Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Supporting information

Preparation of domoic acid analogues using bioconversion system, and their toxicity in mice

Yukari Maeno^a, Yuichi Kotaki^b, Ryuta Terada^c, Masafumi Hidaka^a, Yuko Cho^a, Keiichi Konoki^a, and Mari Yotsu-Yamashita^a*

- a. Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aobaku, Sendai 980-8572, Japan.
- b. Fukushima College, 1-1 Chigoike Miyashiro, Fukushima 960-0181, Japan
- c. United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan

Corresponding author

E-mail: mari.yamashita.c1@tohoku.ac.jp

Contents

Synthetic procedures of substrates 9 and 12

Supplementary Figures and Tables

- Fig. S1 Time course of pH of the medium, which it was adjusted to 7.0 by the addition of NaOH aq. every day.
- Fig. S2 Time course of bioconversion of **9** (4 mg) to **5**, **10**, and **11** under original and modified conditions.
- Table S1. The summary of DabC bioconversion reactions.
- Table S2. ¹H (600 MHz) NMR data of natural 5, 6^1 and synthetic 5, 6 in CD₃OD.
- Table S3. ¹H (600 MHz) and ¹³C (151 MHz) NMR data of IA⁴ and 7 in D_2O .
- Table S4. Primers used in this study.
- Fig. S3 ¹H NMR spectrum of **9** (CD₃OD, 600 MHz).
- Fig. S4 13 C NMR spectrum of **9** (CD₃OD, 151 MHz).
- Fig. S5 ¹H NMR spectrum of 12 (CD₃OD, 600 MHz).
- Fig. S6 ¹³C NMR spectrum of **12** (CD₃OD, 151 MHz).
- Fig. S7 ¹H NMR spectrum of **17** (CDCl₃, 400 MHz).
- Fig. S8 ¹³C NMR spectrum of **17** (CDCl₃, 151 MHz).
- Fig. S9 ¹H NMR spectrum of **19** (CDCl₃, 600 MHz).
- Fig. S10¹³C NMR spectrum of **19** (CDCl₃ 151 MHz).
- Fig. S11 ¹H NMR spectrum of **21** (CDCl₃, 600 MHz).
- Fig. S12 ¹³C NMR spectrum of **21** (CDCl₃, 151 MHz).
- Fig. S13 ¹H NMR spectrum of **13** (D_2O , 600 MHz).
- Fig. S14 ¹³C NMR spectrum of **13** (D₂O, 151 MHz).
- Fig. S15 ¹H NMR spectrum of **18** (CDCl₃, 400 MHz).
- Fig. S16¹³C NMR spectrum of **18** (CDCl₃, 151 MHz).
- Fig. S17 ¹H NMR spectrum of **20** (CDCl₃, 600 MHz).
- Fig. S18 ¹³C NMR spectrum of **20** (CDCl₃, 151 MHz).
- Fig. S19 ¹H NMR spectrum of **22** (CDCl₃, 600 MHz).
- Fig. S20 ¹³C NMR spectrum of **22** (CDCl₃, 151 MHz).
- Fig. S21 ¹H NMR spectrum of **14** (CD₃OD, 600 MHz).
- Fig. S22 ¹³C NMR spectrum of **14** (CD₃OD, 151 MHz).
- Fig. S23 ¹H NMR spectrum of synthetic 5 (CD₃OD, 600 MHz).
- Fig. S24 Gradient COSY spectrum of synthetic 5 (CD₃OD, 600 MHz).
- Fig. S25 Gradient HSQC spectrum of synthetic 5 (CD₃OD, 600 MHz).
- Fig. S26 Gradient HMBC spectrum of synthetic 5 (CD₃OD, 600 MHz).

