.38275600
0	-0.73675900	2.44207200	-1.05403100
С	5.56481600	0.36194000	0.00882200
0	-0.76047900	2.09216300	1.44398000
Н	3.82225300	0.28278700	2.11370500
Н	4.14528600	1.59618100	-1.96664000
Н	1.85752400	2.53510100	-1.85493300
Н	1.52589900	1.20981800	2.23462900
н	6.28779600	1.16149300	0.22006300
Н	5.72568200	-0.43339100	0.74275900
Н	5.79535000	-0.03175400	-0.98631700

Zero-point correction=	0.456821	. (Hartree/I	Particle)
Thermal correction to Energy=	0.485	5038	
Thermal correction to Enthalpy=	0.48	5982	
Thermal correction to Gibbs Free Ene	ergy=	0.397438	
Sum of electronic and zero-point Ene	ergies=	-1759.23	4295
Sum of electronic and thermal Energy	ies=	-1759.206	6078
Sum of electronic and thermal Entha	lpies=	-1759.20	5134
Sum of electronic and thermal Free E	nergies=	-1759.2	93678
Single point energy:		-:	1759.6911159
Total energy:		-:	1759.2936779

Number of imaginary frequencies:

Single point energy: Total free energy: -895.392755863 -895.290384863

Number of imaginary frequencies:

0

Product

С	1.46781800	-1.330
0	1.14001300	-2.513
С	2.81499000	-0.740
С	4.05144700	-1.375
С	2.70162500	0.660
С	5.18902400	-0.573
Н	4.11999900	-2.459
С	3.83995500	1.463
С	5.08032400	0.829
Н	6.16982800	-1.033
Н	3.76466600	2.546
Н	5.98087100	1.431
С	1.29085300	0.989
С	0.63337100	2.173
Ν	0.58857100	-0.237
С	-0.80019200	2.184
н	1 10373000	3 000

С	1.46781800	-1.33075700	-0.10098800
0	1.14001300	-2.51351700	-0.13736600
С	2.81499000	-0.74096800	0.02075500
С	4.05144700	-1.37532000	0.11786900
С	2.70162500	0.66047000	0.02625200
С	5.18902400	-0.57334400	0.22340000
Н	4.11999900	-2.45927600	0.11087200
С	3.83995500	1.46311200	0.13223000
С	5.08032400	0.82939700	0.23064600
Н	6.16982800	-1.03367900	0.30105200
Н	3.76466600	2.54658300	0.13837600
Н	5.98087100	1.43149300	0.31446600
С	1.29085300	0.98968800	-0.09488500
С	0.63337100	2.17323200	-0.14137300
Ν	0.58857100	-0.23741300	-0.16984000
С	-0.80019200	2.18453000	-0.27613600
Н	1.19373000	3.09991400	-0.08026900
С	-0.81971000	-0.28272400	-0.29049400
С	-1.49837300	1.02005000	-0.35533200
Н	-1.32213600	3.13620000	-0.31764200
С	-1.58781500	-1.40338300	-0.31547600
Н	-1.16136400	-2.39303900	-0.24034900
С	-2.99365800	0.92607600	-0.50919200
Н	-3.45726100	1.91450700	-0.58857100
С	-3.07835500	-1.19842500	-0.46061100
Н	-3.62761400	-2.14366100	-0.49576500
С	-3.59024000	-0.08954500	0.54877400
С	-3.30056600	-0.15138100	-1.59735900
Н	-2.62013200	-0.20552100	-2.45234000
Н	-4.32948000	-0.09930300	-1.95642700
С	-3.04897500	-0.06124800	1.97793300
Н	-3.35922400	0.86500100	2.47850400
Н	-3.45673700	-0.90157500	2.55442600
Н	-1.95958000	-0.12046800	2.02982600
С	-5.12152200	-0.01753500	0.61824600
Н	-5.61048800	-0.03061100	-0.35968900

