Supporting Information

Visible-Light-Promoted Direct Trifluoromethylation and Perfluoroalkylation of Imidazopyridines

Meichen Li‡, Gaolin Li‡, Chenxun Dai, Wenjun Zhou, Wenqiang Zhan, Muyang Gao, Yuan Rong, Ze Tan* and Wei Deng*

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China

E-mail: ztanze@gmail.com, weideng@hnu.edu.cn.

‡These authors contribute equally to this work

Contents

1. General Information ..1
2. Experimental section ...1
3. Characterization data of products ..8
4. NMR spectrum ...26
1. General Information

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. Imidazo[1,2-a]pyridines and liquid trifluoromethylation reagents TMG- CF₃I were prepared according to the literature procedures.¹,² Products were purified by column chromatography on 200-300 mesh silica gel, SiO₂. ¹H NMR, ¹⁹F NMR and ¹³C NMR spectra were measured on a 400 MHz NMR spectrometer using CDCl₃ as the solvent. The chemical shifts are given in δ relative to TMS, and the coupling constants are given in Hertz. The peak patterns are indicated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; qui, quintet; sxt, sextet. The HRMS analyses were conducted using a TOF MS instrument with an EI source. Melting points were measured by a melting point instrument and were uncorrected.

2. Experimental section

2.1 General experimental procedure for trifluoromethylation reaction.

Imidazo[1,2-a]pyridine 1 (0.3 mmol, 1.0 eq) was added to a 10 mL Schlenk flask equipped with a high-vacuum PTFE valve-to-glass seal. The flask was evacuated and backfilled with nitrogen for 3 times, and then TMG- CF₃I 2 (0.6 mmol, 2.0 eq), DBU (0.9mmol, 3.0 eq) and CH₃CN (0.75 mL) were added. The mixture was stirred under Blue LED strip irradiation for 16 h. When the reaction was completed, the solvent was removed in vacuum, and the product was purified by silica gel chromatography using petroleum ether/ethyl acetate (20:1 to 8:1, v/v) as eluent to afford the pure product 3.

Larger-scale synthesis of 3aa. 2-phenylimidazo[1,2-a]pyridine 1a (388.5 mg, 2.0mmol) was added to a 25 mL Schlenk flask equipped with a high-vacuum PTFE valve-to-glass seal. The flask was evacuated and backfilled with nitrogen for 3 times, and then TMG- CF₃I 2a (0.8 mL, 4.0
mmol), DBU (913.4 mg, 6.0 mmol) and CH$_3$CN (5.0 mL) were added. The mixture was stirred under blue LED strip irradiation for 16 h. When the reaction was completed, the solvent was removed in vacuum. The residue was purified by silica gel chromatography using petroleum ether/ethyl acetate (10:1, v/v) as eluent to afford the pure product 3aa (411.1 mg, 78% yield).

2.2 Mechanism experiments.

2-phenylimidazo[1,2-a]pyridine 1a (58.3 mg, 0.3 mmol) and TEMPO (187.5 mg, 1.2 mmol) were added to a 10 mL Schlenk flask equipped with a high-vacuum PTFE valve-to-glass seal. The flask was evacuated and backfilled with nitrogen for 3 times, and then TMG-CF$_3$I 2a (0.12 mL, 0.6 mmol), DBU (137.0 mg, 0.9 mmol) and CH$_3$CN (0.75 mL) were added. The mixture was stirred under Blue LED strip irradiation for 16 h. When the reaction was completed, products 3aa and TEMPO-bound adduct could not be detected.

2-phenylimidazo[1,2-a]pyridine 1a (58.3 mg, 0.3 mmol) were added to a 10 mL Schlenk flask equipped with a high-vacuum PTFE valve-to-glass seal. The flask was evacuated and backfilled with nitrogen for 3 times, and then TMG-CF$_3$I 2a (0.12 mL, 0.6 mmol), DBU (137.0 mg, 0.9 mmol) 1,1-diphenylethylene (108.2 mg, 0.6 mmol) and CH$_3$CN (0.75 mL) were added. The mixture was stirred under Blue LED strip irradiation for 16 h. When the reaction was completed, species 5 was detected in the reaction mixture by GC-MS analysis.
2.3 UV/Vis absorption spectra.

The UV/Vis absorption spectra of CH$_3$CN solutions of DBU (0.1 M), TMG-CF$_3$I (0.1 M), and a mixture of TMG-CF$_3$I and DBU are shown in Figure S1. A bathochromic shift can be observed, indicating the formation of an EDA complex.
2.4 Determination of Binding Stoichiometry and Association Constant by 19F NMR

The 19F NMR spectra of mixtures of TMG-CF$_3$I (2a) and DBU in CDCl$_3$ were recorded at 298 K by using benzotrifluoride ($\delta = -63.2$ ppm) as internal standard (Fig S2). The total volume of the solution was 0.7 mL. The total amount of 2a and DBU was kept constant at 0.35 mmol (0.5 M). The amount of 2a was varied from 0 to 0.35 mmol, corresponding to 0.0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0 molar ratio. The chemical shift difference ($\Delta\delta$) between CF$_3$I in the different mixtures was calculated and the binding stoichiometry was then determined using Job’s plot analysis,3 plotting $[2a]/[2a + DBU]$ vs $[2a] \times \Delta\delta$.

![Fig S2, 19F NMR shift of 2a with DBU](image)

<table>
<thead>
<tr>
<th>Table S1. Experimental data for Job plot analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molar Ratio</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>0.2</td>
</tr>
</tbody>
</table>
The Job plot analysis has demonstrated that 2a and DBU are associated in 1:1 ratio complex ratio through halogen bonding.

Then, the association constant (Ka) of the complex has been calculated using Hanna and Ashbaugh's method. 19F NMR spectra of nine mixtures of TMG·CF$_3$I (2a) and DBU were recorded in the CDCl$_3$. Benzotrifluoride was used as the internal standard (25 µL, δ = -63.2 ppm). The total volume of the solution was 0.7 mL. The amount of 2a was kept constant at 0.1 mmol (0.143 M). The amount of DBU was varied from 0 to 3 mmol, corresponding to 0, 1, 1.5, 3, 6, 10, 12, 20, 30 equivalents with respect to 2a. The chemical shift difference

<table>
<thead>
<tr>
<th>0.4</th>
<th>0.2</th>
<th>0.3</th>
<th>2.168</th>
<th>0.4</th>
<th>0.434</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.25</td>
<td>0.25</td>
<td>1.725</td>
<td>0.5</td>
<td>0.431</td>
</tr>
<tr>
<td>0.6</td>
<td>0.3</td>
<td>0.2</td>
<td>1.468</td>
<td>0.6</td>
<td>0.440</td>
</tr>
<tr>
<td>0.8</td>
<td>0.4</td>
<td>0.1</td>
<td>0.714</td>
<td>0.8</td>
<td>0.286</td>
</tr>
<tr>
<td>1.0</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
(\(\Delta\delta\)) between CF\(_3\)I in the different mixtures was calculated and the association constant was then determined plotting 1/ [DBU] vs 1/\(\Delta\delta\).

Table S2. Experimental data for association constant determination.

<table>
<thead>
<tr>
<th>Entry</th>
<th>[2a]</th>
<th>[DBU]</th>
<th>1/[DBU]</th>
<th>(\Delta\delta)</th>
<th>1/(\Delta\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.143</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.143</td>
<td>0.14</td>
<td>7</td>
<td>1.63</td>
<td>0.61</td>
</tr>
<tr>
<td>3</td>
<td>0.143</td>
<td>0.21</td>
<td>4.67</td>
<td>2.33</td>
<td>0.43</td>
</tr>
<tr>
<td>4</td>
<td>0.143</td>
<td>0.43</td>
<td>2.33</td>
<td>4.23</td>
<td>0.24</td>
</tr>
<tr>
<td>5</td>
<td>0.143</td>
<td>0.86</td>
<td>1.17</td>
<td>6.72</td>
<td>0.15</td>
</tr>
<tr>
<td>6</td>
<td>0.143</td>
<td>1.43</td>
<td>0.70</td>
<td>9.39</td>
<td>0.106</td>
</tr>
<tr>
<td>7</td>
<td>0.143</td>
<td>1.71</td>
<td>0.58</td>
<td>10.13</td>
<td>0.099</td>
</tr>
<tr>
<td>8</td>
<td>0.143</td>
<td>2.86</td>
<td>0.35</td>
<td>12.14</td>
<td>0.082</td>
</tr>
<tr>
<td>9</td>
<td>0.143</td>
<td>4.29</td>
<td>0.23</td>
<td>13.43</td>
<td>0.074</td>
</tr>
</tbody>
</table>

![Fig S4. Association constant determination](image)

\[
K_a = \frac{\text{intercept}}{\text{gradient}} = \frac{0.0541}{0.0797} = 0.68 \text{ M}^{-1}
\]

The association constant between 2a and DBU was calculated to be 0.68 M\(^{-1}\) in CDCl\(_3\).

