Supporting Information

Solitumergosterol A, a unique 6/6/6/5 steroid from the deep-seaderived *Penicillium solitum* MCCC 3A00215

Zhi-Hui He ^a, Chun-Lan Xie ^a, You-Jia Hao ^a, Lin Xu ^a, Man-Yi Hu ^a, Shu-Jing Li ^a, Chao-Feng Wang ^a, Tian-Hua Zhong ^a and Xian-Wen Yang ^{a,*}

^a Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural

Resources, 184 Daxue Road, Xiamen 361005, China

^{*} Corresponding author.

E-mail address: yangxianwen@tio.org.cn (X.-W.Y.);

Content

- 1. General Experimental Procedures
- 2. Fungal Material
- 3. Fermentation, Extraction, and Isolation
- 4. Biological Assay
 - 4.1 Cytotoxic experiment
 - 4.2 RXRα transcriptional activity
- 5. ECD Calculation

Table S1. Energies analysis for 1a at MMFF94 force field.

Table S2. Standard orientations at BP86/6-311G(d,p) level in Acetonitrile.

- 6. Figures
 - Figure S1. Effects of 1 on the transcriptional activities of RXRa.
 - Figure S2. The CD spectra of 1 in ACN.
 - Figure S3. ¹H NMR spectrum of 1 in CDCl₃.
 - Figure S4. ¹³C NMR spectrum of **1** in CDCl₃.
 - Figure S5. HSQC NMR spectrum of 1 in CDCl₃.
 - Figure S6. COSY NMR spectrum of 1 in CDCl₃.
 - Figure S7. HMBC NMR spectrum of 1 in CDCl₃.
 - Figure S8. NOESY NMR spectrum of 1 in CDCl₃.
 - Figure S9. The HR-ESI-MS spectrum of 1.
 - Figure S10. A biosynthetic proposal for 1.

1. General Experimental Procedures

NMR spectra were recorded on Bruker 400 MHz spectrometer using TMS as an internal standard. Chemical shifts were recorded in δ values using solvent signals (CDCl₃: $\delta_{\rm H}$ 7.26/ $\delta_{\rm C}$ 77.1) as references. The HRESIMS spectra were measured on a Waters Xevo G2 Q-TOF mass spectrometer. Optical rotations were measured with an Anton Paar MCP100 polarimeter. ECD spectra were measured on a JASCO J-810 CD spectrometer. Column chromatography (CC) was performed on silica gel (Qingdao Marine Chemistry Co., Ltd., Qingdao, China), Sephadex LH-20 (Amersham Pharmacia Biotech AB, Uppsala, Sweden), and ODS (50 µm, Daiso, Japan), respectively. Preparative HPLC separations were performed on an Agilent technologies 1260 infinity instrument equipped with DAD detector using semi-preparative chromatographic column (COSMOSIL 5 C₁₈-MS-II, 10 mm i.d.×150 mm, Nacalai Tesque, Japan).

2. Fungal Material

The fungus was isolated from a sediment sample at a depth of 3034 m from the Northwest Atlantic Ocean (W 44.9801°, N 14.7532°). It was identified to be *Penicillium solitum* (GenBank accession number FJ798652) as the 16S rRNA gene sequence alignment demonstrated that it was similar to *P. solitum* ATCC 9923 (GenBank accession number IF00776501). The strain was perseved at the Marine Culture Collection of China (Xiamen, China) and numbered MCCC 3A00215.

3. Fermentation, Extraction, and Isolation

Large-scale fermentation was carried out in 48 Erlenmeyer flasks (1 L) each containing oats (80 g) and tape water (120 mL, 3% marine salt). After incubation for 30 days, the fermented broth was extracted with EtOAc for three times. The filtrate was concentrated under reduced pressure to give a crude extract (200 g), which subjected to column chromatography (CC) on silica gel using petroleum ether (PE), CH₂Cl₂, EtOAc to provide a EtOAc- soluable extract (114.5 g). The EtOAc part was subjected to medium pressure liquid chromatography (MPLC, 460 mm × 46 mm) by silica gel with gradient elution consisting CH₂Cl₂/MeOH (100% \rightarrow 70%, 6h; 70% \rightarrow 50%, 1h, 30 mL/min) to obtain five fractions (Fr.1-Fr.5). Fr.2 (4 g) was subjected to ODS chromatography (310 mm × 5 mm) eluted by gradient MeOH/H₂O (10% \rightarrow 40%, 4h; 40% \rightarrow 60%, 6h; 60% \rightarrow 100%, 5h) and obtain 13 subfractions. Fr.2.11 was purified by Sephadex LH-20 (1.5 m × 2 cm, MeOH) and followed by semi-preparative HPLC eluted with MeOH/H₂O (40% \rightarrow 100%) to lead to the isolation of compound 1 (3.0 mg).

