Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

SUPPLEMENTARY INFORMATION

Light-driven photoswitching of quinazoline analogues of combretastatin A-4 as an effective approach for targeting skin cancer cells

A. M. Scherbakov,^a R. Yu. Balakhonov,^b D. I. Salnikova,^c D. V. Sorokin,^a A. V. Yadykov,^b A. I. Markosyan^d and V. Z. Shirinian^b

^aOncoproteomics Laboratory, N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation;

^bN. D. Zelinsky Institute of Organic Chemistry, RAS, Moscow, Russian Federation ^cFaculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation; ^dScientific Technological Center of Organic and Pharmaceutical Chemistry, NAS RA, Yerevan, Republic of Armenia.

Table of contents

I. General information	
II. Synthesis and characterization of quinazoline stilbenes	S3
III. UV/Vis monitorings of quinazoline stilbenes	
IV. ¹ H NMR monitorings of quinazoline stilbenes	
V. Copies of ¹ H and ¹³ C NMR spectra	
VI. Copies of HRMS spectra	
VII. References	

I. General information

Proton nuclear magnetic resonance spectra (¹H NMR) and carbon nuclear magnetic resonance spectra (¹³C NMR) were recorded in deuterated solvents on a spectrometers working at 300 MHz or 400 MHz or 600 MHz for ¹H, 75 MHz or 101 MHz or 151 MHz for ¹³C. Data are represented as follows: chemical shift, multiplicity (s, singlet; d, doublet; m, multiplet; br, broad), coupling constant in hertz (Hz), integration, and assignment. Melting points (Mp) were recorded using an apparatus and not corrected. High resolution mass spectra were obtained from a TOF mass spectrometer with an ESI source. All chemicals and solvents were purchased from commercial sources and used without further purification. Methylquinazolines were prepared according to literature procedures.^{S1}

Photochemical Studies. UV–Vis spectra were recorded in 1.0 cm quartz cuvettes. The experimental measurements were performed at 293 K in the presence of air in solutions of acetonitrile and DMSO. The spectra of the studied compounds were recorded on an Agilent Cary 60 UV-Vis. Irradiation were performed in the commercial 10 ml flat-bottomed glass vessels. We have previously shown that such glass vessels are quite suitable for this process^{S2}. The choice of vials from ordinary glass instead photochemical vessels is due to the desire to simplify the experiment and make it accessible to a wide range of experimenters. The irradiation was carried out by 6W Vilber Lourmat (France) UV-lamp model VL-6.LC (365 nm light).

II. Synthesis and characterization of quinazoline stilbenes

Scheme S1. Synthesis of quinazoline stilbenes

Cy N NH +	R ₁ R ₂ R ₃ CHO	method A or method B	Cy N	R ₁ R ₂ R ₃
		la-n		
_	Су	R ₁	\mathbf{R}_2	R ₃
1a		-OMe	-OMe	-OMe
1b		-H	-OMe	-OH
1c		-H	-OH	-OMe
1d		-OMe	-OMe	-OMe
1e		-H	-OMe	-OH
1 f	\sim	-H	-OMe	-H
1g		-OMe	-OMe	-OMe
1h		-H	-OMe	-OH
1i		-OMe	-OMe	-OMe
1j		-H	-OMe	-OH
1k		-OMe	-OMe	-OMe
11		-H	-OMe	-OH
1m		-OMe	-OMe	-OMe
1n		-H	-OMe	-OH

General procedure for the synthesis of quinazoline stilbenes (method A)

A mixture of 0.01 mol of a quinazoline compound, 0.01 mol of the corresponding aldehyde and 0.01 mol of zinc chloride was heated with an air refrigerator in a Wood's bath at a temperature of 200-210°C for 6 hours. The reaction mixture was cooled, 50 ml of 80% ethanol were added and thoroughly triturated. The formed precipitate is filtered off, washed with water and recrystallized from dimethylformamide. For complete purification, recrystallization must be repeated, which leads to a decrease in the yield of the final product.

General procedure for the synthesis of quinazoline stilbenes (method B)

A mixture of 0.01 mol of benzo[h]quinazoline, 0.011 mol of the corresponding aldehyde, 0.04 mol of sodium acetate and 20 ml of glacial acetic acid is refluxed for 25 hours. After cooling, water is added to the reaction mixture. The formed precipitate was filtered off, washed repeatedly with water (4x15 ml) and recrystallized from a mixture of dimethylformamide-water (5:1).

(E)-2-(3,4,5-trimethoxystyryl)quinazolin-4(3H)-one^{S3} (1a, method B)

Beige solid (2.84 g, 84%); mp > 250°C (lit.,^{S3} 275-276°C); ¹H-^O NMR (300 MHz, DMSO-d₆/CCl₄ = 1/3), δ , ppm: 3.71 (s, 3H, O-^O CH₃), 3.85 (s, 6H, 2×(O-CH₃)), 6.98 (d, 1H, J=16.1 Hz, C2-<u>CH</u>=CH), 6.98 (s, 2H, H^{arom}), 7.46 (ddd, 1H, J=7.9, 7.1, 1.2 Hz, H^{arom}), 7.64 (dd, 1H, J=8.1, 1.2 Hz, H^{arom}), 7.80 (ddd, 1H, J=8.1,

