Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

for

Organocatalytic Synthesis of Perfluorophenylsulfides via Thiolation

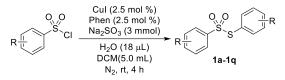
of Trimethyl(perfluorophenyl)silanes and Thiosulfonates

Jinyun Luo, ^a Muze Lin, ^a Leifang Wu, ^b Zhihua Cai^a*, Lin He, ^a Guangfen Du^a*

^{*a*}Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, China. ^{*b*}Analysis and Testing Center of Shihezi University, Xinjiang Uygur Autonomous Region, 832000, China.

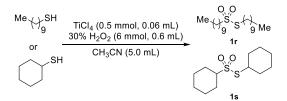
* Email: caizhihua1986@sina.cn. duguangfen@shzu.edu.cn

Table of Contents


1. General Information	S2
2. Experimental Section	S2
2.1 General procedure for synthesis of substrates 1a-1q	S2
2.2 General procedure for synthesis of substrates 1r-1s	S2
2.3 General procedure for synthesis of products 4a, 4i, 4k, 4m, 4p	S3
2.4 Procedure for synthesis of products 4t	S3
2.5 General procedure for synthesis of products	S3
2.6 Gram-scale preparation of 3a	S4
2.7 Characterization of products	S4
2.8 References	S9
3. Copies of NMR spectra of products	S10

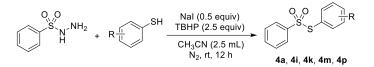
1. General Information

Unless otherwise indicated, all reactions were conducted under N₂ atmosphere in oven-dried glassware with magnetic stirring bar. All other chemicals were obtained from commercial supplies and used as received without any further purification. Column chromatograph was performed with silica gel (200~300 mesh) and analytical TLC on silica gel 60-F₂₅₄. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on a Bruker AVANCE III spectrometer (400 MHz, 100 MHz and 376 MHz, respectively), Chemical shifts are reported parts per million (ppm) referenced to CDCl₃ (δ 7.26 ppm), tetramethylsilane (TMS, δ 0.00 ppm) for ¹H NMR and ¹³C NMR. High-resolution mass spectra (HRMS) were obtained on a Q Exactive mass spectrometry equipped with an APCI source from Thermo Scientific.

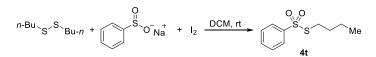

2. Experimental Section

2.1 General procedure for synthesis of substrates 1a-1q:

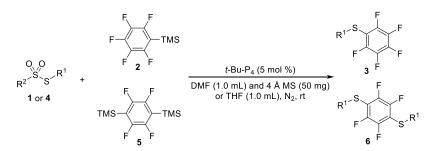
Substrates **1a-1q** were prepared according to the known literature. ^[1] CuI (2.5 mol%) and 1, 10-Phen H₂O (2.5 mol%) were added to a mixture of arenesulfonyl chloride (1 mmol), sodium sulfite (3 mmol) and H₂O (18 μ L) in DCM (5 mL), then the mixture was stirred at room temperature for 4 h under a nitrogen atmosphere (monitored by TLC). After completion of the reaction, the mixture was diluted with CH₂Cl₂ and washed with water, the organic phase was dried with anhydrous Na₂SO₄. The solvent was removed under vacuum and the residue was purified by flash column chromatography on silica gel (200–300 mesh) using petroleum ether and CH₂Cl₂ (v/v = 1:1) as the eluent to give thiosulfonate.


2.2 General procedure for synthesis of substrates 1r-1s:

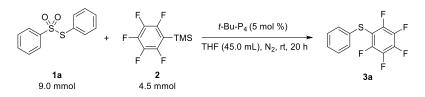
Substrates **1r** and **1s** were prepared according to the known literature. ^[2] To a mixture of thiol (2 mmol) and 30% H_2O_2 (6 mmol, 0.6 mL) in CH₃CN (5 mL), TiCl₄ (0.5 mmol, 0.06 mL) was added. The mixture was then reacted at room temperature. After consumption of the starting material detected by TLC, the mixture was poured into H_2O (15 mL). The aqueous phase was extracted with EtOAc (2×5 mL), the combination of organic phase was subsequently dried over anhydrous Na₂SO₄. The solvent was removed under vacuum affording crude product which was purified by


flash column chromatography on silica gel (200–300 mesh) using a mixture of petroleum ether and EtOAc (v/v = 10:1) as eluent to obtain clean thiosulfonate.

2.3 General procedure for synthesis of substrates 4a, 4i, 4k, 4m, 4p:


Substrates **4a**, **4i**, **4k**, **4m**, **4p** were prepared according to the known literature. ^[3] To a mixture of sulfonyl hydrazide (0.6 mmol), thiol (0.4 mmol), sodium iodide (0.2 mmol) in CH₃CN (2.5 mL) was added TBHP (1.0 mmol). The reaction mixture was then stirred at room temperature for 12 h. After removal of the solvent, the residue was subsequently purified by flash column chromatography on silica gel (200–300 mesh) using ethyl acetate in petroleum ether (v/v = 1:1) as the eluent to afford pure thiosulfonate.

2.4 Procedure for synthesis of substrates 4t:


To a dried 50 mL bottom flask equipped with a magnetic stirring bar, was charged with dibutyl disulfide (0.5 mmol), sodium benzenesulfinate (1.6 mmol), iodine (1.0 mmol) and DCM (10 mL). The mixture was stirred for 22 h at room temperature. Then, Na₂S₂O₃ solution (0.10 M) was added to quench the excess of iodine. After separation of reaction mixtrure, the organic phase was washed with brine and dried. The organic solvent was removed under vacuum to give *S*-butyl benzenesulfonothioate **4t** as a yellow oil.^[4]

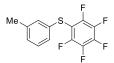
2.5 General procedure for synthesis of products :

To an oven-dried 10 mL Schlenk tube was added thiosulfonate **1** or **4** (0.2 mmol), then the tube was evacuated under vacuum and charged with N₂. Under N₂ atmosphere, the anhydrous THF or DMF (1.0 mL) in combination with 4 Å MS (50 mg), trimethyl(perfluorophenyl)silane **2** or **5** (0.1 mmol) and *t*-Bu-P₄ (5 mol %) was added successively with stirring. After completion of the reaction, the solvent was removed under vacuum and the crude product was purified by flash column chromatography on silica gel (200–300 mesh, petroleum ether as the eluent) to afford clean product **3** and **6**.

2.6 Gram-scale preparation of 3a:

To an oven-dried 100 mL three-necked flask was added thiosulfonate 1a (9.0 mmol, 2.253 g), then the reaction flask was evacuated under vacuum and charged with N_2 . Under N_2 atmosphere, the anhydrous THF (45.0)mL), trimethyl(pentafluorophenyl)silane 2 (4.5 mmol, 1.085 g), t-Bu-P₄ (5 mol%, 0.143 g) was added successively with stirring. After completion of the reaction, the mixture was diluted with EtOAc and washed with water. The organic layer was separated, dried and filtered which was then removed under vacuum. The residue was purified by flash column chromatography on silica gel (200-300 mesh, petroleum ether as the eluent) to afford clean product **3a** (1.156 g, 93% yield).

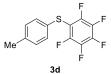
2.7 Characterization of products:

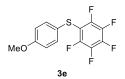


(perfluorophenyl)(phenyl)sulfane (3a) (known compound)^[5]: white solid (26.8 mg, 97% yield); mp: 48–49 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.38–7.32 (m, 2H), 7.32–7.26 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.1–148.8 (m), 146.6–146.5 (m), 143.6–143.3 (m), 141.1–140.7

(m), 139.5–139.0 (m), 136.9–136.5 (m), 133.1, 130.7, 129.6, 128.1, 109.5–108.8 (m); ¹⁹F NMR (376 MHz, CDCl₃) δ -131.61– -131.74 (m, 2F), -151.25– -151.40 (m, 1F), -160.33– -160.51 (m, 2F); IR (KBr, thin film): 3062, 2927, 1638, 1513, 1488, 1265, 1095, 981, 862, 741 cm⁻¹.

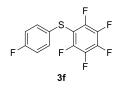
> (**perfluorophenyl**)(**o-tolyl**)**sulfane** (**3b**) (known compound)^[5]**:** colorless liquid (18.9 mg, 65% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.23–7.14 (m, 3H), 7.13–7.07 (m, 1H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.9–148.6 (m), 146.4–146.1 (m), 143.3–142.8 (m),


140.9–140.3 (m), 139.3–138.9 (m), 136.8–136.3 (m), 131.1, 130.8, 128.2, 126.9, 109.3–108.6 (m), 20.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -131.79– -131.91 (m, 2F), -151.75– -151.89 (m, 1F), -160.44– -160.62 (m, 2F); IR (KBr, thin film): 3064, 2921, 1637, 1513, 1490, 1144, 1094, 981, 859, 748 cm⁻¹.


3h

(perfluorophenyl)(m-tolyl)sulfane (3c) (known compound)^[5]: colorless liquid (21.5 mg, 74% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.22–7.11 (m, 3H), 7.08 (m, 1H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.9–148.6 (m), 146.5–146.2 (m), 143.5–143.0

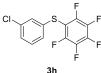
(m), 140.9–140.5 (m), 139.4, 139.3–138.8 (m), 136.8–136.3 (m), 132.6, 131.2, 129.2, 128.9, 127.7, 109.4–108.8 (m), 21.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -131.63– -131.76 (m, 2F), -151.44– -151.57 (m, 1F), -160.42– -160.59 (m, 2F); IR (KBr, thin film): 3065, 2925, 1637, 1513, 1488, 1379, 1092, 981, 862, 775 cm⁻¹.



(perfluorophenyl)(p-tolyl)sulfane (3d) (known compound)^[5]: white solid (23.8 mg, 82% yield); mp: 39-40 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, J = 8.4 Hz, 2H), 7.11 (d, J = 8.0 Hz, 2H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.8-148.7 (m), 146.4-146.0 (m), 143.3-142.9 (m), 140.8-140.3 (m), 139.3-138.8 (m), 138.5, 136.7-136.3 (m), 131.5, 130.2, 129.2, 110.1–109.5 (m), 21.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -132.01--132.14 (m, 2F), -151.86--152.00 (m, 1F), -160.58--160.75 (m, 2F); IR (KBr, thin film): 3052, 2926, 1637, 1512, 1488, 1290, 1095, 981, 860, 750 cm⁻¹.

(4-methoxyphenyl)(perfluorophenyl)sulfane (**3e**) (known compound)^[5]: colorless liquid (26.6 mg, 87% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 8.8 Hz, 2H), 6.90–6.74 (m, 2H), 3.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.3, 148.6–148.3,

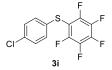
146.2-145.9 (m), 143.2-142.8 (m), 140.6-140.2 (m), 139.2-138.8 (m), 136.7-136.2 (m), 134.7, 122.8, 115.0, 111.1–110.5 (m), 55.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -132.66- -132.77 (m, 2F), -152.38- -152.52 (m, 1F), -160.75- -160.92 (m, 2F); IR (KBr, thin film): 3109, 2926, 1629, 1515, 1491, 1211, 1089, 991, 854, 709 cm⁻¹.