2.5 Light on/off experiments.

Under an \(N_2\) atmosphere, a mixture of 2-phenylimidazo[1,2-a]pyridine 1a (116.6 mg, 0.6 mmol),
TMG-CF$_3$I 2a (0.24 mL, 1.2 mmol), DBU (274.0 mg, 1.8 mmol) in 1.5 mL CH$_3$CN was stirred at ambient temperature under visible-light irradiation of a 25 W blue LED. The reaction mixture was stirred with the LED irradiation on and off over time. Samples were taken for determining yields of the target product 3aa by GC analysis with 1,3,5-trimethoxybenzene as an internal standard (Table S3).

Table S3. Light On/Off Experiments

<table>
<thead>
<tr>
<th>Entry</th>
<th>Time (h)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0→2</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>2→4</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>4→6</td>
<td>43</td>
</tr>
<tr>
<td>4</td>
<td>6→8</td>
<td>43</td>
</tr>
<tr>
<td>5</td>
<td>8→10</td>
<td>56</td>
</tr>
<tr>
<td>6</td>
<td>10→12</td>
<td>56</td>
</tr>
</tbody>
</table>

a1a (116.6 mg, 0.6 mmol), TMG- CF$_3$I 2a (0.24 mL, 1.2 mmol), DBU (274.0 mg, 1.8 mmol), CH$_3$CN (1.5 mL), 25°C, 25 W blue LED, N$_2$.

bYields were determined by GC analysis with 1,3,5-trimethoxybenzene as an internal standard.
3. Characterization data of products

![Chemical Structure](image)

2-phenyl-3-(trifluoromethyl)imidazo[1,2-a]pyridine (3aa). White solid, 69 mg, Yield: 88%; 1H NMR (400 MHz, CDCl$_3$) δ 8.27 (d, $J = 6.9$ Hz, 1H), 7.75 – 7.67 (m, 3H), 7.50 – 7.41 (m, 3H), 7.32 (t, $J = 8.0$ Hz, 1H), 6.91 (t, $J = 7.0$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 147.9 (d, $J = 2.1$ Hz), 146.0, 132.8, 129.5 (d, $J = 1.7$ Hz), 128.8, 128.0, 126.8, 125.3 (q, $J = 3.8$ Hz), 121.8 (q, $J = 265.9$ Hz), 117.9, 113.8 109.4 (q, $J = 39.6$ Hz). 19F NMR (376 MHz, CDCl$_3$) δ -57.6. The spectral data were in accordance with the literature.

![Chemical Structure](image)

2-(o-tolyl)-3-(trifluoromethyl)imidazo[1,2-a]pyridine (3ba). Yellow liquid, 59 mg, Yield: 71%; 1H NMR (400 MHz, CDCl$_3$) δ 8.32 (d, $J = 7.0$ Hz, 1H), 7.74 (d, $J = 9.1$ Hz, 1H), 7.44 – 7.24 (m, 5H), 7.02 (t, $J = 7.0$ Hz, 1H), 2.29 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 147.5 (d, $J = 2.0$ Hz), 146.0, 136.9, 132.5, 130.1, 129.9, 128.8, 126.8, 125.2, 121.6 (q, $J = 265.7$ Hz), 118.0, 113.8, 110.6 (q, $J = 38.8$ Hz), 19.7. 19F NMR (376 MHz, CDCl$_3$) δ -59.4. The spectral data were in accordance with the literature.

![Chemical Structure](image)

2-(m-tolyl)-3-(trifluoromethyl)imidazo[1,2-a]pyridine (3ca) White solid, 63 mg, Yield: 76%; 1H NMR (400 MHz, CDCl$_3$) δ 8.30 (d, $J = 6.9$ Hz, 1H), 7.72 (d, $J = 9.2$ Hz, 1H), 7.54 (s, 1H), 7.47 (d, $J = 7.7$ Hz, 1H), 7.40 – 7.30 (m, 2H), 7.25 (d, $J = 8.0$ Hz, 1H), 6.96 (t, $J = 6.9$ Hz, 1H),
2.42 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 148.2 (d, $J = 2.1$ Hz), 146.0, 137.8, 132.7, 130.1 (d, $J = 1.0$ Hz), 129.7, 128.0, 126.8, 126.7 (q, $J = 1.9$ Hz), 125.4 (q, $J = 3.7$ Hz), 122.0 (q, $J = 267.5$ Hz). 118.0, 113.8, 109.4 (q, $J = 39.5$ Hz), 21.3. 19F NMR (376 MHz, CDCl$_3$) δ -57.6. The spectral data were in accordance with the literature.

![Chemical Structure](image)

2-(p-tolyl)-3-(trifluoromethyl)imidazo[1,2-a]pyridine (3da) White solid, 69 mg, Yield: 83%; 1H NMR (400 MHz, CDCl$_3$) δ 8.29 (d, $J = 6.9$ Hz, 1H), 7.71 (d, $J = 9.1$ Hz, 1H), 7.60 (d, $J = 7.7$ Hz, 2H), 7.36 (t, $J = 8.0$ Hz, 1H), 7.27 (d, $J = 7.7$ Hz, 2H), 6.96 (t, $J = 6.9$ Hz, 1H), 2.41 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 148.1 (d, $J = 2.6$ Hz), 146.0, 138.8, 129.9, 129.4 (q, $J = 2.0$ Hz), 128.8, 126.8, 125.4 (q, $J = 4.2$ Hz), 121.9 (q, $J = 267.4$ Hz), 117.9, 113.7, 109.2 (q, $J = 39.5$ Hz), 21.2. 19F NMR (376 MHz, CDCl$_3$) δ -57.6. The spectral data were in accordance with the literature.

![Chemical Structure](image)

8-methyl-2-phenyl-3-(trifluoromethyl)imidazo[1,2-a]pyridine (3ea) Yellow liquid, 67 mg, Yield: 81%; 1H NMR (400 MHz, CDCl$_3$) δ 8.17 (d, $J = 6.9$ Hz, 1H), 7.69 (d, $J = 6.9$ Hz, 2H), 7.50 – 7.40 (m, 3H), 7.17 (d, $J = 6.9$ Hz, 1H), 6.90 (t, $J = 7.0$ Hz, 1H), 2.68 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 147.5 (d, $J = 2.4$ Hz), 146.5, 133.2, 129.7 (d, $J = 1.7$ Hz), 128.8, 128.2, 128.1, 125.6, 123.2 (q, $J = 4.1$ Hz), 121.0 (q, $J = 266.7$ Hz), 113.9, 109.8, 17.1. 19F NMR (376 MHz, CDCl$_3$) δ -57.8. The spectral data were in accordance with the literature.
7-methyl-2-phenyl-3-(trifluoromethyl)imidazo[1,2-a]pyridine (3fa) Yellow solid, 62 mg, Yield: 74%; 1H NMR (400 MHz, CDCl$_3$) δ 8.15 (d, J = 7.1 Hz, 1H), 7.68 (d, J = 7.2 Hz, 2H), 7.50 – 7.37 (m, 4H), 6.82 – 6.73 (m, 1H), 2.42 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 147.9 (d, J = 2.3 Hz), 146.5, 138.2, 133.0, 129.5 (q, J = 1.7 Hz), 128.8, 128.1, 124.5 (q, J = 3.6 Hz), 122.0 (q, J = 265.6 Hz), 116.4, 116.3, 108.9 (q, J = 39.1 Hz), 21.2. 19F NMR (376 MHz, CDCl$_3$) δ -57.5. The spectral data were in accordance with the literature.7

