Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Synthesis and Application of Methyl itaconate-Anthracene Adducts in Configuration Assignment of Chiral Secondary Alcohols by ¹H NMR

Puracheth Rithchumpon,^{a,c} Neeranuth Intakaew,^{a,b,c} Nopawit Khamto,^{a,c} Saranphong Yimklan,^a Piyarat Nimmanpipug,^a Praput Thavornyutikarn,^a and Puttinan Meepowpan^{a,b,d,*}

a. Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai, 50200, Thailand.

b. Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand.

c.Graduate School, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand

d. Material Science Research Center (MsRC), Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand.

*E-Mail: pmeepowpan@gmail.com

Table of Contents

I. ¹ H, ¹³ C and 2D-NMR Spectra	S2
II. Density Functional Theory Calculations	S56
III. Crystallographic Data	S64

I. ¹H, ¹³C and 2D-NMR Spectra of MIA and Their Derivatives

Figure S1 ¹H NMR (500 MHz, CDCl₃) spectrum of (±)-monoacid-anthracene adducts

Figure S2 ¹³C NMR (126 MHz, CDCl₃) spectrum of (±)-monoacid-anthracene adducts

Figure S3 ¹H NMR (400 MHz, CDCl₃) spectrum of (-)-(11S)-monomenthyl-anthracene adduct

Figure S4 ¹³C NMR (100 MHz, CDCl₃) spectrum of (–)-(11*S*)-monomenthyl-anthracene adduct

Figure S5 ¹H NMR (400 MHz, CDCl₃) spectrum of (-)-(11*R*)-monomenthyl-anthracene adduct

Figure S6¹³C NMR (100 MHz, CDCl₃) spectrum of (-)-(11*R*)-monomenthyl-anthracene adduct

Figure S7 ¹H NMR (500 MHz, CDCl₃) spectrum of (+)-(11S)-dimethyl itaconate-anthracene adduct, (+)-(11S)-9

Figure S8¹³C NMR (126 MHz, CDCl₃) spectrum of (+)-(11S)-dimethyl itaconate-anthracene adduct, (+)-(11S)-9

Figure S9 ¹H NMR (500 MHz, CDCl₃) spectrum of (-)-(11*R*)-dimethyl itaconate-anthracene adduct, (-)-(11*R*)-9

Figure S10¹³C NMR (126 MHz, CDCl₃) spectrum of (-)-(11*R*)-dimethyl itaconate-anthracene adduct, (-)-(11*R*)-9

Figure S11 ¹H NMR (500 MHz, Acetone-*d*₆) spectrum of (+)-(11*S*)-itaconic acid-anthracene adduct, (+)-(11*S*)-10

Figure S12¹³C NMR (126 MHz, Acetone-*d*₆) spectra of (+)-(11*S*)-itaconic acid-anthracene adduct, (+)-(11*S*)-10

Figure S13 ¹H NMR (500 MHz, Acetone- d_6) spectrum of (-)-(11S)-itaconic acid-anthracene adduct, (-)-(11S)-10

Figure S14 ¹³C NMR (126 MHz, Acetone-*d*₆) spectra of(-)-(11*S*)-itaconic acid-anthracene adduct, (-)-(11*S*)-10

Figure S15 ¹H NMR (500 MHz, CDCl₃) spectrum of (+)-(11S)-methyl itaconate-anthracene adduct, (+)-(11S)-8

Figure S16¹³C NMR (126 MHz, CDCl₃) spectrum of (+)-(11S)-methyl itaconate-anthracene adduct, (+)-(11S)-8

Figure S17¹H NMR (500 MHz, CDCl₃) spectrum of (-)-(11*R*)-methyl itaconate-anthracene adduct, (-)-(11*R*)-8

Figure S18¹³C NMR (126 MHz, CDCl₃) spectrum of (-)-(11*R*)-methyl itaconate-anthracene adduct, (-)-(11*R*)-8