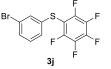
(4-fluorophenyl)(perfluorophenyl)sulfane (3f): colorless liquid (21.8 mg, 74% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.48–7.40 (m, 2H), 7.06–6.97 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.1, 161.6, 148.8–148.4 (m), 146.3–145.9 (m), 143.6–142.9 (m), 141.0– 140.5 (m), 139.3–138.9 (m), 136.8–136.3 (m), 134.1, 134.0, 131.4,

131.3, 127.8, 116.8, 116.5, 116.4, 116.2, 109.9-109.3 (m); ¹⁹F NMR (376 MHz, CDCl₃) δ -132.11– -132.23 (m, 2F), -151.21– -151.35 (m, 1F), -160.23– -160.40 (m, 2F); IR (KBr, thin film): IR (KBr, thin film): 3184, 2922, 1887, 1513, 1488, 1233, 1095, 980, 860, 742 cm⁻¹; HRMS (APCI) m/z: [M+H]⁺ Calcd. for C₁₂H₅F₆S, 295.0016, Found, 295.0013.

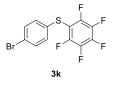
> (2-chlorophenyl)(perfluorophenyl)sulfane (3g): white solid (24.8 mg, 80% yield); mp: 54-55 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.40 (dd, J = 7.6, 1.6 Hz, 1H), 7.24–7.14 (m, 2H), 7.08–7.03 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 149.2–148.8 (m), 146.7–146.4 (m), 144.0–


143.6 (m), 139.6–139.1 (m), 137.0–136.6 (m), 134.1, 132.2, 130.4, 130.2, 128.8, 127.7, 107.6–106.9 (m); ¹⁹F NMR (376 MHz, CDCl₃) δ -136.03– -136.17 (m, 2F), -155.40--155.54 (m, 1F), -165.0--165.25 (m, 2F); IR (KBr, thin film): 3071, 2919, 1636, 1515, 1491, 1286, 1097, 983, 861, 748 cm⁻¹; HRMS (APCI) *m/z*: [M+H]⁺ Calcd. for C₁₂H₅ClF₅S, 310.9721, Found, 310.9716.

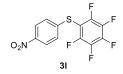
3a


(3-chlorophenyl)(perfluorophenyl)sulfane (3h) : colorless liquid (24.5 mg, 79% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.29 (d, J = 1.6 Hz, 1H), 7.25–7.18 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.0-148.7 (m), 146.5-146.2 (m), 144.0-143.5 (m),

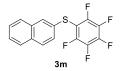
141.4-140.9 (m), 139.4-139.0 (m), 136.9-136.4 (m), 135.2, 134.9, 130.4, 129.9, 128.3, 128.2, 108.2–107.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -131.22– -131.34 (m, 2F), -150.10--150.24 (m, 1F), -159.75--159.92 (m, 2F); IR (KBr, thin film): 3064, 2926, 1636, 1515, 1491, 1286, 1089, 983, 869, 778 cm⁻¹; HRMS (APCI) m/z: [M-H]⁻ Calcd. for C₁₂H₃ClF₅S, 308.9569, Found, 308.9569.


(4-chlorophenyl)(perfluorophenyl)sulfane (3i) (known compound)^[6]: white solid (26.0 mg, 84% yield); mp: 45–46 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.34–7.24 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 148.9–148.5 (m), 146.4–146.1 (m), 143.7–143.2 (m),

141.1–140.7 (m), 139.4–138.9 (m), 136.8–136.4 (m), 134.4, 132.2, 131.3, 129.6, 109.0–108.4 (m); ¹⁹F NMR (376 MHz, CDCl₃) δ -131.63– -131.76 (m, 2F), -150.65– -150.79 (m, 1F), -159.98– -160.16 (m, 2F); IR (KBr, thin film): 3042, 2924, 1638, 1512, 1488, 1292, 1095, 981, 861, 745 cm⁻¹.

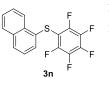

(3-bromophenyl)(perfluorophenyl)sulfane (3j): colorless liquid (31.2 mg, 88% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.46 (t, *J* = 1.6 Hz, 2H), 7.43–7.36 (m, 2H), 7.26 (d, *J* = 7.2 Hz, 2H), 7.20–7.13 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 149.0–148.7 (m), 146.5–146.2

(m), 143.9–143.5 (m), 141.4–140.9 (m), 139.4–139.0 (m), 136.9 – 136.4 (m), 135.1, 132.7, 131.1, 130.7, 128.8, 123.2, 108.3–107.7 (m); ¹⁹F NMR (376 MHz, CDCl₃) δ -131.22– -131.34 (m, 2F), -151.11– -151.25 (m, 1F), -159.76– -159.92 (m, 2F); IR (KBr, thin film): 3126, 2924, 1638, 1513, 1492, 1291, 1093, 981, 863, 750 cm⁻¹; HRMS (APCI) *m*/*z*: [M+H]⁺ Calcd. for C₁₂H₅BrF₅S, 354.9215, Found, 354.9211.

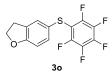

(4-bromophenyl)(perfluorophenyl)sulfane (3k) (known compound)^[7]: white solid (30.8 mg, 87% yield); mp: 64–65 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.45–7.39 (m, 2H), 7.25–7.19 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 148.9–148.6 (m), 146.4–146.1 (m), 143.8–143.3 (m), 141.2–140.7 (m), 139.4–138.9 (m), 136.9–136.4

(m), 132.6, 132.2, 132.0, 122.4, 108.8–108.2 (m); ¹⁹F NMR (376 MHz, CDCl₃) δ -131.54– -131.66 (m, 2F), -150.53– -150.67 (m, 1F), -159.93– -160.10 (m, 2F); IR (KBr, thin film): 3075, 2925, 1637, 1513, 1489, 1292, 1094, 981, 862, 729 cm⁻¹.

(4-nitrophenyl)(perfluorophenyl)sulfane (3l) (known compound)^[8]: white solid (28.9 mg, 90% yield); mp: 89–90 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.20–8.11 (m, 2H), 7.35–7.28 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 149.2–148.8 (m), 146.7,


146.6–146.3 (m), 144.6–144.1 (m), 142.5, 142.0–141.5 (m), 139.6–139.1 (m), 137.1–136.6 (m), 127.9, 124.5, 105.9–105.3 (m); ¹⁹F NMR (376 MHz, CDCl₃) δ -130.27–-130.39 (m, 2F), -148.02– -148.16 (m, 1F), -158.71– -158.87 (m, 2F); IR (KBr, thin film): 3101, 2919, 1636, 1515, 1484, 1340, 1089, 975, 854, 740 cm⁻¹.

naphthalen-2-yl(perfluorophenyl)sulfane (3m) (known compound)^[9]: white solid (25.4 mg, 78% yield); mp: 66–67 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 1.2 Hz, 1H), 7.82–7.72 (m, 3H), 7.53–7.45 (m, 2H), 7.41–7.35 (m, 1H); ¹³C NMR (100 MHz,


CDCl₃) δ 149.0–148.7 (m), 146.5–146.2 (m), 143.6–143.1 (m), 141.1–140.6 (m), 139.4–138.9 (m), 136.8–136.4 (m), 133.6, 132.6, 130.0, 129.9, 129.3, 127.8, 127.7, 127.5, 127.0, 126.8, 109.3–108.8 (m); ¹⁹F NMR (376 MHz, CDCl₃) δ -131.58–

-131.71 (m, 2F), -151.12– -151.27 (m, 1F), -160.21– -160.38 (m, 2F); IR (KBr, thin film): 3064, 2912, 1629, 1515, 1484, 1256, 1097, 975, 816, 748 cm⁻¹.

naphthalen-1-yl(perfluorophenyl)sulfane (3n): white solid (22.2 mg, 68% yield); mp: 81–82 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.48 (d, *J* = 8.8 Hz, 1H), 7.85 (t, *J* = 8.4 Hz, 2H), 7.67 (dd, *J* = 7.2, 0.4 Hz, 1H), 7.64–7.58 (m, 1H), 7.57–7.50 (m, 1H), 7.39 (dd, *J* = 8.0, 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 148.9–148.6 (m), 146.5–146.1

(m), 143.2–142.8 (m), 140.7–140.2 (m), 139.3–138.8 (m), 136.8–136.3 (m), 134.2, 133.2, 132.0, 129.7, 129.3, 128.7, 127.3, 126.6, 125.6, 124.8, 109.8–109.2 (m); ¹⁹F NMR (376 MHz, CDCl₃) δ -132.77– -132.90 (m, 2F), -151.83– -151.98 (m, 1F), -160.42– -160.59 (m, 2F); IR (KBr, thin film): 3059, 2927, 1637, 1518, 1492, 1256, 1087, 981, 802, 748 cm⁻¹; HRMS (APCI) *m/z*: [M-H]⁻ Calcd. for C₁₆H₆F₅S, 325.0115, Found, 325.0110.

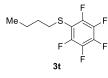
5-((perfluorophenyl)thio)-2,3-dihydrobenzofuran (30): colorless liquid (15.9 mg, 50% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.35 (s, 1H), 7.31 (d, *J* = 8.0 Hz, 1H), 6.70 (d, *J* = 8.0 Hz, 1H), 4.58 (t, *J* = 8.8 Hz, 2H), 3.18 (t, *J* = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃)

δ 161.1, 148.6–148.3 (m), 146.2–145.8 (m), 143.1–142.7 (m) , 140.5–140.2 (m), 139.2–138.7 (m), 136.7–136.2 (m), 134.0, 130.3, 128.7, 122.2, 111.4–110.10 (m), 110.2, 71.7, 29.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -132.72– -132.84 (m, 2F), -152.52– -152.66 (m, 1F), -160.79– -160.96 (m, 2F); IR (KBr, thin film): 2963, 2902, 1601, 1510, 1483, 1234, 1090, 979, 857, 816 cm⁻¹; HRMS (APCI) *m/z*: [M]⁺ Calcd. for C₁₄H₇F₅OS, 318.0137, Found, 318.0140.

2-((perfluorophenyl)thio)thiophene (3p) (known compound)^[10]: colorless liquid (21.4 mg, 76% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.40 (dd, *J* = 5.6, 1.6 Hz, 1H), 7.38–7.33 (m, 1H), 6.97 (dd, *J* = 5.2, 3.6

^{3p} Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 148.6–148.3 (m), 146.1–145.8 (m), 143.7–143.2 (m), 141.2–140.7 (m), 139.2–138.7 (m), 136.7–136.2 (m), 131.5, 129.3, 127.7, 110.8–110.1 (m); ¹⁹F NMR (376 MHz, CDCl₃) δ -132.62–-132.75 (m, 2F), -151.21– -151.35 (m, 1F), -160.29– -160.45 (m, 2F); IR (KBr, thin film): 3109, 2926, 1636, 1515, 1491, 1218, 1089, 983, 854, 709 cm⁻¹.

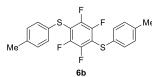
methyl(perfluorophenyl)sulfane (3q) (known compound)^[11]: colorless liquid (18.8 mg, 88% yield); ¹H NMR (400 MHz, CDCl₃) δ 2.48 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.5–148.2 (m), 146.1–145.7 (m),


^{3q} 142.5–142.1 (m), 140.0–139.5 (m), 139.2–138.7 (m), 136.7–136.2 (m), 111.3–110.7 (m), 18.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -133.57– -133.69 (m, 2F), -153.79– -153.93 (m, 1F), -161.26– -161.43 (m, 2F); IR (KBr, thin film): 3360, 3185, 2919, 2851, 1659, 1636, 1469, 1416, 1271, 740 cm⁻¹.

decyl(perfluorophenyl)sulfane (3r) (known compound)^[12]: colorless liquid (25.8 mg, 76% yield); ¹H NMR (400 MHz, CDCl₃) δ 2.86 (t, *J* = 7.2 Hz, 2H), 1.59–1.50 (m, 2H), 1.45–1.21 (m, 16H), 0.91–0.85 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.9–148.6 (m), 146.5–146.2 (m), 142.6–142.2 (m), 140.1–139.6 (m), 139.2–138.7 (m), 136.6–136.2 (m), 109.8–109.2 (m), 35.0, 31.9, 29.8, 29.5, 29.4, 29.3, 29.1, 28.3, 22.7, 14.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -132.64– -132.76 (m, 2F), -153.30– -153.44 (m, 1F), -161.21--161.38 (m, 2F); IR (KBr, thin film): 2926, 2859, 1636, 1515, 1484, 1294, 1089, 983, 861, 725 cm⁻¹.