7.1, 1.6 Hz, H^{arom}), 7.89 (d, 1H, J=16.1 Hz, C2-CH=<u>CH</u>), 8.10 (dd, 1H, J=7.9, 1.6 Hz, H^{arom}), 12.18 (br, 1H, NH). ¹³C-NMR (75 MHz, DMSO-d₆/CCl₄ = 1/3), δ , ppm: 55.90 (2×(O-CH₃))), 60.09 (O-CH₃), 105.08 (2×CH^{arom}), 120.42 (C2-<u>CH</u>=CH), 121.01 (C^{arom}), 125.81 (CH^{arom}), 126.06 (CH^{arom}), 126.98 (CH^{arom}), 130.58 (CH^{arom}), 134.43 (<u>CH</u>^{arom}-OCH₃), 138.38 (C2-CH=<u>CH</u>), 139.02 (C4_a), 149.02 (C8_a), 151.49 (C2), 153.13 (2×(<u>CH</u>^{arom}-OCH₃), 161.59 (C4). HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₉H₁₈N₂O₄ 339,1339, found 339,1327.

(E)-2-(3-hydroxy-4-methoxystyryl)quinazolin-4(3H)-one (1b, method B)

O Beige solid (1.65 g, 56%); mp > 250°C; ¹H-NMR (300 MHz, DMSO-d₆/CCl₄ = 1/3), δ , ppm: 3.82 (s, 3H, O-CH₃), 6.75 (d, 1H, J=16.1 Hz, C2-<u>CH</u>=CH), 6.96-7.01 (m, 1H, H^{arom}), 7.05-7.11 (m, 2H, H^{arom}), 7.45 (ddd, 1H, J=7.9, 7.1, 1.2 Hz, H^{arom}), 7.64 (dd,

1H, J=8.1, 1.2 Hz, H^{arom}), 7.78 (ddd, 1H, J=8.1, 7.1, 1.6 Hz, H^{arom}), 7.82 (d, 1H, J=16.1 Hz, C2-CH=<u>CH</u>), 8.09 (dd, 1H, J=7.9, 1.6 Hz, H^{arom}), 9.25 (s, 1H, OH), 12.21 (br, 1H, NH). ¹³C-NMR (75 MHz, DMSO-d₆/CCl₄ = 1/3), δ , ppm: 55.60 (O-CH₃), 112.19 (CH^{arom}), 113.32 (CH^{arom}), 118.12 (C2-<u>CH</u>=CH), 120.57 (CH^{arom}), 120.90 (C^{arom}), 25.77 (CH^{arom}), 125.81 (CH^{arom}), 126.94 (CH^{arom}), 127.87 (CH^{arom}), 134.38 (C4_a), 138.49 (C2-CH=<u>CH</u>), 146.79 (<u>C</u>^{arom} -OH), 149.13

(\underline{C}^{arom} -OCH₃), 149.57 (C8_{*a*}), 151.67 (C2), 161.71 (C4). **HRMS** (**ESI-TOF**) m/z [M + H]⁺ calcd for C₁₇H₁₄N₂O₃ 295,1077, found 295,1072.

(E)-2-(4-hydroxy-3-methoxystyryl)quinazolin-4(3H)-one^{S4} (1c, method B)

OH Beige solid (2.12 g, 72%); mp > 250°C; ¹H-NMR (300 MHz, DMSO-d₆/CCl₄ = 1/3), δ, ppm: 3.85 (s, 3H, O-CH₃), 6.83 (d, 1H, J=16.1 Hz, C2-<u>CH</u>=CH), 6.85 (d, 1H, J=8.3 Hz, H^{arom}), 7.09 (dd, 1H, J=8.3, 1.9 Hz, H^{arom}), 7.25 (d, 1H, J=1.9 Hz, H^{arom}), 7.44

(ddd, 1H, J=7.9, 7.1, 1.2 Hz, H^{arom}), 7.63 (dd, 1H, J=8.1, 1.2 Hz, H^{arom}), 7.78 (ddd, 1H, J=8.1, 7.1, 1.6 Hz, H^{arom}), 7.87 (d, 1H, J=16.1 Hz, C2-CH=<u>CH</u>), 8.09 (dd, 1H, J=7.9, 1.6 Hz, H^{arom}), 9.53 (br, 1H, OH), 12.16 (br, 1H, NH). ¹³C-NMR (75 MHz, DMSO-d₆/CCl₄ = 1/3), δ , ppm: 55.59 (O-CH₃), 110.89 (CH^{arom}), 115.78 (CH^{arom}), 117.66 (C2-<u>CH</u>=CH), 120.86 (C^{arom}), 121.84 (CH^{arom}), 125.76 (CH^{arom}), 125.79 (CH^{arom}), 126.56 (CH^{arom}), 126.88 (CH^{arom}), 134.37 (C4_a), 138.74 (C2-CH=<u>C</u>H), 147.94 (<u>C</u>^{arom}-OH), 148.73 (C8_a), 149.19 (<u>C</u>^{arom}-OCH₃), 151.87 (C2), 161.70 (C4). HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₇H₁₄N₂O₃ 295,1077, found 295,1070. (E)-5,5-dimethyl-2-(3,4,5-trimethoxystyryl)-5,6-dihydrobenzo[h]quinazolin-4(3H)-one (1d, method A)