4. Biological Assay

4.1 Cytotoxic experiment

The *in vitro* cytotoxic activities of **1** were conducted on 17 human tumor cell lines A431, A549, MB231, MCF-7, PANC1, HepG2, HCT116, H460, H1299, QGY-7701, BGC823, SKGT4, A375, U2OS, HL-60, K562, and KYSE450 by MTT method. Paclitaxel was used as a positive control, and DMSO was used as a negative control. Different cancer cells were incubated to 96-well cell plates and cultured for 24 h. Thereafter, the cells were treated with different concentrations of **1**. After 48h, 20 μ L of MTT solution was added and the

incubation continued for another 4 h. The supernatant was discarded softly, and the deposited formazan formed in the cells was dissolved with 100 μ L of DMSO. The absorbencies were measured at 490 nm. The percentage of cell growth rate was calculated as follows:

Growth Rate (%) = $(OD_{sample} - OD_{blank}) / (OD_{control} - OD_{blank}) \times 100\%$

4.2 RXRα transcriptional activity

The human renal epithelial cells were seeded to 96-well plates in DMEM containing 10% FBS at 37 °C. After 24 h, two target plasmids (30 ng pBind RXR α LBD and 60 ng PG5 LUC) were transfected by Liposome 2000 into the cell. After the cells adhere to the wall, they were exposed to compound 1 for 16 h. Then the cells were rinsed with PBS and lysed by buffered solution on the oscillating platform for 15 min. According to the introduction of the Dual-Luciferase Reporter Assay System kit, the activities of firefly luciferase (FL) and rellina luciferase (RL) were checked. The activity fold was calculated as the relative luciferase activities ratio between sample and blank control. 9-*cis*-retinoic acid (9-*cis*) was used as agonist. Uvi30003 was used as antagonist.

Relative luciferase activity (%) =
$$\frac{FL}{RL} \times 100\%$$

5. ECD Calculation

Conformational analysis was firstly performed *via* random searching in the Sybyl-X 2.0 using the MMFF94S force field with an energy cutoff of 7.0 kcal/mol and RMSD threshold of 0.2 Å. All conformers were consecutively optimized at PM6 and HF/6-31G(d) levels. Dominative conformers were re-optimized at B3LYP/6-31G(d) level in gas phase. The theoretical ECD spectra were calculated with the time-dependent density functional theory (TD-DFT) at BP86/6-311G(d,p) level in Acetonitrile using Gaussian 09 [1]. The ECD spectrum was simulated in SpecDis [2] by overlapping Gaussian functions for each transition.

References:

[1] G.W.T. M. J. Frisch, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox., Gaussian 09 Revision D.01, Wallingford, CT, 2009.

[2] T. Bruhn, A. Schaumloffel, Y. Hemberger, G. Bringmann, Chirality 25 (2013) 243-249.

Configuration	Conformer	Structure	E (kcal/mol)	Population (%)
1 a	1	-HARAN CA	112.03	80.7
1 a	2	大学を	113.02	15.2
1 a	3	- HEARINE	114.05	2.7

Table S1. Energies analysis for **1a** at MMFF94 force field.

HT KAN									
SCF Energy (BP86): -1243.99364465 Hartree: -780617.79136232 kcal/mol									
Center	Atomic	Atomic	Coordinates (Angstroms)						
Number	Number	Туре	Х	Y	Ζ				
1	6	0	6.506429	-1.403851	-0.248698				
2	6	0	6.928829	-0.046482	-0.795576				
3	6	0	6.172618	1.065389	-0.054808				
4	6	0	4.669834	0.891417	-0.074418				
5	6	0	4.110811	-0.507260	0.249294				
6	6	0	4.994273	-1.606590	-0.407333				
7	6	0	3.855043	1.953521	-0.239896				
8	6	0	2.404022	1.876983	-0.094100				
9	6	0	1.822558	0.594211	-0.009946				
10	6	0	2.671203	-0.614314	-0.346949				
11	6	0	0.189949	2.892567	0.093578				
12	6	0	-0.328658	-0.795067	0.328273				
13	6	0	0.424963	-1.882153	-0.471530				
14	6	0	1.923626	-1.940983	-0.086652				
15	6	0	-0.373462	1.622557	0.194688				
16	6	0	-1.816229	1.172097	0.209404				
17	6	0	-1.728144	-0.325626	-0.229986				
18	6	0	-2.995369	-1.136955	0.137119				
19	6	0	-4.226617	-0.472092	-0.438323				
20	6	0	-2.937766	-2.600296	-0.346916				
21	6	0	-5.268830	-0.017868	0.263381				
22	6	0	-6.498652	0.651551	-0.305044				
23	6	0	-7.793068	-0.128611	0.070004				
24	6	0	-9.070328	0.570262	-0.423756				
25	6	0	-7.751557	-1.570741	-0.459097				
26	6	0	4.110734	-0.667328	1.790894				
27	6	0	-6.535998	2.121808	0.162667				
28	6	0	-0.437271	-1.187864	1.822806				
29	8	0	8.339546	0.069918	-0.619286				
30	6	0	1.580582	3.011713	-0.024298				
31	6	0	0.456670	0.496447	0.193436				
32	1	0	6.808279	-1.462095	0.805404				