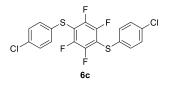
> cyclohexyl(perfluorophenyl)sulfane (3s) (known compound)^[13]: white solid (20.9 mg, 74% yield); mp: 51–52 °C; ¹H NMR (400 MHz, CDCl₃) δ 3.23–3.04 (m, 1H), 1.94–1.83 (m, 2H), 1.83–1.74 (m, 2H), 1.66–1.56 (m, 1H), 1.41–1.20 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ

149.2-148.9 (m), 146.8-146.5 (m), 142.8-142.4 (m), 140.1-139.8 (m), 139.1-138.5 (m), 136.6–136.1 (m), 108.5–107.8 (m), 47.5, 33.3, 25.8, 25.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -131.40- -131.51 (m, 2F), -152.59- -152.72 (m, 1F), -161.20- -161.36 (m, 2F); IR (KBr, thin film): 3092, 2919, 1636, 1515, 1484, 1271, 1089, 975, 861, 717 cm⁻¹.


3s

butyl(perfluorophenyl)sulfane compound)^[14]: (**3t**) (known colorless liquid (22.2 mg, 79% yield); ¹H NMR (400 MHz, CDCl₃) δ 2.88 (t, J = 7.6 Hz, 2H), 1.58–1.49 (m, 2H), 1.48–1.37 (m, 2H), 0.91 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.0–

148.6 (m), 146.5-146.2 (m), 142.6-142.2 (m), 140.2-139.7 (m), 139.2-138.7 (m), 136.7-136.2 (m), 109.8-109.1 (m), 34.7, 31.8, 21.5, 13.5; ¹⁹F NMR (376 MHz, CDCl₃) & -132.66- -132.77 (m, 2F), -153.23- -153.37 (m, 1F), -161.18- -161.33 (m, 2F); IR (KBr, thin film): 3657, 2924, 2855, 2363, 2043, 1715, 1652, 1558, 1498, 1458 cm⁻¹.



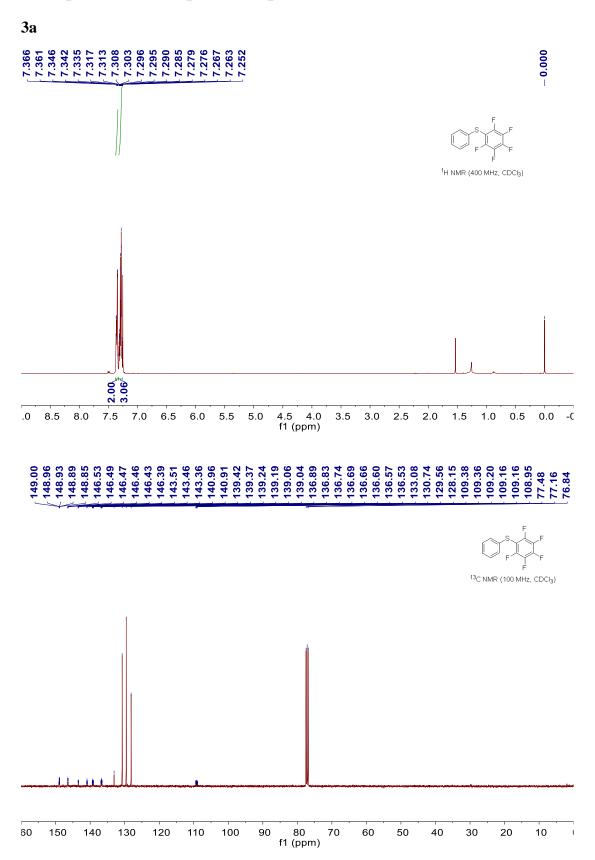
(perfluoro-1,4-phenylene)bis(phenylsulfane) (6a) (known compound)^[15]: white solid (14.6 mg, 40% yield); mp: 94–95 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.42–7.35 (m, 4H), 7.33–7.26 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 148.4–148.0 (m), 145.9–145.5 (m), 132.6, 131.0, 129.4, 128.1, 115.5–115.1 (m); ¹⁹F NMR (376 MHz, CDCl₃) δ -132.03.

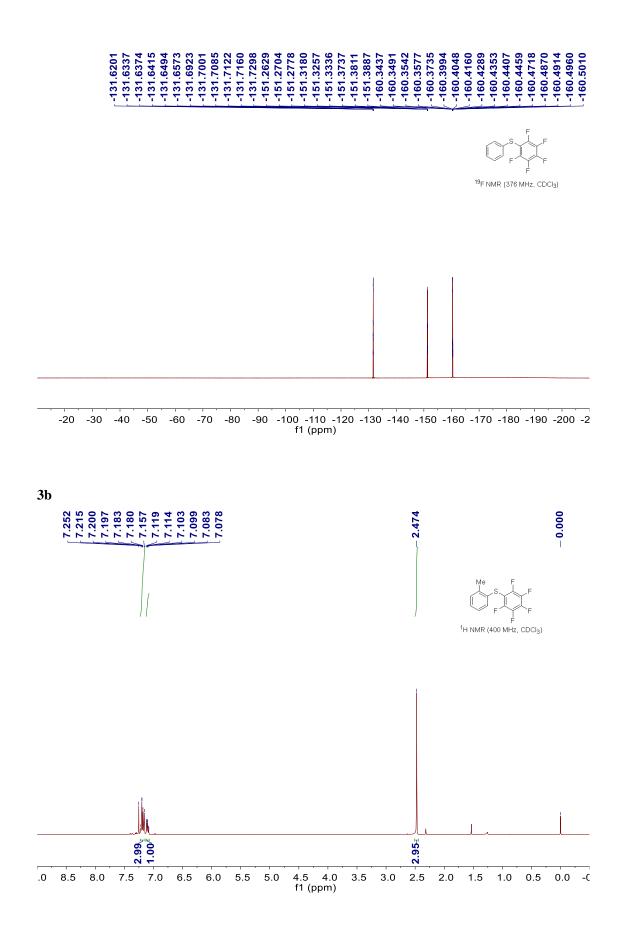
(perfluoro-1,4-phenylene)bis(p-tolylsulfane) (**6b**) (known compound)^[15]: white solid (21.3 mg, 54% yield); mp: 104–105 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, J = 8.0Hz, 2H), 7.10 (d, J = 8.0 Hz, 2H), 2.32 (s, 3H); ¹³C NMR

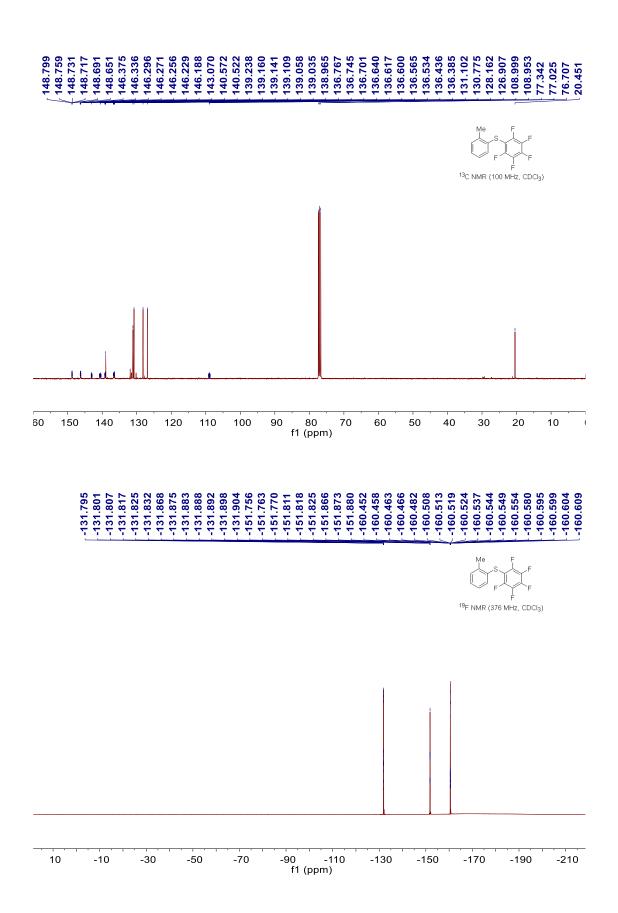
(100 MHz, CDCl₃) & 148.3–147.8 (m), 145.8–145.3 (m), 138.5, 131.8, 130.1, 128.9, 115.8–115.4 (m), 21.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -131.63.

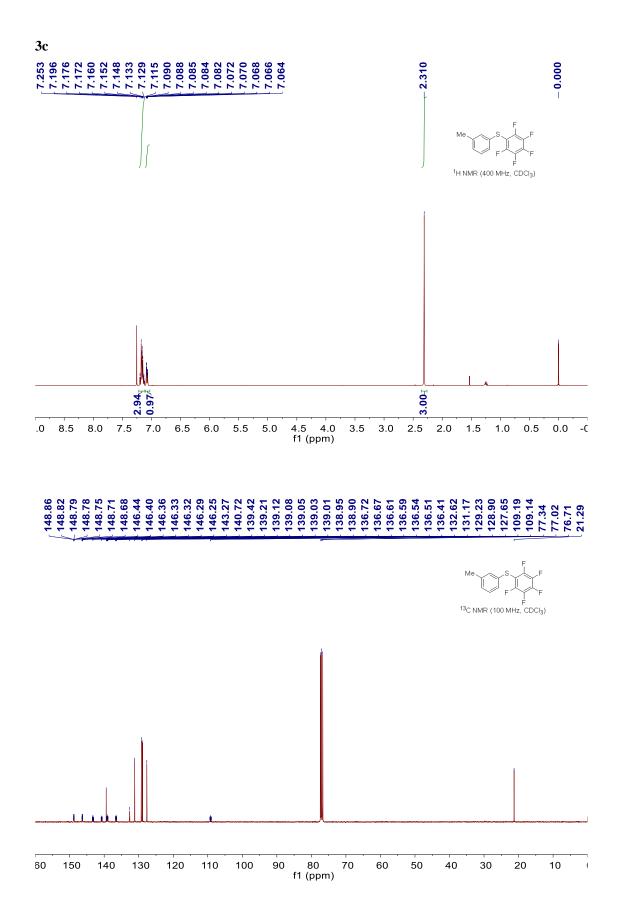
(perfluoro-1.4-phenylene)bis((4-chlorophenyl)sulfane) (6c) (known compound)^[5]: white solid (16.1 mg, 37% yield); mp: 158–159 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.37–7.32 (m, 2H), 7.30–7.26 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 148.3-147.9 (m), 145.7-145.4 (m), 134.6, 132.7, 130.8, 129.6, 115.5–114.8 (m); ¹⁹F NMR (376 MHz, CDCl₃) δ -131.82.