Beige solid (1.64 g, 39%); mp > 250°C; ¹H-NMR (**300 MHz**, **DMSO-d₆/CCl₄ = 1/3**), δ , ppm: 1.38 (s, 6H, C5-(<u>CH</u>₃)₂), 2.76 (s, 2H, C6H₂), 3.76 (s, 3H, O-CH₃), 3.90 (s, 6H, 2×(O-CH₃)), 6.82 (d, 1H, J=16.1 Hz, C2-<u>CH</u>=CH), 6.85 (s, 2H, H^{arom}), 7.10-7.17 (m, 1H, H^{arom}), 7.25-7.32 (m, 2H, H^{arom}), 7.86 (d, 1H, J=16,1 Hz,

C2-CH=<u>CH</u>), 8.21-8.28 (m, 1H, H^{arom}), 12.09 (br, 1H, NH). ¹³C-NMR (75 MHz, DMSOd₆/CCl₄ = 1/3), δ , ppm: 25.66 (C5-(<u>CH</u>₃)₂), 32.98 (<u>C5</u>-(CH₃)₂), 44.21 (C6H₂), 55.46 (2×(O-CH₃)), 59.63 (O-CH₃), 104.83 (2×CH^{arom}), 119.62 (C2-<u>CH</u>=CH), 123.79 (C^{arom}), 125.48 (CH^{arom}), 125.86 (CH^{arom}), 127.14 (CH^{arom}), 129.30 (CH^{arom}), 130.37 (C^{arom}), 132.20 (C^{arom}), 136.19 (C4_a), 137.89 (C2-CH=<u>CH</u>), 139.23 (<u>C</u>^{arom}-OCH₃), 152.93 (2×(<u>C</u>^{arom}-OCH₃)), 153.30 (C10_b), 153.32 (C2), 161.74 (C4). **HRMS (ESI-TOF)** m/z [M + H]⁺ calcd for C₂₅H₂₆N₂O₄ 419,1965, found 419,1949.

(E)-2-(3-hydroxy-4-methoxystyryl)-5,5-dimethyl-5,6-dihydrobenzo[h]quinazolin-4(3H)-one (1e, method A)

O Beige solid (1.35 g, 36%); mp > 250°C; ¹H-NMR (300 MHz, DMSO-d₆/CCl₄ = 1/3), δ, ppm: 1.36 (s, 6H, C5-(<u>CH</u>₃)₂), 2.75 (s, 2H, C6H₂), 3.86 (s, 3H, O-CH₃), 6.69 (d, 1H, J=16.1 Hz, C2-<u>CH</u>=CH), 6.85 (d, 1H, J=8.4 Hz, H^{arom}), 6.99 (dd, 1H, J=8.4, 2.1

Hz, H^{arom}), 7.08 (d, 1H, J=2.1 Hz, H^{arom}), 7.09-7.16 (m, 1H, H^{arom}), 7.23-7.33 (m, 2H, H^{arom}),

7.83 (d, 1H, J=16.1 Hz, C2-CH=<u>CH</u>), 8.18-8.25 (m, 1H, H^{arom}), 8.71 (br, 1H, OH), 12.08 (s, 1H, NH). ¹³C-NMR (75 MHz, DMSO-d₆/CCl₄ = 1/3), δ , ppm: 25.67 (C5-(<u>CH</u>₃)₂), 32.93 (<u>C5</u>-(CH₃)₂), 44.28 (C6H₂), 55.22 (O-CH₃), 111.46 (CH^{arom}), 113.22 (CH^{arom}), 117.68 (C2-<u>CH</u>=CH), 120.05 (CH^{arom}), 123.42 (C^{arom}), 125.42 (CH^{arom}), 125.87 (CH^{arom}), 127.08 (CH^{arom}), 128.13 (C^{arom}), 129.17 (CH^{arom}), 132.33 (C^{arom}), 136.17 (C4_a), 138.13 (C2-CH=<u>CH</u>), 146.80 (<u>C</u>^{arom}-OH), 149.02 (<u>C</u>^{arom}-OCH₃), 153.14 (C10_b), 153.63 (C2), 161.62 (C4). HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₃H₂₂N₂O₃ 375,1703, found 419,1698.

(E)-2-(4-methoxystyryl)-5,5-dimethyl-5,6-dihydrobenzo[h]quinazolin-4(3H)-one (1f, method B)

Beige solid (1.3 g, 36%); mp > 250°C; ¹H-NMR (300 MHz, DMSO-d₆/CCl₄ = 1/3), δ , ppm: 1.37 (s, 6H, C5-(<u>CH</u>₃)₂), 2.75 (s, 2H, C6H₂), 3.83 (s, 3H, O-CH₃), 6.75 (d, 1H, J=16.1 Hz, C2-<u>CH</u>=CH), 6.89-6.95 (m, 2H, H^{arom}), 7.09-7.16 (m, 1H, H^{arom}),