Figure 20 ¹³C NMR (126 MHz, CDCl₃) spectrum of (+)-(11*S*,1'*S*)-11

00

Figure S22 ¹³C NMR (126 MHz, CDCl₃) spectrum of (-)-(11*R*,1'*S*)-12

Figure S26 ¹³C NMR (126 MHz, CDCl₃) spectrum of (-)-(11*R*,1'*R*)-14

00

Figure S29 ¹H NMR (500 MHz, CDCl₃) spectrum of (-)-(11*R*,1'*S*)-16

Figure S30 ¹³C NMR (126 MHz, CDCl₃) spectrum of (-)-(11*R*,1'S)-16

Figure S31 ¹H NMR (500 MHz, CDCl₃) spectrum of (+)-(11*S*,1'*R*)-17

Figure S34 ¹³C NMR (126 MHz, CDCl₃) spectrum of (+)-(11*R*,1'*R*)-18

Figure S36 ¹³C NMR (126 MHz, CDCl₃) spectrum of (+)-(11*S*,1'*S*)-19

Figure S37 ¹H NMR (500 MHz, CDCl₃) spectrum of (-)-(11*R*,1'S)-20

Figure S38 ¹³C NMR (126 MHz, CDCl₃) spectrum of (-)-(11*R*,1'S)-20

Figure S39 ¹H NMR (500 MHz, CDCl₃) spectrum of (-)-(11*S*,1'*R*)-21

Figure S40 ¹³C NMR (126 MHz, CDCl₃) spectrum of (-)-(11*S*,1'*R*)-21

Figure S41 ¹H NMR (500 MHz, CDCl₃) spectrum of (-)-(11*R*,1'*R*)-22

Figure S42 ¹³C NMR (126 MHz, CDCl₃) spectra of (-)-(11*R*,1'*R*)-22

Figure S46 ¹³C NMR (126 MHz, CDCl₃) spectrum of (-)-(11*R*,1'*S*)-24

Figure S47 ¹H NMR (500 MHz, CDCl₃) spectrum of (+)-(11*S*,1'*S*)-**25**

Figure S50 ¹³C NMR (126 MHz, CDCl₃) spectrum of (-)-(11*R*,1'S)-26

Figure S51 ¹H NMR (500 MHz, CDCl₃) spectrum of (+)-(11*S*,1'*R*)-27

Figure S52 ¹³C NMR (126 MHz, CDCl₃) spectrum of (+)-(11*S*,1'*R*)-**27**

Figure S54 ¹³C NMR (126 MHz, CDCl₃) spectrum of (-)-(11*R*,1'*R*)-28

II. Density Function Theory Calculations

The structures of selected chiral secondary alcohol which were bonded to the chiral derivatizing agents, methyl itaconate-anthracene adducts (8) were undergone the conformer distributions using Spartan14 with the Molecular Mechanic Force Field (MMFF) and further geometrical optimization with the Gaussian 09 program using the Density Functional Theory together with the 6-311++G(d,p), followed by frequency calculations at the same level of theory. Including the gas-pahse single point energy calculations at these optimized structures were performed with the same level basis set.

The structures with the minimized energy were applied to identify and describe the influence of the anisotropic magnetic field from the aromatic part of anthracene to the different substituents of the selected alcohols. With the distance between the chiral alcohol substituents to the aromatic part of anthracene as well as the difference of chemical shift values described the shielding effect to the substituents which located close to the aromatic part.

References

SPARTAN 14, Wavefunction Inc., Irvine, CA, 2014.