6d

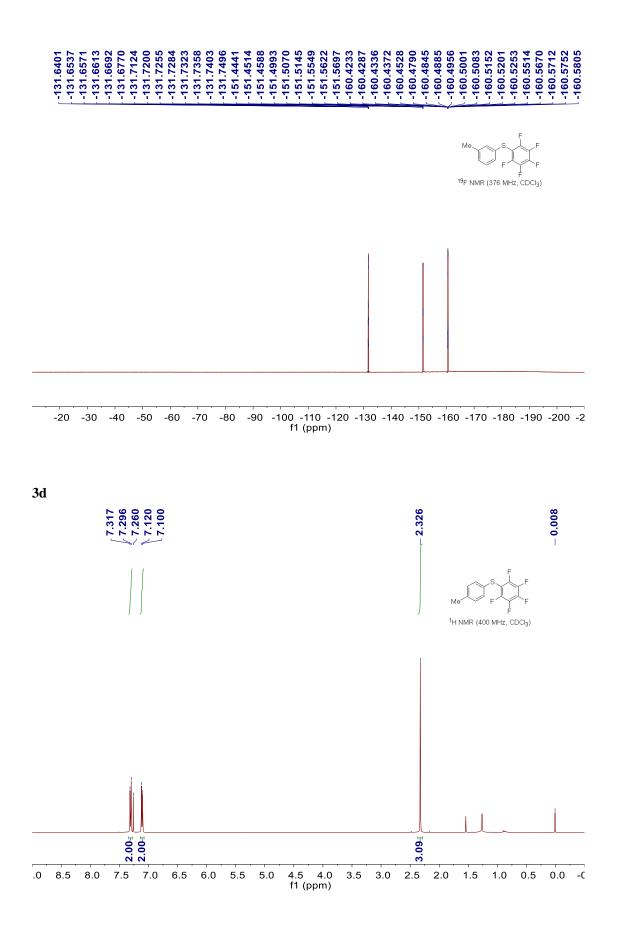

(perfluoro-1,4-phenylene)bis(butylsulfane) (6d) (known compound)^[15]: colorless liquid (7.5 mg, 23% yield); ¹H NMR (400 MHz, CDCl₃) δ 2.94 (t, J = 7.2 Hz, 2H), 1.60–1.54 (m,

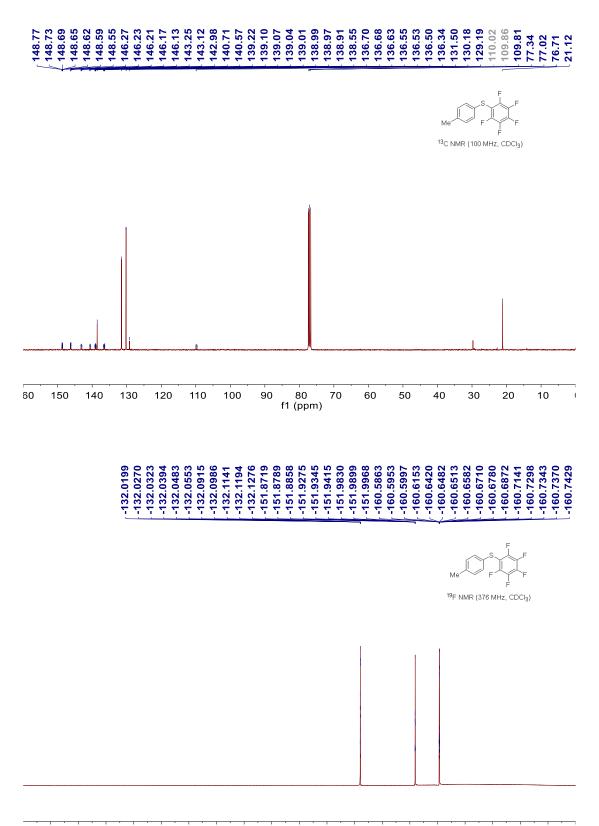

2H), 1.49–1.38 (m, 2H), 0.91 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.4–148.0 (m), 145.8–145.5 (m), 114.6–114.2 (m), 34.4, 31.8, 21.5, 13.5, 0.1 (t, J = 3.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -134.06.

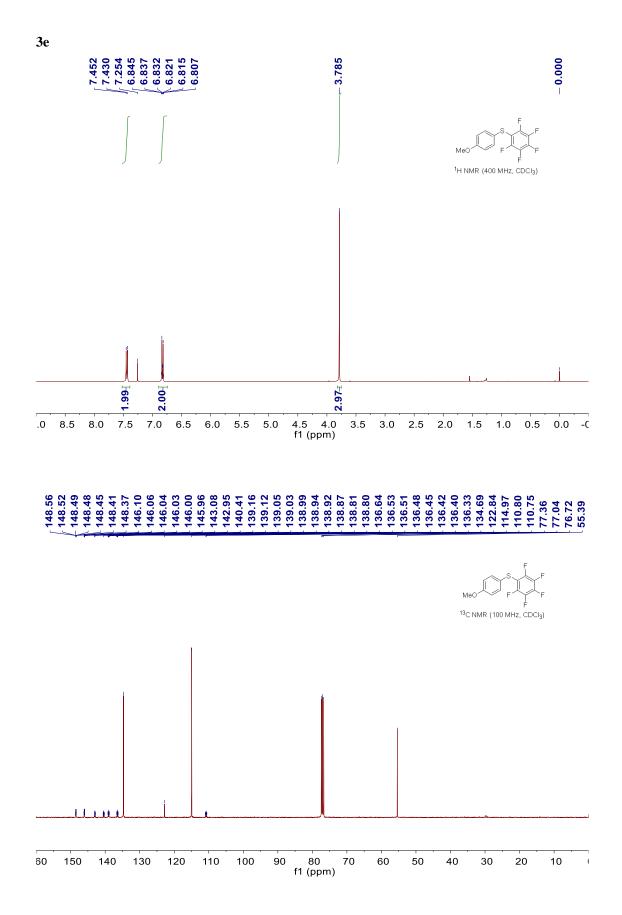

2.8 References

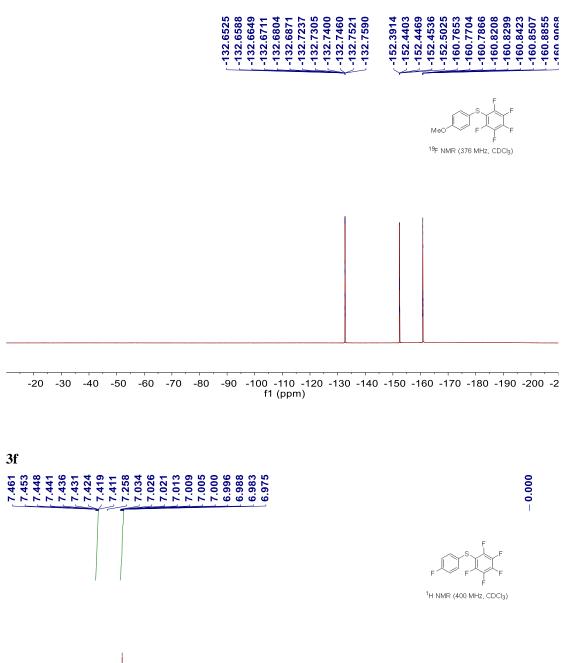

- [1] X. Zhao, T. -X. Liu and G. Zhang, Asian J. Org. Chem., 2017, 6, 677.
- [2] K. Bahrami, M. M. Khodaei and D. Khaledian, Tetrahedron Lett., 2012, 53, 354.
- [3] Q. Chen, Y. Huang, X. Wang, J. Wu and G. Yu, Org. Biomol. Chem., 2018, 16, 1713.
- [4] A. Desaintjean, T. Haupt, L. J. Bole, N. R. Judge, E. Hevia and P. Knochel, Angew. Chem. Int. Ed., 2021, 60, 1513.
- [5] C. Yu, C. Zhang and X. Shi, Eur. J. Org. Chem., 2012, 1953.
- [6] M. Arisawa, S. Tanii, T. Tazawa and M. Yamaguchi, Chem. Commun., 2016, 52, 11390.
- [7] J. Zhao, Y. Yu, X. Yang, X. Yan, H. Zhang, X. Xu, G. Zhou, Z. Wu, Y. Ren and W. -Y. Wong. ACS Appl. Mater. Inter., 2015, 7, 24703.
- [8] N. V. Kondratenko, A. A. Kolomeytsev, V. I. Popov and L. M. Yagupolskii, Synthesis., 1985, 6, 667.
- [9] B. J. Musolino and G. W. Kabalka, Heterocycles., 2015, 90, 271.
- [10] T. S. Leong and M. E. Peach. J. Fluorine Chem., 1975, 5, 545.
- [11] F. Weidlich, N. Esumi, D. Chen, C. Mück-Lichtenfeld, E. Zysman-Colman and A. Studer. *Adv. Synth. Catal.*, 2020, **362**, 376.
- [12] T. Tamai, K. Fujiwara, S. Higashimae, A. Nomoto and A. Ogawa. Org. Lett., 2016, 18, 2114.
- [13] V. V. Levin and A. D. Dilman. J. Org. Chem., 2019, 84, 8337.
- [14] N. G. Payne and M. E. Peach, Sulfur Letters., 1986, 4, 271.
- [15] K. Nishino, S. Tsukahara, Y. Ogiwara and N. Sakai, Eur. J. Org. Chem., 2019, 1588.