6-methyl-2-phenyl-3-(trifluoromethyl)imidazo[1,2-a]pyridine (3ga) Yellow solid, 58 mg, Yield: 70%; 1H NMR (400 MHz, CDCl$_3$) δ 8.07 (s, 1H), 7.68 (d, J = 7.0 Hz, 2H), 7.62 (d, J = 9.2 Hz, 1H), 7.49 – 7.39 (m, 3H), 7.22 (d, J = 9.3 Hz, 1H), 2.38 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 147.7 (d, J = 1.9 Hz), 145.1, 133.1, 130.0, 129.5 (q, J = 1.6 Hz), 128.7, 128.1, 123.8, 123.1 (q, J = 3.6 Hz), 121.9 (q, J = 265.7 Hz), 117.2, 109.1 (q, J = 39.4 Hz), 18.3. 19F NMR (376 MHz, CDCl$_3$) δ -57.7. The spectral data were in accordance with the literature.6

5-methyl-2-phenyl-3-(trifluoromethyl)imidazo[1,2-a]pyridine (3ha) White solid; m.p. 69.2-69.9 °C, 47 mg, Yield: 56%; 1H NMR (400 MHz, CDCl$_3$) δ 7.69 – 7.58 (m, 3H), 7.49 – 7.38 (m,
3H), 7.32 (t, J = 8.0 Hz, 1H), 6.78 (d, J = 6.4 Hz, 1H), 2.80 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 150.8 (d, J = 2.5 Hz), 148.2, 137.4, 134.3, 129.7 (q, J = 1.6 Hz), 128.7, 127.9, 127.5, 121.9 (q, J = 265.5 Hz), 115.7, 109.7 (q, J = 39.8 Hz), 20.5 (q, J = 6.9 Hz). 19F NMR (376 MHz, CDCl$_3$) δ -46.6; HRMS (EI) m/z: [M]$^+$ calcd for C$_{15}$H$_{11}$F$_3$N$_2$ 276.0869, found 276.0876.

![Chemical Structure](image)

6-methyl-2-(p-tolyl)-3-(trifluoromethyl)imidazo[1,2-a]pyridine (3ia) Pale yellow solid, 66 mg. Yield: 76%; 1H NMR (400 MHz, CDCl$_3$) δ 8.06 (s, 1H), 7.65 – 7.52 (m, 3H), 7.29 – 7.17 (m, 3H), 2.41 (s, 3H), 2.38 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 147.9, 145.1, 138.7, 130.2, 129.9, 129.4 (q, J = 1.7 Hz), 128.8, 123.6, 123.1 (q, J = 4.3 Hz), 122.0 (q, J = 265.7 Hz), 117.2, 109.0 (q, J = 39.5 Hz), 21.3, 18.3. 19F NMR (376 MHz, CDCl$_3$) δ -57.7. The spectral data were in accordance with the literature.8

![Chemical Structure](image)

2-(4-methoxyphenyl)-3-(trifluoromethyl)imidazo[1,2-a]pyridine (3ja) White solid, 74 mg. Yield: 84%; 1H NMR (400 MHz, CDCl$_3$) δ 8.26 (d, J = 6.9 Hz, 1H), 7.68 (d, J = 9.1 Hz, 1H), 7.64 (d, J = 8.3 Hz, 2H), 7.32 (t, J = 8.0 Hz, 1H), 7.02 – 6.88 (m, 3H), 3.83 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 160.2, 147.8 (d, J = 2.3 Hz), 146.0, 130.8 (q, J = 1.9 Hz), 126.7, 125.4 (q, J = 3.8 Hz), 125.2, 122.0 (q, J = 265.7 Hz), 117.8, 113.6, 113.6, 108.9 (q, J = 39.5 Hz), 55.2. 19F NMR (376 MHz, CDCl$_3$) δ -57.6. The spectral data were in accordance with the literature.7
2-(4-fluorophenyl)-8-methyl-3-(trifluoromethyl)imidazo[1,2-a]pyridine (3ka) White solid, m.p. 90.8 - 91.7, 45 mg, Yield: 76%; 1H NMR (400 MHz, CDCl₃) δ 8.16 (d, J = 6.9 Hz, 1H), 7.72 – 7.62 (m, 2H), 7.21 – 7.08 (m, 3H), 6.89 (t, J = 7.0 Hz, 1H), 2.66 (s, 3H). 13C NMR (100 MHz, CDCl₃) δ 163.2 (d, J = 246.7 Hz), 146.5, 146.4 (d, J = 2.0 Hz), 131.5 (dq, J = 8.5, 1.7 Hz), 129.3 (d, J = 3.2 Hz), 128.2, 125.7, 123.1 (q, J = 3.5 Hz), 121.9 (q, J = 265.7 Hz), 115.2 (d, J = 21.8 Hz), 114.0, 109.9 (q, J = 39.6 Hz), 17.1. 19F NMR (376 MHz, CDCl₃) δ -57.8. HRMS (EI) m/z: [M]+ calcd for C₁₅H₁₀F₄N₂ 294.0775, found 294.0780.

2-(4-chlorophenyl)-7-methyl-3-(trifluoromethyl)imidazo[1,2-a]pyridine (3la) White solid, m.p. 110.3 - 110.8, 74 mg, Yield: 80%; 1H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 7.1 Hz, 1H), 7.64 (d, J = 8.1 Hz, 2H), 7.50 – 7.39 (m, 3H), 6.82 (d, J = 6.5 Hz, 1H), 2.45 (s, 3H). 13C NMR (100 MHz, CDCl₃) δ 146.5, 138.5, 134.9, 131.5, 130.8 (q, J = 1.8 Hz), 128.5, 128.3, 124.5 (q, J = 3.7 Hz), 121.8 (q, J = 265.6 Hz), 116.6, 116.3, 109.0 (q, J = 39.5 Hz), 21.2. 19F NMR (376 MHz, CDCl₃) δ -57.5. HRMS (EI) m/z: [M]+ calcd for C₁₅H₁₀ClF₃N₂ 310.0479, found 310.0484.
2-(4-chlorophenyl)-8-methyl-3-(trifluoromethyl)imidazo[1,2-a]pyridine (3ma) White solid, 74 mg, Yield: 80%; 1H NMR (400 MHz, CDCl$_3$) δ 8.16 (d, $J = 6.3$ Hz, 1H), 7.64 (d, $J = 7.5$ Hz, 2H), 7.48 – 7.36 (m, 2H), 7.16 (d, $J = 7.0$ Hz, 1H), 6.89 (t, $J = 6.8$ Hz, 1H), 2.66 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 146.5, 146.1 (d, $J = 2.0$ Hz), 134.9, 131.6, 130.9 (q, $J = 1.7$ Hz), 128.3, 128.2, 125.7, 123.1 (q, $J = 3.6$ Hz), 121.8 (q, $J = 265.7$ Hz), 114.0, 109.9 (q, $J = 39.5$ Hz), 17.0. 19F NMR (376 MHz, CDCl$_3$) δ -57.8. The spectral data were in accordance with the literature.5

\[
\begin{align*}
\text{\includegraphics[width=0.5\textwidth]{image1.png}}
\end{align*}
\]

4-(3-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl)benzonitrile (3na) White solid, 64 mg, Yield: 74%; 1H NMR (400 MHz, CDCl$_3$) δ 8.31 (d, $J = 7.0$ Hz, 1H), 7.84 – 7.68 (m, 5H), 7.48 – 7.37 (m, 1H), 7.10 – 6.99 (m, 1H). 13C NMR (100 MHz, CDCl$_3$) δ 146.2, 145.7 (d, $J = 1.9$ Hz), 137.4, 131.9, 130.2 (q, $J = 1.8$ Hz), 127.5, 125.5 (q, $J = 3.8$ Hz), 121.5 (q, $J = 265.9$ Hz), 118.5, 118.2, 114.5, 112.6, 110.1 (q, $J = 39.7$ Hz). 19F NMR (376 MHz, CDCl$_3$) δ -57.6. The spectral data were in accordance with the literature.5

\[
\begin{align*}
\text{\includegraphics[width=0.5\textwidth]{image2.png}}
\end{align*}
\]

2-phenyl-3,6-bis(trifluoromethyl)imidazo[1,2-a]pyridine (3oa) White solid, 80 mg, Yield: 81%; 1H NMR (400 MHz, CDCl$_3$) δ 8.65 (s, 1H), 7.83 (d, $J = 9.3$ Hz, 1H), 7.74 – 7.66 (m, 2H), 7.57 – 7.42 (m, 4H). 13C NMR (100 MHz, CDCl$_3$) δ 149.8 (d, $J = 2.2$ Hz), 145.8, 132.0, 129.5 (q, $J = 1.7$ Hz), 129.4, 128.3, 124.4 (q, $J = 2.1$ Hz), 123.0 (q, $J = 269.8$ Hz), 122.9 (q, $J = 2.6$ Hz), 121.4 (q, $J = 266.3$ Hz).
Hz), 118.9 (d, J = 34.1 Hz), 118.3 (q, J = 34.6 Hz), 110.9 (q, J = 40.0 Hz). 19F NMR (376 MHz, CDCl$_3$) δ -57.5, -62.4. The spectral data were in accordance with the literature.6

![Diagram of 7-methoxy-2-phenyl-3-(trifluoromethyl)imidazo[1,2-a]pyridine (3pa)](image)

7-methoxy-2-phenyl-3-(trifluoromethyl)imidazo[1,2-a]pyridine (3pa) White solid, 69 mg.