Н	-5.51065500	-0.86802400	1.192	261400	-		
Н	-5.43452400	0.89991900	1.133	16700			
Zara na	int correction-	0	21207	Q (Hartroo	(Darticla)		
zero-po		0.	51201		/Particle)		
Therma	l correction to En	ergy=	0.32	9128			
Therma	l correction to En	thalpy=	0.3	30072			
Therma	l correction to Gib	bs Free Energ	y=	0.270566			
Sum of	electronic and zer	o-point Energi	ies=	-863.95	58802		
Sum of	electronic and the	ermal Energies	=	-863.94	2751		
Sum of	electronic and the	ermal Enthalpi	es=	-863.94	41807		
Sum of	electronic and the	ermal Free Ene	rgies=	-864.0	001313		
Single p	oint energy:				-864.2718	87935	
Total fre	e energy:				-864.0013	31335	

Number of imaginary frequencies:

С	1.47317700	-1.33764200	-0.09716600
0	1.08596600	-2.47391500	-0.14301300
С	2.80912300	-0.75179700	0.02128200
С	4.03679200	-1.39847800	0.11020400
С	2.70266500	0.64778500	0.03097500
С	5.17966400	-0.59773500	0.21166900
Н	4.10087900	-2.48177600	0.10036800
С	3.83470600	1.44553400	0.13066000
С	5.07652400	0.79988800	0.22139200
Н	6.15732400	-1.06358000	0.28315000
Н	3.76432200	2.52819800	0.13876800
Н	5.97897800	1.39845300	0.30063300
С	1.28917300	1.00567600	-0.08092600
С	0.64699900	2.22205500	-0.11245800
Ν	0.55352100	-0.15629300	-0.16036700
С	-0.75022800	2.23626900	-0.22902600
Н	1.22209300	3.13822600	-0.04770300
С	-0.79319600	-0.18166900	-0.27962400
С	-1.47573800	1.05095000	-0.31703300
Н	-1.27739200	3.18511600	-0.25304100
С	-1.57706000	-1.46766800	-0.35363500
Н	-1.21870800	-2.06003000	-1.20338600
Н	-1.37489800	-2.06617200	0.54190600
С	-2.97019000	0.96866800	-0.47039900
Н	-3.43035600	1.95885800	-0.51323900
С	-3.07689000	-1.15624600	-0.50712800
Н	-3.64965200	-2.08466500	-0.58709800
С	-3.55650100	-0.09345100	0.54440400
С	-3.00128600	-0.15002700	1.96846800
Н	-3.32039000	0.73326400	2.53545300
Н	-3.38793600	-1.03730600	2.48483500
Н	-1.90947300	-0.19123500	2.01965900
С	-5.08669100	-0.00844800	0.62676000
Н	-5.48029100	-0.88285800	1.15969000
Н	-5.38672100	0.88675600	1.18524000
Н	-5.57597200	0.03073200	-0.35061000

С	-3.25263300	-0.06977100	-1.60167900
Н	-2.55310800	-0.08584800	-2.44402000
Н	-4.27151800	-0.00412900	-1.98436000

Zero-point correction=	0.326595 (Hartree/Particle)
Thermal correction to Energy=	0.342659
Thermal correction to Enthalpy=	0.343603
Thermal correction to Gibbs Free E	nergy= 0.284170
Sum of electronic and zero-point E	nergies= -864.423613
Sum of electronic and thermal Ene	rgies= -864.407549
Sum of electronic and thermal Entl	halpies= -864.406605
Sum of electronic and thermal Free	e Energies= -864.466039

0

Single point energy: Total free energy:

-864.750208299 -864.466038299

Number of imaginary frequencies:

Total free energy:

⁻OTs

-894.845259852

Number of imaginary frequencies:

Н	2.59718300	1.28198500	-1.37053100
Н	4.30681600	0.83727000	-1.13694900
С	2.98755400	-2.10740000	1.47080600
Н	3.25328000	-3.10963000	1.11034100
Н	1.89939200	-2.07031400	1.56910200
Н	3.41358500	-1.99123600	2.47553500
С	5.08215200	-1.17414800	0.52026900
Н	5.37418700	-2.18139900	0.19640100
Н	5.47953400	-1.02164800	1.53190600
Н	5.57863800	-0.45761700	-0.14021800

