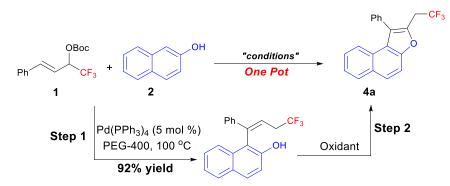
Electronic Supplementary Information

Palladium-catalyzed ortho-vinylation of β -naphthols with α -trifluoromethyl allyl carbonates: One-pot access to naphtho[2,1-*b*]furans

Chiliveru Priyanka,^{a, b} Muppidi Subbarao, ^{a, b} Nagender Punna^{*, a, b}

^aDepartment of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India. ^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India. Email: nagenderpunna@iict.res.in

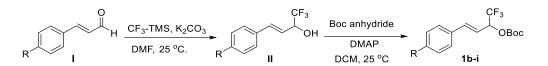
Table of Contents


1. General information	S1-S2
2. Optimization of reaction condition for one-pot synthesis of naphtho[2,1- <i>b</i>]furan	S2
3. Experimental procedures and characterization data of starting materials	S3-S8
4. Experimental procedures and characterization data of compounds	S8-S3 0
5. Gram scale reaction of 3a	S30
6. X-ray analysis data of 3j	S 31
7. References	S32
8. ¹ H NMR and ¹³ C NMR and ¹⁹ F spectral copies of compounds	S33- S89

1. General information:

All the reactions were performed in oven-dried glass apparatus, the air and moisture sensitive reactions were carried out under inert atmosphere (nitrogen) using freshly distilled anhydrous solvents. Commercially available reagents were used as such without further purification. All reactions were monitored by thin-layer chromatography carried out on silica plates using UV-light and anisaldehyde for visualization. Column chromatography was performed on silica gel (100-200 mesh) using hexanes and ethyl acetate as eluent. ¹H NMR was recorded in CDCl₃ and DMSO-*d*₆ on 500 MHz, 400 MHz and 300 MHz, ¹³C NMR was recorded on 125 MHz, 100 MHz and 75 MHz and ¹⁹F NMR was recorded on 377 MHz. Chemical shifts were reported in δ (ppm) relative to TMS as an internal standard and *J* values were given in Hz (hertz).

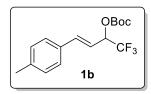
Multiplicity is indicated as, s (singlet); d (doublet); t (triplet); m (multiplet); dd (doublet of doublets), etc. δ 7.26 and δ 1.56 are corresponding to CDCl₃ and moisture respectively in ¹H NMR, δ 77.16 is related to CDCl₃ in ¹³C NMR. FT-IR spectra were recorded on Alpha (Bruker) Infrared Spectrophotometer. High resolution mass spectra (HRMS) [ESI⁺, ESI⁻, EI⁺] were obtained by using either a TOF or a double focusing spectrometer.


2. Table S₁: Optimization of reaction condition for one pot synthesis of naphtho[2,1-*b*]furan^{*a*}

Entry	Reaction condition for Step-2		Yield (%)	
	Oxidant (1 equiv)	Catalyst		
1	oxone	_	10	
2	$Na_2S_2O_8$	_	41	
3	$(NH_4)_2S_2O_8$	_	28	
4	$K_2S_2O_8$	_	74	
5	$K_2S_2O_8$	10 mol% Ag ₂ CO ₃	36	
6	$K_2S_2O_8$	10 mol% AgNO ₃	25	
7	Ag ₂ O	_	52	
8^b	$K_2S_2O_8$	_	_	
9 ^c	$K_2S_2O_8$	_	_	

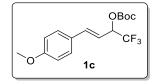
^{*a*}Reaction conditions unless otherwise stated; **Step 1**: All the reactions were performed using 0.24 mmol of **1a** with 0.2 mmol of **2a** in 1 mL of PEG-400 with Pd(PPh₃)₄ (5 mol %) at 100 °C (oil bath temperature) for 10 h. **Step 2**: after confirming the formation of compound **3a** by TLC, reaction mixture was cooled to room temperature, then, oxidant and catalyst was added, and stirred at 80 °C. ^{*b*}Reaction at 40 °C. ^cReaction at room temperature.

3. Experimental procedures and characterization data of Starting materials: 3.1. General procedure for synthesis of CF₃ allyl carbonates 1 (Method A):

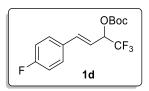


According to the literature procedure,¹ in a flame dried 100 mL round bottom flask, aldehyde I (10 mmol, 1.0 equiv) and TMSCF₃ (20 mmol, 2.0 equiv) was suspended in anhydrous DMF (20 mL). To this solution dry K_2CO_3 (10 mol %, 0.1 equiv) was added and the mixture was stirred vigorously at room temperature under N₂ atmosphere. Completion of the reaction was monitored by TLC. To this reaction mixture, aqueous HCl solution (2 M, 4 mL) was added and stirred for 3 h at room temperature. The reaction mixture was then extracted with ethyl acetate (3 × 30 mL). Combined organic layers were finally washed with brine solution, dried over anhydrous Na₂SO₄, and then solvent was removed under reduced pressure. The crude product II was further utilized without column chromatography.

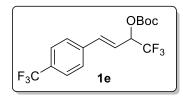
To the stirred solution of crude alcohol **II** (10 mmol, 1 equiv) in DCM (10 mL) were added Boc-anhydride (12 mmol, 1.2 equiv) and DMAP (0.1 equiv) at 0 °C, and the solution was warmed to room temperature and stirred for until completion of starting material monitored by TLC. Then, the reaction mixture was concentrated under reduced pressure and obtained residue was purified by using column chromatography on silica gel using hexane/ethyl acetate as eluent to afford the pure CF₃-allyl carbonates (**1b** -**1i**). The characterization data of **1** are summarized below.


Starting materials 1a and 1j were reported in previous articles.²

(E)-Tert-butyl (1,1,1-trifluoro-4-(p-tolyl) but-3-en-2-yl) carbonate(1b):

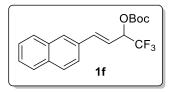

Following the general procedure **A**, To the stirred solution of (*E*)-1,1,1-trifluoro-4-(*p*-tolyl)but-3-en-2-ol (2.2 gm, 10 mmol) in DCM (10 mL) were added Boc-anhydride (2.6 gm, 12 mmol) and DMAP (122 mg, 0.1 equiv) at 0 °C, and the solution was warmed to room temperature and stirred for until completion of starting material monitored by TLC. Then, the reaction mixture was concentrated under reduced pressure and obtained residue was purified by using column chromatography on silica gel using hexane/ethyl acetate as eluent to afford the (*E*)-Tert-butyl (1,1,1-trifluoro-4-(*p*-tolyl) but-3-en-2-yl) carbonate **1b**, pale yellow solid, 2.53 g, 80% yield, $R_f = 0.5$ (hexane/ethyl acetate = 9.5:0.5); mp: 57–59 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.32 (d, *J* = 8.1 Hz, 2H), 7.16 (d, *J* = 7.9 Hz, 2H), 6.85 (d, *J* = 15.9 Hz, 1H), 6.08 (dd, *J* = 15.9, 7.9 Hz, 1H), 5.57 (m, 1H), 2.35 (s, 3H), 1.51 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 151.9, 139.3, 138.9, 132.4, 129.6, 127.2, 123.2 (q, *J* = 280.6 Hz), 116.2, 84.1, 74.2 (q, *J* = 33.6 Hz), 27.8, 21.4; ¹⁹F NMR (377 MHz, CDCl₃) δ -76.68 (s, 3F); **IR(KBr)**: vmax = 2965, 1660, 1130 cm⁻¹; **HRMS (EI)**⁺: *m/z* calcd for C₁₆H₁₉O₃F₃ (M)⁺: 316.12863, found: 316.12736.

(E)-Tert-butyl (1,1,1-trifluoro-4-(4-methoxyphenyl) but-3-en-2-yl) carbonate (1c):

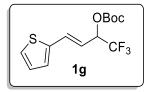

Following the general procedure **A**, To the stirred solution of (*E*)-1,1,1-trifluoro-4-(4methoxyphenyl)but-3-en-2-ol (2.3 gm, 10 mmol) in DCM (10 mL) were added Boc-anhydride (2.6 gm, 12 mmol) and DMAP (122 mg, 0.1 equiv) at 0 °C, and the solution was warmed to room temperature and stirred for until completion of starting material monitored by TLC. Then, the reaction mixture was concentrated under reduced pressure and obtained residue was purified by using column chromatography on silica gel using hexane/ethyl acetate as eluent to afford the (*E*)-tert-butyl (1,1,1-trifluoro-4-(4-methoxyphenyl) but-3-en-2-yl) carbonate **1c**, white solid, 2.72 g, 82% yield, R_f = 0.5 (hexane/ethyl acetate = 9:1); mp: 67–69 °C; ¹**H NMR** (300 MHz, CDCl₃) δ 7.36 (d, *J* = 8.6 Hz, 2H), 6.90 – 6.78 (m, 3H), 6.00 (dd, *J* = 15 .9, 8.1 Hz, 1H), 5.57 (m, 1H), 3.80 (s, 3H), 1.49 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃) δ 160.5, 151.9, 138.6, 128.6, 127.9, 123.3 (q, *J* = 280.6 Hz), 114.8, 114.2, 84.0, 74.3 (q, *J* = 33.5 Hz), 55.4, 27.8; ¹⁹**F NMR** (377 MHz, CDCl₃) δ –76.71 (s, 3F); **IR (KBr**): vmax = 2970, 1665, 1143 cm⁻¹; **HRMS (EI**)⁺: *m/z* calcd for C₁₆H₁₉O₄F₃ (M)⁺: 332.12354, found: 332.12505.

(E)-Tert-butyl (1,1,1-trifluoro-4-(4-fluorophenyl) but-3-en-2-yl) carbonate (1d):

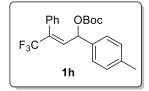
Following the general procedure, A, To the stirred solution of (*E*)-1,1,1-trifluoro-4-(4-fluorophenyl)but-3-en-2-ol (2.2 gm, 10 mmol) in DCM (10 mL) were added Boc-anhydride (2.6 gm, 12 mmol) and DMAP (122 mg, 0.1 equiv) at 0 °C, and the solution was warmed to room temperature and stirred for until completion of starting material monitored by TLC. Then, the reaction mixture was concentrated under reduced pressure and obtained residue was purified by using column chromatography on silica gel using hexane/ethyl acetate as eluent to afford the (*E*)-tert-butyl (1,1,1-trifluoro-4-(4-fluorophenyl) but-3-en-2-yl) carbonate **1d**, white solid, 2.74 g, 85% yield, $R_f = 0.5$ (hexane/ethyl acetate = 9.5:0.5); mp: 55–57 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.41 (m, 2H), 7.05 (t, *J* = 8.6 Hz, 2H), 6.85 (d, *J* = 15.9 Hz, 1H), 6.06 (dd, *J* = 15.9, 7.8 Hz, 1H), 5.63 – 5.52 (m, 1H), 1.51 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 163.3 (d, *J* = 249.1 Hz), 151.9, 137.6, 131.3, 128.9 (d, *J* = 21.8 Hz), 123.7 (q, *J* = 280.6 Hz), 117.1, 115.9 (d, *J* = 8.3 Hz), 84.2, 73.9 (q, *J* = 33.6 Hz), 27.8; ¹⁹F NMR (377 MHz, CDCl₃) δ -76.65 (s, 3F), -111.94 (s, F). **IR (KBr**): vmax = 2968, 1670, 1150 cm⁻¹; **HRMS (EI)**⁺: *m*/z calcd for C₁₁H₈O₃F₄ (M–56)⁺: 264.04096, found: 264.03985.