Yield: 78%; 1H NMR (400 MHz, CDCl$_3$) δ 8.07 (d, J = 7.5 Hz, 1H), 7.68 (d, J = 7.0 Hz, 2H), 7.48 – 7.37 (m, 3H), 6.94 (d, J = 2.6 Hz, 1H), 6.65 (dd, J = 7.7, 2.5 Hz, 1H), 3.85 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 159.1, 147.9 (d, J = 1.5 Hz), 132.9, 129.4 (q, J = 1.7 Hz), 128.7, 128.0, 125.7 (q, J = 3.6 Hz), 121.9 (d, J = 265.3 Hz), 108.7, 108.3 (q, J = 39.6 Hz), 95.0, 55.5. 19F NMR (376 MHz, CDCl$_3$) δ -57.2. The spectral data were in accordance with the literature.6

![Diagram of 2-(thiophen-2-yl)-3-(trifluoromethyl)imidazo[1,2-a]pyridine (3qa)](image)

2-(thiophen-2-yl)-3-(trifluoromethyl)imidazo[1,2-a]pyridine (3qa) White solid, 48 mg. Yield: 60%; 1H NMR (400 MHz, CDCl$_3$) δ 8.28 (d, J = 7.0 Hz, 1H), 7.69 (d, J = 9.1 Hz, 1H), 7.53 – 7.42 (m, 2H), 7.35 (t, J = 7.9 Hz, 1H), 7.16 – 7.09 (m, 1H), 6.95 (t, J = 6.9 Hz, 1H). 13C NMR (100 MHz, CDCl$_3$) δ 145.9, 141.5 (d, J = 2.0 Hz), 134.8, 128.0 (q, J = 4.2 Hz), 127.8, 127.7, 127.1, 125.4 (q, J = 4.2 Hz), 121.9 (q, J = 265.7 Hz), 117.8, 114.0, 108.3 (q, J = 40.2 Hz). 19F NMR (376 MHz, CDCl$_3$) δ -57.6. The spectral data were in accordance with the literature.7
2-phenyl-3-(trifluoromethyl)benzo[d]imidazo[2,1-b]thiazole (3ra) White solid, 69 mg, Yield: 72%; 1H NMR (400 MHz, CDCl$_3$) δ 7.93 (d, $J = 8.4$ Hz, 1H), 7.79 – 7.61 (m, 3H), 7.56 – 7.36 (m, 5H). 13C NMR (100 MHz, CDCl$_3$) δ 150.8, 150.0 (q, $J = 2.6$, 0.6 Hz), 132.8, 132.1, 130.1, 129.5 (q, $J = 1.8$ Hz), 128.9, 128.1, 126.8, 125.5, 124.3, 121.4 (q, $J = 267.1$ Hz), 114.7 (q, $J = 4.6$ Hz), 112.5 (q, $J = 40.7$ Hz). 19F NMR (376 MHz, CDCl$_3$) δ -55.0. The spectral data were in accordance with the literature.

3-(perfluoropropyl)-2-phenylimidazo[1,2-a]pyridine (3ab) White solid, 94 mg, Yield: 86%; 1H NMR (400 MHz, CDCl$_3$) δ 8.29 (d, $J = 7.0$ Hz, 1H), 7.72 (d, $J = 9.0$ Hz, 1H), 7.65 – 7.57 (m, 2H), 7.47 – 7.31 (m, 4H), 6.93 (t, $J = 6.9$ Hz, 1H). 13C NMR (100 MHz, CDCl$_3$) δ 150.7, 146.9, 133.3, 129.5, 128.7, 127.8, 127.1, 126.1 – 125.8 (m), 119.7 – 118.7 (m), 118.1, 117.1 – 115.8 (m), 113.8, 110.6 – 109.0 (m), 107.6 (t, $J = 31.8$ Hz). 19F NMR (376 MHz, CDCl$_3$) δ -80.2 (t, $J = 10.6$ Hz, 3F), -106.5 – -107.2 (m, 2F), -125.0 – -125.4 (m, 2F). The spectral data were in accordance with the literature.

3-(perfluorobutyl)-2-phenylimidazo[1,2-a]pyridine (3ac) White solid, 108 mg, Yield: 87%;
1H NMR (400 MHz, CDCl$_3$) δ 8.31 (d, $J = 7.0$ Hz, 1H), 7.73 (d, $J = 9.1$ Hz, 1H), 7.66 – 7.57 (m, 2H), 7.49 – 7.34 (m, 4H), 6.97 (t, $J = 7.0$ Hz, 1H). 13C NMR (100 MHz, CDCl$_3$) δ 150.9, 146.9, 133.3, 129.5, 128.8, 127.9, 127.1, 126.0, 119.2 – 118.4 (m), 118.2, 116.8 – 115.5 (m), 115.4 – 114.4 (m), 113.9, 108.3 – 107.3 (m). 19F NMR (376 MHz, CDCl$_3$) δ -80.8 – -81.1 (m, 3F), -105.9 – -106.2 (m, 2F), -121.5 – -121.9 (m, 2F), -125.7 – -126.1 (m, 2F). The spectral data were in accordance with the literature.11

3-(perfluorohexyl)-2-phenylimidazo[1,2-a]pyridine (3ad) Pale yellow solid, 117 mg, Yield: 76%; 1H NMR (400 MHz, CDCl$_3$) δ 8.30 (d, $J = 7.1$ Hz, 1H), 7.73 (d, $J = 9.1$ Hz, 1H), 7.65 – 7.57 (m, 2H), 7.47 – 7.32 (m, 4H), 6.94 (t, $J = 7.0$ Hz, 1H). 13C NMR (100 MHz, CDCl$_3$) δ 150.8 (d, $J = 1.9$ Hz), 146.9, 133.3, 129.5, 128.8, 127.9, 127.1, 126.1 – 125.8 (m), 119.0 – 117.0 (m), 118.1, 116.1 – 115.2 (m), 115.3 – 114.3 (m), 113.9, 108.4 – 107.1 (m). 19F NMR (376 MHz, CDCl$_3$) δ -80.7 – -81.3 (m, 3F), -105.5 – -106.5 (m, 2F), -120.4 – -121.1 (m, 2F), -121.5 – -122.2 (m, 2F), -122.5 – -123.3 (m, 2F), -126.0 – -126.5 (m, 2F). The spectral data were in accordance with the literature.11

3-(perfluorooctyl)-2-phenylimidazo[1,2-a]pyridine (3ae) White solid, 132 mg, Yield: 72%; 1H NMR (400 MHz, CDCl$_3$) δ 8.30 (d, $J = 7.0$ Hz, 1H), 7.73 (d, $J = 7.8$ Hz, 1H), 7.65 – 7.57 (m, 2H), 7.48 – 7.31 (m, 4H), 6.92 (t, $J = 6.9$ Hz, 1H). 13C NMR (100 MHz, CDCl$_3$) δ 150.9, 146.9, 133.3,
129.5, 128.8, 127.9, 127.1, 126.2 – 125.7 (m), 118.2, 119.2 – 116.7 (m), 116.0 – 114.4 (m), 113.9, 113.0 – 112.0 (m), 111.7 – 109.8 (m), 108.4 – 107.3 (m). 19F NMR (376 MHz, CDCl$_3$) δ -80.4 – -81.7 (m, 3F), -105.6 – -106.3 (m, 2F), -120.4 – -121.1 (m, 2F), -121.3 – -122.4 (m, 4F), -122.6 – -123.4 (m, 2F), -125.9 – -126.6 (m, 2F). The spectral data were in accordance with the literature.11

![Chemical Structure](image)

3-(perfluorobutyl)-2-(m-tolyl)imidazo[1,2-a]pyridine (3bc) Yellow liquid, 105 mg, Yield: 82%; 1H NMR (400 MHz, CDCl$_3$) δ 8.31 (d, $J = 7.0$ Hz, 1H), 7.73 (d, $J = 8.9$ Hz, 1H), 7.53 – 7.18 (m, 5H), 6.99 – 6.90 (m, 1H), 2.41 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 151.0, 146.8, 137.5, 133.2, 130.2, 129.5, 127.7, 127.1, 126.5, 126.1 – 125.7 (m), 119.5 – 118.3 (m), 118.1, 117.8 – 116.9 (m), 116.4 – 115.4 (m), 115.3 – 114.0 (m), 113.8, 108.2 – 107.0 (m), 21.2. 19F NMR (376 MHz, CDCl$_3$) δ -80.3 – -82.0 (m, 3F), -105.5 – -106.9 (m, 2F), -120.9 – -122.3 (m, 2F), -125.3 – -126.8 (m, 2F). HRMS (EI) m/z: [M]$^+$ calcd for C$_{18}$H$_{11}$F$_9$N$_2$ 426.0773, found 426.0776.