Zero-point correction=	0.348519 (Hartree/Particle)
Thermal correction to Energy=	0.369391
Thermal correction to Enthalpy=	0.370335
Thermal correction to Gibbs Free Ene	rgy= 0.298212
Sum of electronic and zero-point Ener	rgies= -1128.928226
Sum of electronic and thermal Energie	es= -1128.907354
Sum of electronic and thermal Enthal	pies= -1128.906410
Sum of electronic and thermal Free El	nergies= -1128.978533

Single point energy: Total free energy: -1129.2767451 -1128.9785331

Number of imaginary frequencies:

1

Frequencies -- -1454.8392 Red. masses -- 1.1677 Frc consts -- 1.4562 IR Inten -- 11090.9759

TS2b alternative conformations

Thermal correction to Gibbs Free Energy=

0.299894 (Hartree/Particle)

Single point energy: Total free energy: ΔG (relative to lowest energy conformer):

-1129.27787337 -1128.97797938 0.3 kcal/mol

Thermal correction to Gibbs Free Energy	= 0.298347 (Hartree/Particle)
Single point energy:	-1129.2760669
Total free energy:	-1128.9777199
ΔG:	0.5 kcal/mol

Thermal correction to Gibbs Free Energy= Single point energy: Total free energy: ΔG: 0.299873 (Hartree/Particle) -1129.27721464 -1128.97734164

0.7 kcal/mol

HCO₃⁻

Zero-point correction=	0.02619	7 (Hartree/Part	cicle)
Thermal correction to Energy=	0.02	9718	
Thermal correction to Enthalpy=	0.03	30662	
Thermal correction to Gibbs Free	Energy=	0.000425	
Sum of electronic and zero-point	Energies=	-264.49455	D
Sum of electronic and thermal En	ergies=	-264.491029	
Sum of electronic and thermal En	thalpies=	-264.49008	5
Sum of electronic and thermal Fre	ee Energies=	-264.5203	22
Single point energy:		-264	.520746874
Total free energy:		-264	.520321874

Number of imaginary frequencies:

Complex-2b

Н

Н н

Н

Н

н

Н Н

0

С

0

0

Н

-3.92081400 -2.49341700 -1.49850300 -6.11546400 -1.67852100 -0.66023100

-1.34730900 -2.76708600 -2.09004500 1.16347900 -2.64868000 -2.33169100

0.92628500

2.57617300

3.32583000 -1.61772200 -1.67432200

1.13965500

-0.23990800

1.88070600

1.00375800

Н	2.56948400	1.19496200	-1.23514800
Н	4.26716700	0.69920600	-1.01089000
С	2.91749600	-2.30643700	1.49151800
Н	3.18720300	-3.29439400	1.09674300
Н	1.82968800	-2.26809000	1.58233300
Н	3.34052000	-2.22575700	2.50101900
С	5.01475000	-1.35597900	0.56931000
Н	5.29359600	-2.35067600	0.19854900
Н	5.41491400	-1.25623400	1.58634900
Н	5.51928100	-0.61597700	-0.05782600

Zero-point correction=	0.354004 (Hartree/Particle)
Thermal correction to Energy=	0.375203
Thermal correction to Enthalpy=	0.376148
Thermal correction to Gibbs Free Ene	ergy= 0.303617
Sum of electronic and zero-point Ene	ergies= -1128.944450
Sum of electronic and thermal Energi	gies= -1128.923251
Sum of electronic and thermal Enthal	alpies= -1128.922307
Sum of electronic and thermal Free E	Energies= -1128.994837

Single point energy: Total free energy:

-1129.29845416 -1128.99483716

Number of imaginary frequencies:

H ₂ CO ₃			
1			
	H_O_O_H		
0 1.086289	00 -0.68312400 -0.0000	2900	
H 1.866097	'00 -0.09493400 -0.0000	2900	
C 0.000000	00 0.10107500 -0.0000	9000	
0 -1.086288	300 -0.68312600 0.0000	6900	
H -1.866095	00 -0.09493500 0.0001	5700	
O -0.000001	1.31417700 0.0000	1200	
Zero-point correction	= 0.039122	(Hartree/Particle	e)
Thermal correction to	Energy= 0.042	862	
Thermal correction to	o Enthalpy= 0.043	3806	
Thermal correction to	o Gibbs Free Energy= 0).013206	
Sum of electronic and	1 zero-point Energies=	-264.966649	
Sum of electronic and	thermal Energies=	-264.962909	
Sum of electronic and	thermal Enthalpies=	-264.961965	
Sum of electronic and	thermal Free Energies=	-264.992565	
Single point energy:		-265.00	5771132
Total free energy:			-264.992565132
Number of imaginary	frequencies:	0	

Anhydride intermediate

С	-0.13606400	-1.17922700	2.49518200
0	-0.33962700	-1.26989800	3.68138000
С	0.70670900	-2.11347600	1.69950800
С	1.79954800	-2.66740000	2.38115900
С	0.50495600	-2.39756800	0.32973000
С	2.71634800	-3.47856500	1.71672500
С	1.43602200	-3.22034000	-0.31965000
С	2.53361100	-3.75101200	0.35978700
С	-0.68918900	-1.91769000	-0.41290500
С	-0.57658500	-1.39691900	-1.70615200
Ν	-1.87524000	-2.01851000	0.22482800
С	-1.73473700	-0.98720100	-2.37035600
С	-2.97507500	-1.61493500	-0.41191200
С	-2.96373900	-1.10243600	-1.72913900
С	-4.30508100	-1.67958500	0.32004200
С	-4.29975800	-0.73875100	-2.32378100
С	-5.45311100	-1.22253800	-0.59839200
С	-5.12136500	0.14361300	-1.30255600
С	-4.38742900	1.22661000	-0.51385600
С	-6.35847900	0.77417300	-1.95642300
С	-5.28165500	-1.90487400	-1.98457400
0	-0.51577400	-0.08561700	1.73853100
С	-1.46277600	0.82494800	2.15617900
0	-2.36342400	0.53574900	2.90978900
С	-1.30439300	2.14523800	1.48415400
С	-2.41917000	2.99662700	1.59529600
С	-0.19485900	2.54398600	0.69727600
С	-2.47246600	4.20986800	0.92083100
С	-0.28412200	3.76043100	0.00144500
С	1.09733300	1.80358600	0.57043000
С	-1.40215800	4.58507400	0.10462600
С	1.86278400	1.46224700	1.69114000
Ν	1.52205100	1.57600400	-0.68779700
С	3.09327800	0.83468700	1.50238300

С	2.70600300	0.97871700	-0.86161200
С	3.53366400	0.57606600	0.20627900
С	3.20483600	0.75592100	-2.28003700
С	4.83505400	-0.08821400	-0.16117700
С	4.58191200	0.06718200	-2.27122800
С	5.57310600	0.76490400	-1.27019000
С	4.52359500	-1.12874000	-1.28221400
С	5.57099700	2.29061200	-1.15785800
С	7.02199200	0.30071900	-1.47509100
Н	1.93447900	-2.43073800	3.43174100
Н	3.56628800	-3.89072300	2.25239400
Н	1.28092200	-3.46691200	-1.36587400
Н	3.23899000	-4.38408000	-0.17098000
Н	0.39737100	-1.30106100	-2.17523400
Н	-1.67800200	-0.57786400	-3.37608800
Н	-4.24171600	-1.05659900	1.22230000
Н	-4.48225100	-2.70766700	0.66232300
Н	-4.21734100	-0.38784700	-3.35738000
Н	-6.42229500	-1.30148100	-0.09398600
Н	-5.03874500	1.63665400	0.26839400
Н	-3.47719300	0.86852300	-0.03058700
Н	-4.10067200	2.05493000	-1.17430000
Н	-7.01952200	1.19128100	-1.18574500
Н	-6.06084400	1.59568000	-2.62052500
Н	-6.94712000	0.06669000	-2.54799000
Н	-4.86516700	-2.91815400	-1.99703800
Н	-6.18961300	-1.88557700	-2.59004200
Н	-3.25779600	2.66943700	2.19969900
Н	-3.34559100	4.84831100	1.01677900
Н	0.55588400	4.06363700	-0.61577500
Н	-1.43270300	5.52255800	-0.44370800
Н	1.49354500	1.67714700	2.68903200
Н	3.70590600	0.55309800	2.35535900
Н	3.24599400	1.72122800	-2.80173000
Н	2.47988800	0.13721800	-2.82659300
Н	5.41015300	-0.39964300	0.71657600
Н	4.94432100	-0.11220300	-3.28938200
Н	3.57267600	-1.66234800	-1.20272300
Н	5.32785100	-1.85256500	-1.42635100
Н	5.98212500	2.73729400	-2.07234500
Н	4.57700100	2.71662300	-0.99911300
Н	6.20345000	2.61057900	-0.31948600
Н	7.43571700	0.74864900	-2.38781100
Н	7.64769800	0.62205700	-0.63264500
Н	7.12202100	-0.78488000	-1.56640700