(*E*)-Tert-butyl (1,1,1-trifluoro-4-(4-(trifluoromethyl) phenyl) but-3-en-2yl carbonate (1e):

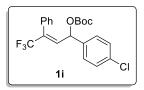
Following the general procedure **A**, To the stirred solution of (*E*)-1,1,1-trifluoro-4-(4-(trifluoromethyl)phenyl)but-3-en-2-ol (2.7 gm, 10 mmol, 1equiv) in DCM (10 mL) were added Boc-anhydride (2.6 gm, 12 mmol) and DMAP (122 mg, 0.1 equiv) at 0 °C, and the solution was warmed to room temperature and stirred for until completion of starting material monitored by TLC. Then, the reaction mixture was concentrated under reduced pressure and obtained residue was purified by using column chromatography on silica gel using hexane/ethyl acetate (9:1) as eluent to afford the (*E*)-tert-butyl (1,1,1-trifluoro-4-(4-(trifluoromethyl) phenyl) but-3-en-2yl carbonate **1e**, off-white solid, 2.82 g, 76% yield, $R_f = 0.5$ (hexane/ethyl acetate = 9:1); mp: 74–76 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.61 (d, J = 8.2 Hz, 2H), 7.53 (d, J = 8.5 Hz, 2H), 6.92 (d, J = 16.0 Hz, 1H), 6.23 (dd, J = 16.0, 7.4 Hz, 1H), 5.62 (m, 1H), 1.52 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 151.8, 138.6, 137.0, 130.9 (q, J = 32.5 Hz), 127.4, 125.9, 124.08 (q, J = 271.9 Hz), 123.04 (q, J = 280.9 Hz), 120.1, 84.5, 73.54 (q, J = 33.7 Hz), 27.8; ¹⁹F NMR


 $(377 \text{ MHz}, \text{CDCl}_3) \delta - 76.16 \text{ (s, 3F)}, -76.59 \text{ (s, 3F)}. IR (KBr): vmax = 2970, 1650, 1155 \text{ cm}^-$ ¹; HRMS (EI)⁺: *m*/*z* calcd for C₁₂H₈O₃F₆ (M–56)⁺: 314.03776, found: 314.03825.

(E)-Tert-butyl (1,1,1-trifluoro-4-(naphthalen-2-yl) but-3-en-2-yl) carbonate (1f):


Following the general procedure **A**, To the stirred solution of (*E*)-1,1,1-trifluoro-4-(naphthalen-2-yl)but-3-en-2-ol (2.5 gm, 10 mmol) in DCM (10 mL) were added Boc-anhydride (2.6 gm, 12 mmol) and DMAP (122 mg, 0.1 equiv) at 0 °C, and the solution was warmed to room temperature and stirred for until completion of starting material monitored by TLC. Then, the reaction mixture was concentrated under reduced pressure and obtained residue was purified by using column chromatography on silica gel using hexane/ethyl acetate (9:1) as eluent to afford the (*E*)-tert-butyl (1,1,1-trifluoro-4-(naphthalen-2-yl) but-3-en-2-yl) carbonate **1f**, Pale yellow liquid, 2.82 g, 79% yield, $R_f = 0.5$ (hexane/ethyl acetate = 9:1); ¹**H** NMR (500 MHz, CDCl₃) δ 8.06 (d, *J* = 8.4 Hz, 1H), 7.88 – 7.82 (m, 2H), 7.67 (d, *J* = 15.7 Hz, 1H), 7.61 (d, *J* = 7.1 Hz, 1H), 7.56 – 7.49 (m, 2H), 7.48 – 7.44 (m, 1H), 6.19 (dd, *J* = 15.7, 7.6 Hz, 1H), 5.75 – 5.68 (m, 1H), 1.54 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 151.9, 136.4, 133.7, 132.9, 131.2, 129.4, 128.8, 126.7, 126.2, 125.6, 124.7, 123.6, 123.2 (q, *J* = 280.9 Hz), 120.5, 84.3, 74.0 (q, *J* = 33.6 Hz), 27.8; ¹⁹F NMR (377 MHz, CDCl₃) δ –76.50 (s, 3F); **IR (neat**): vmax = 2972, 1653, 1158 cm⁻¹; **HRMS (EI**)⁺: *m*/z calcd for C₁₉H₁₉O₃F₃ (M)⁺: 352.12863, found: 352.13015.

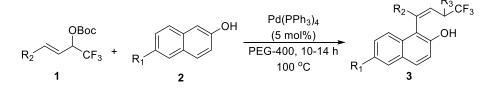
(E)-Tert-butyl (1,1,1-trifluoro-4-(thiophen-2-yl) but-3-en-2-yl) carbonate (1g):


Following the general procedure **A**, To the stirred solution of (E)-1,1,1-trifluoro-4-(thiophen-2-yl)but-3-en-2-ol (2.1 gm, 10 mmol) in DCM (10 mL) were added Boc-anhydride (2.6 gm, 12 mmol) and DMAP (122 mg, 0.1 equiv) at 0 °C, and the solution was warmed to room temperature and stirred for until completion of starting material monitored by TLC. Then, the reaction mixture was concentrated under reduced pressure and obtained residue was purified by using column chromatography on silica gel using hexane/ethyl acetate as eluent to afford (*E*)-tert-butyl (1,1,1-trifluoro-4-(thiophen-2-yl) but-3-en-2-yl) carbonate **1g**, colorless oil, 2.51 g, 83% yield, $R_f = 0.5$ (hexane/ethyl acetate = 9:1); ¹H NMR (500 MHz, CDCl₃) δ 7.26 – 7.24 (m, 1H), 7.08 (d, J = 3.6 Hz, 1H), 7.01 (m, 2H), 5.95 (dd, J = 15.7, 7.8 Hz, 1H), 5.55 (m, 1H), 1.51 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 151.8, 139.9, 131.8, 128.3, 127.7, 126.4, 123.1 (q, J = 280.7 Hz), 116.3, 84.2, 73.8 (q, J = 33.8 Hz), 27.8; ¹⁹F NMR (377 MHz, CDCl₃) δ – 76.65 (s, 3F). **IR (neat)**: vmax = 2971, 1648, 1152 cm⁻¹; **HRMS (EI)**⁺: *m/z* calcd for C₉H₇O₃F₃S (M–56)⁺: 252.00680, found: 252.00567.

(E)-Tert-butyl (4,4,4-trifluoro-3-phenyl-1-(p-tolyl) but-2-en-1-yl) carbonate (1h):

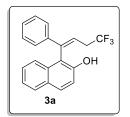
Following the general procedure **A**, To the stirred solution of (*E*)-4,4,4-trifluoro-3-phenyl-1-(p-tolyl)but-2-en-1-ol³ (2.9 gm, 10 mmol) in DCM (10 mL) were added Boc-anhydride (2.6 gm, 12 mmol) and DMAP (122 mg, 0.1 equiv) at 0 °C, and the solution was warmed to room temperature and stirred for until completion of starting material monitored by TLC. Then, the reaction mixture was concentrated under reduced pressure and obtained residue was purified by using column chromatography on silica gel using hexane/ethyl acetate as eluent to afford the (*E*)-Tert-butyl (4,4,4-trifluoro-3-phenyl-1-(p-tolyl) but-2-en-1-yl) carbonate **1h**, colorless oil, 2.90 g, 83% yield, $R_f = 0.5$ (hexane/ethyl acetate = 9:1); **¹H NMR** (500 MHz, CDCl₃) δ 7.43 – 7.40 (m, 3H), 7.25 – 7.21 (m, 2H), 7.14 (d, *J* = 7.9 Hz, 2H), 7.09 (d, *J* = 8.1 Hz, 2H), 6.65 (dd, *J* = 9.1, 1.5 Hz, 1H), 5.87 (d, *J* = 9.1 Hz, 1H), 2.33 (s, 3H), 1.43 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 152.2, 138.7, 135.2, 133.5 (q, *J* = 5.2 Hz), 133.1 (q, *J* = 30.4 Hz), 131.1, 129.7, 129.6, 129.3, 128.7, 126.9, 123.1 (q, *J* = 273.5 Hz), 82.8, 74.9, 27.9, 21.3; ¹⁹F NMR (376 MHz, CDCl₃) δ –68.64 (s, 3F); **IR (neat):** vmax = 3063, 1648, 1168 cm⁻¹; **HRMS (EI)**⁺: *m*/z calcd for C₁₈H₁₅O₃F₃ (M-56)⁺: 336.09733, found: 336.09627.

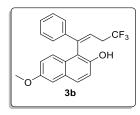
(E)-Tert-butyl (1-(4-chlorophenyl) -4,4,4-trifluoro-3-phenylbut-2-en-1-yl) carbonate (1i):



Following the general procedure **A**, To the stirred solution of (E)-1-(4-chlorophenyl)-4,4,4-trifluoro-3-phenylbut-2-en-1-ol³ (3.1 gm, 10 mmol) in DCM (10 mL) were added Bocanhydride (2.6 gm, 12 mmol) and DMAP (122 mg, 0.1 equiv) at 0 °C, and the solution was warmed to room temperature and stirred for until completion of starting material monitored by TLC. Then, the reaction mixture was concentrated under reduced pressure and obtained residue was purified by using column chromatography on silica gel using hexane/ethyl acetate as eluent to afford the (*E*)-Tert-butyl (1-(4-chlorophenyl)-4,4,4-trifluoro-3-phenylbut-2-en-1-yl) carbonate **1i**, colorless oil, 3.21 g, 80% yield, $R_f = 0.5$ (hexane/ethyl acetate = 9:1); ¹**H NMR** (500 MHz, CDCl₃) δ 7.45 – 7.40 (m, 3H), 7.32 – 7.28 (m, 2H), 7.24 – 7.20 (m, 2H), 7.13 – 7.10 (m, 2H), 6.63 – 6.60 (m, 1H), 5.88 (d, *J* = 8.9 Hz, 1H), 1.44 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃) δ 152.1, 136.7, 134.8, 133.8 (q, *J* = 30.6 Hz), 132.9, 130.9, 129.5, 129.4, 129.2, 128.8, 128.4, 122.9 (q, *J* = 273.6 Hz), 83.2, 74.2, 27.7; ¹⁹**F NMR** (377 MHz, CDCl₃) δ -68.52 (s, 3F); **IR (neat**): vmax = 3068, 1647, 1166 cm⁻¹; **HRMS (EI**)⁺: *m/z* calcd for C₁₇H₁₂O₃F₃Cl (M–56)⁺: 356.04271, found: 356.04413.