Except for molecular mechanics and semi-empirical models, the calculation methods used in Spartan have been documented in: Y. Shao, L. F. Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A. T. B. Gilbert, L. V. Slipchenko, S. V. Levchenko, D. P. O'Neill, R. A. DiStasio Jr., R. C. Lochan, T. Wang, G. J. O. Beran, N. A. Besley, J. M. Herbert, C. Y. Lin, T. Van Voorhis, S. H. Chien, A. Sodt, R. P. Steele, V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J. Baker, E. F. C. Byrd, H. Dachsel, R. J. Doerksen, A. Dreuw, B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C-P. Hsu, G. Kedziora, R. Z. Khalliulin, P. Klunzinger, A. M. Lee, M. S. Lee, W. Z. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta, C. D. Sherrill, A. C. Simmonett, J. E. Subotnik, H. L. Woodcock III, W. Zhang, A. T. Bell, A. K. Chakraborty, D. M. Chipman, F. J. Keil, A. Warshel, W. J. Hehre, H. F. Schaefer, J. Kong, A. I. Krylov, P. M. W. Gill and M. Head-Gordon, Phys. Chem. Chem. Phys., 2006, **8**, 3172.

Gaussian 09, Revision E.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji,H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J.

L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda,
Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark,
M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.;
Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.;
Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.;
Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J.
W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J.
J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D.
J. Gaussian, Inc., Wallingford CT, 2009.

(11*S*,1′*S*)-**11**

С	-0.0222905852	-0.0540091412	0.0309051326
С	-0.0171836542	-0.1579912357	2.8111899238
С	1.1869753575	-0.1121617053	2.1112161902
С	1.1878138836	-0.0561642519	0.7139770941
С	-2.8902596448	-3.2246967288	-2.3649096304
С	-1.68477634	-3.1733108397	-3.0618197864
С	-2.3876388337	1.2405677299	-1.0071642614
С	-3.1962867274	-2.248140318	-1.4117207599
С	-2.286910221	-1.2277755576	-1.1603596029
С	-1.075583288	-1.1730513934	-1.8662486218
С	-0.7730868807	-2.1418809407	-2.8162874622
С	-2.4470288821	-0.084436839	-0.1764019393
С	-1.0394866055	1.3354150119	-1.7888571488
С	-0.2088653101	0.0079392736	-1.4734462641
С	-1.2344796304	-0.1504378787	2.1228903426
С	-1.2347034173	-0.1025124778	0.7344514772
С	-0.1260565145	2.5078316541	-1.3800814721
С	-1.2513586832	1.4268952662	-3.3127700371
0	0.8687969954	2.7888631375	-2.0133159455

0	-0.4978093295	3.1271058138	-0.2564553782
С	0.3370863378	4.2271145646	0.2328834673
С	-0.1045917836	5.5166599243	-0.4460411292
С	-1.9604501341	2.684153763	-3.7662237593
0	-2.2385410169	3.6339740694	-3.0739166257
0	-2.2424025161	2.620842118	-5.084752237
С	-2.8808632108	3.7801711559	-5.6523136809
С	1.1113150984	5.195391882	2.4697920917
С	0.1786177294	4.2143992976	1.7517699843
Н	-0.0112355432	-0.2039890618	3.8946571576
Н	2.1274608289	-0.1227399987	2.6508893472
Н	2.1246439484	-0.0153592955	0.1678624014
Н	-3.5930122258	-4.0273979687	-2.5588545062
Н	-1.4514201142	-3.9355694872	-3.7967394244
Н	-2.5046332468	2.0946217539	-0.3449467306
Н	-3.2254470701	1.2511132942	-1.7073475312
Н	-4.1346680066	-2.2915831301	-0.8678985832
Н	0.1648188368	-2.1007143275	-3.3609670462
Н	-3.3835106771	-0.1473945333	0.3807423175
Н	0.7402478701	0.0302947939	-2.0096382288
Н	-2.1711213881	-0.1865255865	2.6701878058
Н	-1.8174651991	0.5641526874	-3.6698097531
Н	-0.2858258254	1.4033986556	-3.826152279
Н	1.3684445965	3.9952419908	-0.0425142858
Н	-0.0174311991	5.4292482168	-1.5295083375
Н	0.5230856229	6.3499324698	-0.1206249232
Н	-1.1444753792	5.7452732525	-0.197694096
Н	-3.0237417825	3.5458331264	-6.7048441787
Н	-3.8398249288	3.9645736295	-5.1661582566
Н	-2.2452805609	4.6592609151	-5.5374844923
Н	1.0073656556	5.0972689983	3.5532457481