![Chemical Structure](image)

3-(perfluorobutyl)-2-(p-tolyl)imidazo[1,2-a]pyridine (3cc) White solid, 101 mg, Yield: 79%; 1H NMR (400 MHz, CDCl$_3$) δ 8.30 (d, $J = 7.0$ Hz, 1H), 7.72 (d, $J = 9.0$ Hz, 1H), 7.50 (d, $J = 7.7$ Hz, 2H), 7.42 – 7.33 (m, 1H), 7.29 – 7.20 (m, 2H), 6.95 (t, $J = 7.2$ Hz, 1H), 2.41 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 151.0, 146.9, 138.6, 130.4, 129.4, 128.6, 127.0, 126.1 – 125.7 (m), 119.2 – 118.3 (m), 118.1, 116.5 – 115.5 (m), 115.3 – 114.2 (m), 113.7, 108.2 – 107.0 (m), 21.2. 19F NMR (376 MHz, CDCl$_3$) δ
-79.4 – 83.0 (m, 3F), -104.6 – 107.6 (m, 2F), -120.4 – 122.8 (m, 2F), -124.4 – 127.5 (m, 2F). The spectral data were in accordance with the literature.\(^{11}\)

![Chemical structure](image)

8-methyl-3-(perfluorobutyl)-2-phenylimidazo[1,2-a]pyridine (3dc) White solid, 100 mg, Yield: 78%; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.18 (d, \(J = 7.1\) Hz, 1H), 7.62 – 7.57 (m, 2H), 7.48 – 7.36 (m, 3H), 7.17 (d, \(J = 6.9\) Hz, 1H), 6.87 (t, \(J = 7.0\) Hz, 1H), 2.67 (s, 3H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 150.3, 147.3, 133.6, 129.7, 128.6, 128.2, 127.9, 125.8, 123.9 – 123.5 (m), 119.3 – 118.1 (m), 116.5 – 115.5 (m), 115.3 – 114.4 (m), 113.9, 113.2 – 111.1 (m), 108.7 – 107.7 (m), 17.1. \(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) -80.0 – -82.1 (m, 3F), -105.1 – -106.9 (m, 2F), -120.8 – -122.7 (m, 2F), -125.3 – -127.3 (m, 2F)). The spectral data were in accordance with the literature.\(^{11}\)

![Chemical structure](image)

7-methyl-3-(perfluorobutyl)-2-phenylimidazo[1,2-a]pyridine (3ec) White solid, m.p. 65.6-66.8 °C, 112 mg, Yield: 88%; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.16 (d, \(J = 7.2\) Hz, 1H), 7.64 – 7.57 (m, 2H), 7.49 – 7.36 (m, 4H), 6.76 (d, \(J = 7.2\) Hz, 1H), 2.42 (s, 3H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 150.7, 147.3, 133.5, 133.4, 129.5, 128.6, 127.8, 125.3 – 124.8 (m), 119.3 – 118.2 (m), 118.0 – 116.7 (m), 116.4 (d, \(J = 3.4\) Hz), 116.0 – 114.0 (m), 107.8 – 106.6 (m), 21.1. \(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) -80.6 – -81.6 (m, 3F), -105.6 – -106.6 (m, 2F), -121.3 – -122.4 (m, 2F), -125.7 – -126.7 (m, 2F). HRMS (EI) \(m/z\): [M\(^+\)] calcd for C\(_{18}\)H\(_{11}\)F\(_3\)N\(_2\) 426.0773, found 426.0778.
6-methyl-3-(perfluorobutyl)-2-phenylimidazo[1,2-a]pyridine (3fc) White solid, 94 mg, Yield: 73%; 1H NMR (400 MHz, CDCl$_3$) δ 8.07 (s, 1H), 7.66 – 7.55 (m, 3H), 7.46 – 7.38 (m, 3H), 7.24 (d, J = 9.3 Hz, 1H), 2.39 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 150.6, 145.9, 133.5, 130.2, 129.5, 128.6, 127.8, 126.1, 123.8, 123.7 – 123.4 (m), 119.6 – 118.3 (m), 117.3, 116.4 – 115.5 (m), 115.3 – 114.4 (m), 107.9 – 106.9 (m), 18.4. 19F NMR (376 MHz, CDCl$_3$) δ -80.4 – -81.4 (m, 3F), -105.4 – -106.4 (m, 2F), -121.3 – -122.1 (m, 2F), -125.5 – -126.4 (m, 2F). The spectral data were in accordance with the literature.11

5-methyl-3-(perfluorobutyl)-2-phenylimidazo[1,2-a]pyridine (3gc) Yellow solid, m.p. 131.5-132.4 °C, 70 mg, Yield: 55%; 1H NMR (400 MHz, CDCl$_3$) δ 7.64 (d, J = 8.9 Hz, 1H), 7.55 – 7.47 (m, 2H), 7.44 – 7.37 (m, 3H), 7.32 (t, J = 8.0 Hz, 1H), 6.80 (d, J = 6.9 Hz, 1H), 2.75 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 154.0 (d, J = 3.1 Hz), 149.6, 138.4, 135.2, 129.9, 128.5, 127.8, 127.6, 119.5 – 118.3 (m), 116.9, 116.4, 116.1 – 115.2 (m), 115.0 – 113.9 (m), 112.4 – 110.8 (m), 109.2 – 107.8 (m), 22.7 – 22.2 (m). 19F NMR (376 MHz, CDCl$_3$) δ -80.5 – -81.7 (m, 3F), -93.6 – -94.7 (m, 2F), -118.4 – -119.8 (m, 2F), -125.7 – -126.9 (m, 2F). HRMS (EI) m/z: [M]$^{+}$ calcd for C$_{18}$H$_{14}$F$_{9}$N$_{4}$ 426.0773, found 426.0778.
6-methyl-3-(perfluorobutyl)-2-(p-tolyl)imidazo[1,2-a]pyridine (3hc) Yellow solid, m.p. 103.2-104.3 °C, 99 mg. Yield: 75%; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.05 (s, 1H), 7.61 (d, \(J = 9.2\) Hz, 1H), 7.50 (d, \(J = 7.7\) Hz, 2H), 7.28 – 7.15 (m, 3H), 2.39 (s, 3H), 2.36 (s, 3H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 150.7, 145.9, 138.5, 130.6, 130.1, 129.4, 128.6, 123.6, 123.7 – 123.4 (m), 119.4 – 118.2 (m), 117.3, 116.5 – 115.4 (m), 115.3 – 113.9 (m), 112.5 – 110.5 (m), 107.8 – 106.8 (m), 21.2, 18.4. \(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) -80.5 – -81.4 (m, 3F), -105.6 – -106.3 (m, 2F), -121.3 – -122.0 (m, 2F), -125.7 – -126.3 (m, 2F). HRMS (EI) \(m/z\): [M]\(^+\) calcd for C\(_{19}\)H\(_{13}\)F\(_9\)N\(_2\) 440.0930, found 440.0934.