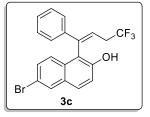
4. Experimental procedures and characterization data of compounds:


4.1 General procedure for synthesis of CF₃-(Z)-propenylnaphthols 3 (Method B):

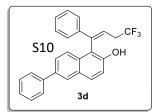

To a stirred solution of CF₃-allyl carbonate **1** (0.24 mmol) in 1 mL of PEG-400 was added β naphthol **2** (0.2 mmol) at room temperature. Then, 5 mol % of Pd(PPh₃)₄ was added to the reaction mixture and stirred at 100 °C (oil bath temperature) for 10–14 h. The reaction progress was monitored by TLC. After completion of the reaction, mixture was diluted with water and extracted with ethyl acetate (3 X 15 mL). Combined organic layers were dried over sodium sulphate and concentrated on rotary evaporation. The obtained crude product was purified by flash column chromatography on silica gel 100-200 mesh using (hexane/ethyl acetate) to obtain the pure product CF₃-propenyl β -naphthols **3**. The characterization data of **3** are summarized below.

(Z)-1-(4,4,4-Trifluoro-1-phenylbut-1-en-1-yl) naphthalen-2-ol (3a):

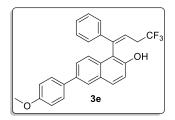
Following the general procedure **B**, To a stirred solution of **1a** (72.5 mg, 0.24 mmol) in 1mL of PEG-400 was added **2a** (28.8 mg, 0.2 mmol) at room temperature. Then, Pd(PPh₃)₄ (11.5 mg, 5 mol%) was added to the reaction mixture and stirred at 100 °C (oil bath temperature) for 10 h. After completion of the reaction, mixture was diluted with water and extracted with ethyl acetate (3 X 15 mL). Combined organic layers were dried over sodium sulphate and concentrated on rotary evaporation. The obtained crude product was purified by flash column chromatography hexane/ethyl acetate is an eluant to obtain the (*Z*)-1-(4,4,4-Trifluoro-1-phenylbut-1-en-1-yl) naphthalen-2-ol **3a**, off-white solid, 72 mg, 92% yield, $R_f = 0.5$ (hexane/ethyl acetate = 9:1); mp: 99–101 °C; **1H NMR** (400 MHz, CDCl₃) δ 7.87 – 7.79 (m, 2H), 7.50 – 7.46 (m, 1H), 7.37 – 7.31 (m, 4H), 7.30 – 7.26 (m, 3H), 7.25 (d, *J* = 4.3 Hz, 1H), 6.68 (t, *J* = 7.1 Hz, 1H), 5.22 (s, 1H), 2.81 – 2.69 (m, 2H); **13C NMR** (101 MHz, CDCl₃) δ 150.1, 139.8, 138.3, 132.3, 130.4, 129.1, 128.9, 128.7, 128.3, 127.1, 126.3, 125.9 (q, *J* = 276.9 Hz), 124.1, 123.8, 121.5, 117.5, 116.5, 34.9 (q, *J* = 29.8 Hz,); **1°F NMR** (377 MHz, CDCl₃) δ –65.55 (s, 3F); **IR (KBr)**: vmax = 3546, 3022, 2401, 1214, 751 cm⁻¹; **HRMS (ESI)**⁺: *m/z* calcd for C₂₀H₁₆OF₃ (M+H)⁺: 329.1156, found: 329.1151.


(Z)-6-Methoxy-1-(4,4,4-trirfluoro-1-phenylbut-1-en-1-yl) naphthalen-2-ol (3b):

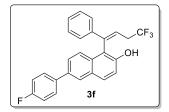
Following the general procedure **B**, To a stirred solution of **1a** (72.5 mg, 0.24 mmol) in 1mL of PEG-400 was added **2b** (34.8 mg, 0.2 mmol) at room temperature. Then, Pd(PPh₃)₄ (11.5 mg, 5 mol%) as added to the reaction mixture and stirred at 100 °C (oil bath temperature) for 11 h. After completion of the reaction, mixture was diluted with water and extracted with ethyl acetate (3 X 15 mL). Combined organic layers were dried over sodium sulphate and concentrated on rotary evaporation. The obtained crude product was purified by flash column chromatography hexane/ethyl acetate is an eluant to obtain (*Z*)-6-Methoxy-1-(4,4,4-trirfluoro-


1-phenylbut-1-en-1-yl) naphthalen-2-ol **3b**, pale yellow oil, 76 mg, 89% yield; $R_f = 0.4$ (hexane/ethyl acetate = 9:1); ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 8.9 Hz, 1H), 7.38 (d, J = 9.2 Hz, 2H), 7.34 – 7.31 (m, 3H), 7.30 – 7.27 (m, 1H), 7.24 (d, J = 8.9 Hz, 1H), 7.15 (d, J = 2.6 Hz, 1H), 7.04 (dd, J = 9.1, 2.6 Hz, 1H), 6.66 (t, J = 7.1 Hz, 1H), 5.03 (s, 1H), 3.89 (s, 3H), 2.80 – 2.67 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 156.3, 148.7, 140.1, 138.5, 130.2, 129.1, 129.0, 128.9, 127.6, 126.4, 126.1 (q, J = 276.9 Hz), 125.8, 121.4, 119.7, 118.0, 116.9, 106.9, 55.5, 35.1 (q, J = 29.9 Hz); ¹⁹FNMR (376 MHz, CDCl₃) δ –65.44 (s, 3F); **IR (neat)**: vmax =3542, 3021, 2403, 1214, 750 cm⁻¹; **HRMS (ESI)**⁻: m/z calcd for C₂₁H₁₆O₂F₃ (M–H)⁻: 357.1102, found: 357.1102.

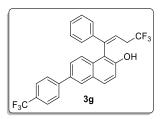
(Z)-6-Bromo-1-(4,4,4-trifluoro-1-phenylbut-1-en-1-yl) naphthalen-2-ol (3c):


Following the general procedure **B**, To a stirred solution of **1a** (72.5 mg, 0.24 mmol) in 1mL of PEG-400 was added **2c** (44.4 mg, 0.2 mmol) at room temperature. Then, Pd(PPh₃)₄ (11.5 mg, 5 mol%) was added to the reaction mixture and stirred at 100 °C (oil bath temperature) for 10 h. After completion of the reaction, mixture was diluted with water and extracted with ethyl acetate (3 X 15 mL). Combined organic layers were dried over sodium sulphate and concentrated on rotary evaporation. The obtained crude product was purified by flash column chromatography hexane/ethyl acetate is an eluant to obtain the (*Z*)-6-Bromo-1-(4,4,4-trifluoro-1-phenylbut-1-en-1-yl) naphthalen-2-ol **3c**, brown oil, 81 mg, 83% yield, *R_f*= 0.6 (hexane/ethyl acetate = 9:1); ¹**H NMR** (400 MHz, CDCl₃) δ 7.97 (d, *J* = 1.9 Hz, 1H), 7.75 (d, *J* = 8.9 Hz, 1H), 7.41 (m, 1H), 7.36 – 7.33 (m, 1H), 7.31 – 7.27 (m, 6H), 6.68 (t, *J* = 7.1 Hz, 1H), 5.25 (s, 1H), 2.78 – 2.71 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 150.5, 139.4, 138.0, 130.9, 130.4, 130.3, 129.5, 129.0, 128.9, 126.9, 126.3, 126.0, 125.9 (q, *J* = 277.0 Hz), 121.7, 118.7, 117.6, 116.0, 34.9 (q, *J* = 29.9 Hz); ¹⁹**F NMR** (377 MHz, CDCl₃) δ -65.36 (s, 3F); **IR (neat**): vmax =3542, 3021, 2403, 1214, 750 cm⁻¹; **HRMS (ESI**)⁻: *m*/*z* calcd for C₂₀H₁₃BrOF₃(M–H)⁻: 405.0102, found: 405.0106.

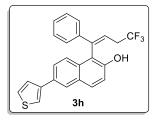
(Z)-6-phenyl-1-(4,4,4-trifluoro-1-phenylbut-1-en-1-yl) naphthalen-2-ol (3d):


Following the general procedure **B**, To a stirred solution of **1a** (72.5 mg, 0.24 mmol) in 1mL of PEG-400 was added 2d (44 mg, 0.2 mmol) at room temperature. Then, Pd(PPh₃)₄ (11.5 mg, 5 mol%) was added to the reaction mixture and stirred at 100 °C (oil bath temperature) for 12 h. After completion of the reaction, mixture was diluted with water and extracted with ethyl acetate (3 X 15 mL). Combined organic layers were dried over sodium sulphate and concentrated on rotary evaporation. The obtained crude product was purified by flash column chromatography hexane/ethyl acetate is an eluant to obtain the (Z)-6-phenyl-1-(4,4,4-trifluoro-1-phenylbut-1-en-1-yl) naphthalen-2-ol **3d**, colorless oil, 82 mg, 85% yield, $R_f = 0.5$ (hexane/ethyl acetate = 9:1); ¹**H NMR** (400 MHz, CDCl₃) δ 7.94 (d, J = 1.7 Hz, 1H), 7.82 (d, J = 8.9 Hz, 1H), 7.58 (d, J = 8.1, 1.0 Hz, 2H), 7.54 (dd, J = 8.7, 1.9 Hz, 1H), 7.47 (d, J = 8.7) Hz, 1H), 7.38 (t, J = 10.4, 4.8 Hz, 2H), 7.30 – 7.26 (m, 3H), 7.24 – 7.16 (m, 4H), 6.63 (t, J = 10.4, 4.8 Hz, 2H), 7.30 – 7.26 (m, 3H), 7.24 – 7.16 (m, 4H), 6.63 (t, J = 10.4, 4.8 Hz, 2H), 7.30 – 7.26 (m, 3H), 7.24 – 7.16 (m, 4H), 6.63 (t, J = 10.4, 4.8 Hz, 2H), 7.30 – 7.26 (m, 3H), 7.24 – 7.16 (m, 4H), 6.63 (t, J = 10.4, 4.8 Hz, 2H), 7.30 – 7.26 (m, 3H), 7.24 – 7.16 (m, 4H), 6.63 (t, J = 10.4, 4.8 Hz, 2H), 7.30 – 7.26 (m, 3H), 7.24 – 7.16 (m, 4H), 6.63 (t, J = 10.4, 4.8 Hz, 2H), 7.30 – 7.26 (m, 3H), 7.24 – 7.16 (m, 4H), 6.63 (t, J = 10.4, 4.8 Hz, 2H), 7.30 – 7.26 (m, 3H), 7.24 – 7.16 (m, 4H), 6.63 (t, J = 10.4, 4.8 Hz, 2H), 7.30 – 7.26 (m, 3H), 7.24 – 7.16 (m, 4H), 6.63 (t, J = 10.4, 4.8 Hz, 2H), 7.30 – 7.26 (m, 3H), 7.24 – 7.16 (m, 4H), 6.63 (t, J = 10.4, 4.8 Hz, 7.20 (m, 3H), 7.24 – 7.16 (m, 4H), 6.63 (t, J = 10.4, 4.8 Hz, 7.20 (m, 3H), 7.24 – 7.16 (m, 4H), 6.63 (t, J = 10.4, 4.8 Hz, 7.20 (m, 3H), 7.24 – 7.16 (m, 4H), 6.63 (t, J = 10.4, 4.8 Hz, 7.20 (m, 3H), 7.24 – 7.16 (m, 4H), 7.20 (m, 3H), 7.24 – 7.16 (m, 4H), 7.20 (m, 3H), 7.20 7.1 Hz, 1H), 5.17 (s, 1H), 2.77 – 2.64 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 150.4, 140.9, 139.9, 138.4, 136.7, 131.6, 130.8, 129.6, 129.1, 128.9, 128.9, 127.3, 126.9, 126.5, 126.3, 126.1 (q, J = 277.0 Hz), 124.8, 121.7, 121.7, 118.1, 116.6,35.1 (q, J = 30.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -65.41 (s, 3F); **IR (neat)**: vmax =3542, 3021, 2403, 1214, 750 cm⁻¹; **HRMS (ESI)**⁻: *m*/*z* calcd for C₂₆H₁₈OF₃ (M–H)⁻: 403.1312, found: 403.1316.