 Table S2. Standard orientations at BP86/6-311G(d,p) level in Acetonitrile.

Conformer 1a-1

33	1	0	7.050675	-2.196147	-0.776059
34	1	0	6.676074	-0.000547	-1.869398
35	1	0	6.436339	2.050486	-0.463832
36	1	0	6.540427	1.050182	0.983472
37	1	0	4.763698	-1.639545	-1.482097
38	1	0	4.712684	-2.585478	-0.001497
39	1	0	4.290038	2.936772	-0.419263
40	1	0	2.821201	-0.548339	-1.439858
41	1	0	-0.433957	3.783473	0.084323
42	1	0	-0.017151	-2.872813	-0.316164
43	1	0	0.335464	-1.661423	-1.544896
44	1	0	2.401774	-2.746049	-0.656516
45	1	0	2.008159	-2.225471	0.967841
46	1	0	-2.456239	1.759496	-0.457278
47	1	0	-2.263211	1.253274	1.211868
48	1	0	-1.638187	-0.330491	-1.327798
49	1	0	-3.100032	-1.140693	1.230883
50	1	0	-4.246454	-0.385463	-1.528514
51	1	0	-3.877052	-3.115042	-0.116673
52	1	0	-2.125047	-3.157949	0.128001
53	1	0	-2.788202	-2.650948	-1.432914
54	1	0	-5.247560	-0.105800	1.353681
55	1	0	-6.415218	0.646214	-1.402907
56	1	0	-7.837982	-0.172432	1.170235
57	1	0	-9.041406	0.718633	-1.511579
58	1	0	-9.222011	1.547789	0.044249
59	1	0	-9.952451	-0.040917	-0.199256
60	1	0	-8.644579	-2.126258	-0.149362
61	1	0	-6.871383	-2.111232	-0.098063
62	1	0	-7.719426	-1.580928	-1.556916
63	1	0	3.814204	-1.679174	2.089271
64	1	0	3.419259	0.044538	2.254123
65	1	0	5.105829	-0.484358	2.208675
66	1	0	-6.679520	2.186078	1.249346
67	1	0	-5.592000	2.622808	-0.076804
68	1	0	-7.344003	2.683762	-0.316185
69	1	0	-0.982383	-2.130958	1.948910
70	1	0	-0.958641	-0.416739	2.399986
71	1	0	0.551265	-1.309428	2.275012
72	1	0	8.608458	0.936232	-0.963384
73	1	0	2.032736	3.998979	-0.093092

Conformer 1a-2								
			ALA.					
SCF Energy (BP86): -1243.99291910 Hartree: -780617.336104201 kcal/mol								
Center	Atomic	Atomic	Coor	Coordinates (Angstroms)				
Number	Number	Туре	Х	Y	Z			
1	6	0	6.533760	-1.381835	-0.262636			
2	6	0	6.959173	-0.002009	-0.764960			
3	6	0	6.187501	1.085149	-0.004029			
4	6	0	4.685753	0.900395	-0.034698			
5	6	0	4.129857	-0.509320	0.244754			
6	6	0	5.022313	-1.586876	-0.435078			
7	6	0	3.867262	1.963241	-0.175607			
8	6	0	2.415571	1.876078	-0.044321			
9	6	0	1.838834	0.589032	-0.002404			
10	6	0	2.695722	-0.605726	-0.366784			
11	6	0	0.195708	2.876912	0.152973			
12	6	0	-0.310083	-0.817971	0.273260			
13	6	0	0.456362	-1.878706	-0.549371			
14	6	0	1.951385	-1.942231	-0.151484			
15	6	0	-0.363311	1.602307	0.211494			
16	6	0	-1.804234	1.145932	0.197294			
17	6	0	-1.704566	-0.336850	-0.287419			
18	6	0	-2.973354	-1.163638	0.036719			
19	6	0	-4.198118	-0.484767	-0.535646			
20	6	0	-2.904320	-2.610440	-0.493419			
21	6	0	-5.256744	-0.062430	0.161800			
22	6	0	-6.486019	0.588488	-0.428558			
23	6	0	-7.729934	-0.352625	-0.351261			
24	6	0	-8.202982	-0.643906	1.081835			
25	6	0	-8.894788	0.165796	-1.209451			
26	6	0	4.115672	-0.713049	1.781096			
27	6	0	-6.714170	1.973446	0.209807			
28	6	0	-0.434841	-1.255093	1.754147			
29	8	0	8.368285	0.199940	-0.687020			
30	6	0	1.586788	3.005033	0.051210			
31	6	0	0.471556	0.479900	0.185095			
32	1	Õ	6.819519	-1.478678	0.796526			
33	- 1	Û Û	7 08/818	2 156565	0.808834			