7.25-7.32 (m, 2H, H^{arom}), 7.50-7.57 (m, 2H, H^{arom}), 7.91 (d, 1H, J=16.1 Hz, C2-CH=<u>CH</u>), 8.18-8.25 (m, 1H, H^{arom}), 12.11 (s, 1H, NH). ¹³C-NMR (75 MHz, DMSO-d₆/CCl₄ = 1/3), δ , ppm: 25.64 (C5-(<u>CH</u>₃)₂), 32.92 (<u>C5</u>-(CH₃)₂), 44.25 (C6H₂), 54.62 (O-CH₃), 113.79 (2×CH^{arom}), 117.89 (C2-<u>CH</u>=CH), 123.50 (C^{arom}), 125.39 (CH^{arom}), 125.82 (CH^{arom}), 127.07 (CH^{arom}), 127.63 (C^{arom}), 128.67 (2×CH^{arom}), 129.16 (CH^{arom}), 132.29 (C^{arom}), 136.15 (C4_a), 137.46 (C2-CH=<u>CH</u>), 153.13 (C10_b), 153.49 (C2), 160.15 (<u>C</u>^{arom}-OCH₃), 161.58 (C4). HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₃H₂₂N₂O₂ 359,1754, found 359,1744.

(E)-5-ethyl-5-methyl-2-(3,4,5-trimethoxystyryl)-5,6-dihydrobenzo[h]quinazolin-4(3H)-one (1g, method B)

Beige solid (1.48 g, 34%); mp = 245-246°C; ¹H-NMR (300 MHz, DMSO-d₆/CCl₄ = 1/3), δ , ppm: 0.83 (t, 3H, J=7.4 Hz, C5-CH₂-CH₃), 1.37 (s, 3H, C5-CH₃), 1.56 (dq, 1H, J=14.5, 7.4 Hz, C5-CH₂-CH₃), 2.06 (dq, 1H, J=14.5, 7.4 Hz, C5-CH₂-CH₃), 2.62 (d, 1H, J=15.7 Hz, C6H₂), 2.94 (d, 1H, J=14.5, 7.4 Hz, C5-CH₂-CH₃), 2.62 (d, 1H, J=15.7 Hz, C6H₂), 2.94 (d, 1H, J=15.7 Hz, C6H₂), 2.94 (d, 1H, J=15.7 Hz, C6H₂), 2.94 (d, 1H, J=14.5), 7.4 Hz, C5-CH₂-CH₃), 2.62 (d, 1H, J=15.7 Hz, C6H₂), 2.94 (d, 1H, L2), 2.94 (d, 1H, L

J=15.7 Hz, C6H₂), 3.76 (s, 3H, O-CH₃), 3.89 (s, 6H, 2×(O-CH₃)), 6.83 (d, 1H, J=16.1 Hz, C2-<u>CH</u>=CH), 6.85 (s, 2H, H^{arom}), 7.09-7.16 (m, 1H, H^{arom}), 7.24-7.32 (m, 2H, H^{arom}), 7.87 (d, 1H, J=16,1 Hz, C2-CH=<u>CH</u>), 8.22-8.29 (m, 1H, H^{arom}), 12.18 (br, 1H, NH). ¹³C-NMR (75 MHz, DMSO-d₆/CCl₄ = 1/3), δ , ppm: 9.12 (C5-CH₂-<u>CH₃</u>), 24.24 (C5-<u>CH₃</u>), 30.25 (C5-<u>CH₂-CH₃</u>), 36.47 (<u>C5</u>-CH₃), 40.11 (C6H₂), 55.45 (2×(O-CH₃)), 59.63 (O-CH₃), 104.82 (2×CH^{arom}), 119.65 (C2-<u>CH</u>=CH), 122.94 (C^{arom}), 125.50 (CH^{arom}), 125.75 (CH^{arom}), 127.07 (CH^{arom}), 129.35 (CH^{arom}), 130.40 (C^{arom}), 132.24 (C^{arom}), 136.47 (C4_a), 137.90 (C2-CH=<u>CH</u>), 139.24 (<u>C</u>^{arom}-

S6

OCH₃), 152.94 (2×(\underline{C}^{arom} -OCH₃)), 153.33 (C10_b), 154.13 (C2), 161.86 (C4). **HRMS (ESI-TOF)** m/z [M + H]⁺ calcd for C₂₆H₂₈N₂O₄ 433,2122, found 433,2109.

(E)-5-ethyl-2-(3-hydroxy-4-methoxystyryl)-5-methyl-5,6-dihydrobenzo[h]quinazolin-4(3H)one (1h, method B)

Beige solid (0.82 g, 21%); mp > 250°C; ¹H-NMR (**300** MHz, DMSO-d₆/CCl₄ = 1/3), δ, ppm: 0.81 (t, 3H, J=7.4 Hz, C5-CH₂-<u>CH₃</u>), 1.35 (s, 3H, C5-<u>CH₃</u>), 1.54 (dq, 1H, J=14.5, 7.4 Hz, C5-CH₂-CH₃), 2.04 (dq, 1H, J=14.5, 7.4 Hz, C5-CH₂-CH₃), 2.60 (d,