(Z)-6-(4-Methoxyphenyl)-1-(4,4,4-trifluoro-1-phenylbut-1-en-1-yl) naphthalen-2-ol (3e):

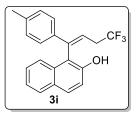

Following the general procedure **B**, To a stirred solution of **1a** (72.5 mg, 0.24 mmol) in 1mL of PEG-400 was added **2e** (50 mg, 0.2 mmol) at room temperature. Then, Pd(PPh₃)₄ (11.5 mg, 5 mol%) was added to the reaction mixture and stirred at 100 °C(oil bath temperature) for 14 h. After completion of the reaction, mixture was diluted with water and extracted with ethyl acetate (3 X 15 mL). Combined organic layers were dried over sodium sulphate and concentrated on rotary evaporation. The obtained crude product was purified by flash column

chromatography hexane/ethyl acetate is an eluant to obtain the (*Z*)-6-(4-Methoxyphenyl)-1-(4,4,4-trifluoro-1-phenylbut-1-en-1-yl) naphthalen-2-ol **3e**, pale-yellow oil, 83 mg, 80% yield, $R_f = 0.4$ (hexane/ethyl acetate = 9:1); ¹**H** NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 1.8 Hz, 1H), 7.88 (d, *J* = 8.8 Hz, 1H), 7.61 – 7.57 (m, 3H), 7.52 (d, *J* = 8.7 Hz, 1H), 7.38 – 7.34 (m, 2H), 7.29 (td, *J* = 6.0, 2.2 Hz, 4H), 7.02 – 6.97 (m, 2H), 6.70 (t, *J* = 7.1 Hz, 1H), 5.21 (s, 1H), 3.86 (s, 3H), 2.85 – 2.71 (m, 2H); ¹³C NMR(101 MHz, CDCl₃) δ 159.2, 150.1, 139.9, 138.4, 136.2, 133.4, 131.2, 130.5, 129.5, 128.9, 128.8, 128.2, 126.7, 126.4, 125.5, 124.8 (q, *J* = 273.9 Hz), 124.7, 121.5, 117.9, 116.4, 114.3, 55.4, 34.9 (q, *J* = 30.1Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ –65.40 (s, 3F); **IR (neat**): vmax =3542, 3021, 2403, 1214, 750 cm⁻¹; **HRMS (ESI**)⁻: *m/z* calcd for C₂₇H₂₀O₂F₃ (M–H)⁻: 433.1415, found: 433.1414.


Following the general procedure **B**, To a stirred solution of **1a** (72.5 mg, 0.24 mmol) in 1mL of PEG-400 was added 2f (47.6 mg, 0.2 mmol) at room temperature. Then, Pd(PPh₃)₄ (11.5 mg, 5 mol%) was added to the reaction mixture and stirred at 100 °C (oil bath temperature) for 10 h. After completion of the reaction, mixture was diluted with water and extracted with ethyl acetate (3 X 15 mL). Combined organic layers were dried over sodium sulphate and concentrated on rotary evaporation. The obtained crude product was purified by flash column chromatography hexane/ethyl acetate is an eluant to obtain (Z)-6-(4-Fluorophenyl)-1-(4,4,4trifluoro-1-phenylbut-1-en-1-yl) naphthalen-2-ol **3f**, brown oil, 79 mg, 78% yield, $R_f = 0.5$ (hexane/ethyl acetate = 9:1); ¹**H NMR** (400 MHz, CDCl₃) δ 7.96 (s, 1H), 7.89 (d, J = 8.9 Hz, 1H), 7.64 - 7.58 (m, 2H), 7.54 (d, J = 9.6 Hz, 2H), 7.35 (s, 2H), 7.32 - 7.28 (m, 4H), 7.14 (t, J= 8.2 Hz, 2H), 6.71 (t, J = 7.0 Hz, 1H), 5.25 (s, 1H), 2.85 – 2.72 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 162.6 (d, *J*= 246.3 Hz),150.5, 139.9, 138.4, 137.1, 135.7, 131.6, 130.7, 129.5, 129.1, 128.9 (d, *J* = 5.0 Hz),128.8, 126.8, 126.5, 126.18, 126.1 (q, *J* = 277.1 Hz), 124.9, 121.7, 118.2, 116.6,115.9 (d, J = 21.4 Hz), 35.1 (q, J = 29.9 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ –65.38 (s, 3F), -115.78 (s, 1F); **IR** (neat): vmax = 3544, 3021, 2402, 1216, 746 cm⁻¹; **HRMS** (ESI)⁻: m/zcalcd for C₂₆H₁₇OF₄ (M–H)⁻: 421.1216, found: 421.1223.

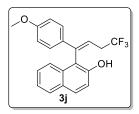
(Z)-1-(4,4,4-Trifluoro-1-phenylbut-1-en-1-yl)-6-(4-(trifluoromethyl)phenyl)napthalen-2-ol (3g):

Following the general procedure **B**, To a stirred solution of **1a** (72.5 mg, 0.24 mmol) in 1mL of PEG-400 was added 2g (57.6 mg, 0.2 mmol) at room temperature. Then, Pd(PPh₃)₄ (11.5 mg, 5 mol%) was added to the reaction mixture and stirred at 100 °C (oil bath temperature) for 12 h. After completion of the reaction, mixture was diluted with water and extracted with ethyl acetate (3 X 15 mL). Combined organic layers were dried over sodium sulphate and concentrated on rotary evaporation. The obtained crude product was purified by flash column chromatography hexane/ethyl acetate is an eluent to obtain the (Z)-1-(4,4,4-Trifluoro-1phenylbut-1-en-1-yl)-6-(4-(trifluoromethyl)phenyl)napthalen-2-ol 3g, brown oil, 82 mg, 72% yield, $R_f = 0.4$ (hexane/ethyl acetate = 9:1); ¹H NMR (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.83 (d, J = 8.9 Hz, 1H), 7.67 (d, J = 8.3 Hz, 2H), 7.62 (d, J = 8.4 Hz, 2H), 7.54 - 7.47 (m, 2H),7.29 - 7.25 (m, 2H), 7.23 - 7.21 (m, 3H), 7.21 - 7.15 (m, 1H), 6.63 (t, J = 7.1 Hz, 1H), 5.24(s, 1H), 2.78 – 2.63 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 150.9, 144.5, 139.8, 138.4, 135.2, 132.1, 130.9, 129.5, 129.4, 129.1, 129.0, 127.6, 126.9, 126.6, 126.5, 126.1 (q, *J* = 277.2 Hz), 125.9, 125.2, 124.5 (q, J = 272.5 Hz), 121.8, 118.4, 116.7, 35.1 (q, J = 29.8 Hz); ¹⁹F NMR (377) MHz, CDCl₃) δ –62.36 (s, 3F), –65.38 (s, 3F); **IR** (**KBr**): vmax =3541, 3019, 2401, 1212, 743 cm⁻¹; **HRMS(ESI)**⁻: m/z calcd for C₂₇H₁₇OF₆ (M–H)⁻: 471.11936, found: 471.11781.

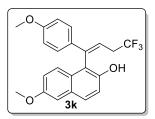

(Z)-6-(Thiophen-3yl)-1-(4,4,4-trifluoro-1-phenylbut-1-en-1-yl) napthalen-2-ol (3h):

Following the general procedure **B**, To a stirred solution of **1a** (72.5 mg, 0.24 mmol) in 1mL of PEG-400 was added **2h** (45.2 mg, 0.2 mmol) at room temperature. Then, Pd(PPh₃)₄ (11.5 mg, 5 mol%) was added to the reaction mixture and stirred at 100 °C (oil bath temperature) for

11 h. After completion of the reaction, mixture was diluted with water and extracted with ethyl acetate (3 X 15 mL). Combined organic layers were dried over sodium sulphate and concentrated on rotary evaporation. The obtained crude product was purified by flash column chromatography hexane/ethyl acetate is an eluant to obtain (Z)-6-(Thiophen-3yl)-1-(4,4,4-trifluoro-1-phenylbut-1-en-1-yl) napthalen-2-ol **3h**, brown oil , 70 mg, 71% yield, R_f = 0.5 (hexane/ethyl acetate = 9:1); ¹**H** NMR (500 MHz, CDCl₃) δ 8.02 (d, J = 1.5 Hz, 1H), 7.88 (d, J = 8.9 Hz, 1H), 7.62 (dd, J = 8.7, 1.8 Hz, 1H), 7.53 – 7.46 (m, 3H), 7.41 (m, 1H), 7.38 – 7.34 (m, 2H), 7.32 – 7.29 (m, 3H), 7.27 (d, J = 11.8 Hz, 1H), 6.70 (t, J = 7.1 Hz, 1H), 5.21 (s, 1H), 2.85 – 2.73 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 150.3, 142.1, 139.9, 138.4, 136.4, 131.5, 131.5, 130.6, 129.5, 129.1, 128.9, 127.0, 126.5, 126.1 (q, J = 276.9 Hz), 125.4, 124.9, 121.6,120.8, 120.4, 118.1, 116.7, 35.1 (q, J = 29.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –65.39 (s, 3F); **IR (neat**): vmax =3542, 3021, 2403, 1214, 750 cm⁻¹; **HRMS (ESI**)⁻: m/z calcd for C₂₄H₁₆OF₃S (M–H)⁻: 409.0874, found: 409.0880.

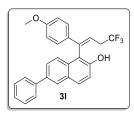

(Z)-1-(4,4,4-Trifluoro-1-(p-tolyl)but-1-en-1-yl)naphthalen-2-ol (3i):

Following the general procedure **B**, To a stirred solution of **1b** (75.9 mg, 0.24 mmol) in 1mL of PEG-400 was added **2a** (28.8 mg, 0.2 mmol) at room temperature. Then, Pd(PPh₃)₄ (11.5 mg, 5 mol%) was added to the reaction mixture and stirred at 100 °C (oil bath temperature) for 10 h. After completion of the reaction, mixture was diluted with water and extracted with ethyl acetate (3 X 15 mL). Combined organic layers were dried over sodium sulphate and concentrated on rotary evaporation. The obtained crude product was purified by flash column chromatography hexane/ethyl acetate is an eluant to obtain (*Z*)-1-(4,4,4-Trifluoro-1-(p-tolyl)but-1-en-1-yl)naphthalen-2-ol **3i**, yellow oil, 67 mg, 82% yield, $R_f = 0.5$ (hexane/ethyl acetate = 9:1); ¹H NMR (500 MHz, CDCl₃) δ 7.86 – 7.79 (m, 2H), 7.48 (d, *J* = 7.2 Hz, 1H), 7.37 – 7.30 (m, 2H), 7.28 – 7.24 (m, 1H), 7.21 (d, *J* = 8.2 Hz, 2H), 7.08 (d, *J* = 8.1 Hz, 2H), 6.64 (t, *J* = 7.1 Hz, 1H), 5.23 (s, 1H), 2.77 – 2.67 (m, 2H), 2.30 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 150.2, 139.7, 138.9, 135.6, 132.4, 130.4, 129.7, 129.2, 128.4, 127.3, 126.1 (q, *J* = 276.8 Hz), 126.3, 124.3, 123.8, 120.5, 117.6, 116.7, 21.3, 34.9 (q, *J* = 29.7 Hz); ¹⁹F NMR (377


MHz, CDCl₃) δ –65.46 (s, 3F); **IR (neat)**: vmax =3540, 2927, 1908, 1256, 756cm⁻¹; **HRMS** (**ESI**)⁻: *m*/*z* calcd for C₂₁H₁₆OF₃ (M–H)⁻: 341.1147, found: 341.1165.