34	1	0	6.730615	0.076431	-1.835204
35	1	0	6.459630	2.074844	-0.387116
36	1	0	6.536468	1.050868	1.044021
37	1	0	4.802560	-1.588707	-1.512546
38	1	0	4.740299	-2.578473	-0.061393
39	1	0	4.299560	2.952547	-0.324360
40	1	0	2.855148	-0.507377	-1.455853
41	1	0	-0.431853	3.765216	0.163792
42	1	0	0.376371	-1.628584	-1.616991
43	1	0	0.017263	-2.875184	-0.425915
44	1	0	2.026360	-2.256097	0.895442
45	1	0	2.438325	-2.729199	-0.738967
46	1	0	-2.439899	1.751037	-0.457442
47	1	0	-2.262339	1.193580	1.196882
48	1	0	-1.600546	-0.306838	-1.383613
49	1	0	-3.093777	-1.202685	1.128198
50	1	0	-4.198099	-0.358148	-1.622308
51	1	0	-2.735936	-2.625197	-1.577711
52	1	0	-2.098536	-3.181726	-0.022902
53	1	0	-3.846461	-3.133470	-0.296222
54	1	0	-5.249941	-0.184180	1.247498
55	1	0	-6.290176	0.745020	-1.499581
56	1	0	-7.403273	-1.307167	-0.788715
57	1	0	-8.575916	0.260794	1.576758
58	1	0	-9.023559	-1.371065	1.072039
59	1	0	-7.402212	-1.061558	1.702063
60	1	0	-9.703123	-0.573997	-1.251202
61	1	0	-8.574917	0.368780	-2.238840
62	1	0	-9.322105	1.090431	-0.803199
63	1	0	5.104174	-0.531634	2.215544
64	1	0	3.826137	-1.735515	2.048567
65	1	0	3.412623	-0.020903	2.256509
66	1	0	-6.855620	1.899301	1.294412
67	1	0	-5.845515	2.617936	0.036493
68	1	0	-7.592584	2.476299	-0.209315
69	1	0	-0.966079	-0.503210	2.347483
70	1	0	-0.977646	-2.203561	1.845997
71	1	0	0.548689	-1.386581	2.214589
72	1	0	8.615371	0.142671	0.250540
73	1	0	2.035376	3.995594	0.014876

		Con	former 1a-3		
		-	EAN'S		
SCF E	nergy (BP86):	-1243.99047	270 Hartree: -78	0615.800965036	6 kcal/mol
Center	Atomic	Atomic	Coor	rdinates (Angstr	oms)
Number	Number	Туре	Х	Y	Z
1	6	0	-6.455014	-1.280966	0.565589
2	6	0	-6.822819	0.134767	0.990297
3	6	0	-6.092062	1.145692	0.095578
4	6	0	-4.593470	0.942802	0.054927
5	6	0	-4.074573	-0.493560	-0.148575
6	6	0	-4.939638	-1.500416	0.662969
7	6	0	-3.754372	1.998811	0.067112
8	6	0	-2.314401	1.876798	-0.142147
9	6	0	-1.758416	0.580125	-0.120212
10	6	0	-2.607435	-0.568658	0.383203
11	6	0	-0.097710	2.820471	-0.548572
12	6	0	0.350139	-0.881172	-0.419422
13	6	0	-0.377649	-1.864271	0.525992
14	6	0	-1.895203	-1.930614	0.225902
15	6	0	0.439746	1.535273	-0.544354
16	6	0	1.872229	1.054656	-0.588170
17	6	0	1.785125	-0.385766	0.012171
18	6	0	3.015846	-1.260482	-0.332570
19	6	0	4.291536	-0.556819	0.079790
20	6	0	2.970083	-2.653002	0.328854
21	6	0	5.287311	-0.232570	-0.750484
22	6	0	6.599346	0.464843	-0.444927
23	6	0	6.871842	0.725321	1.061328
24	6	0	7.242318	-0.542618	1.849225
25	6	0	7.940066	1.812879	1.263148
26	6	0	-4.156855	-0.812066	-1.662926
27	6	0	7.749229	-0.275872	-1.160827
28	6	0	0.372956	-1.428904	-1.868276
29	8	Õ	-8.239173	0.263986	0.881763
30	6	Õ	-1.478117	2.980479	-0.372702
31	6	Õ	-0.406659	0.433571	-0.380672
32	1	Õ	-6 981982	-2.002438	1 201051
22	1	0	6.901902	1 4 40 4 4 2	0.4507(0