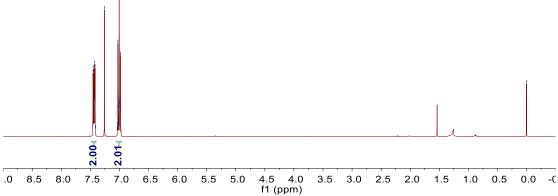
3. Copies of NMR spectra of products

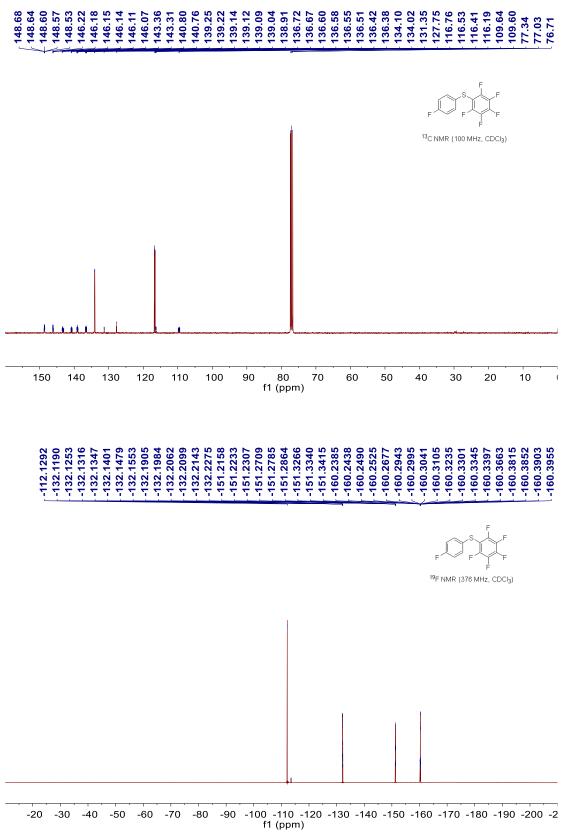


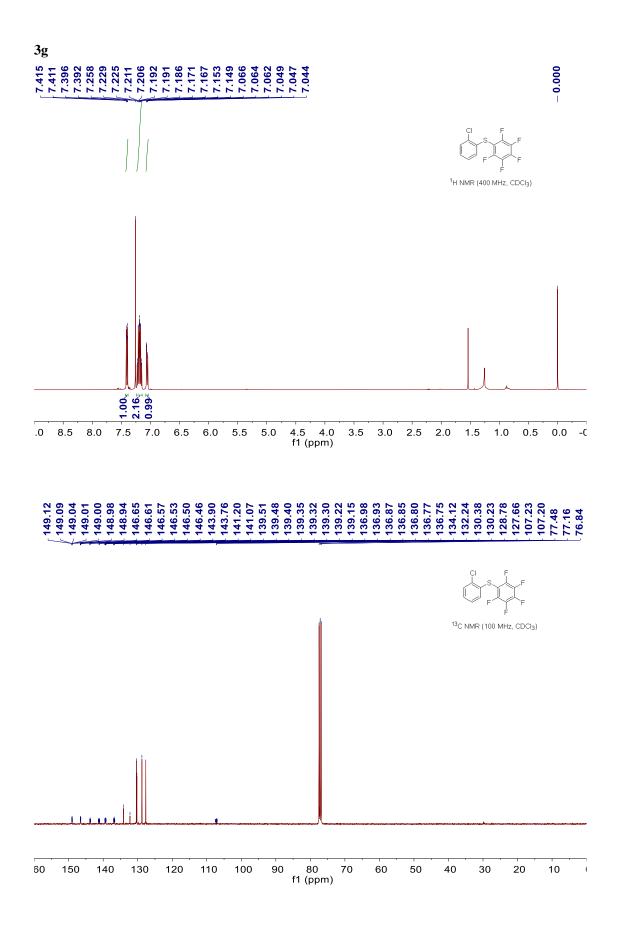


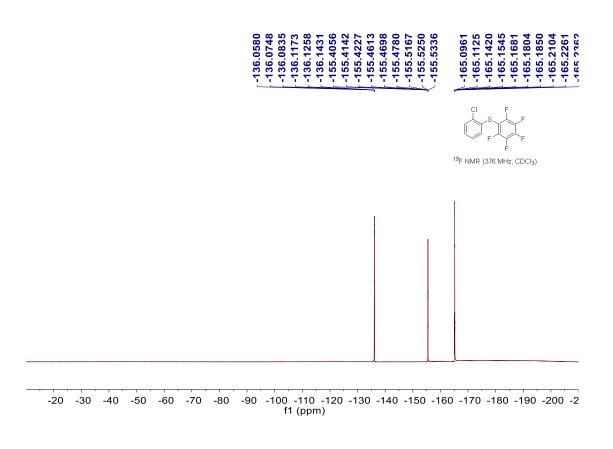


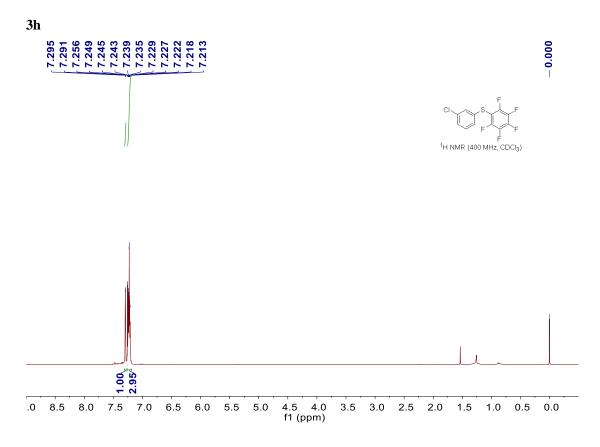


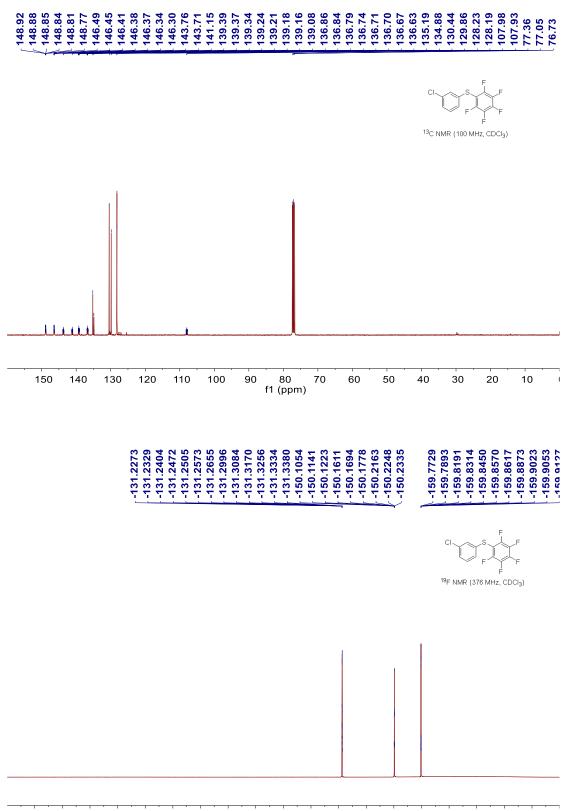

S13

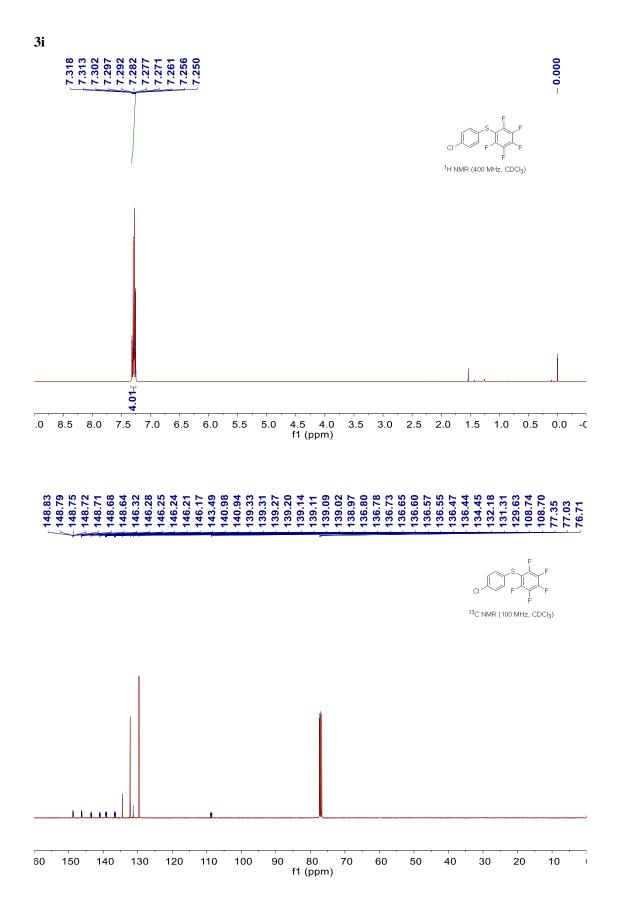