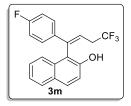
(Z)-1-(4,4,4-Trifluoro-1-(4-methoxy phenyl) but-1-en-1-yl) naphthalen-2-ol (3j):

Following the general procedure **B**, To a stirred solution of **1c** (79.7 mg, 0.24 mmol) in 1mL of PEG-400 was added **2a** (28.8 mg, 0.2 mmol) at room temperature. Then, Pd(PPh₃)₄ (11.5 mg, 5 mol%) as added to the reaction mixture and stirred at 100 °C (oil bath temperature) for 12 h. After completion of the reaction, mixture was diluted with water and extracted with ethyl acetate (3 X 15 mL). Combined organic layers were dried over sodium sulphate and concentrated on rotary evaporation. The obtained crude product was purified by flash column chromatography hexane/ethyl acetate is an eluant to obtain the (*Z*)-1-(4,4,4-Trifluoro-1-(4-methoxy phenyl) but-1-en-1-yl) naphthalen-2-ol **3j**, off-white solid, 71 mg, 83% yield, R_f = 0.4 (hexane/ethyl acetate = 9:1); mp: 97–99 °C; ¹**H NMR** (500 MHz, CDCl₃) δ 7.86 – 7.80 (m, 2H), 7.49 – 7.46 (m, 1H), 7.37 – 7.31 (m, 2H), 7.27 (d, *J* = 3.6 Hz, 2H), 7.25 – 7.24 (m, 1H), 6.83 – 6.77 (m, 2H), 6.57 (t, *J* = 7.1 Hz, 1H), 5.20 (s, 1H), 3.77 (s, 3H), 2.76 – 2.67 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 160.2, 150.2, 139.2, 132.4, 130.9, 130.4, 129.3, 128.4, 127.7, 127.2,126.1 (q, *J* = 276.9 Hz), 124.3, 123.9, 119.3, 117.6, 114.4, 109.6, 55.4, 34.9 (q, *J* = 29.8 Hz); ¹⁹**F NMR** (377 MHz, CDCl₃) δ –65.53 (s, 3F); **IR (KBr)**: vmax =3542, 3021, 2403, 1214, 750cm⁻¹; **HRMS (ESI)**^{-:} m/z calcd for C₂₁H₁₆O₂F₃ (M–H)^{-:} 357.1102, found: 357.1107.

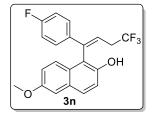

(Z)-6-Methoxy-1-(4,4,4-trifluoro-1-(4-methoxy phenyl) but-1-en-1-yl) naphthalen-2-ol (3k):

Following the general procedure **B**, To a stirred solution of **1c** (79.7 mg, 0.24 mmol) in 1mL of PEG-400 was added **2b** (34.8 mg, 0.2 mmol) at room temperature. Then, Pd(PPh₃)₄ (11.5 mg, 5 mol%) was added to the reaction mixture and stirred at 100 °C (oil bath temperature) for

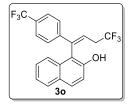
11 h. After completion of the reaction, mixture was diluted with water and extracted with ethyl acetate (3 X 15 mL). Combined organic layers were dried over sodium sulphate and concentrated on rotary evaporation. The obtained crude product was purified by flash column chromatography hexane/ethyl acetate is an eluant to obtain the (*Z*)-6-Methoxy-1-(4,4,4-trifluoro-1-(4-methoxy phenyl) but-1-en-1-yl) naphthalen-2-ol **3k**, brown oil, 75 mg, 81% yield, $R_f = 0.3$ (hexane/ethyl acetate = 9:1); **¹H NMR** (500 MHz, CDCl₃) δ 7.73 (d, *J* = 8.9 Hz, 1H), 7.38 (d, *J* = 9.1 Hz, 1H), 7.24 (m, 3H), 7.14 (d, *J* = 2.6 Hz, 1H), 7.03 (dd, *J* = 9.1, 2.6 Hz, 1H), 6.80 (d, *J* = 8.9 Hz, 2H), 6.54 (t, *J* = 7.1 Hz, 1H), 5.06 (s, 1H), 3.89 (s, 3H), 3.77 (s, 3H), 2.74 - 2.68 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 160.2, 156.3, 148.6, 139.3, 130.9, 130.2, 129.0, 127.7, 127.6, 126.2 (q, *J* = 277.1 Hz), 125.9, 119.6, 119.1, 118.0, 117.1, 114.3, 106.8, 55.5, 55.4, 34.9 (q, *J* = 29.7 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -65.52 (s, 3F); **IR (neat**): vmax =3687, 3021, 2402, 1215, 742 cm⁻¹; **HRMS (ESI**)⁻: *m*/*z* calcd for C₂₂H₁₈O₃F₃ (M-H)⁻: 387.1208, found: 387.1212.


(Z)-6-Phenyl-1-(4,4,4-trifluoro-1-(4-methoxy phenyl) but-1-en-1-yl) naphthalen-2-ol (3l):

Following the general procedure **B**, To a stirred solution of **1c** (79.7 mg, 0.24 mmol) in 1mL of PEG-400 was added **2d** (44 mg, 0.2 mmol) at room temperature. Then, Pd(PPh₃)₄ (11.5 mg, 5 mol%) was added to the reaction mixture and stirred at 100 °C (oil bath temperature) for 10–12 h. After completion of the reaction, mixture was diluted with water and extracted with ethyl acetate (3 X 15 mL). Combined organic layers were dried over sodium sulphate and concentrated on rotary evaporation. The obtained crude product was purified by flash column chromatography hexane/ethyl acetate is an eluant to obtain the (*Z*)-6-Phenyl-1-(4,4,4-trifluoro-1-(4-methoxy phenyl) but-1-en-1-yl) naphthalen-2-ol **3l**, brown oil, 81 mg, 78% yield, R_f = 0.4 (hexane/ethyl acetate = 9:1); ¹**H NMR** (500 MHz, CDCl₃) δ 8.02 (d, *J* = 1.8 Hz, 1H), 7.90 (d, *J* = 8.9 Hz, 1H), 7.66 (m, 2H), 7.62 (dd, *J* = 8.7, 1.9 Hz, 1H), 7.54 (d, *J* = 8.7 Hz, 1H), 7.48 – 7.43 (m, 2H), 7.37 – 7.33 (m, 1H), 7.31 – 7.27 (m, 3H), 6.83 – 6.80 (m, 2H), 6.59 (t, *J* = 7.1 Hz, 1H), 5.25 (s, 1H), 3.77 (s, 3H), 2.75 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 160.2, 150.4, 141.0, 139.2, 136.7, 131.6, 130.8, 130.7, 129.5, 128.9, 127.5, 127.3, 126.9, 126.3, 126.2 (q, *J* = 276.7 Hz), 124.9, 119.4, 119.3, 118.0, 116.7, 114.4, 55.4, 35.0 (q, *J* = 29.8 Hz,); ¹⁹**F NMR**

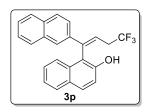

(377 MHz, CDCl₃) δ -65.47 (s, 3F); **IR** (neat): vmax =3689, 3022, 2404, 121, 743 cm⁻¹; **HRMS** (ESI)⁻: m/z calcd for C₂₇H₂₀O₂F₃ (M–H)⁻: 433.1413, found: 433.1419.

(Z)-1-(4,4,4-Trifluoro-1-(4-fluoro phenyl) but-1-en-1-yl) naphthalen-2-ol (3m):

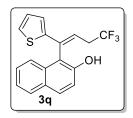

Following the general procedure **B**, To a stirred solution of **1d** (76.8 mg, 0.24 mmol) in 1mL of PEG-400 was added 2a (28.8 mg, 0.2 mmol) at room temperature. Then, Pd(PPh₃)₄ (11.5 mg, 5 mol%) was added to the reaction mixture and stirred at 100 °C (oil bath temperature) for 10 h. After completion of the reaction, mixture was diluted with water and extracted with ethyl acetate (3 X 15 mL). Combined organic layers were dried over sodium sulphate and concentrated on rotary evaporation. The obtained crude product was purified by flash column chromatography hexane/ethyl acetate is an eluant to obtain the (Z)-1-(4,4,4-Trifluoro-1-(4fluoro phenyl) but-1-en-1-yl) naphthalen-2-ol **3m**, off-white solid, 65 mg, 79% yield, $R_f = 0.5$ (hexane/ethyl acetate = 9:1); mp: 83–85 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.87 – 7.81 (m, 3H), 7.46 – 7.43 (m, 1H), 7.39 – 7.34 (m, 2H), 7.32 – 7.27 (m, 2H), 7.01 – 6.95 (m, 2H), 6.62 (t, J = 7.1 Hz, 1H), 5.16 (s, 1H), 2.80 – 2.67 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 163.13 (d, J = 248.9 Hz), 150.2, 139.0, 134.6, 132.3, 130.7, 129.3, 128.5, 128.2, 128.1, 127.4, 126.1 (q, J = 276.6 Hz), 124.1 (d, J = 12.5 Hz), 121.2, 117.6, 116.4, 115.9 (d, J = 21.7 Hz), 35.0 (q, J = 21.7 Hz),J = 29.9 Hz; ¹⁹**F NMR** (376 MHz, CDCl₃) δ –65.48 (S, 3F), –112.88 (s, 1F); **IR (KBr**): vmax = 3687, 3021, 2402, 1216, 746 cm⁻¹; **HRMS** (**ESI**)⁻: m/z calcd for C₂₀H₁₃OF₄ (M–H)⁻: 345.08988, found: 345.08970.