Η	2.1595663463	5.0029139678	2.2201500584
Н	0.8921471483	6.2349529453	2.2131594565
Н	-0.865094009	4.4357915789	2.0013312374
Н	0.3763696861	3.1965995036	2.1003516

(11*R*,1′*S*)-**12**

С	-0.0024886758	-0.0116290942	-0.0090797527
С	0.0441254478	-0.1063688837	2.773511827
С	1.2353884378	-0.1451952607	2.0510424125
С	1.217078453	-0.0920632216	0.6539605947
С	-3.1641998975	-2.9643192527	-2.32601721
С	-1.9714707252	-3.0140341718	-3.045934224
С	-2.2635470919	1.453201633	-1.0041988305
С	-3.3729732616	-1.9587485333	-1.3776909058
С	-2.3782781848	-1.0133879145	-1.1549595221
С	-1.1788531513	-1.0624468035	-1.8799277545
С	-0.9748268859	-2.058593042	-2.8279907869
С	-2.42407062	0.1409234142	-0.1724470014
С	-0.9374646145	1.411158445	-1.8380958591
С	-0.2056414155	0.0460521535	-1.5127787009
С	-1.1816076175	-0.0140607104	2.1069666146
С	-1.2010612345	0.0291840119	0.7178284233
С	-0.0574680698	2.6454705494	-1.4568774109
С	-1.1521632659	1.488672592	-3.3613932621
0	-0.351774917	1.0651833386	-4.1628069872
0	-2.2772513127	2.1388157349	-3.703776376
С	-2.5524083007	2.3318319849	-5.1309931785
С	-2.7082376751	4.8701711473	-4.7821491285
С	-3.4093504142	3.5890116893	-5.2395671834
С	-3.2326855256	1.0857108194	-5.6825453214

С	1.2642500601	2.7385081751	-2.1947439715
0	2.2368410606	2.0586529267	-1.9705296246
0	1.2335192608	3.7007834618	-3.1403548499
С	2.4239927313	3.8325140793	-3.9409381004
Н	0.066632438	-0.1491817031	3.8568960779
Н	2.1826265029	-0.2146505091	2.5742568962
Н	2.1423902755	-0.1004053535	0.089166861
Н	-3.9322817296	-3.7100283484	-2.4993118457
Н	-1.8151005572	-3.7975950517	-3.7790952697
Н	-2.2495732145	2.3072748557	-0.3227365374
Н	-3.1218102534	1.5765667576	-1.6617461422
Н	-4.3007763806	-1.9215594249	-0.8153756236
Н	-0.0511133356	-2.0887507404	-3.395343341
Н	-3.3533891075	0.161345936	0.4000618196
Н	0.7295689543	-0.0245083321	-2.0618702093
Н	-2.1091516975	0.0170830878	2.670125777
Н	0.1698621614	2.5750319069	-0.3914521034
Н	-0.6318290945	3.556404348	-1.6316912082
Н	-1.5890601653	2.4805228203	-5.6242535878
Н	-3.363536271	5.7363868887	-4.9048713853
Н	-2.4237112419	4.8114989118	-3.7296050958
Н	-1.7999666998	5.0537360749	-5.3640424528
Н	-3.7092811596	3.6862066044	-6.2888706722
Н	-4.3307813007	3.4357268571	-4.6665196249
Н	-2.5967740661	0.2083129472	-5.558730733
Н	-3.4322339061	1.2143915532	-6.7499704414
Н	-4.1838561652	0.9070960869	-5.1738063115
Н	2.6101585565	2.9087156352	-4.4897804529
Н	2.223557564	4.653161258	-4.6262376373
Н	3.284392885	4.0589494614	-3.3100314053