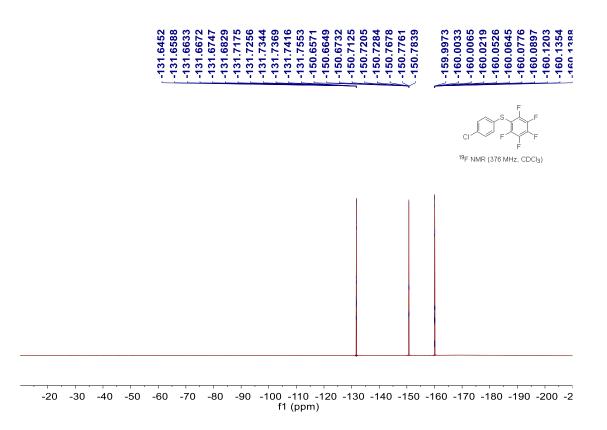


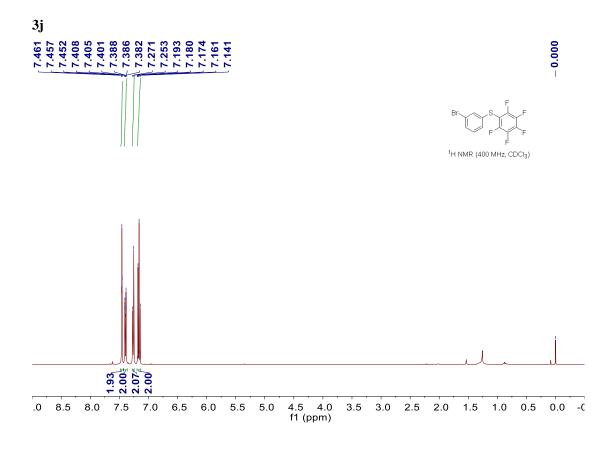


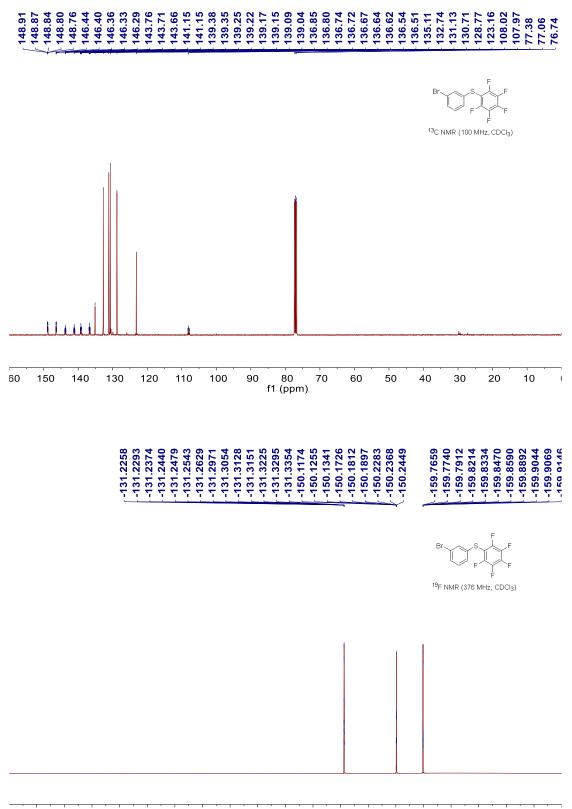


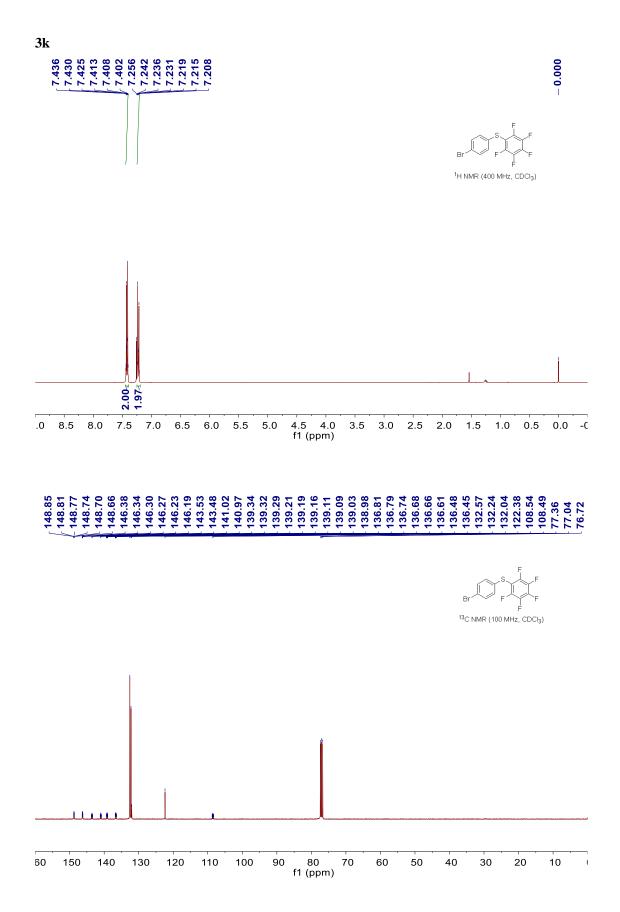


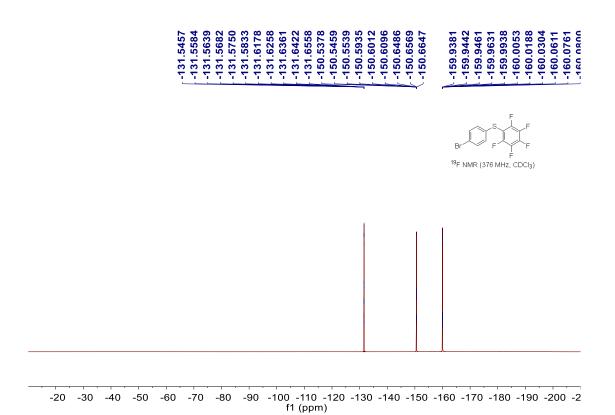


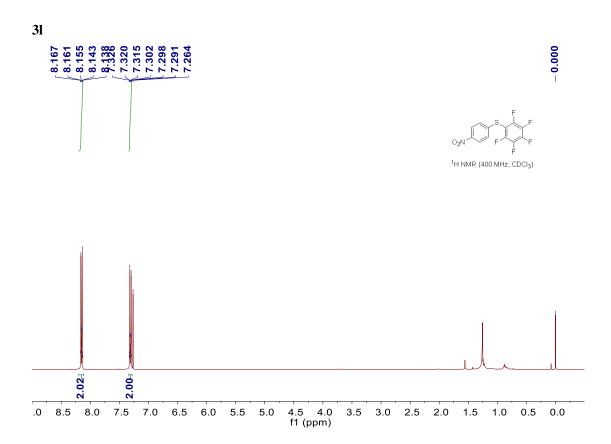


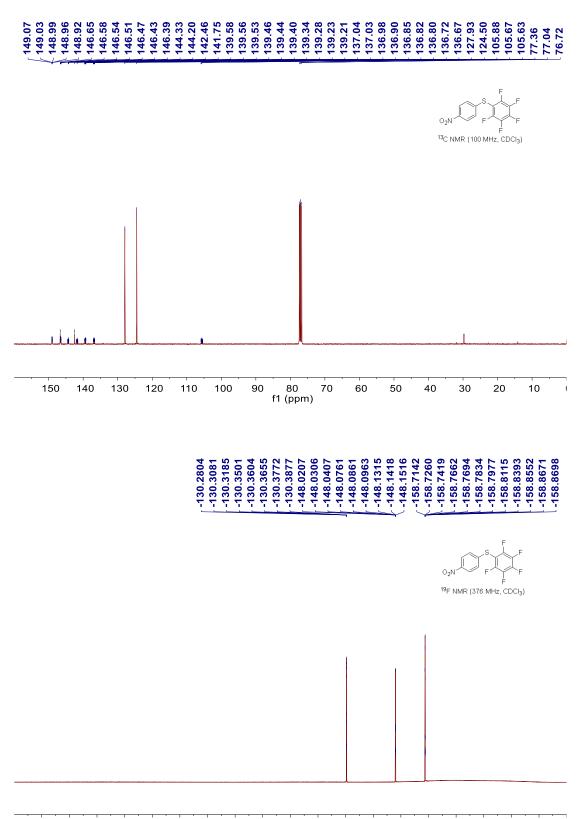


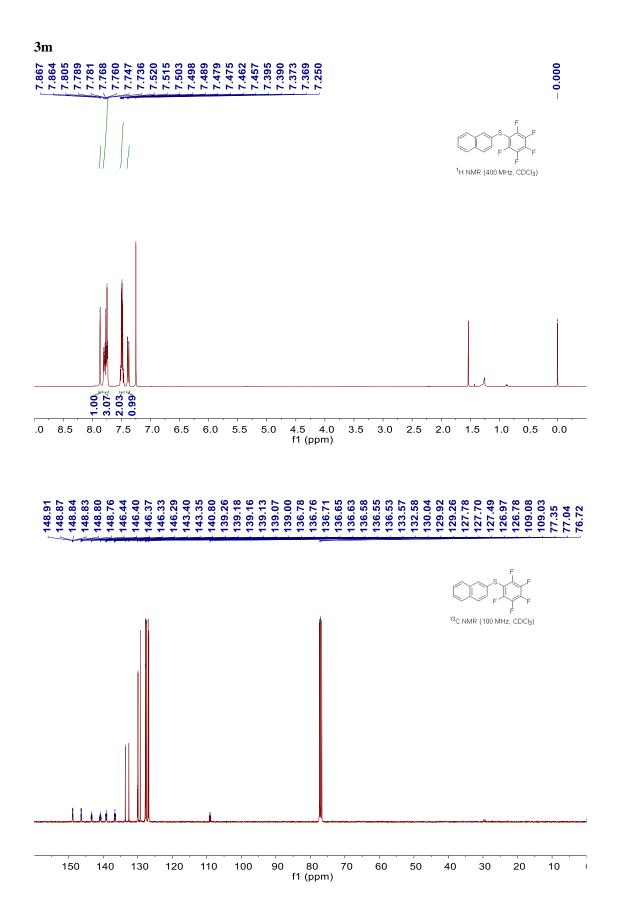