(Z)-6-Methoxy-1-(4,4,4-trifluoro-1-(4-fluoro phenyl) but-1-en-1-yl) naphthalen-2-ol (3n):

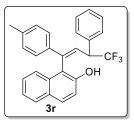
Following the general procedure **B**, To a stirred solution of **1d** (76.8 mg, 0.24 mmol) in 1mL of PEG-400 was added **2b** (34.8 mg, 0.2 mmol) at room temperature. Then, Pd(PPh₃)₄ (11.5 mg, 5 mol%) was added to the reaction mixture and stirred at 100 $^{\circ}$ C (oil bath temperature) for 14 h. After completion of the reaction, mixture was diluted with water and extracted with ethyl acetate (3 X 15 mL). Combined organic layers were dried over sodium sulphate and concentrated on rotary evaporation. The obtained crude product was purified by flash column chromatography hexane/ethyl acetate is an eluant to obtain the (Z)-6-Methoxy-1-(4,4,4trifluoro-1-(4-fluoro phenyl) but-1-en-1-yl) naphthalen-2-ol 3n, pale-yellow oil, 70 mg, 78% yield%, $R_f = 0.4$ (hexane/ethyl acetate = 9:1); ¹**H NMR** (400 MHz, DMSO) δ 7.74 (d, J = 8.9Hz, 1H), 7.35 (d, J = 9.1 Hz, 1H), 7.31 – 7.26 (m, 2H), 7.23 (d, J = 8.9 Hz, 1H), 7.15 (d, J = 2.6 Hz, 1H), 7.04 (dd, J = 9.1, 2.6 Hz, 1H), 6.96 (t, J = 8.6 Hz, 2H), 6.58 (t, J = 7.1 Hz, 1H), 5.04 (s, 1H), 3.89 (s, 3H), 2.80 – 2.66 (m, 2H); ¹³C NMR (101 MHz, DMSO) δ 163.12 (d, J = 248.8 Hz), 156.4, 148.6, 139.2, 134.8, 130.3, 129.3, 128.2 (d, *J* = 8.2 Hz), 127.5, 125.7, 123.3 (q, J = 277.6 Hz), 121.0, 119.8, 118.1, 116.7, 115.9 (d, J = 21.7 Hz), 106.9, 55.5, 35.0 (q, J = 21.7 Hz)30.0 Hz); ¹⁹F NMR (376 MHz, DMSO) δ –70.18 (s, 3F), –117.67 (s, 1F); IR (neat): vmax = 3686, 3021, 2403,1214,750 cm⁻¹; **HRMS** (ESI)⁻: m/z calcd for C₂₁H₁₅O₂F₄ (M–H)⁻: 375.10027, found: 375.10187.


(Z)-1-(4,4,4-Trifluoro-1-(4-(trifluoromethyl) phenyl) but-1-en-1-yl) naphthalen-2-ol (30):

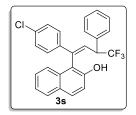
Following the general procedure **B**, to a stirred solution of **1e** (88.8 mg, 0.24mmol) in 1mL of PEG-400 was added **2a** (28.8 mg, 0.2 mmol) at room temperature. Then, Pd(PPh₃)₄ (11.5 mg, 5 mol%) was added to the reaction mixture and stirred at 100 °C (oil bath temperature) for 10 h. After completion of the reaction, mixture was diluted with water and extracted with ethyl acetate (3 X 15 mL). Combined organic layers were dried over sodium sulphate and concentrated on rotary evaporation. The obtained crude product was purified by flash column chromatography hexane/ethyl acetate is an eluant to obtain the (*Z*)-1-(4,4,4-Trifluoro-1-(4-(trifluoromethyl) phenyl) but-1-en-1-yl) naphthalen-2-ol **3o**, brown oil, 68 mg, 72% yield, *R*_f = 0.5 (hexane/ethyl acetate = 9:1); ¹**H** NMR (500 MHz, CDCl₃) δ 7.87 (d, *J* = 8.9 Hz, 1H), 7.85 – 7.82 (m, 1H), 7.53 (d, *J* = 8.3 Hz, 2H), 7.45 – 7.41 (m, 3H), 7.39 – 7.34 (m, 2H), 7.27


(d, J = 9.7 Hz, 1H), 6.76 (t, J = 7.1 Hz, 1H), 5.16 (s, 1H), 2.86 – 2.73 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 150.3, 142.1, 139.2, 132.3, 130.9, 129.3, 128.6, 127.6, 126.8, 126.0, 125.9(q, J = 276.7 Hz,), 125.9, 124.1, 124.1 (q, J = 272.2 Hz), 123.9, 123.7, 117.7, 115.9, 35.2 (q, J = 30.1 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ –62.71 (s, 3F), –65.31 (s, 3F); **IR(neat)**: vmax = 3553, 3025, 2403,1135,760 cm⁻¹; **HRMS (ESI)**⁻: m/z calcd for C₂₁H₁₃OF₆ (M–H)⁻: 395.08651, found: 395.08703.

(Z)-1-(4,4,4-Trifluoro-1-(naphthalen-2-yl) but-1-en-1-yl) naphthalen-2-ol (3p):

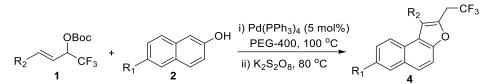

Following the general procedure **B**, To a stirred solution of **1f** (84.5 mg, 0.24 mmol) in 1mL of PEG-400 was added 2a (28.8 mg, 0.2 mmol) at room temperature. Then, 5 mol % of Pd(PPh₃)₄ (11.5 mg, 5 mol%) was added to the reaction mixture and stirred at 100 °C (oil bath temperature) for 12 h. After completion of the reaction, mixture was diluted with water and extracted with ethyl acetate (3 X 15 mL). Combined organic layers were dried over sodium sulphate and concentrated on rotary evaporation. The obtained crude product was purified by flash column chromatography hexane/ethyl acetate is an eluant to obtain the (Z)-1-(4,4,4-Trifluoro-1-(naphthalen-2-yl) but-1-en-1-yl) naphthalen-2-ol **3p**, pale yellow solid, 68 mg, 75% yield, $R_f = 0.5$ (hexane/ethyl acetate = 9:1); mp: 111-113 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.58 (d, J = 8.6 Hz, 1H), 7.90 (d, J = 8.1 Hz, 1H), 7.80 (m, 2H), 7.76 (d, J = 8.1 Hz, 1H), 7.71 (m, 1H), 7.60 (m, 1H), 7.53 (m, 1H), 7.36 – 7.30 (m, 2H), 7.29 (d, J = 8.1 Hz, 1H), 7.24 -7.22 (m, 2H), 6.51 (t, J = 7.1 Hz, 1H), 5.47 (s, 1H), 2.93 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) & 150.6, 138.7, 137.9, 134.6, 132.6, 131.0, 130.5, 130.3, 129.4, 129.2, 128.9, 128.5, 127.4, 127.2, 126.5, 126.2 (q, J = 277.0 Hz), 126.1, 125.3, 124.7, 124.3, 123.9, 118.9, 117.7, 35.3 (q, J = 29.9 Hz); ¹⁹**F** NMR (377 MHz, CDCl₃) δ –65.25 (s, 3F); **IR (KBr)**: vmax =3688, $3059, 2398, 1259, 756 \text{ cm}^{-1}$; **HRMS (ESI)**⁻: m/z calcd for C₂₄H₁₆OF₃(M–H)⁻: 377.1153, found: 377.1147.

(E)-1-(4,4,4-Trifluoro-1-(thiophen-2-yl)but-1-en-1-yl)naphthalen-2-ol (3q):

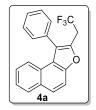

Following the general procedure **B**, To a stirred solution of **1g** (73.9 mg, 0.24 mmol) in 1mL of PEG-400 was added 2a (28.8 mg, 0.2 mmol) at room temperature. Then, Pd(PPh₃)₄ (11.5 mg, 5 mol%) was added to the reaction mixture and stirred at 100 °C (oil bath temperature) for 11 h. After completion of the reaction, mixture was diluted with water and extracted with ethyl acetate (3 X 15 mL). Combined organic layers were dried over sodium sulphate and concentrated on rotary evaporation. The obtained crude product was purified by flash column chromatography hexane/ethyl acetate is an eluant to obtain the (E)-1-(4,4,4-Trifluoro-1-(thiophen-2-yl)but-1-en-1-yl)naphthalen-2-ol **3q**, colorless oil, 56 mg, 70% yield, $R_f = 0.5$ (hexane/ethyl acetate = 9:1); ¹**H NMR** (500 MHz, CDCl₃) δ 7.85 (d, J = 8.9 Hz, 1H), 7.82 (d, J = 7.8 Hz, 1H), 7.55 (d, J = 8.2 Hz, 1H), 7.40 – 7.33 (m, 2H), 7.26 (d, J = 8.9 Hz, 1H), 7.22 (dd, J = 5.1, 1.1 Hz, 1H), 6.84 (dd, J = 5.1, 3.7 Hz, 1H), 6.61 - 6.56 (m, 2H), 5.23 (s, 1H), 2.70(m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 150.4, 142.9, 134.2, 132.3, 130.8, 129.2, 128.4, 127.9, 127.4, 126.9, 126.1, 125.9 (q, J = 276.9 Hz) 124.15, 123.9, 119.6, 117.7, 115.9, 34.7 (q, J = 30.1 Hz); ¹⁹**FNMR** (377 MHz, CDCl₃) δ –65.39 (s, 3F); **IR** (neat): vmax = 3539, 3064, 2495,1252,752 cm⁻¹; **HRMS(ESI)**⁻: m/z calcd for C₁₈H₁₂OF₃S(M–H)⁻: 333.0555, found: 333.0572.

(Z)-1-(4,4,4-trifluoro-3-phenyl-1-(p-tolyl) but-1-en-1-yl) naphthalen-2-ol (3r):

Following the general procedure **B**, To a stirred solution of **1h** (94.1 mg, 0.24 mmol) in 1mL of PEG-400 was added **2a** (28.8mg, 0.2 mmol) at room temperature. Then, Pd(PPh₃)₄ (11.5 mg, 5 mol%) was added to the reaction mixture and stirred at 100 °C (oil bath temperature) for 10 h. After completion of the reaction, mixture was diluted with water and extracted with ethyl acetate (3 X 15 mL). Combined organic layers were dried over sodium sulphate and

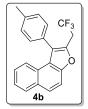

concentrated on rotary evaporation. The obtained crude product was purified by flash column chromatography using hexane/ethyl acetate to obtain the (*Z*)-1-(4,4,4-trifluoro-3-phenyl-1-(p-tolyl) but-1-en-1-yl) naphthalen-2-ol **3r**, pale yellow oil, 87 mg, 87% yield , $R_f = 0.5$ (hexane/ethyl acetate = 9:1); ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 9.0 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.31 (d, *J* = 8.8 Hz, 1H), 7.28 – 7.17 (m, 4H), 7.16 – 7.10 (m, 2H), 7.07 (d, *J* = 7.8 Hz, 2H), 7.05 – 6.94 (m, 3H), 6.89 (d, *J* = 7.5 Hz, 2H), 5.29 (s, 1H), 3.80 (p, *J* = 9.5 Hz, 1H), 2.30 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 150.3, 139.1, 138.9, 135.5, 134.2, 132.3, 130.4, 129.7, 129.1, 128.9, 128.6, 128.1, 128.1, 126.7, 126.4, 125.7, 124.6, 123.9, 123.7, 117.7, 116.8, 50.8 (q, *J* = 26.4 Hz), 21.3; ¹⁹F NMR (376 MHz, CDCl₃) δ –68.64 (s, 3F); **IR (neat)**: vmax = 3623, 2986, 2256,1236,732 cm⁻¹; **HRMS (ESI**)⁻: *m*/*z* calcd for C₂₇H₂₀OF₃ (M–H)⁻: 417.1466, found: 417.1471.