1H, J=15.7 Hz, C6H₂), 2.92 (d, 1H, J=15.7 Hz, C6H₂), 3.86 (s, 3H, O-CH₃), 6.69 (d, 1H, J=16.1 Hz, C2-<u>CH</u>=CH), 6.85 (d, 1H, J=8.4 Hz, H^{arom}), 6.98 (dd, 1H, J=8.4, 2.1 Hz, H^{arom}), 7.08 (d, 1H, J=2.1 Hz, H^{arom}), 7.08-7.14 (m, 1H, H^{arom}), 7.23-7.32 (m, 2H, H^{arom}), 7.83 (d, 1H, J=16.1 Hz, C2-CH=<u>CH</u>), 8.18-8.25 (m, 1H, H^{arom}), 8.74 (br, 1H, OH), 12.04 (s, 1H, NH). ¹³C-NMR (75 MHz, DMSO-d₆/CCl₄ = 1/3), δ , ppm: 9.14 (C5-CH₂-<u>CH₃), 24.28 (C5-CH₃), 30.25 (C5-CH₂-CH₃), 36.45 (<u>C5</u>-CH₃), 40.19 (C6H₂), 55.26 (O-CH₃), 111.50 (CH^{arom}), 113.25 (CH^{arom}), 117.74 (C2-CH=CH), 120.10 (CH^{arom}), 123.58 (C^{arom}), 125.48 (CH^{arom}), 125.81 (CH^{arom}), 127.06 (CH^{arom}), 128.18 (C^{arom}), 129.27 (CH^{arom}), 132.39 (C^{arom}), 136.49 (C4_a), 38.19 (C2-CH=<u>CH</u>), 146.84 (<u>C^{arom}-OH</u>), 149.07 (<u>C^{arom}-OCH₃), 153.70 (C10_b), 154.03 (C2), 161.83 (C4). HRMS (ESI-TOF</u>) m/z [M + H]⁺ calcd for C₂₄H₂₄N₂O₃ 389,1860, found 389,1867.</u>

(E)-2-(3,4,5-trimethoxystyryl)-3H-spiro[benzo[h]quinazoline-5,1'-cyclopentan]-4(6H)-one (1i, method A)

Beige solid (1.38 g, 31%); mp > 250°C; ¹H-NMR (300 MHz, **DMSO-d₆/CCl₄ = 1/3**), δ , ppm: 1.38-1.50 (m, 2H, cyclopentane), 1.63-1.79 (m, 2H, cyclopentane), 1.80-1.96 (m, 2H, cyclopentane), 2.27-2.39 (m, 2H, cyclopentane), 2.80 (s, 2H, C6H₂), 3.76 (s, 3H, O-CH₃), 3.90 (s, 6H, 2×(O-CH₃)), 6.83 (d,

1H, J=16.1 Hz, C2-<u>CH</u>=CH), 6.85 (s, 2H, H^{arom}), 7.08-7.15 (m, 1H, H^{arom}), 7.23-7.32 (m, 2H, H^{arom}), 7.86 (d, 1H, J=16,1 Hz, C2-CH=<u>CH</u>), 8.20-8.27 (m, 1H, H^{arom}), 12.07 (br, 1H, NH). ¹³C-NMR (75 MHz, DMSO-d₆/CCl₄ = 1/3), δ , ppm: 25.13 (2×CH₂ _{cyclopentane}), 35.20 (2×CH₂ _{cyclopentane}), 41.75 (C5), 43.30 (C6H₂), 55.43 (2×(O-CH₃)), 59.59 (O-CH₃), 104.81 (2×CH^{arom}), 119.67 (C2-<u>CH</u>=CH), 124.30 (C^{arom}), 125.39 (CH^{arom}), 125.85 (CH^{arom}), 127.08 (CH^{arom}), 129.03 (CH^{arom}), 130.41 (C^{arom}), 132.71 (C^{arom}), 136.29 (C4_a), 137.69 (C2-CH=<u>CH</u>), 139.16 (<u>C</u>^{arom}-OCH₃), 152.90 (2×(<u>C</u>^{arom}-OCH₃)), 153.02 (C10_b), 153.41 (C2), 161.24 (C4). HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₇H₂₈N₂O₄ 445,2122, found 445,2123.

(E)-2-(3-hydroxy-4-methoxystyryl)-3H-spiro[benzo[h]quinazoline-5,1'-cyclopentan]-4(6H)one (1j, method A)

O Beige solid (2.21 g, 55%); mp > 250°C; ¹H-NMR (300 MHz, DMSO-d₆/CCl₄ = 1/3), δ , ppm: 1.38-1.50 (m, 2H, cyclopentane), 1.63-1.79 (m, 2H, cyclopentane), 1.80-1.96 (m, 2H, cyclopentane), 2.27-2.39 (m, 2H, cyclopentane), 2.79 (s, 2H,