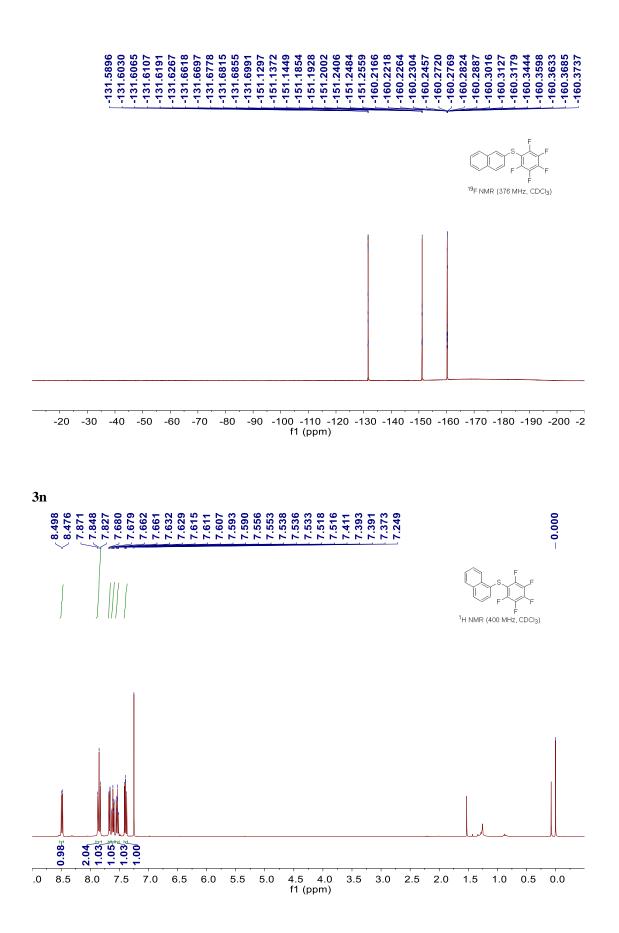


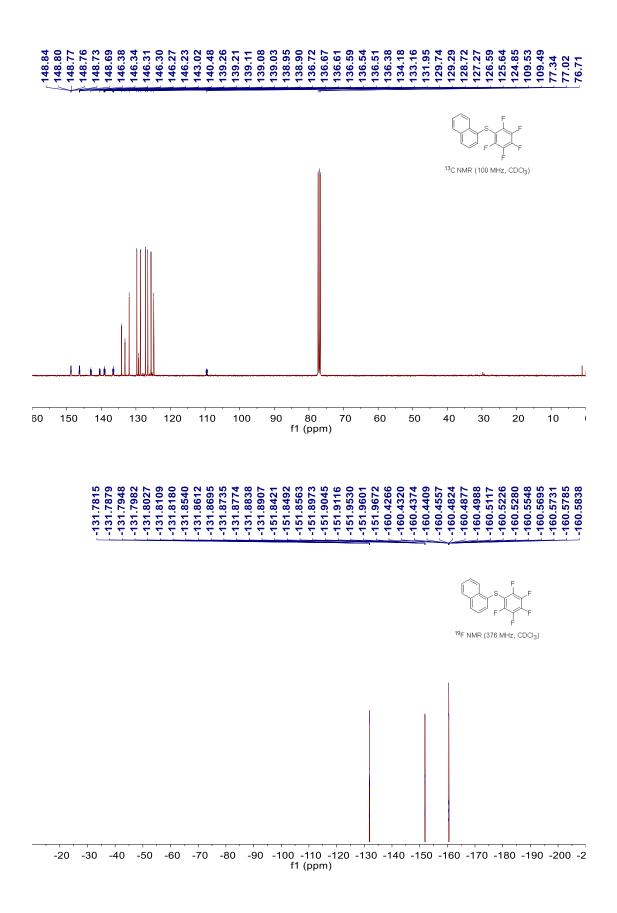


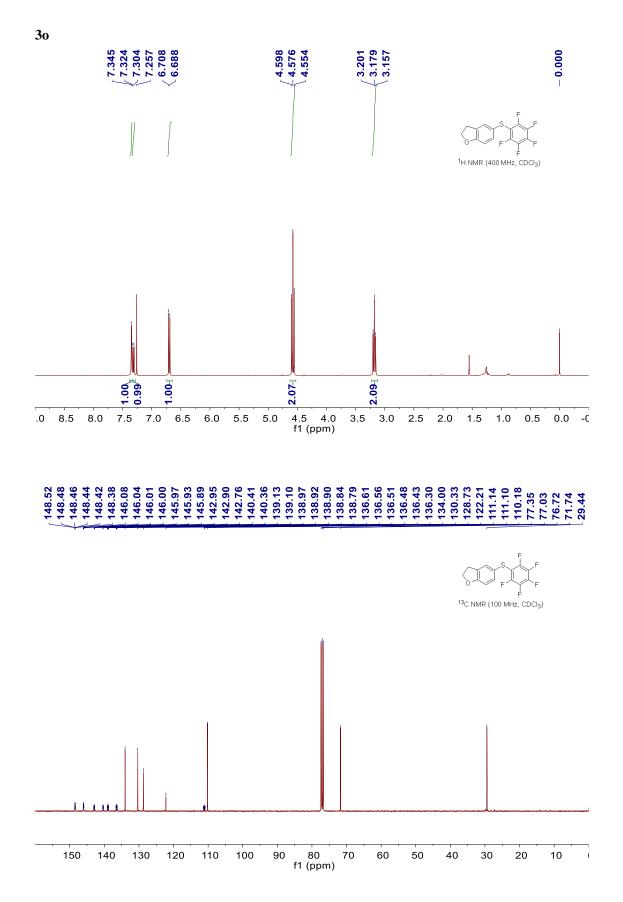


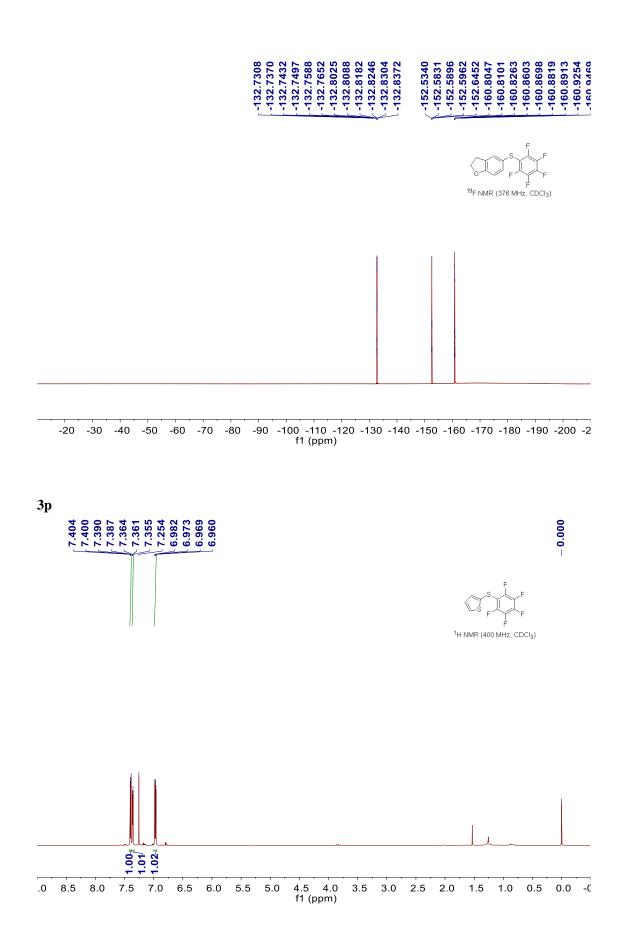


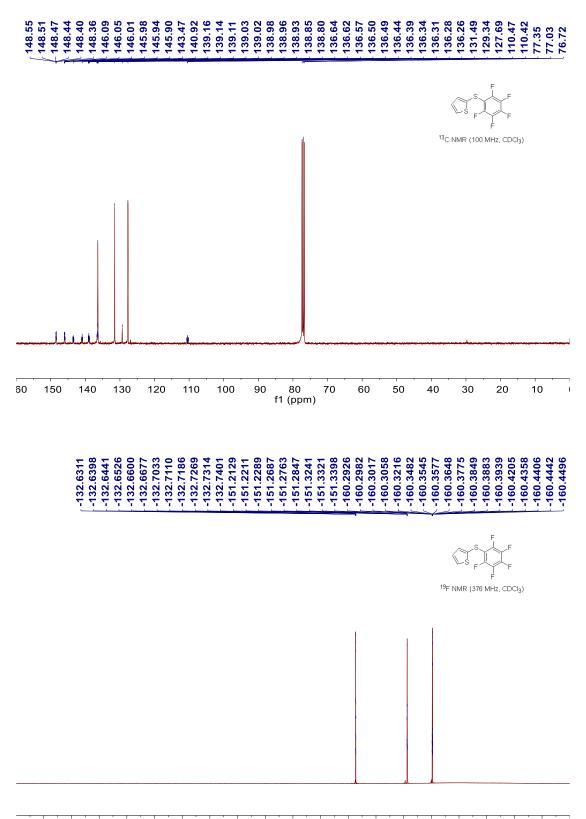


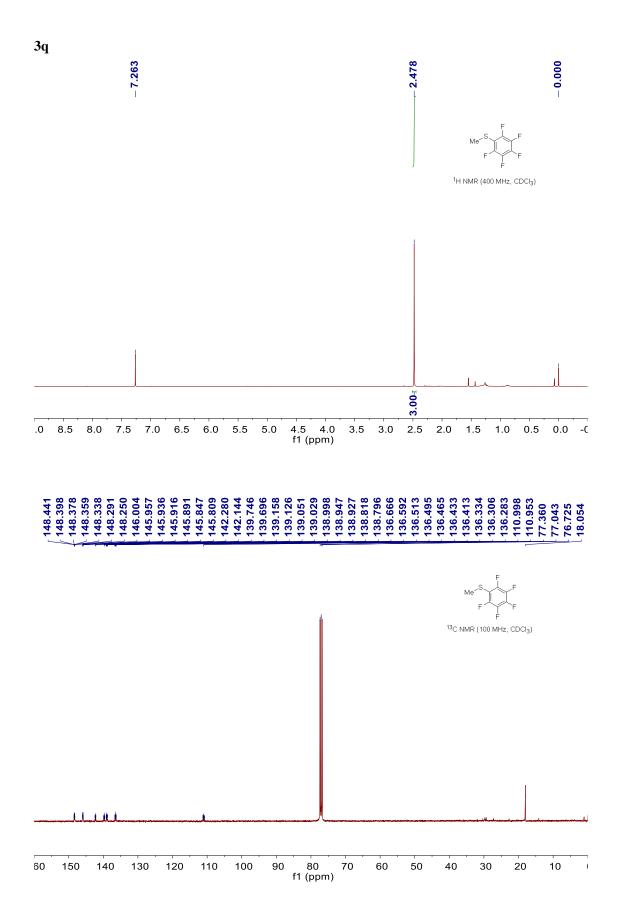

S25

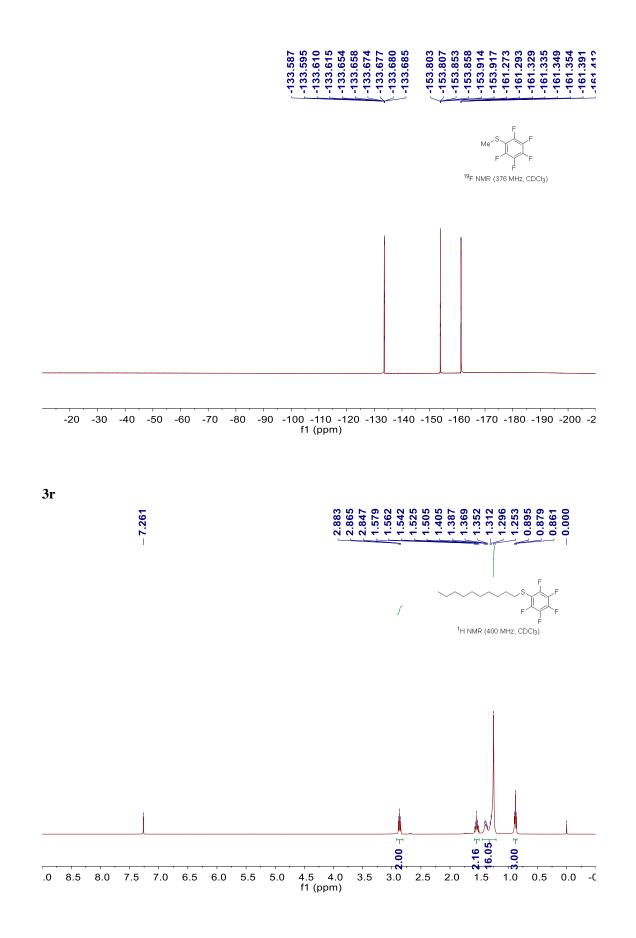


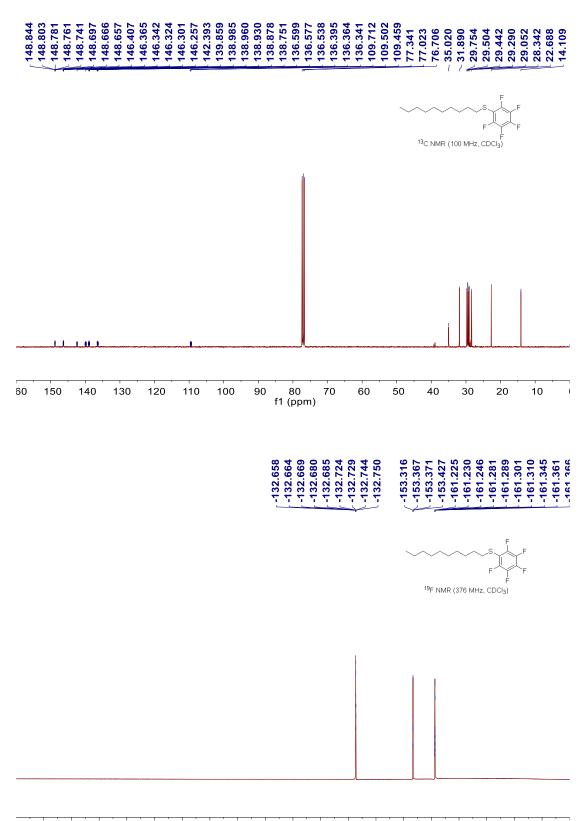