Zero-point correction= Thermal correction to Energy= 0.654790 (Hartree/Particle) 0.690528

, , , , , , , , , , , , , , , , , , , ,
91472
0.585613
-1804.386831
-1804.351093
-1804.350149
-1804.456008
-1805.04162086
-1804.45600786
0

Anhydride intermediate alternative conformations

Thermal correction to Gibbs Free Energy= Single point energy: Total free energy: ΔG (relative to lowest energy conformer): 0.588524 (Hartree/Particle) -1805.04376414 -1804.45524014 0.5 kcal/mol

Thermal correction to Gibbs Free Energy= Single point energy: Total free energy: ΔG:

0.587995 (Hartree/Particle) -1805.04268603 -1804.45469103

Thermal correction to Gibbs Free Energy= 0.587094 (Hartree/Particle) Single point energy: -1805.04170734 Total free energy: -1804.45461334 0.9 kcal/mol ΔG:

X-Ray data

Table I Ciystal data and sti u	(CCDC II 2050077).
Empirical formula	$C_{19}H_{19}NO_2$
Formula weight	293.35
Temperature/K	250(2)
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2
a/Å	25.3513(5)
b/Å	13.4380(7)
c/Å	9.4134(12)
α/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	3206.9(4)
Z	8
$\rho_{calc}g/cm^3$	1.215
μ/mm^{-1}	0.079
F(000)	1248.0
Crystal size/mm ³	0.35 imes 0.35 imes 0.13
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	3.214 to 53.74
Index ranges	$-32 \le h \le 32, -17 \le k \le 16, -11 \le l \le 11$
Reflections collected	48181
Independent reflections	$6844 \ [R_{int} = 0.1844, R_{sigma} = 0.0780]$
Data/restraints/parameters	6844/0/405
Goodness-of-fit on F ²	1.026
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0720, wR_2 = 0.1638$
Final R indexes [all data]	$R_1 = 0.1163, wR_2 = 0.2001$
Largest diff. peak/hole / e Å ⁻³	0.29/-0.33
Flack parameter	2.2(10)

Table 1 Crystal data and structure refinement for 2 (CCDC nº 2036677).

Empirical formula	C19H17NO
Formula weight	275.33
Temperature/K	250(2)
Crystal system	orthorhombic
Space group	P212121
a/Å	7.0872(8)
b/Å	12.3506(16)
c/Å	16.599(2)
$\alpha/^{\circ}$	90
β/°	90
$\gamma^{/\circ}$	90
Volume/Å ³	1452.9(3)
Ζ	4
$ ho_{calc}g/cm^3$	1.259
μ/mm^{-1}	0.077
F(000)	584.0
Crystal size/mm ³	0.21 imes 0.1 imes 0.034
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	4.11 to 53.89
Index ranges	$-9 \le h \le 8, -15 \le k \le 15, -21 \le l \le 20$
Reflections collected	20659
Independent reflections	$3105 [R_{int} = 0.1351, R_{sigma} = 0.0797]$
Data/restraints/parameters	3105/0/193
Goodness-of-fit on F ²	0.964
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0471, wR_2 = 0.0857$
Final R indexes [all data]	$R_1 = 0.1384, wR_2 = 0.1140$
Largest diff. peak/hole / e Å ⁻³	0.15/-0.14
Flack parameter	-0.2(10)

Table 2. Crystal data and structure refinement for 3 (CCDC n° 2036678).