2-(4-methoxyphenyl)-3-(perfluorobutyl)imidazo[1,2-a]pyridine (3ic) White solid, 115 mg. Yield: 87%; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.28 (d, \(J = 7.0\) Hz, 1H), 7.69 (d, \(J = 9.0\) Hz, 1H), 7.56 (d, \(J = 8.2\) Hz, 2H), 7.34 (t, \(J = 7.9\) Hz, 1H), 7.02 – 6.85 (m, 3H), 3.83 (s, 3H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 160.1, 150.6, 146.8, 130.8, 127.0, 126.1 – 125.8 (m), 125.6, 119.3 – 118.4 (m), 118.0, 116.5 – 115.4 (m), 115.3 – 114.1 (m), 113.7, 113.4, 112.6 – 111.1 (m), 107.8 – 106.8 (m), 55.1. \(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) -80.2 – -81.6 (m, 3F), -105.5 – -106.8 (m, 2F), -121.0 – -122.4 (m, 2F), -125.2 – -126.8 (m, 2F). The spectral data were in accordance with the literature.\(^1\)
2-(4-fluorophenyl)-8-methyl-3-(perfluorobutyl)imidazo[1,2-a]pyridine (3jc) White solid, m.p. 80.7-81.8 °C, 115 mg, Yield: 87%; 1H NMR (400 MHz, CDCl$_3$) δ 8.17 (d, J = 7.0 Hz, 1H), 7.63 – 7.52 (m, 2H), 7.18 (d, J = 7.0 Hz, 1H), 7.15 – 7.07 (m, 2H), 6.87 (t, J = 7.0 Hz, 1H), 2.66 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 163.2 (d, J = 246.4 Hz), 149.3, 147.3, 131.6 (d, J = 8.4 Hz), 129.7 (d, J = 3.5 Hz), 128.3, 126.0, 123.9 – 123.5 (m), 119.3 – 118.4 (m), 117.8 – 117.0 (m), 116.5 – 115.4 (m), 114.9 (d, J = 21.8 Hz), 114.0, 112.4 – 110.9 (m), 108.9 – 107.7 (m), 17.1. 19F NMR (376 MHz, CDCl$_3$) δ -80.8 – -81.2 (m, 3F), -105.8 – -106.2 (m, 2F), -113.2 (s, 1F), -121.5 – -122.1 (m, 2F), -125.7 – -126.3 (m, 2F). HRMS (EI) m/z: [M]$^+$ calcd for C$_{18}$H$_{10}$F$_{10}$N$_2$ 444.0679, found 444.0680.

\[
\text{\begin{figure}[h]
\centering
\includegraphics[width=0.2\textwidth]{image1}
\caption{Image 1}
\end{figure}}
\]

2-(4-chlorophenyl)-7-methyl-3-(perfluorobutyl)imidazo[1,2-a]pyridine (3kc) White solid, m.p. 76.5-77.7 °C, 113 mg, Yield: 82%; 1H NMR (400 MHz, CDCl$_3$) δ 8.16 (d, J = 7.2 Hz, 1H), 7.54 (d, J = 8.1 Hz, 2H), 7.46 (s, 1H), 7.39 (d, J = 8.2 Hz, 2H), 6.79 (d, J = 7.2 Hz, 1H), 2.44 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 149.5, 147.4, 138.7, 134.9, 132.0, 130.9, 128.2, 125.3 – 124.9 (m), 119.3 – 118.2 (m), 116.7, 116.5, 115.3 – 114.3 (m), 112.6 – 111.0 (m), 107.9 – 106.8 (m), 21.2. 19F NMR (376 MHz, CDCl$_3$) δ -80.5 – -81.3 (m, 3F), -105.5 – -106.2 (m, 2F), -112.4 – -122.2 (m, 2F), -125.5 – -126.4 (m, 2F). HRMS (EI) m/z: [M]$^+$ calcd for C$_{18}$H$_{10}$ClF$_9$N$_2$ 460.0383, found 460.0385.

\[
\text{\begin{figure}[h]
\centering
\includegraphics[width=0.2\textwidth]{image2}
\caption{Image 2}
\end{figure}}
\]

2-(4-chlorophenyl)-8-methyl-3-(perfluorobutyl)imidazo[1,2-a]pyridine (3lc) Pale yellow solid,
m.p. 82.8-83.7 °C, 93 mg, Yield: 82%; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.17 (d, \(J = 7.0\) Hz, 1H), 7.55 (d, \(J = 8.1\) Hz, 2H), 7.41 (d, \(J = 8.1\) Hz, 2H), 7.18 (d, \(J = 6.9\) Hz, 1H), 6.88 (t, \(J = 7.0\) Hz, 1H), 2.66 (s, 3H). \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 149.0, 147.4, 134.9, 132.2, 131.0, 128.3, 128.2, 126.0, 124.0 – 123.5 (m), 119.3 – 118.2 (m), 116.8 – 115.5 (m), 115.3 – 114.3 (m), 114.1, 112.0 – 110.8 (m), 109.0 – 107.7 (m), 17.1. \(^19\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) -80.5 – -81.5 (m, 3F), -105.5 – -106.6 (m, 2F), -121.3 – -122.2 (m, 2F), -125.4 – -126.6 (m, 2F). HRMS (EI) \(m/z\): [M]\(^+\) calcd for C\(_{18}\)H\(_{16}\)ClF\(_9\)N\(_2\) 460.0383, found 460.0390.

![Diagram](image1)

4-(3-(perfluorobutyl)imidazo[1,2-a]pyridin-2-yl)benzonitrile (3mc) White solid, m.p. 122.3-122.9 °C, 106 mg, Yield: 81%; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.32 (d, \(J = 7.1\) Hz, 1H), 7.78 – 7.70 (m, 5H), 7.49 – 7.40 (m, 1H), 7.03 (t, \(J = 7.0\) Hz, 1H). \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 148.6, 147.1, 138.0, 131.8, 130.3, 127.8, 126.3 – 125.8 (m), 118.6, 118.4, 114.5, 112.7, 108.9 – 107.9 (m). \(^19\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) -80.7 – -81.1 (m, 3F), -105.9 – -106.2 (m, 2F), -121.6 – -121.9 (m, 2F), -125.8 – -126.0 (m, 2F). HRMS (EI) \(m/z\): [M]\(^+\) calcd for C\(_{18}\)H\(_{16}\)ClF\(_9\)N\(_2\) 437.0569, found 437.0573.

![Diagram](image2)

3-(perfluorobutyl)-2-phenyl-6-(trifluoromethyl)imidazo[1,2-a]pyridine (3nc) White solid, m.p. 99.8-101.1 °C, 117 mg, Yield: 81%; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.64 (s, 1H), 7.84 (d, \(J = 9.5\) Hz, 1H), 7.55 (d, \(J = 8.1\) Hz, 2H), 7.41 (d, \(J = 8.1\) Hz, 2H), 7.18 (d, \(J = 6.9\) Hz, 1H), 6.88 (t, \(J = 7.0\) Hz, 1H), 2.66 (s, 3H). \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 149.0, 147.4, 134.9, 132.2, 131.0, 128.3, 128.2, 126.0, 124.0 – 123.5 (m), 119.3 – 118.2 (m), 116.8 – 115.5 (m), 115.3 – 114.3 (m), 114.1, 112.0 – 110.8 (m), 109.0 – 107.7 (m), 17.1. \(^19\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) -80.5 – -81.5 (m, 3F), -105.5 – -106.6 (m, 2F), -121.3 – -122.2 (m, 2F), -125.4 – -126.6 (m, 2F). HRMS (EI) \(m/z\): [M]\(^+\) calcd for C\(_{18}\)H\(_{16}\)ClF\(_9\)N\(_2\) 460.0383, found 460.0390.
1H), 7.67 – 7.58 (m, 2H), 7.54 (d, J = 9.5 Hz, 1H), 7.49 – 7.40 (m, 3H). 1C NMR (100 MHz, CDCl$_3$) δ 152.6, 146.7, 132.5, 129.5, 129.3, 128.1, 125.1 – 124.7 (m), 124.4 (q, J = 269.8 Hz), 123.2 (q, J = 2.7 Hz), 119.0, 118.6 (q, J = 34.4 Hz), 117.7 – 116.6 (m), 116.4 – 115.4 (m), 115.1 – 113.9 (m), 112.5 – 110.7 (m), 109.9 – 108.7 (m). 19F NMR (376 MHz, CDCl$_3$) δ -62.6 (s, 3F), -80.9 – -81.2 (m, 3F), -106.1 – -106.4 (m, 2F), -121.5 – -121.9 (m, 2F), -125.8 – -126.2 (m, 2F). HRMS (EI) m/z: [M]$^+$ calcd for C$_{18}$H$_{18}$F$_{12}$N$_2$ 480.0490, found 480.0497.