- Fig. S27 ¹H NMR spectrum of synthetic 6 (CD₃OD, 600 MHz).
- Fig. S28 Gradient COSY spectrum of synthetic 6 (CD₃OD, 600 MHz).
- Fig. S29 Gradient HSQC spectrum of synthetic 6 (CD₃OD, 600 MHz).
- Fig. S30 Gradient HMBC spectrum of synthetic 6 (CD₃OD, 600 MHz).
- Fig. S31 Comparison of ¹H NMR spectra of natural **5** and synthetic **5** (CD₃OD, 600 MHz).
- Fig. S32 Comparison of ¹H NMR spectra of natural **6** and synthetic **6** (CD₃OD, 600 MHz).
- Fig. S33 1 H NMR spectrum of 7 (D₂O, 600 MHz).
- Fig. S34 Gradient COSY spectrum of 7 (D₂O, 600 MHz, CryoProbe).
- Fig. S35 Gradient HSQC spectrum of 7 (D₂O, 600 MHz, CryoProbe).
- Fig. S36 Gradient HMBC spectrum of 7 (D₂O, 600 MHz, CryoProbe).
- Fig. S37 NOESY1D spectra of 7 (D₂O, 600 MHz, CryoProbe).
 - Irradiated at δ 5.43 ppm (H2') and δ 3.62 ppm (5 β).
- Fig. S38 NOESY1D spectra of 7 (D₂O, 600 MHz, CryoProbe).

Irradiated at δ 3.53 ppm (H4), δ 3.39 ppm (5 α), and δ 2.31 ppm (6b).

Fig. S39 Docking analyses of DA, IA, 5, 6, and 7 to GluK1.

References

Synthetic procedures of substrates 9 and 12 *N*-geranyl-L-glutamic acid (NGG, 9)

This molecule was synthesized following a literature procedure.¹ A solution of citral (89 mg, 0.59 mmol, mixture of geranial and neral, approx. 1:1 mol/mol) in MeOH (3 mL) was added to an aqueous solution (3 mL) of L-glutamic acid (193 mg, 1.31 mmol) adjusted to neutral pH using NaOH and the reaction mixture was stirred for 3 h at room temperature. NaBH₃CN (32 mg, 0.51 mmol) was added at once and stirred for 1 h. 1 M HCl was added until pH 3, and the reaction mixture was concentrated in vacuo. The dried reaction mixture was loaded onto a Cosmosil 140C18-OPN column (1.5 mL) preequilibrated with H₂O-HCOOH (100:0.1, v/v). The column was washed with H₂O-HCOOH (100:0.1, v/v, 10 mL). Crude 9 was eluted with H2O-MeOH-HCOOH (20:80:0.1, v/v/v, 15 mL) and purified using an InertSustain C18 column (10 × 250 mm, 5 μ m) with H₂O-MeOH-HCOOH (50:50:0.1, v/v/v). Compound 9 (14 mg, 0.049 mmol, yield 17%) was obtained as a white powder. HRESIMS $[M+H]^+ m/z$ 284.1848 (calcd for C₁₅H₂₆NO₄⁺ 284.1856). ¹H NMR (CD₃OD, 600 MHz) δ 5.29 (1H, t, J = 7.3 Hz), 5.10 (1H, t, J = 6.5 Hz), 3.67 (1H, dd, J = 13.4, 7.3 Hz), 3.62 (1H, dd, J = 13.9, 7.9 Hz), 3.53 (1H, t, J = 5.9 Hz), 2.53 (2H, m), 2.14 (2H, dt, J = 13.2, 7.1 Hz), 2.11 (2H, t, J = 7.0), 2.05 (2H, m), 1.75 (3H, s), 1.67 (3H, s), 1.61 (3H, s,); ¹³C NMR (CD₃OD, 151 MHz) δ177.7, 173.6, 148.3, 133.8, 125.5, 115.9, 62.7, 46.1, 41.5, 32.2, 28.0, 27.4, 26.7, 18.6, 17.5.

7'-hydroxy-N-geranyl-L-glutamic acid (12)

This molecule was synthesized following a literature procedure.² To a suspension of selenium dioxide (0.089 g, 0.80 mmol) in CH₂Cl₂ (5 mL), a solution of citral (0.36 mL, 95%, 2.00 mmol) in CH₂Cl₂ (5 mL), and aqueous *t*-butyl hydrogen peroxide (0.51 mL, 70%, 4.00 mmol) were sequentially added and stirred for 18 h at room temperature. The reaction mixture was diluted with CH₂Cl₂ (20 mL), filtered to remove particulates, and washed with saturated aqueous NaHCO₃ (25 mL) and brine (25 mL). The organic layer was dried over MgSO₄, filtered and concentrated in vacuo. The crude reaction mixture