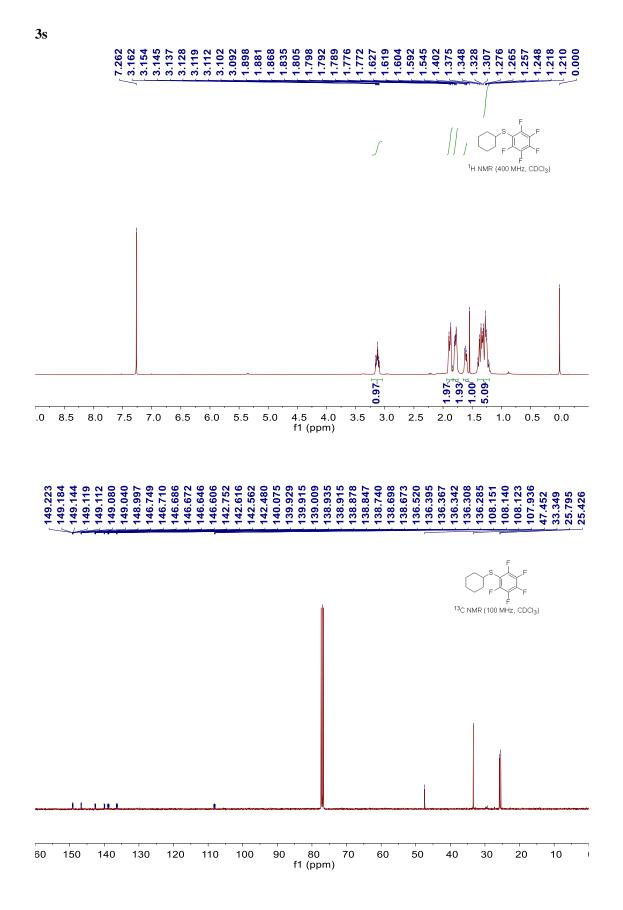


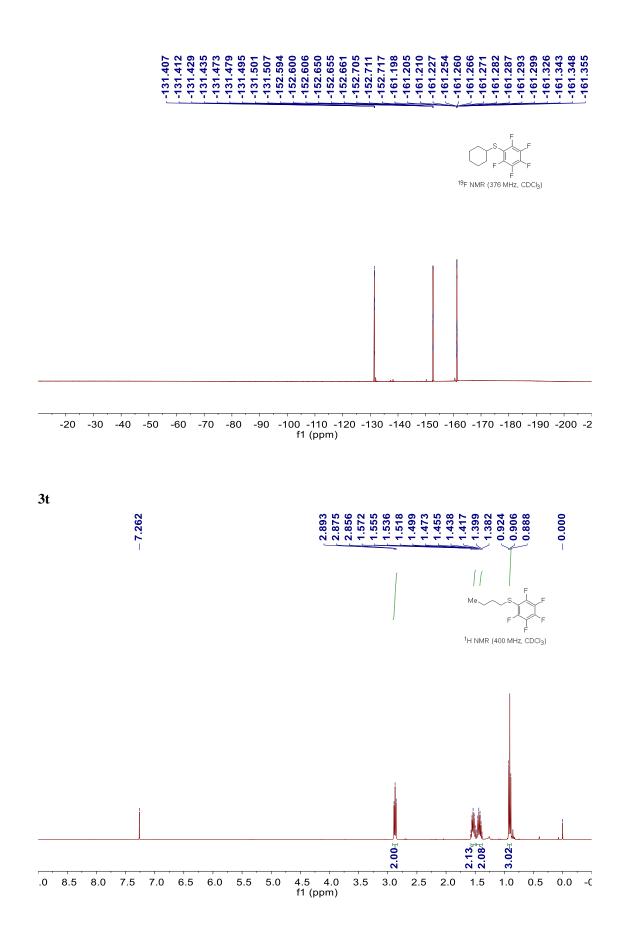


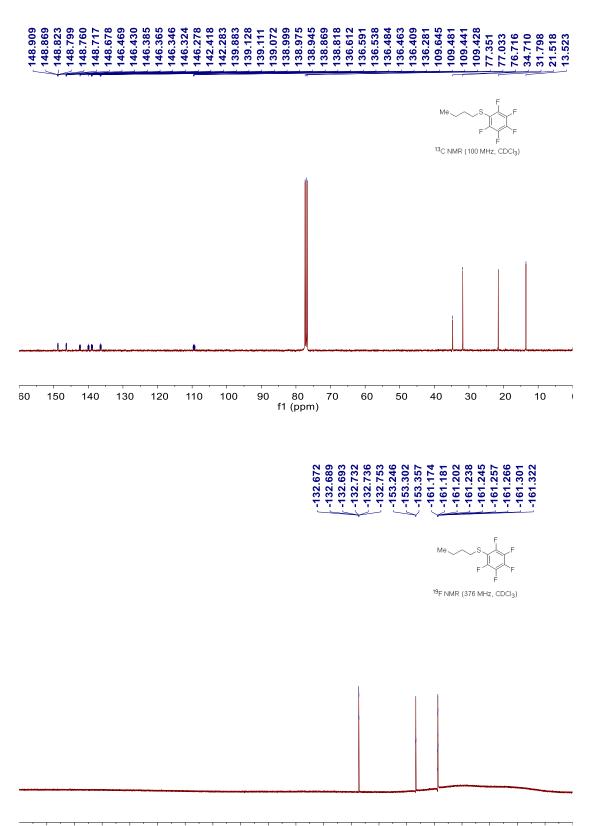


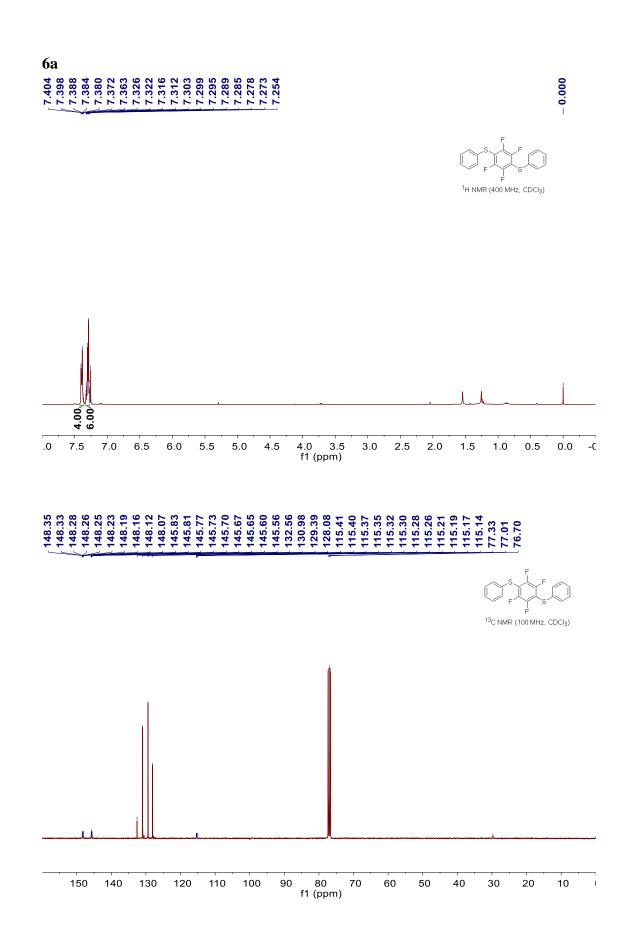


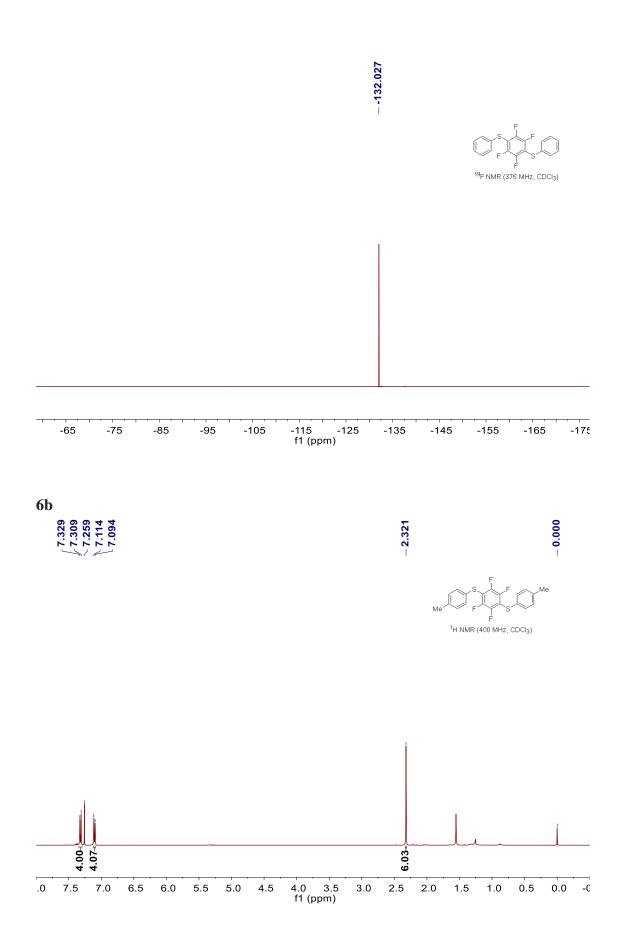


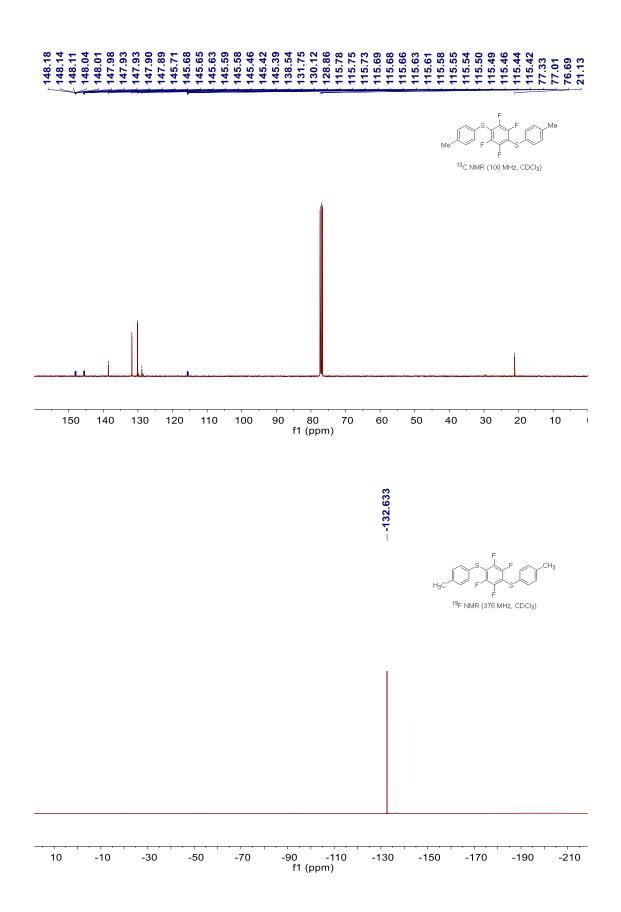


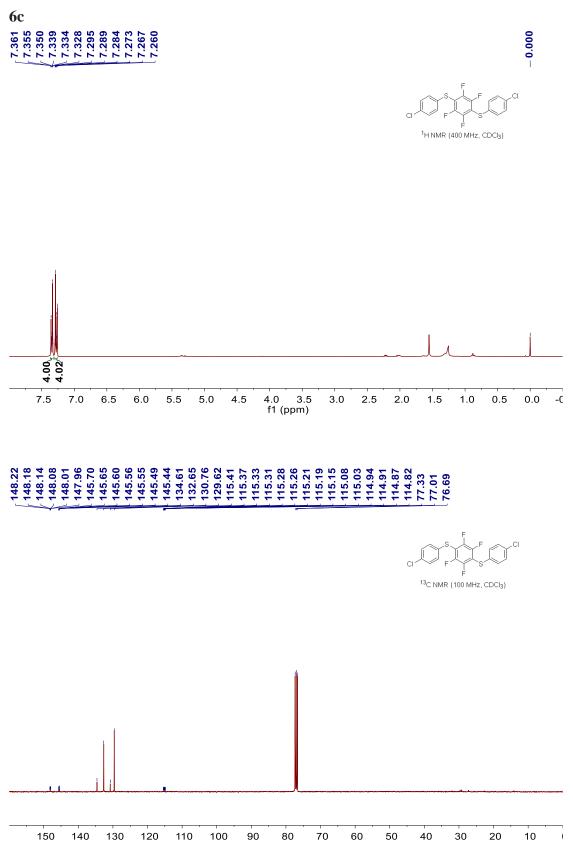




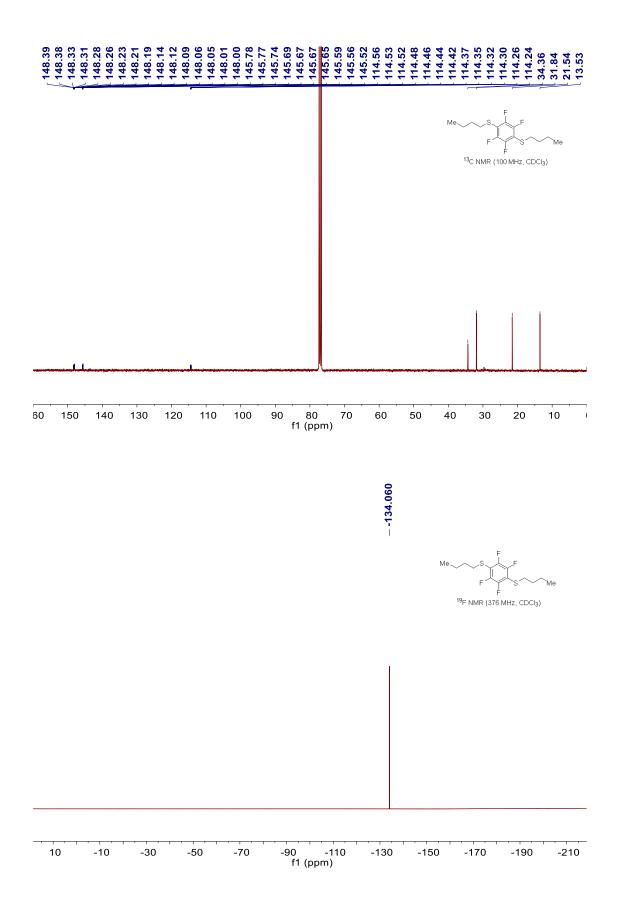












f1 (ppm)