7-methoxy-3-(perfluorobutyl)-2-phenylimidazo[1,2-a]pyridine (3o) White solid, m.p. 142.8-143.3 ºC, 114 mg, Yield: 86%; 1H NMR (400 MHz, CDCl$_3$) δ 8.08 (d, J = 7.7 Hz, 1H), 7.64 – 7.56 (m, 2H), 7.45 – 7.36 (m, 3H), 6.95 (s, 1H), 6.63 (d, J = 7.7 Hz, 1H), 3.85 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 159.3, 150.9, 148.8, 133.4, 129.4, 128.6, 127.8, 127.0 – 125.6 (m), 119.2 – 118.4 (m), 117.9 – 116.8 (m), 116.4 – 114.3 (m), 112.4 – 110.8 (m), 108.8, 107.2 – 106.1 (m), 95.2, 55.5. 19F NMR (376 MHz, CDCl$_3$) δ -80.6 – -81.4 (m, 3F), -105.3 – -105.9 (m, 2F), -121.5 – -122.1 (m, 2F), -125.7 – -126.3 (m, 2F). HRMS (EI) m/z: [M]$^+$ calcd for C$_{18}$H$_{11}$F$_3$N$_2$O 442.0722, found 442.0729.

3-(perfluorobutyl)-2-(thiophen-2-yl)imidazo[1,2-a]pyridine (3p) White solid, m.p. 80.9-81.4 ºC, 98 mg, Yield: 78%; 1H NMR (400 MHz, CDCl$_3$) δ 8.27 (d, J = 7.1 Hz, 1H), 7.70 (d, J = 9.1 Hz, 1H), 7.49 – 7.40 (m, 2H), 7.35 (t, J = 8.0 Hz, 1H), 7.14 – 7.06 (m, 1H), 6.91 (t, J = 7.0 Hz, 1H).
13C NMR (100 MHz, CDCl$_3$) δ 146.7, 144.0, 135.0, 127.9, 127.8 – 127.6 (m), 127.6, 127.3, 126.1 – 125.7 (m), 119.3 – 118.4 (m), 117.9, 116.4 – 114.5 (m), 114.0, 112.6 – 111.4 (m), 109.5 – 108.1 (m), 106.9 – 105.9 (m). 19F NMR (376 MHz, CDCl$_3$) δ -80.8 – -81.1 (m, 3F), -106.7 – -107.0 (m, 2F), -122.1 – -122.4 (m, 2F), -125.8 – -126.1 (m, 2F). HRMS (EI) m/z: [M]$^+$ calcd for C$_{15}$H$_9$F$_9$N$_2$S 418.0181, found 418.0186.

![Chemical structure](image)

3-(perfluorobutyl)-2-phenylbenzo[d]imidazo[2,1-b]thiazole (3q)

White solid, m.p. 113.1-113.8 ºC, 82 mg, Yield: 58% 1H NMR (400 MHz, CDCl$_3$) δ 7.86 (d, $J = 8.5$ Hz, 1H), 7.79 – 7.72 (m, 1H), 7.63 – 7.56 (m, 2H), 7.54 – 7.47 (m, 1H), 7.46 – 7.39 (m, 4H). 13C NMR (100 MHz, CDCl$_3$) δ 152.8, 152.0, 133.3, 132.8, 130.1, 129.6, 128.8, 127.8, 126.7, 125.5, 124.3, 119.3 – 118.1 (m), 117.2 – 116.2 (m), 115.7 – 115.3 (m), 114.9 – 113.9 (m), 113.4 – 113.0 (m), 111.8 – 110.6 (m). 19F NMR (376 MHz, CDCl$_3$) δ -80.4 – -81.3 (m, 3F), -101.4 – -102.0 (m, 2F), -120.1 – -120.5 (m, 2F), -125.4 – -126.2 (m, 2F). HRMS (EI) m/z: [M]$^+$ calcd for C$_{19}$H$_9$F$_9$N$_2$S 468.0337, found 468.0342.

![Chemical structure](image)

2-phenyl-3,8-bis(trifluoromethyl)imidazo[1,2-a]pyridine (4)

Colorless oil, 4 mg, Yield: 4% 1H NMR (400 MHz, CDCl$_3$) δ 8.47 (d, $J = 7.0$ Hz, 1H), 7.77 – 7.67 (m, 3H), 7.51 – 7.41 (m, 3H), 7.08 (t, $J = 7.1$ Hz, 1H). 13C NMR (100 MHz, CDCl$_3$) δ 149.1, 141.7, 132.2, 129.8, 129.3, 128.7 (q, $J = 4.1$ Hz), 128.2, 125.2 (q, $J = 5.2$ Hz), 122.3 (q, $J = 270.8$ Hz), 121.6 (q, $J = 266.3$ Hz), 120.0 (q, $J = 34.3$ Hz).
Hz), 112.3, 110.7 (q, J = 39.7 Hz). 19F NMR (376 MHz, CDCl$_3$) δ -57.6, -63.4. HRMS (ESI) m/z: [M + H]$^+$ calcd for C$_{15}$H$_8$F$_6$N$_2$ 331.0665, found 331.0667.

References

4. NMR spectrum

1H NMR (400 MHz, CDCl$_3$) Spectrum of 3aa

13C NMR (100 MHz, CDCl$_3$) Spectrum of 3aa
19F NMR (376 MHz, CDCl$_3$) Spectrum of 3aa

1H NMR (400 MHz, CDCl$_3$) Spectrum of 3ba
13C NMR (100 MHz, CDCl$_3$) Spectrum of 3ba

19F NMR (376 MHz, CDCl$_3$) Spectrum of 3ba
1H NMR (400 MHz, CDCl$_3$) Spectrum of 3ca

\[
\begin{array}{c}
\text{HNMR (400 MHz, CDCl$_3$) Spectrum of 3ca} \\
\includegraphics[width=0.5\textwidth]{hnmr_spectrum}
\end{array}
\]

13C NMR (100 MHz, CDCl$_3$) Spectrum of 3ca

\[
\begin{array}{c}
\text{^{13}C NMR (100 MHz, CDCl$_3$) Spectrum of 3ca} \\
\includegraphics[width=0.5\textwidth]{cnmr_spectrum}
\end{array}
\]
$^{19}\text{F NMR (376 MHz, CDCl}_3\text{)}$ Spectrum of 3ca

$^1\text{H NMR (400 MHz, CDCl}_3\text{)}$ Spectrum of 3da
13C NMR (100 MHz, CDCl$_3$) Spectrum of 3da

19F NMR (376 MHz, CDCl$_3$) Spectrum of 3da
1H NMR (400 MHz, CDCl$_3$) Spectrum of 3ea

![1H NMR spectrum](image)

13C NMR (100 MHz, CDCl$_3$) Spectrum of 3ea

![13C NMR spectrum](image)
19F NMR (376 MHz, CDCl$_3$) Spectrum of 3ea

1H NMR (400 MHz, CDCl$_3$) Spectrum of 3fa
13C NMR (100 MHz, CDCl$_3$) Spectrum of 3fa

19F NMR (376 MHz, CDCl$_3$) Spectrum of 3fa
1H NMR (400 MHz, CDCl$_3$) Spectrum of 3ga

13C NMR (100 MHz, CDCl$_3$) Spectrum of 3ga
$^{19}\text{F NMR (376 MHz, CDCl}_3\text{)}$ Spectrum of 3ga

$^{1}\text{H NMR (400 MHz, CDCl}_3\text{)}$ Spectrum of 3ha
13C NMR (100 MHz, CDCl$_3$) Spectrum of 3ha

![C NMR Spectrum of 3ha]

19F NMR (376 MHz, CDCl$_3$) Spectrum of 3ha

![F NMR Spectrum of 3ha]
1H NMR (400 MHz, CDCl$_3$) Spectrum of 3ia

13C NMR (100 MHz, CDCl$_3$) Spectrum of 3ia
19F NMR (376 MHz, CDCl$_3$) Spectrum of 3ia

1H NMR (400 MHz, CDCl$_3$) Spectrum of 3ja
13C NMR (100 MHz, CDCl$_3$) Spectrum of **3ja**

19F NMR (376 MHz, CDCl$_3$) Spectrum of **3ja**
1H NMR (400 MHz, CDCl$_3$) Spectrum of 3ka

![NMR spectrum of 3ka](image1)

13C NMR (100 MHz, CDCl$_3$) Spectrum of 3ka

![NMR spectrum of 3ka](image2)
19F NMR (376 MHz, CDCl$_3$) Spectrum of 3ka

\[\text{Diagram of 3ka} \]