C6H₂), 3.86 (s, 3H, O-CH₃), 6.69 (d, 1H, J=16.1 Hz, C2-<u>CH</u>=CH), 6.85 (d, 1H, J=8.4 Hz, H^{arom}), 6.99 (dd, 1H, J=8.4, 2.1 Hz, H^{arom}), 7.08 (d, 1H, J=2.1 Hz, H^{arom}), 7.08-7.13 (m, 1H, H^{arom}), 7.23-7.32 (m, 2H, H^{arom}), 7.82 (d, 1H, J=16.1 Hz, C2-CH=<u>CH</u>), 8.16-8.23 (m, 1H, H^{arom}), 8.71 (br, 1H, OH), 12.08 (s, 1H, NH). ¹³C-NMR (75 MHz, DMSO-d₆/CCl₄ = 1/3), δ , ppm: 25.13 (2×CH₂ _{cyclopentane}), 35,28 (2×CH₂ _{cyclopentane}), 41.30 (C5), 43.37 (C6H₂), 55.61 (O-CH₃), 112.14 (CH^{arom}), 113.23 (CH^{arom}), 117.49 (C2-<u>CH</u>=CH), 120.72 (CH^{arom}), 123.94 (C^{arom}), 125.36 (CH^{arom}), 126.57 (CH^{arom}), 127.85 (CH^{arom}), 127.85 (C^{arom}), 129.93 (CH^{arom}), 132.60 (C^{arom}), 136.78 (C4_a), 138.51 (C2-CH=<u>CH</u>), 146.78 (<u>C</u>^{arom}-OH), 149.55 (<u>C</u>^{arom}-OCH₃), 153.53 (C10_b), 153.73 (C2), 161.44 (C4). HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₅H₂₄N₂O₃ 401,1860, found 401,1850.

(E)-2-(3,4,5-trimethoxystyryl)-3H-spiro[benzo[h]quinazoline-5,1'-cyclohexan]-4(6H)-one (1k, method A)

Beige solid (1.01 g, 22%); mp > 250°C; ¹H-NMR (**300 MHz**, **DMSO-d₆/CCl₄ = 1/3**), δ , ppm: 1.24-1.44 (m, 3H, cyclohexane), 1.46-1.66 (m, 4H, cyclohexane), 1.68-1.80 (m, 1H, cyclohexane), 2.56-2.70 (m, 2H, cyclohexane), 2.99 (s, 2H, C6H₂), 3.75 (s, 3H, O-CH₃), 3.89 (s, 6H, 2×(O-CH₃)), 6.81 (d, 1H, J=16.00 Hz,

C2-<u>CH</u>=CH-), 6.84 (s, 2H, 2×CH^{arom}), 7.10-7.19 (m, 1H, CH^{arom}), 7.23-7.32 (m, 2H, 2×CH^{arom}), 7.85 (d, 1H, J=16.00 Hz, C2-CH=<u>CH</u>-), 8.18-8.25 (m, 1H, CH^{arom}), 12.02 (s, 1H, NH). ¹³C-NMR (75 MHz, DMSO-d₆/CCl₄ = 1/3), δ , ppm: 21.12 (2×CH_{2 cyclohexane}), 25.12 (CH_{2 cyclohexane}), 30.29 (2×CH_{2 cyclohexane}), 35.58 (C6H₂), 36.77 (C5), 55.47 (2×(O-CH₃)), 59.64 (O-CH₃), 104.87 (2×CH^{arom}), 119.59 (C2-<u>CH</u>=CH-), 124.25 (C4_a), 125.46 (CH^{arom}), 125.86 (CH^{arom}), 127.19 (CH^{arom}), 129.24 (CH^{arom}), 130.43 (C^{arom}), 132.51 (C^{arom}), 135.66 (C^{arom}), 137.88 (C2-CH=<u>CH</u>-), 139.22 (C^{arom}), 152.94 (2×(C^{arom}), 153.24 (C10b), 153.96 (C2), 161.66 (C4). HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₈H₃₀N₂O₄ 459,2278, found 459,2275.

(E)-2-(3-hydroxy-4-methoxystyryl)-3H-spiro[benzo[h]quinazoline-5,1'-cyclohexan]-4(6H)one (11, method A)

Beige solid (0.5 g, 12%); mp > 250°C; ¹H-NMR (300 MHz, DMSO-d₆/CCl₄ = 1/3), δ, ppm: 1.24-1.44 (m, 3H, cyclohexane), 1.46-1.66 (m, 4H, cyclohexane), 1.68-1.80 (m, 1H, cyclohexane), 2.56-2.70 (m, 2H, cyclohexane), 2.98 (s, 2H, C6H₂), 3.86 (s, 3H,

O-CH₃), 6.68 (d, 1H, J=16.02, C2-<u>CH</u>=CH-), 6.82-6.89 (m, 1H, CH^{arom}), 6.95-7.01 (m, 1H, CH^{arom}), 7.05-7.09 (m, 1H, CH^{arom}), 7.11-7.18 (m, 1H, CH^{arom}), 7.24-7.32 (m, 2H, 2×CH^{arom}), 7.82 (dd, 1H, J=16.02 Hz, C2-CH=<u>CH</u>-), 8.15-8.23 (m, 1H, CH^{arom}), 8.71 (s, 1H, OH), 12.06 (s, 1H, NH). ¹³C-NMR (75 MHz, DMSO-d₆/CCl₄ = 1/3), δ , ppm: 21.13 (2×CH₂ _{cyclohexane}), 25.08 (CH₂ _{cyclohexane}), 30.26 (2×CH₂ _{cyclohexane}), 35.57 (C6H₂), 36.68 (C5), 55.19 (O-CH₃), 111.45 (CH^{arom}), 113.20 (CH^{arom}), 117.56 (C2-<u>CH</u>=CH-), 120.00 (CH^{arom}), 123.77 (C4_a), 125.38 (CH^{arom}), 125.85 (CH^{arom}), 127.10 (C^{arom}), 128.11 (CH^{arom}), 129.11 (CH^{arom}), 132.57 (C^{arom}), 135.60 (C^{arom}), 138.10 (C2-CH=<u>CH</u>-), 146.78 (C^{arom}), 148.99 (C^{arom}), 153.53 (C10b), 153.88 (C2), 161.71 (C4). HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₆H₂₆N₂O₃ 415,2016, found 415,2016.