Following the general procedure **B**, to a stirred solution of **1i** (98.9 mg, 0.24 mmol) in 1mL of PEG-400 was added 2a (28.8 mg, 0.2 mmol) at room temperature. Then, Pd(PPh₃)₄ (11.5 mg, 5 mol%) was added to the reaction mixture and stirred at 100 °C (oil bath temperature) for 10 h. After completion of the reaction, mixture was diluted with water and extracted with ethyl acetate (3 X 15 mL). Combined organic layers were dried over sodium sulphate and concentrated on rotary evaporation. The obtained crude product was purified by flash column chromatography hexane/ethyl acetate is an eluant to obtain the (Z)-1-(1-(4-Chlorophenyl)-4,4,4-trifluoro-3-phenylbut-1-en-1-yl) naphthalen-2-ol 3s, off-white solid, 88 mg, 84% yield, $R_f = 0.5$ (hexane/ethyl acetate = 9:1); mp: 133–135 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, *J* = 8.9 Hz, 1H), 7.79 (d, *J* = 8.1 Hz, 1H), 7.33 – 7.30 (m, 1H), 7.27 (t, *J* = 2.0 Hz, 1H), 7.26 – 7.24 (m, 2H), 7.24 - 7.18 (m, 3H), 7.16 - 7.11 (m, 2H), 7.03 (m, 1H), 6.99 (d, J = 10.2 Hz, 1H), 6.94 (d, *J* = 8.4 Hz, 1H), 6.88 (d, *J* = 7.5 Hz, 2H), 5.26 (s, 1H), 3.81 (p, *J* = 9.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 150.4, 138.2, 136.8, 134.9, 133.8, 132.1, 130.7, 129.1, 128.8, 128.7, 128.2, 127.8, 127.4, 126.9, 126.8, 126.12 (q, *J* = 280.3 Hz), 124.3, 123.9, 117.8, 117.5, 116.2, 50.9 (q, J = 28.2 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ –68.52 (s, 3F); IR (KBr): vmax = 3685, 3022, 2405, 1132, 748 cm⁻¹; **HRMS** (ESI)⁻: m/z calcd for C₂₆H₁₇OClF₃ (M–H)⁻: 437.0920, found: 437.0918.

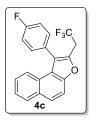

4.2 General procedure for the synthesis of CF₃-naphtho[2,1-b]furans 4 (Method C):

General reaction:

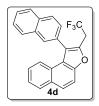
To a stirred solution of CF₃-allyl carbonate **1** (0.24 mmol) in 1 mL of PEG-400 was added β naphthol **2** (0.2 mmol) at room temperature. Then, 5 mol % of Pd(PPh₃)₄ was added to the reaction mixture and stirred at 100 °C (oil bath temperature) for 10–14 h. The reaction progress was monitored by TLC. After completion of the β -naphthol **2**, reaction mixture was cooled to room temperature and added the K₂S₂O₈ (0.2 mmol). Then the temperature of reaction mixture was raised to 80 °C and stirred for until completion of compound **3**. The reaction progress was monitored by TLC. After completion of the reaction, mixture was diluted with water and extracted with ethyl acetate (3 X 15 mL). Combined organic layers were dried over sodium sulphate and concentrated on rotary evaporation. The obtained crude product was purified by using flash column chromatography (using 9.5:0.5 hexane/ethyl acetate) to obtain the pure product CF₃-naphtho[2,1-*b*]furans **4**. The characterization data of **4** are summarized below.


1-Phenyl-2-(2,2,2-trifluoroethyl) naphtho[2,1-b]furan (4a):

By using the method **C**, To the stirred solution of **1a** (72.5 mg, 0.24 mmol) in 1 mL of PEG-400 added **2a** (28.8 mg, 0.2 mmol) at room temperature. Then, $Pd(PPh_3)_4$ (11.5 mg, 5 mol%) was added to the reaction mixture and stirred at 100 °C (oil bath temperature) for 10 h. The reaction progress was monitored by TLC. After completion of the **2a**, reaction mixture was cooled to room temperature and added the K₂S₂O₈ (54.1 mg, 0.2 mmol). Then the temperature of reaction mixture was raised to 80 °C for 1 h. After completion of the reaction, mixture was diluted with water and extracted with ethyl acetate (3 X 15 mL). Combined organic layers were dried over sodium sulphate and concentrated on rotary evaporation. The obtained crude product was purified by using flash column chromatography using hexane as a eluant to obtain the 1-

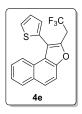

Phenyl-2-(2,2,2-trifluoroethyl) naphtho[2,1-b]furan **4a**, colorless oil, 58 mg, 74% yield, $R_f = 0.5$ (hexane); ¹**H** NMR (500 MHz, CDCl₃) δ 7.92 (d, J = 8.1 Hz, 1H), 7.78 (d, J = 9.0 Hz, 1H), 7.71 – 7.68 (m, 1H), 7.66 – 7.63 (m, 1H), 7.57 – 7.49 (m, 5H), 7.41 (m, 1H), 7.30 (m, 1H), 3.53 (q, J = 10.0 Hz, 2H); ¹³**C** NMR (101 MHz, CDCl₃) δ 152.4, 143.1, 132.7, 130.9, 130.6, 130.5, 129.1, 128.5, 128.2, 126.5, 126.3, 124.8 (q, J = 278.1 Hz), 124.6, 124.1, 123.1, 121.9, 112.4, 32.2(q, J = 32.3 Hz); ¹⁹**F** NMR (377 MHz, CDCl₃) δ –64.38 (s, 3F); **IR (neat**): vmax = 3634, 2926, 1259, 1144, 776 cm⁻¹; **HRMS (EI**)⁺: m/z calcd for C₂₀H₁₃OF₃ (M)⁺: 326.0918, found: 326.0908.

1-(P-tolyl)-2-(2,2,2-trifluoroethyl) naphtho[2,1-b]furan (4b):


By using the method C, To the stirred solution of 1b (75.9 mg, 0.24 mmol) in 1 mL of PEG-400 added 2a (28.8 mg, 0.2 mmol) at room temperature. Then, Pd(PPh₃)₄ (11.5 mg, 5 mol%) was added to the reaction mixture and stirred at 100 °C (oil bath temperature) for 11 h. The reaction progress was monitored by TLC. After completion of the 2a, reaction mixture was cooled to room temperature and added the K₂S₂O₈ (54.1 mg, 0.2 mmol). Then the temperature of reaction mixture was raised to 80 °C for 3 h. After completion of the reaction, mixture was diluted with water and extracted with ethyl acetate (3 X 15 mL). Combined organic layers were dried over sodium sulphate and concentrated on rotary evaporation. The obtained crude product was purified by using flash column chromatography hexane as a eluant to obtain 1-(P-tolyl)-2-(2,2,2-trifluoroethyl) naphtho[2,1-b]furan **4b**, pale yellow oil, 57 mg, 70% yield, $R_f = 0.6$ (hexane); ¹**HNMR** (400 MHz, CDCl₃) δ 7.92 (d, J = 8.1 Hz, 1H), 7.77 (d, J = 9.0 Hz, 1H), 7.69 (dd, J = 8.6, 4.8 Hz, 2H), 7.36 (m, 5H), 7.30 (m, 1H), 3.53 (q, J = 10.0 Hz, 2H), 2.49 (s, 3H);¹³CNMR (101 MHz, CDCl₃) δ 152.4, 143.1, 138.3, 130.9, 130.3, 129.8, 129.6, 129.0, 128.2, 126.3, 126.3, 124.8 (q, J = 278.3 Hz), 124.5, 124.0, 123.2, 121.9, 112.4, 32.2 (q, J = 32.2 Hz), 21.5; ¹⁹F NMR(377 MHz, CDCl₃) δ -64.38 (s, 3F); IR (neat): vmax = $3654,3051,1258,1142,808 \text{ cm}^{-1}$; **HRMS (EI)**⁺: m/z calcd for C₂₁H₁₅OF₃ (M)⁺: 340.1075, found: 340.1087.

1-(4-Fluorophenyl)-2-(2,2,2-trifluoroethyl) naphtho[2,1-b]furan (4c):

By using the method C, To the stirred solution of 1d (76.8 mg, 0.24 mmol) in 1 mL of PEG-400 added 2a (28.8 mg, 0.2 mmol) at room temperature. Then, 5 mol % of Pd(PPh₃)₄ (11.5 mg, 5 mol%) was added to the reaction mixture and stirred at 100 °C (oil bath temperature) for 11 h. The reaction progress was monitored by TLC. After completion of the 2a, reaction mixture was cooled to room temperature and added the $K_2S_2O_8$ (54.1 mg, 0.2 mmol). Then the temperature of reaction mixture was raised to 80 °C for 4 h. After completion of the reaction, mixture was diluted with water and extracted with ethyl acetate (3 X 15 mL). Combined organic layers were dried over sodium sulphate and concentrated on rotary evaporation. The obtained crude product was purified by using flash column chromatography hexane as a eluant to obtain the 1-(4-Fluorophenyl)-2-(2,2,2-trifluoroethyl) naphtho[2,1-b]furan 4c, colorless oil, 57 mg, 69% yield, $R_f = 0.5$ (hexane); ¹**H NMR** (500 MHz, CDCl₃) δ 7.92 (d, J = 8.1 Hz, 1H), 7.77 (d, J = 9.0 Hz, 1H), 7.69 – 7.66 (m, 1H), 7.61 – 7.58 (m, 1H), 7.49 – 7.44 (m, 2H), 7.43 – 7.39 (m, 1H), 7.31 (m, 1H), 7.27 – 7.21 (m, 2H), 3.51 (q, *J* = 10.0 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 163.01 (d, J = 247.8 Hz), 152.4, 143.3, 132.2, 132.1, 130.9, 129.1, 128.6, 128.1, 126.5 (d, J = 17.1 Hz), 124.7 (q, J = 278.0 Hz), 124.7, 123.0, 122.9, 121.8, 116.2 (d, J = 21.5 Hz), 112.4, 32.2 (q, J = 32.3 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ –64.39 (s, 3F), –113.26 (s, 1F); IR (neat): vmax = 3678,3019,1215,1144,749 cm⁻¹; HRMS(EI)⁺: m/z calcd for C₂₀H₁₂OF₄ (M)⁺: 344.08243, found: 344.08362.