1H NMR (400 MHz, CDCl$_3$) Spectrum of 3la

\[\text{Diagram of 3la} \]
13C NMR (100 MHz, CDCl\textsubscript{3}) Spectrum of 3la

![13C NMR spectrum of 3la](image)

19F NMR (376 MHz, CDCl\textsubscript{3}) Spectrum of 3la

![19F NMR spectrum of 3la](image)
1H NMR (400 MHz, CDCl$_3$) Spectrum of 3ma

13C NMR (100 MHz, CDCl$_3$) Spectrum of 3ma
19F NMR (376 MHz, CDCl$_3$) Spectrum of 3ma

1H NMR (400 MHz, CDCl$_3$) Spectrum of 3na
13C NMR (100 MHz, CDCl$_3$) Spectrum of 3na

19F NMR (376 MHz, CDCl$_3$) Spectrum of 3na
1H NMR (400 MHz, CDCl$_3$) Spectrum of 30a

13C NMR (100 MHz, CDCl$_3$) Spectrum of 30a
19F NMR (376 MHz, CDCl$_3$) Spectrum of 3oa

1H NMR (400 MHz, CDCl$_3$) Spectrum of 3pa
13C NMR (100 MHz, CDCl$_3$) Spectrum of 3pa

19F NMR (376 MHz, CDCl$_3$) Spectrum of 3pa
1H NMR (400 MHz, CDCl$_3$) Spectrum of 3qa

\[\text{N} \begin{array}{c}
\text{N}
\end{array} \text{S} \]

13C NMR (100 MHz, CDCl$_3$) Spectrum of 3qa

\[\text{N} \begin{array}{c}
\text{N}
\end{array} \text{S} \]
19F NMR (376 MHz, CDCl$_3$) Spectrum of 3qa

1H NMR (400 MHz, CDCl$_3$) Spectrum of 3ra
13C NMR (100 MHz, CDCl$_3$) Spectrum of 3ra

\[\text{Structure of 3ra} \]

\[\text{Spectrum of 3ra} \]

19F NMR (376 MHz, CDCl$_3$) Spectrum of 3ra

\[\text{Structure of 3ra} \]

\[\text{Spectrum of 3ra} \]
1H NMR (400 MHz, CDCl$_3$) Spectrum of 3ab

1H NMR (400 MHz, CDCl$_3$) Spectrum of 3ab

13C NMR (100 MHz, CDCl$_3$) Spectrum of 3ab

13C NMR (100 MHz, CDCl$_3$) Spectrum of 3ab
19F NMR (376 MHz, CDCl$_3$) Spectrum of 3ab

1H NMR (400 MHz, CDCl$_3$) Spectrum of 3ac
13C NMR (100 MHz, CDCl$_3$) Spectrum of 3ac

![13C NMR spectrum of 3ac](image1)

19F NMR (376 MHz, CDCl$_3$) Spectrum of 3ac

![19F NMR spectrum of 3ac](image2)
1H NMR (400 MHz, CDCl$_3$) Spectrum of 3ad

![H NMR Spectrum]

13C NMR (100 MHz, CDCl$_3$) Spectrum of 3ad

![C NMR Spectrum]
$^{19}\text{F NMR (376 MHz, CDCl}_3\text{) Spectrum of 3ad}$

![F NMR spectrum of 3ad]

$^1\text{H NMR (400 MHz, CDCl}_3\text{) Spectrum of 3ae}$

![H NMR spectrum of 3ae]
13C NMR (100 MHz, CDCl$_3$) Spectrum of 3ae

19F NMR (376 MHz, CDCl$_3$) Spectrum of 3ae
1H NMR (400 MHz, CDCl$_3$) Spectrum of 3bc

![H NMR spectrum of 3bc](image)

13C NMR (100 MHz, CDCl$_3$) Spectrum of 3bc

![C NMR spectrum of 3bc](image)
19F NMR (376 MHz, CDCl$_3$) Spectrum of 3be

1H NMR (400 MHz, CDCl$_3$) Spectrum of 3cc
13C NMR (100 MHz, CDCl$_3$) Spectrum of 3cc

19F NMR (376 MHz, CDCl$_3$) Spectrum of 3cc
1H NMR (400 MHz, CDCl$_3$) Spectrum of 3dc

13C NMR (100 MHz, CDCl$_3$) Spectrum of 3dc
19F NMR (376 MHz, CDCl$_3$) Spectrum of **3dc**

![19F NMR Spectrum of 3dc](image)

1H NMR (400 MHz, CDCl$_3$) Spectrum of **3ec**

![1H NMR Spectrum of 3ec](image)
13C NMR (100 MHz, CDCl$_3$) Spectrum of 3ee

19F NMR (376 MHz, CDCl$_3$) Spectrum of 3ee
1H NMR (400 MHz, CDCl$_3$) Spectrum of 3fc

13C NMR (100 MHz, CDCl$_3$) Spectrum of 3fc
19F NMR (376 MHz, CDCl$_3$) Spectrum of 3fc

![19F NMR spectrum of 3fc](image)

1H NMR (400 MHz, CDCl$_3$) Spectrum of 3gc

![1H NMR spectrum of 3gc](image)
13C NMR (100 MHz, CDCl$_3$) Spectrum of 3ge

19F NMR (376 MHz, CDCl$_3$) Spectrum of 3ge
1H NMR (400 MHz, CDCl$_3$) Spectrum of 3hc

13C NMR (100 MHz, CDCl$_3$) Spectrum of 3hc
19F NMR (376 MHz, CDCl$_3$) Spectrum of 3he

\[
\text{\begin{figure}
\centering
\includegraphics[width=\textwidth]{f_nmr_spectra.png}
\end{figure}}
\]

1H NMR (400 MHz, CDCl$_3$) Spectrum of 3ic

\[
\text{\begin{figure}
\centering
\includegraphics[width=\textwidth]{h_nmr_spectra.png}
\end{figure}}
\]
13C NMR (100 MHz, CDCl$_3$) Spectrum of 3ic

19F NMR (376 MHz, CDCl$_3$) Spectrum of 3ic
1H NMR (400 MHz, CDCl$_3$) Spectrum of $3jc$

13C NMR (100 MHz, CDCl$_3$) Spectrum of $3jc$
19F NMR (376 MHz, CDCl$_3$) Spectrum of 3je

![F NMR Spectrum](image)

1H NMR (400 MHz, CDCl$_3$) Spectrum of 3ke

![H NMR Spectrum](image)
13C NMR (100 MHz, CDCl$_3$) Spectrum of 3kc

19F NMR (376 MHz, CDCl$_3$) Spectrum of 3kc
1H NMR (400 MHz, CDCl$_3$) Spectrum of 3lc

13C NMR (100 MHz, CDCl$_3$) Spectrum of 3lc
19F NMR (376 MHz, CDCl$_3$) Spectrum of 3le

1H NMR (400 MHz, CDCl$_3$) Spectrum of 3mc
13C NMR (100 MHz, CDCl$_3$) Spectrum of 3mc

19F NMR (376 MHz, CDCl$_3$) Spectrum of 3mc
1H NMR (400 MHz, CDCl$_3$) Spectrum of 3nc

13C NMR (100 MHz, CDCl$_3$) Spectrum of 3nc
19F NMR (376 MHz, CDCl$_3$) Spectrum of 3nc

1H NMR (400 MHz, CDCl$_3$) Spectrum of 3oc
13C NMR (100 MHz, CDCl$_3$) Spectrum of 30c

19F NMR (376 MHz, CDCl$_3$) Spectrum of 30c
$^{1}{H}$ NMR (400 MHz, CDCl$_3$) Spectrum of 3pc

13C NMR (100 MHz, CDCl$_3$) Spectrum of 3pc
19F NMR (376 MHz, CDCl$_3$) Spectrum of 3pe

![19F NMR Spectrum of 3pe](image)

1H NMR (400 MHz, CDCl$_3$) Spectrum of 3qc

![1H NMR Spectrum of 3qc](image)
13C NMR (100 MHz, CDCl$_3$) Spectrum of 3qc

![Carbon NMR Spectrum](image)

19F NMR (376 MHz, CDCl$_3$) Spectrum of 3qc

![Fluorine NMR Spectrum](image)
1H NMR (400 MHz, CDCl$_3$) Spectrum of 4

13C NMR (100 MHz, CDCl$_3$) Spectrum of 4
19F NMR (376 MHz, CDCl$_3$) Spectrum of 4