34	1	0	-6.507316	0.286006	2.037499
35	1	0	-6.317886	2.173934	0.410294
36	1	0	-6.517140	1.027890	-0.913870
37	1	0	-4.697599	-2.521485	0.344807
38	1	0	-4.650906	-1.429539	1.721836
39	1	0	-4.163751	3.004352	0.164263
40	1	0	-2.700022	-0.386289	1.469114
41	1	0	0.539440	3.694181	-0.665832
42	1	0	0.039548	-2.874925	0.451030
43	1	0	-0.228671	-1.537520	1.565161
44	1	0	-2.039179	-2.322014	-0.787206
45	1	0	-2.354804	-2.661828	0.900821
46	1	0	2.557433	1.695160	-0.023106
47	1	0	2.264396	1.020221	-1.616000
48	1	0	1.754743	-0.272871	1.107468
49	1	0	3.049298	-1.398493	-1.422055
50	1	0	4.369628	-0.332055	1.144767
51	1	0	2.121496	-3.247658	-0.022312
52	1	0	3.886160	-3.210496	0.104944
53	1	0	2.889962	-2.568039	1.420105
54	1	0	5.161662	-0.482701	-1.807619
55	1	0	6.531065	1.458486	-0.920425
56	1	0	5.938279	1.122679	1.484170
57	1	0	6.516373	-1.347321	1.695113
58	1	0	8.228132	-0.920522	1.553172
59	1	0	7.285279	-0.327660	2.923594
60	1	0	7.666117	2.743499	0.751540
61	1	0	8.063254	2.041583	2.328422
62	1	0	8.919413	1.497863	0.883086
63	1	0	-3.478313	-0.167100	-2.231221
64	1	0	-5.169031	-0.651428	-2.047382
65	1	0	-3.893018	-1.855625	-1.867798
66	1	0	7.850259	-1.304641	-0.798666
67	1	0	7.560229	-0.324539	-2.239605
68	1	0	8.709193	0.231679	-1.018036
69	1	0	-0.639905	-1.569594	-2.256665
70	1	0	0.880957	-0.736359	-2.548045
71	1	0	0.890493	-2.394274	-1.921168
72	1	0	-8.473321	1.167237	1.147415
73	1	0	-1.910600	3.978801	-0.385488

Figure S1. Effects of 1 on the transcriptional activities of $RXR\alpha$.

- Remarks : #User: CD #Date: 2020/07/07 #Instrument: 0536 #DetectorType: PMT #DichOS Calibration Correction Curve: 0536/1 #HV (CDDC channel): 0 v #Time per point: 0.25 s #Description: Sample 1 #Concentration: 0 M
- #Pathlength: 10 mm
- #Temperature: ---- C

Figure S2. The CD spectrum of 1 in ACN.

Figure S3. ¹H NMR spectrum of 1 in CDCl₃.

HB2-6 C 3mg C

Figure S4. ¹³C NMR spectrum of 1 in CDCl₃.

Figure S5. HSQC NMR spectrum of 1 in CDCl₃.

Figure S6. COSY NMR spectrum of 1 in CDCl₃.

Figure S7. HMBC NMR spectrum of 1 in CDCl₃.

Elemental Composition Report

Single Mass Analysis

Tolerance = 20.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions

8 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-30 H: 0-60 O: 0-2 23Na: 0-1 HB 2-6-re-Oct 168 (0.651)

1: TOF MS ES+

Figure S9. The HR-ESI-MS spectrum of 1.

Chemical Formula: C₃₀H₄₂O

Page 1

Figure S10. A biosynthetic proposal for 1.