(11*S*,1′*R*)-**13**

С	1.7309185272	-0.1931297983	-1.265378206
С	2.5019835751	-2.6205396488	-2.3856056454
С	3.4010171097	-1.8918174872	-1.6095187067
С	3.0154236725	-0.673615669	-1.0420207397
С	-0.4714550846	3.0472233404	-4.2059687058
С	0.426298818	3.7677767275	-3.4209352554
С	-1.1105415859	-0.071834091	-0.7548957252
С	-0.8187083551	1.737625108	-3.8589738205
С	-0.2580383775	1.1574207754	-2.7275088932
С	0.6416301412	1.8851928165	-1.9339201274
С	0.9839586546	3.1881461413	-2.2770516853
С	-0.5183907197	-0.2384192615	-2.1932231864
С	-0.1216924209	0.7235103804	0.1545647273
С	1.1476146888	1.1037095416	-0.7361240053
С	1.2085787589	-2.1375816407	-2.6079514702
С	0.8275898011	-0.9225189912	-2.0523941168
С	0.4239215894	-0.05272654	1.3711142426
С	-0.7416904212	2.029379328	0.6928085403
0	1.0919962922	0.4936678109	2.22267719
0	0.1234408716	-1.353953667	1.3778920839
С	0.5818543182	-2.1663582281	2.5094444969
С	-1.830384737	-2.762736607	3.1391499878
С	-0.4568506365	-3.2688411911	2.6910509381
С	1.9814701299	-2.6892768031	2.2169315712
С	-1.9212051144	1.8281754003	1.618597053
0	-2.341079102	0.7691481028	2.0204097772
0	-2.4615591027	3.0162944533	1.9615174312
С	-3.5747291177	2.9664411109	2.873912614
Н	2.8076855875	-3.563898899	-2.8245289305

Н	4.4042629327	-2.2693034213	-1.445832571
Η	3.7133928398	-0.1071715512	-0.4341247984
Н	-0.8999988246	3.5015312878	-5.0924028586
Η	0.694766354	4.7812393242	-3.6973847561
Н	-1.3165372371	-1.0504784515	-0.3292010439
Η	-2.0611518044	0.4602874725	-0.8268998733
Н	-1.5159730908	1.1769579951	-4.4735194129
Η	1.6812396752	3.7506007489	-1.6642892284
Η	-1.2040970813	-0.8021698513	-2.8283433899
Η	1.8632192948	1.667719616	-0.1373682605
Η	0.5111881804	-2.7046766579	-3.2164043828
Н	-1.0629968046	2.6640171858	-0.1359627649
Н	0.0088553272	2.5975259733	1.2493256139
Η	0.6028203254	-1.511367948	3.3831541998
Η	-2.235352723	-2.0326713381	2.4362368881
Н	-2.5402442898	-3.5901919514	3.22260018
Η	-1.769104796	-2.2768645361	4.1178432977
Η	-0.5418354209	-3.8235186524	1.7496605589
Н	-0.0600990249	-3.9727927924	3.4312406699
Н	2.6831574095	-1.8652316661	2.0820040601
Η	2.3296103861	-3.3000152905	3.0546788856
Η	1.9851884964	-3.3039272511	1.3132363295
Η	-3.8649550612	4.0025570665	3.0331691229
Н	-4.3991806381	2.3990550866	2.4399465287
Н	-3.2752321853	2.5024271081	3.8145655721

(11*R*,1'*R*)-**14**

С	2.1097053804	-1.2528453972	-1.1750597704
С	-4.8595414754	-1.5738183775	-0.8792166659
С	-4.1052526372	-2.5585019353	-1.5138506331