was purified by silica gel column chromatography, yielding **SI-1** as a light-yellow oil (115 mg, 0.68 mmol, 68%). A solution of **SI-1** (115 mg, 0.68 mmol) in MeOH (2.5 mL) was added to an aqueous solution (2.5 mL) of L-glutamic acid (175 mg, 1.19 mmol) adjusted neutral pH using NaOH and the reaction mixture was stirred for 3 h at room temperature. NaBH₃CN (32 mg, 0.51 mmol) was added at once and stirred for 1 h. 1 M HCl was added until pH 3, and the reaction mixture was concentrated in vacuo. Allylic alcohols were removed by extraction with EtOAc, and the aqueous layer containing **12** was purified using an InertSustain C18 column (10 × 250 mm, 5 µm) with H₂O-MeOH-HCOOH (70:30:0.1, v/v/v). Compound **12** (12 mg, 0.040 mmol, yield 6%) was obtained as a white powder. HRESIMS [M+H]⁺ *m/z* 298.1682 (calcd for C₁₅H₂₆NO₄⁺ 298.1649). ¹H NMR (CD₃OD, 600 MHz) δ 5.38 (1H, t, *J* = 6.8 Hz), 5.30 (1H, t, *J* = 7.3 Hz), 3.91 (2H, s), 3.68 (1H, dd, *J* = 13.2, 7.9 Hz), 3.53 (1H, t, *J* = 5.9 Hz), 2.53 (2H, m), 2.14 (2H, q, *J* = 7.1 Hz), 2.16 (2H, t, *J* = 7.0), 2.12 (1H, m), 2.05 (1H, m), 1.76 (3H, s), 1.65 (3H, s); ¹³C NMR (CD₃OD, 151 MHz) δ 177.0, 173.0, 147.3, 136.8, 125.6, 115.5, 68.8, 61.9, 45.4, 40.5, 31.5, 26.8, 26.7, 16.8, 13.9.

Supplementary Figures and Tables

Fig. S1 Time course of pH of the medium, which it was adjusted to 7.0 by the addition of NaOH aq. every day.

Fig. S2 Time course of bioconversion of 9 (4 mg) to 5, 10, and 11 under original and modified conditions.

substrate	9	12	13	14
substrate amount (mg)*	4.0	3.0	1.6	1.0
cyclized product	5	6	7	23
cyclized products	1.9	0.97	0.050	N.D.
amount (mg)**				
yield (%)	49	32	3.6	0

Table S1. The summary of DabC bioconversion reactions

*Added to 100 mL medium.

**The cyclized products include all geometric isomers.

N.D. = Not detected

Table S2. ¹H (600 MHz) NMR Data of natural **5**, **6**¹ and synthetic **5**, **6** in CD₃OD.

	natural 5^{1}	synthetic 5	natural 6^1	synthetic 6
position	$\delta_{\rm H} (J \text{ in Hz})$	$\delta_{_{ m H}}(J \text{ in Hz})$	$\delta_{_{ m H}}(J ext{ in Hz})$	$\delta_{_{ m H}} (J \text{ in Hz})$
2	3.85, d (7.6)	3.86, d (7.4)	3.87, d (6.8)	3.86, d (6.7)
3	2.98, m	2.98, m	2.99, m	2.99, m
4	3.61, dd (15.4, 7.3)	3.61, dd (15.3, 7.1)	3.62, m	3.62, m
5α	3.33, m	3.33, m	3.34, m	3.33, m
5β	3.56, dd (11.7, 8.2)	3.56, dd (11.8, 8.2)	3.56, m	3.56, m
6a	2.68, dd (16.7, 5.9)	2.67, dd (16.4, 6.0)	2.66, m	2.68, m
6b	2.42, dd (16.7, 8.8)	2.43, dd (16.5, 8.7)	2.41, dd (16.6, 8.4)	2.42, dd (16.6, 8.3)
2'	5.38, t (7.3)	5.38, t (7.1)	5.42, t (7.3)	5.41, t (7.1)
3'a	2.73, m	2.73, m	2.80, m	2.80, m
3'b	2.61, m	2.61, m	2.69, m	2.70, m
4'	5.04, t (7.3)	5.04, t (7.1)	5.32, t (6.8)	5.32, t (6.8)
6'	1.61, s	1.61, s	1.65, s	1.65, s
7'	1.67, s	1.67, s	3.90, s	3.90, s
8'	1.71, s	1.71, s	1.72, s	1.72, s