(E)-2-(3,4,5-trimethoxystyryl)-3H-spiro[benzo[h]quinazoline-5,1'-cycloheptan]-4(6H)-one (1m, method A)

Beige solid (1.99 g, 42%); mp > 250°C; ¹H-NMR (**300 MHz**, DMSO-d₆/CCl₄ = 1/3), δ , ppm: 1.37-1.88 (m, 10H, cycloheptane), 2.34-2.46 (m, 2H, cycloheptane), 2.89 (s, 2H, C6H₂), 3.76 (s, 3H, O-CH₃), 3.90 (s, 6H, 2×(O-CH₃)), 6.82 (d, 1H, J=16.1 Hz, C2-<u>CH</u>=CH), 6.84 (s, 2H, H^{arom}), 7.11-7.18 (m,

1H, H^{arom}), 7.24-7.32 (m, 2H, H^{arom}), 7.85 (d, 1H, J=16,1 Hz, C2-CH=<u>CH</u>), 8.18-8.25 (m, 1H, H^{arom}), 11.99 (br, 1H, NH). ¹³C-NMR (75 MHz, DMSO-d₆/CCl₄ = 1/3), δ , ppm: 23.78 (2×CH₂ _{cycloheptane}), 29,45 (2×CH₂ _{cycloheptane}), 35,61 (2×CH₂ _{cycloheptane}), 39,65 (C5), 39.90 (C6H₂), 55.42 (2×(O-CH₃)), 59.59 (O-CH₃), 104.79 (2×CH^{arom}), 119.61 (C2-<u>CH</u>=CH), 125.39 (CH^{arom}), 125.79 (CH^{arom}), 126.36 (C^{arom}), 127.04 (CH^{arom}), 129.17 (CH^{arom}), 130.41 (C^{arom}), 132.56 (C^{arom}), 136.12 (C4_a), 137.72 (C2-CH=<u>CH</u>), 139.15 (<u>C</u>^{arom}-OCH₃), 152.90 (2×(<u>C</u>^{arom}-OCH₃)), 153.03 (C10_b), 153.07 (C2), 161.46 (C4). HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₉H₃₂N₂O₄ 473,2435, found 473,2439.

(E)-2-(3-hydroxy-4-methoxystyryl)-3H-spiro[benzo[h]quinazoline-5,1'-cycloheptan]-4(6H)one (1n, method A)

Beige solid (0.99 g, 23%); mp > 250°C; ¹H-NMR (**300 MHz**, DMSO-d₆/CCl₄ = 1/3), δ , ppm: 1.36-1.87 (m, 10H, cycloheptane), 2.34-2.46 (m, 2H, cycloheptane), 2.87 (s, 2H, C6H₂), 3.85 (s, 3H, O-CH₃), 6.69 (d, 1H, J=16.1 Hz, C2-<u>CH</u>=CH), 6.84 (d, 1H, J=8.4 Hz, H^{arom}), 6.98 (dd, 1H, J=8.4, 2.1

Hz, H^{arom}), 7.07 (d, 1H, J=2.1 Hz, H^{arom}), 7.10-7.17 (m, 1H, H^{arom}), 7.24-7.32 (m, 2H, H^{arom}), 7.82 (d, 1H, J=16.1 Hz, C2-CH=<u>CH</u>), 8.15-8.23 (m, 1H, H^{arom}), 8.69 (br, 1H, OH), 12.08 (s, 1H, NH). ¹³C-NMR (75 MHz, DMSO-d₆/CCl₄ = 1/3), δ , ppm: 22.83 (2×CH₂ _{cycloheptane}), 29,49 (2×CH₂ _{cycloheptane}), 35,69 (2×CH₂ _{cycloheptane}), 39,65 (C5), 40.00 (C6H₂), 55.22 (O-CH₃), 111.46 (CH^{arom}), 113.27 (CH^{arom}), 117.65 (C2-<u>CH</u>=CH), 120.02 (CH^{arom}), 125.43 (CH^{arom}), 125.88 (CH^{arom}), 125.95 (C^{arom}), 127.06 (CH^{arom}), 128.18 (C^{arom}), 129.17 (CH^{arom}), 132.69 (C^{arom}), 136.17 (C4_a), 138.12 (C2-CH=<u>CH</u>), 146.81 (<u>C</u>^{arom}-OH), 149.01 (<u>C</u>^{arom}-OCH₃), 153.18 (C10_b), 156.41 (C2), 161.70 (C4). HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₇H₂₈N₂O₃ 429,2173, found 429,2175.

Procedure for obtaining 1a-Z100

A solution of 0.5 mmol of stilbene **1a** in 50 ml of DMSO was being irradiated by UV-light with wavelength of 365 nm for 12 h. Then the reaction mixture was poured into 500 ml of water, the formed precipitate was filtered off, washed with water and dried in a vacuum. The pure Z-isomer of stilbene **1a** was isolated by column chromatography on silica gel (CHCl₃:CH₃CN = 15:1) using a column wrapped in black paper.