С	-2.723365636	-2.4018842303	-1.6603299717
С	-0.5606528483	3.0169531196	-2.954541874
С	0.1970733695	2.0274198119	-3.577388975
С	-0.9717199091	0.3611026334	0.9283905576
С	-1.29893669	2.7214411263	-1.8041992247
С	-1.279174165	1.429786949	-1.2922636541
С	-0.5158290153	0.4341401742	-1.9198894417
С	0.2259820903	0.7298873902	-3.0573206456
С	-2.0313401175	0.9184865109	-0.0785985112
С	-0.1126336318	-0.7548876093	0.2550886879
С	-0.6307213613	-0.9195738118	-1.2444660795
С	-4.2419722114	-0.4188297794	-0.3885306968
С	-2.8702613327	-0.2579398597	-0.5420868658
С	-0.2658756267	-2.1183691445	0.9639310374
С	1.400094483	-0.4632347552	0.1636254884
0	2.1738934721	-1.289339618	-0.271188033
0	1.7626758634	0.7550665174	0.5739198448
С	3.1953420545	1.0726897413	0.5972179039
С	0.243751974	-2.1536868676	2.3876273486
0	0.8820051698	-1.2897014354	2.9395783413
0	-0.0988368402	-3.3158540493	2.9834527548
С	0.3680695344	-3.4972723787	4.3335678259
С	3.8214640597	0.4769540662	1.8517270325
С	2.816595388	3.2102171089	-0.7742251416
С	3.3018640006	2.5929027505	0.5383346973
Н	-5.9308188912	-1.7004190218	-0.7690529012
Н	-4.5903796853	-3.4495340363	-1.8963681848
Н	-2.1355760931	-3.1707134413	-2.151676014
Н	-0.5800281021	4.0209114985	-3.3639169415
Н	0.766117253	2.2631719932	-4.4697310962
Н	-1.4927534163	-0.0420268754	1.7992211848

Н	-0.3364969524	1.1718576651	1.2765206762
Н	-1.8899178318	3.493340204	-1.3214180524
Н	0.8176744385	-0.0409493034	-3.5401037313
Н	-2.6357466012	1.6967135817	0.3909355273
Н	-0.0489153774	-1.6882024961	-1.7532272452
Н	-4.8319667258	0.3490372091	0.1018688231
Н	0.2832995409	-2.8861993778	0.4107588661
Н	-1.3133150193	-2.4257766992	0.9679029791
Н	3.6379281114	0.6211575533	-0.2938883682
Н	-0.0012852107	-4.4737445017	4.6388745687
Н	1.4581623507	-3.4718274215	4.3663438996
Н	-0.028816303	-2.7160396075	4.9832313731
Н	3.7000674207	-0.6058663327	1.8732373604
Н	4.8911896269	0.7039957198	1.8694552002
Н	3.3602918796	0.8959219214	2.7493168152
Н	2.9233296336	4.2982679168	-0.75380329
Н	3.3963918127	2.8358022913	-1.6235858601
Н	1.7667362606	2.9788240019	-0.9604015612
Н	2.7469870813	3.0123930796	1.3851538328
Н	4.3548482085	2.8485958684	0.7010468029

III. Crystallographic Data

Single crystals of **11** - **14** were crystallized in CH₂Cl₂/hexane. A suitable crystal was selected and collected on a SuperNova, Single source at offset/far, HyPix3000 diffractometer. The crystal was kept at 293(2) K during data collection. Using Olex2 [1], the structure was solved with the SHELXT [2] structure solution program using Intrinsic Phasing and refined with the SHELXL [3] refinement package using Least Squares minimization. ORTEP diagrams of the asymmetric units and crystallographic data are shown below.