The signal of CHD₂OD was adjusted at 3.30 ppm for $^1\mathrm{H}$ NMR

	IA $(2)^4$	7'-amide-IA (7)		
position	$\delta_{ m H} (J { m in} { m Hz})$	$\delta_{ m H} (J { m in} { m Hz})$	$\delta_{ m C}$	HMBC
2	3.96, d (7.8)	3.89, d (7.0)	66.1	5β
3	2.99, dddd	2.93, m	44.4	2, 5β, 6b
4	3.63, ddd (7.2, 7.8, 7.2)	3.53, q (7.6)	41.3	5α, 2΄, 8΄
5α	3.47, dd (11.4, 7.8)	3.39, dd (11.9, 7.6)	47.9	4
5β	3.69, dd (12.0, 7.8)	3.62, dd (12.2, 8.1)		
6a	2.36, dd (15.6, 9.6)	2.31, dd (16.0, 8.8)	37.3	2
6b	2.52, dd (15.6, 6.0)	2.46, dd (15.7, 6.2)		
7			N.D.	
8			175.2	2
1′			131.6	4, 8′
2′	5.51, dd (7.2, 6.0)	5.43, t (7.3)	128.8	3'a, 3'b, 8'
3′a	2.76, m	2.79, m	27.5	
3′b	2.99, m	2.91, m		
4′	6.31, dd (7.8, 6.6)	6.28, t (7.0)	137.5	3'a, 3'b, 6'
5′			130.4	3'a, 3'b, 6'
6′	1.81, s	1.79, s	13.2	4′
7′			176.8	4′, 6′
8′	1.76, s	1.69, s	22.7	4, 2'

Table S3. $^1\mathrm{H}$ (600 MHz) and $^{13}\mathrm{C}$ (151 MHz) NMR Data of IA 4 and 7 in D2O

N.D. = Not detected because of the limited amounts

The NMR data of IA⁴ are listed for comparison. The signal of residual CH₃OD was adjusted at 3.30 ppm for ¹H NMR, and that of ¹³CH₃OD was adjusted at 49.0 ppm for ¹³C NMR as the internal references.

Table S4. Primers used in this study.

DabC For	ATGACTGTGGCAATAAATAACGA
DabC Rev	CTAATCAGCGTAGTATCCGG
pET-DabC For	CCGCGCGGCAGCCATATGACTGTGGCAATAAATAACGA
pET-DabC Rev	GTGGTGGTGCTCGAGCTAATCAGCGTAGTATCCGC
pET28 up	CATATGGCTGCCGCGCGCGCACC
pET28 down	CTCGAGCACCACCACCACCACTGAG

References

- Y. Maeno, Y. Kotaki, R. Terada, Y. Cho, K. Konoki and M. Yotsu-Yamashita, *Sci. Rep.* 2018, 8, 356.
- J. K. Brunson, S. M. K. McKinnie, J. R. Chekan, J. P. McCrow, Z. D. Miles, E. M. Bertrand, V. A. Bielinski, H. Luhavaya, M. Oborník, G. J. Smith, D. A. Hutchins, A. E. Allen and B. S. Moore, *Science* 2018, 361, 1356–1358.
- M. H. Nanao, T. Green, Y. Stern-Bach, S. F. Heinemann and S. Choe, *Proc. Natl. Acad. Sci. U.S.A.* 2005, 102, 1708–1713.
- Y. Kotaki, E. F. Furio, M. Satake, N. Lundholmd, T. Katayama, K. Koike, V. P. Fulgueras, F. A. Bajarias, Y. Takata, K. Kobayashi, S. Sato, Y. Fukuyo and M. Kodama, *Toxicon* 2005, 46, 946–953.

Fig. S3 ¹H NMR spectrum of 9 (CD₃OD, 600 MHz).

Fig. S4 13 C NMR spectrum of **9** (CD₃OD, 151 MHz).

Fig. S5 ¹H NMR spectrum of 12 (CD₃OD, 600 MHz).

Fig. S6 13 C NMR spectrum of **12** (CD₃OD, 151 MHz).

Fig. S7 ¹H NMR spectrum of **17** (CDCl₃, 400 MHz).

Fig. S8 ¹³C NMR spectrum of **17** (CDCl₃, 151 MHz).

The signals of impurity from the starting material (geranyl acetate, purity 70%) were also shown in the NMR spectra of 17. The signals of 17 were assigned based on HSQC and HMBC spectra.