(Z)-2-(3,4,5-trimethoxystyryl)quinazolin-4(3H)-one (1a-Z100)

Beige solid (6 mg, 3.6%); ¹H-NMR (**300** MHz, DMSO-d₆), δ, ppm: 3.68 (s, 9H, 3×(O-CH₃)), 6.33 (d, 1H, J=13.1 Hz, C2-<u>CH</u>=CH), 6.88 (d, 1H, J=13.1 Hz, C2-CH=<u>CH</u>), 7.23 (s, 2H, H^{arom}), 7.52 (ddd, 1H, J=8.2, 7.1, 1.2 Hz, H^{arom}), 7.63 (d, 1H,

J=8.1 Hz, H^{arom}), 7.82 (ddd, 1H, J=8.6, 7.1, 1.6 Hz, H^{arom}), 8.13 (dd, 1H, J=7.9, 1.6 Hz, H^{arom}), 12.28 (br, 1H, NH). ¹³C-NMR (75 MHz, DMSO-d₆), δ , ppm: 56.20 (2×(O-CH₃)), 60.55 (O-CH₃), 108.52 (2×CH^{arom}), 121.36 (C2-<u>CH</u>=CH), 121.60 (C^{arom}), 126.28 (CH^{arom}), 127.13 (CH^{arom}), 127.42 (CH^{arom}), 130.98 (CH^{arom}), 135.03 (<u>CH</u>^{arom}-OCH₃), 138.80 (C2-CH=<u>CH</u>), 138.88 (C4_a), 149.02 (C8_a), 151.77 (C2), 152.73 (2×(<u>CH</u>^{arom}-OCH₃), 162.10 (C4).

Figure S2. UV/Vis-monitoring of stilbene **1b** in DMSO ($C = 3, 4 \cdot 10^{-5}$ M)

Figure S3. UV/Vis-monitoring of stilbene **1c** in DMSO ($C = 3, 4 \cdot 10^{-5}$ M)

Figure S4. UV/Vis-monitoring of stilbene **1d** in DMSO ($C = 2, 4 \cdot 10^{-5} \text{ M}$)

Figure S6. UV/Vis-monitoring of stilbene **1f** in DMSO ($C = 2.8 \cdot 10^{-5}$ M)

Figure S8. UV/Vis-monitoring of stilbene **1h** in DMSO ($C = 2,6 \cdot 10^{-5}$ M)

Figure S10. UV/Vis-monitoring of stilbene **1j** in DMSO ($C = 2,5 \cdot 10^{-5}$ M)

Figure S12. UV/Vis-monitoring of stilbene **1l** in DMSO ($C = 2, 4 \cdot 10^{-5}$ M)

Figure S14. UV/Vis-monitoring of stilbene **1n** in DMSO ($C = 2,3 \cdot 10^{-5}$ M)

IV. ¹H NMR monitorings of quinazoline stilbenes

Figure S15. ¹H NMR monitoring of stilbene **1a** in DMSO-d₆ (E/Z = 1.25:1, C = $3.6 \cdot 10^{-2}$ M)

Figure S16. ¹H NMR monitoring of stilbene **1d** in DMSO-d₆ (E/Z = 8.93:1, C = $2,9 \cdot 10^{-2}$ M) S18

Figure S17. ¹H NMR monitoring of stilbene **1i** in DMSO-d₆ (E/Z = 10:1, C = 2,7 \cdot 10⁻² M)

Figure S18. ¹H NMR monitoring of stilbene 1k in DMSO-d₆ (E/Z = 10.3:1, C = 2,6 \cdot 10⁻² M)

Figure S19. Sunlight ¹H NMR monitoring of stilbene 1a in DMSO-d₆ (E/Z = 2.24:1, C = $3,6\cdot10^{-2}$ M)

Figure S20. Sunlight ¹H NMR monitoring of stilbene 1a-Z100 in DMSO-d₆ (E/Z = 1.7:1,

$$C = 3.6 \cdot 10^{-2} M$$

S20

V. Copies of ¹H and ¹³C NMR spectra

S21

S22

VI. Copies of HRMS spectra

VII. References

[S1] J. T. Gavin, J. K. Annor-Gyamfi, R. A. Bunce, Molecules, 2018, 23, 2925;

[S2] A. G. Lvov, V. Z. Shirinian, A. V. Zakharov, M. M. Krayushkin, V. V. Kachala, I. V. Zavarzin, J. Org. Chem. 2015, **80**, 11491-11500;

[S3] F. Baska, A. Sipos, Z. Őrfi, Z. Nemes, J. Dobos, C. SzántaiKis, E. Szabó, G. Szénási, L.

Dézsi, P. Hamar, M. T. Cserepes, J. Tóvári, R. Garamvölgyi, M. Krekó, L. Őrfi, *Eur. J. Med. Chem.*, 2019, **184**, 111710;

[S4] D. Chen, A. Ranganathan, A. P. IJzerman, G. Siegal, J. Carlsson, J. Chem. Inf. Model., 2013, 53, 2701-2714.