(11*R*,1'*S*)-**12**

Figure S55 ORTEP diagram of the X-ray crystal structure of 11-14

Identification Code	(11 <i>S</i> ,1′ <i>S</i>)- 11	(11 <i>R</i> ,1' <i>S</i>)- 12	(11 <i>S</i> ,1′ <i>R</i>)- 13	(11 <i>R</i> ,1' <i>R</i>)- 14
CCDC No.	2094178	2094086	1873119	2094087
Empirical formula	$C_{24}H_{26}O_4$	$C_{24}H_{26}O_4$	$C_{24}H_{26}O_4$	$C_{24}H_{26}O_4$
Formula weight	378.45	378.45	378.45	378.45
Temperature/K	293(2)	293(2)	293(2)	293(2)
Crystal system	orthorhombic	orthorhombic	orthorhombic	orthorhombic
Space group	$P2_{1}2_{1}2_{1}$	$P2_{1}2_{1}2_{1}$	$P2_{1}2_{1}2_{1}$	$P2_{1}2_{1}2_{1}$
a/Å	10.0659(2)	10.1047(2)	10.1003(3)	10.0685(3)
b/Å	10.1740(3)	10.1997(3)	10.1984(3)	10.1743(3)
$c/\text{\AA}$	20.3251(5)	20.2588(5)	20.2551(5)	20.3368(6)
Volume/Å ³	2081.50(9)	2087.9(9)	2086.4(1)	2083.3(1)
Ζ	4	4	4	4
Crystal size/mm ³	0.5 imes 0.4 imes 0.3	$0.4 \times 0.35 \times 0.3$	0.4 imes 0.3 imes 0.3	0.4 imes 0.4 imes 0.3
Radiation	MoK α ($\lambda = 0.71073$)	Mo K α ($\lambda = 0.71073$)	Mo K α ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)
2θ range for data collection/°	4.478 to 54.886	4.02 to 54.914	4.022 to 54.816	4.476 to 54.852
Index ranges	$-12 \le h \le 12, -12 \le k \le 12,$ $-25 \le l \le 26$	$-13 \le h \le 12, -13 \le k \le 12,$ $-24 \le l \le 25$	$-12 \le h \le 12, -12 \le k \le 12,$ $-25 \le l \le 25$	$-12 \le h \le 12, -12 \le k \le 12,$ $-25 \le l \le 25$
Reflections collected	23193	26461	23812	16394
Independent reflections	4427 [<i>R</i> int = 0.0391, <i>R</i> sigma = 0.0354]	4494 [<i>R</i> int = 0.0506, <i>R</i> sigma = 0.0302]	4493 [<i>R</i> int = 0.0443, <i>R</i> sigma = 0.0297]	4382 [<i>R</i> int = 0.0466, <i>R</i> sigma = 0.0411]
Data/restraints/parameters	4427/0/257	4494/0/257	4493/0/257	4382/0/257
Goodness-of-fit on F ²	1.059	1.079	1.063	1.029
Final R indexes [I>= 2σ (I)]	R1 = 0.0506, wR2 = 0.1279	R1 = 0.0604, wR2 = 0.1758	R1 = 0.0591, wR2 = 0.1691	R1 = 0.0523, wR2 = 0.1299
Final R indexes [all data]	R1 = 0.0720, wR2 = 0.1412	R1 = 0.0837, wR2 = 0.1937	R1 = 0.0796, wR2 = 0.1850	R1 = 0.0760, wR2 = 0.1456
Largest diff. peak/hole / e Å ⁻³	0.30/-0.19	0.42/-0.20	0.39/-0.21	0.27/-0.18
Flack parameter	0.3(5)	-0.2(4)	0.3(4)	0.3(6)

Crystal data and structure refinement for 11 - 14.

Figure S56 C – H $\dots \pi$ interaction in 11 and 14

The C – H ... π interaction parameters

Compound	H-bond	D-H/Å	DA/Å	HA/Å	D-HA/°
11	C4'-H4'A π	0.96(7)	3.847(6)	3.0577(1)	140.5(4)
14	C4'-H4'A π	0.96(6)	3.844(6)	3.0576(1)	140.1(3)

[1] Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.

[2] Bourhis, L.J., Dolomanov, O.V., Gildea, R.J., Howard, J.A.K., Puschmann, H. (2015). Acta Cryst. A71, 59-75.

[3] Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.