Fig. S9 ¹H NMR spectrum of **19** (CDCl₃, 400 MHz).

Fig. S10 13 C NMR spectrum of **19** (CDCl₃, 151 MHz).

Fig. S11 ¹H NMR spectrum of **21** (CDCl₃, 400 MHz).

Fig. S12 ¹³C NMR spectrum of **21** (CDCl₃, 151 MHz).

Fig. S13 ¹H NMR spectrum of $13 (D_2O, 600 \text{ MHz})$.

Fig. S14 13 C NMR spectrum of **13** (D₂O, 151 MHz).

Fig. S15 ¹H NMR spectrum of 18 (CDCl₃, 400 MHz).

Fig. S16 ¹³C NMR spectrum of **18** (CDCl₃, 151 MHz).

The signals of impurity from the starting material (geranyl acetate, purity 70%) were also shown in the NMR spectra of **18**. The signals of **18** were assigned based on HSQC and HMBC spectra.

Fig. S17 ¹H NMR spectrum of 20 (CDCl₃, 400 MHz).

Fig. S18 ¹³C NMR spectrum of **20** (CDCl₃, 151 MHz).

Fig. S19 ¹H NMR spectrum of 22 (CDCl₃, 400 MHz).

Fig. S20 ¹³C NMR spectrum of **22** (CDCl₃, 151 MHz).

Fig. S21 ¹H NMR spectrum of **14** (CD₃OD, 600 MHz).

Fig. S22 13 C NMR spectrum of **14** (CD₃OD, 151 MHz).

Fig. S23 ¹H NMR spectrum of synthetic **5** (CD₃OD, 600 MHz).

Fig. S24 Gradient COSY spectrum of synthetic **5** (CD₃OD, 600 MHz).

Fig. S25 Gradient HSQC spectrum of synthetic **5** (CD₃OD, 600 MHz).

Fig. S26 Gradient HMBC spectrum of synthetic **5** (CD₃OD, 600 MHz).

Fig. S27 ¹H NMR spectrum of synthetic **6** (CD₃OD, 600 MHz).

Fig. S28 Gradient COSY spectrum of synthetic 6 (CD₃OD, 600 MHz).

Fig. S29 Gradient HSQC spectrum of synthetic 6 (CD₃OD, 600 MHz).

Fig. S30 Gradient HMBC spectrum of synthetic 6 (CD₃OD, 600 MHz).

Fig. S31 Comparison of ¹H NMR spectra of natural 5^{1} and synthetic 5 (CD₃OD, 600 MHz).

Fig. S32 Comparison of ¹H NMR spectra of natural 6^{1} and synthetic 6 (CD₃OD, 600 MHz).

Fig. S33 ¹H NMR spectrum of 7 (D_2O , 600 MHz).

Fig. S34 Gradient COSY spectrum of 7 (D₂O, 600 MHz, CryoProbe).

Fig. S35 Gradient HSQC spectrum of 7 (D₂O, 600 MHz, CryoProbe).

Fig. S36 Gradient HMBC spectrum of 7 (D₂O, 600 MHz, CryoProbe).

Fig. S37 NOESY1D spectra of 7 (D₂O, 600 MHz, CryoProbe). Irradiated at δ 5.43 ppm (H2') and δ 3.62 ppm (5 β).

A DA(1) Crystal structure

B DA(1) Docking

соон

соон

C IA (2) Docking

2 : R = COOH (isodomoic acid A,IA)

Y489

Lowest Binding Energy

-13.6 kcal/mol

COOH

соон

Fig. S39 Docking analyses of DA, IA, 5, 6, and 7 to GluK1.

Upper column shows the structure of (A and B) DA (1), (C) IA (2), (D) 7'methyl-IA (5), (E) 7'-hydroxy-IA (6), and (F) 7'-amide-IA (7). Bonds indicated by red arrows are defined as rotatable and were subjected to AutoDock. Lower column shows the results of the docking analysis of AutoDock. The molecular surface of GluK1 (PDB ID; 2pbw) is shown. Structures of (A) crystallographic DA and (B-F) the best docking model of each compound is shown as stick model, and crystallographic DA (black line) is shown as a reference structure. Direct hydrogen bonds between ligands and GluK1 are shown as dashed lines.