Empirical formula	$C_{13}H_{11}NO_2$	
Formula weight	213.23	
Temperature/K	250(2)	
Crystal system	orthorhombic	
Space group	Pna21	
a/Å	13.0488(6)	
b/Å	7.7427(5)	
c/Å	10.6551(5)	
α/°	90	
β/°	90	
γ/°	90	
Volume/Å ³	1076.52(10)	
Z	4	
$\rho_{calc}g/cm^3$	1.316	
μ/mm^{-1}	0.090	
F(000)	448.0	
Crystal size/mm ³	$0.37 \times 0.29 \times 0.21$	
Radiation	MoKα ($\lambda = 0.71073$)	
2Θ range for data collection/° 6.118 to 52.758		
Index ranges	$-15 \le h \le 16, -9 \le k \le 9, -13 \le l \le 13$	
Reflections collected	12251	
Independent reflections	2163 [$R_{int} = 0.0297, R_{sigma} = 0.0198$]	
Data/restraints/parameters	2163/1/150	
Goodness-of-fit on F ²	1.032	
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0295, wR_2 = 0.0685$	
Final R indexes [all data]	$R_1 = 0.0430, wR_2 = 0.0732$	
Largest diff. peak/hole / e Å ⁻³	3 0.10/-0.11	
Flack parameter	0.4(3)	

Table 3. Crystal data a	d structure refinement for 6 (CCDC n° 2036679)).
Empirical formula	$C_{12}H_{11}NO_2$	

Figure S50. Molecular structure of **6** determined by single-crystal X-Ray diffraction with ellipsoids at 50% probability. The H atoms attached to C atoms were omitted for clarity.

Figure S51. Depiction of the H-bond motif in the crystal of **6** with N1-H1-O1 angle, H1...O1 and N1-H1 distances shown in green.

References

1. E. D. Mihelich, D. J. Eickhoff, D. J. Org. Chem. 1983, 48, 4135–4137.

2. A. V. Malkov, M. Bell, M. Vassieu, V. Bugatti, P. Kočovský J. Mol. Catal. A: Chem. 2003, 196, 179–186.

3. V. Mamane, Y. Fort, Tetrahedron Lett. 2006, 47, 2337–2340.

4. J. J. P. Stewart, *MOPAC2016*, Stewart Computational Chemistry, Colorado Springs, CO, USA, <u>http://openmopac.net (2016)</u>.

5. Mercury 4.0: from visualization to analysis, design and prediction, C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler and P. A. Wood, J. Appl. Cryst. 2020, **53**, 226-235.

6. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Merenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision C.01; Gaussian Inc.: Wallingford, CT, **2010**.

7. (a) K. Kim, K. D. Jordan, *J. Phys. Chem.* 1994, **98**, 10089. (b) P. J. Stephens, F. J. Devlin, C. F.
Chabalowski, M. J. Frische, *J. Phys. Chem.* 1994, **98**, 11623. (c) A. D. Becke, *Phys. Rev. A.* 1988, **38**, 3098.
(d) C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B.* 1988, **37**, 785. (e) S. H. Vosko, L. Wilk, M. Nusair, Can. *J. Phys.* 1980, **58**, 1200. (f) A. D. Becke, *J. Chem. Phys.* 1993, **98**, 5648.

8. S. Grimme, J. Antony, S. Ehrlich, H. A. Krieg, J. Chem. Phys. 2010, 132, 154104.

9. A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.

10. Schrödinger Release 2019-1: MacroModel, Schrödinger, LLC: New York, NY, 2019.

11. R. Dennington, T. A. Keith, J. M. Millam, GaussView, Version 6; Semichem Inc.: Shawnee Mission, KS, **2016**.

12. Schrödinger Release 2019-1: Maestro, Schrödinger, LLC: New York, NY, 2019.

13. C. Y. Legault, CYLview, 1.0b; Université de Sherbrooke: Sherbrooke (Québec), Canada, **2009**; http://www.cylview.org.