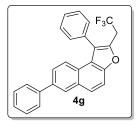

1-(Naphthalen-2-yl)-2-(2,2,2-trifluoroethyl) naphtho[2,1-b]furan (4d):

By using the method **C**, To the stirred solution of **1f** (84.5 mg, 0.24 mmol) in 1 mL of PEG-400 added **2a** (28.2mg, 0.2 mmol) at room temperature. Then, Pd(PPh₃)₄ (11.5 mg, 5 mol%) was added to the reaction mixture and stirred at 100 °C (oil bath temperature) for 10 h. The reaction progress was monitored by TLC. After completion of the **2a**, reaction mixture was

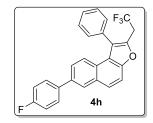
cooled to room temperature and added the K₂S₂O₈ (54.1 mg, 0.2 mmol). Then the temperature of reaction mixture was raised to 80 °C for 2 h. After completion of the reaction, mixture was diluted with water and extracted with ethyl acetate (3 X 15 mL). Combined organic layers were dried over sodium sulphate and concentrated on rotary evaporation. The obtained crude product was purified by using flash column chromatography hexane as a eluant to obtain 1-(Naphthalen-2-yl)-2-(2,2,2-trifluoroethyl) naphtho[2,1-b]furan **4d**, colorless oil, 47 mg, 52% yield, $R_f = 0.5$ (hexane); ¹**H NMR** (500 MHz, CDCl₃) δ 8.05 (d, J = 8.2 Hz, 1H), 7.99 (d, J = 8.2 Hz, 1H), 7.90 (d, J = 8.2 Hz, 1H), 7.82 (d, J = 9.0 Hz, 1H), 7.78 – 7.75 (m, 1H), 7.64 (m, 1H), 7.61 – 7.56 (m, 2H), 7.51 (m, 1.1 Hz, 1H), 7.32 (m, 2H), 7.10 – 7.01 (m, 2H), 3.54 (m, 1H), 3.40 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 152.5, 143.9, 133.9, 132.9, 131.9, 130.9, 129.9, 129.3, 128.8, 128.7, 128.5, 128.0, 126.9, 126.6, 126.4, 125.9, 125.8, 124.7 (q, J = 278.2 Hz), 124.6, 123.1, 122.9, 121.8, 112.5, 32.3 (q, J = 32.2 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ –64.28 (s, 3F); **IR (KBr)**: vmax = 3610, 3010, 1250, 1140, 760 cm⁻¹; **HRMS (EI)**⁺: *m*/z calcd for C₂₄H₁₅OF₃ (M)⁺: 376.1075, found: 376.1090.


1-(Thiophen-2-yl)-2-(2,2,2-trifluoroethyl) naphtho[2,1-b]furan (4e):

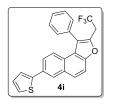
By using the method **C**, To the stirred solution of **1g** (73.9 mg, 0.24 mmol) in 1 mL of PEG-400 added **2a** (28.8 mg, 0.2 mmol) at room temperature. Then, Pd(PPh₃)₄ (11.5 mg, 5 mol%) as added to the reaction mixture and stirred at 100 °C (oil bath temperature) for 10 h. The reaction progress was monitored by TLC. After completion of the **2a**, reaction mixture was cooled to room temperature and added the K₂S₂O₈ (54.1 mg, 0.2 mmol). Then the temperature of reaction mixture was raised to 80 °C for 5 h. After completion of the reaction, mixture was diluted with water and extracted with ethyl acetate (3 X 15 mL). Combined organic layers were dried over sodium sulphate and concentrated on rotary evaporation. The obtained crude product was purified by using flash column chromatography hexane as a eluant to obtain the 1-(thiophen-2-yl)-2-(2,2,2-trifluoroethyl) naphtho[2,1-b]furan **4e**, brown oil, 47 mg, 59% yield, $R_f = 0.6$ (hexane); ¹**H NMR** (400 MHz, CDCl₃) δ 7.91 (d, J = 8.0 Hz, 1H), 7.79 – 7.74 (m, 2H), 7.66 (d, J = 9.0 Hz, 1H), 7.55 (d, J = 5.0 Hz, 1H), 7.43 (m, 1H), 7.36 (m, 1H), 7.23 (m, 2H), 3.60 (q, J = 10.0, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 152.4, 145.0, 132.4, 131.0, 129.5, 129.0,


127.9, 127.9, 127.7, 126.7, 126.5, 124.8, 124.6 (q, J = 278.2 Hz), 123.0, 122.2, 116.7, 112.3, 32.3 (q, J = 32.4 Hz); ¹⁹**F** NMR (377 MHz, CDCl₃) δ –64.33 (s, 3F); **IR (neat)**: vmax = 3695, 3055, 1217, 1140, 753 cm⁻¹; **HRMS (EI)**⁺: m/z calcd for C₁₈H₁₁OF₃S (M)⁺: 332.04827, found: 332.04696.

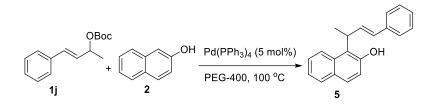
7-Methoxy-1-phenyl-2-(2,2,2-trifluoroethyl) naphtho[2,1-b]furan (4f):


By using the method C, To the stirred solution of 1a (72.5 mg, 0.24 mmol) in 1 mL of PEG-400 added **2b** (34.8 mg, 0.2 mmol) at room temperature. Then, Pd(PPh₃)₄ (11.5 mg, 5 mol%) was added to the reaction mixture and stirred at 100 °C (oil bath temperature) for 12 h. The reaction progress was monitored by TLC. After completion of the 2b, reaction mixture was cooled to room temperature and added the K₂S₂O₈ (54.1 mg, 0.2 mmol). Then the temperature of reaction mixture was raised to 80 °C for 1 h. After completion of the reaction, mixture was diluted with water and extracted with ethyl acetate (3 X 15 mL). Combined organic layers were dried over sodium sulphate and concentrated on rotary evaporation. The obtained crude product was purified by using flash column chromatography hexane as a eluant to obtain the 7-Methoxy-1-phenyl-2-(2,2,2-trifluoroethyl) naphtho[2,1-b]furan 4f, colorless oil, 61 mg, 72% yield, $R_f = 0.4$ (hexane); ¹**H NMR** (400 MHz, CDCl₃) δ 7.66 (d, J = 1.3 Hz, 2H), 7.55 (d, J =3.4 Hz, 1H), 7.53 (dd, J = 4.3, 1.7 Hz, 2H), 7.51 (d, J = 4.0 Hz, 1H), 7.48 (dd, J = 7.5, 1.9 Hz, 2H), 7.28 – 7.21 (m, 1H), 6.97 (dd, *J*= 9.1, 2.7 Hz, 1H), 3.89 (s, 3H), 3.52 (q, *J* = 10.0 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 156.6, 151.3, 143.1, 132.7, 132.2, 130.5, 129.1, 128.5, 127.5 (q, J = 278.2 Hz), 125.3, 124.5, 123.8, 123.0, 122.1, 118.1, 112.7, 108.0, 55.4, 32.2 (q, J = 32.1) Hz); ¹⁹**F NMR** (377 MHz, CDCl₃) δ –64.36 (s, 3F); **IR** (neat): vmax = 3610, 3020, 1234, 1130, 750 cm⁻¹; **HRMS** (EI)⁺: m/z calcd for C₂₁H₁₅O₂F₃ (M)⁺: 356.1024, found: 356.1037.

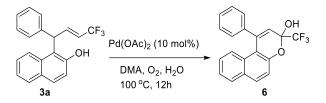
1,7-Diphenyl-2-(2,2,2-trifluoroethyl) naphtho [2,1-b]furan (4g):


By using the method C, To the stirred solution of 1a (72.5 mg, 0.24 mmol) in 1 mL of PEG-400 added 2d (44 mg, 0.2 mmol) at room temperature. Then, 5 mol % of Pd(PPh₃)₄ (11.5 mg, 5 mol%) was added to the reaction mixture and stirred at 100 °C (oil bath temperature) for 12 h. The reaction progress was monitored by TLC. After completion of the 2d, reaction mixture was cooled to room temperature and added K₂S₂O₈ (54.1 mg, 0.2 mmol). Then the temperature of reaction mixture was raised to 80 °C for 3 h. After completion of the reaction, mixture was diluted with water and extracted with ethyl acetate (3 X 15 mL). Combined organic layers were dried over sodium sulphate and concentrated on rotary evaporation. The obtained crude product was purified by using flash column chromatography hexane as a eluant to obtain the 1,7-Diphenyl-2-(2,2,2-trifluoroethyl) naphtho [2,1-b] furan 4g, brown oil, 60 mg, 62% yield, $R_f =$ 0.5 (hexane); ¹**H NMR** (500 MHz, CDCl₃) δ 8.12 (d, J = 1.8 Hz, 1H), 7.83 (d, J = 8.9 Hz, 1H), 7.73 – 7.69 (m, 2H), 7.66 (dd, J = 8.2, 1.0 Hz, 2H), 7.58 (d, J = 1.9 Hz, 1H), 7.56 (d, J = 2.0 Hz, 1H), 7.56 – 7.52 (m, 3H), 7.52 – 7.51 (m, 1H), 7.45 (dd, J = 10.5, 4.9 Hz, 2H), 7.37 – 7.33 (m, 1H), 3.54 (q, J = 10.0 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 152.5, 143.2, 141.1, 137.3, 132.6, 131.3, 130.3, 129.1, 128.9, 128.6, 127.4, 127.2, 126.9, 126.7, 125.8, 124.8 (q, *J* = 278.2 Hz), 124.0, 123.6, 121.9, 120.6, 112.8, 32.3 (q, J = 32.1 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -64.33 (s,3F); **IR** (neat): vmax = 3622, 3025, 1260, 1145, 763 cm⁻¹; **HRMS** (EI)⁺: m/z calcd for C₂₆H₁₇OF₃ (M)⁺: 402.1231, found: 402.1213.

7-(4-Fluorophenyl)-1-phenyl-2-(2,2,2-trifluoroethyl)naphtho[2,1-b]furan (4h):


By using the method **C**, To the stirred solution of **1a** (72.5 mg, 0.24 mmol) in 1 mL of PEG-400 added **2f** (47.6 mg, 0.2 mmol) at room temperature. Then, Pd(PPh₃)₄ (11.5 mg, 5 mol%) was added to the reaction mixture and stirred at 100 °C (oil bath temperature) for 11 h. The reaction progress was monitored by TLC. After completion of the **2f**, reaction mixture was cooled to room temperature and added the $K_2S_2O_8$ (54.1 mg, 0.2 mmol). Then the temperature of reaction mixture was raised to 80 °C for 2 h. After completion of the reaction, mixture was diluted with water and extracted with ethyl acetate (3 X 15 mL). Combined organic layers were dried over sodium sulphate and concentrated on rotary evaporation. The obtained crude product was purified by using flash column chromatography hexane as a eluant to obtain 7-(4-

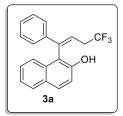
Fluorophenyl)-1-phenyl-2-(2,2,2-trifluoroethyl)naphtho[2,1-b]furan **4h**, pale yellow oil, 60 mg, 60% yield $R_f = 0.5$ (hexane); ¹**H NMR** (400 MHz, CDCl₃) δ 8.06 (d, J = 1.8 Hz, 1H), 7.82 (d, J = 9.0 Hz, 1H), 7.74 – 7.68 (m, 2H), 7.64 – 7.59 (m, 2H), 7.57 (m, 3H), 7.54 – 7.49 (m, 3H), 7.17 – 7.11 (m, 2H), 3.55 (q, J = 10.0 Hz, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 162.60 (d, J = 246.3 Hz), 152.5, 143.3, 137.2, 136.4, 132.6, 131.2, 130.5, 129.1, 128.9 (d, J = 8.0 Hz), 128.6, 127.2, 126.7 (d, J = 16.4 Hz), 125.7, 124.7 (q, J = 278.1 Hz), 124.0, 123.7, 122.8, 121.9, 115.9 (d, J = 21.4 Hz), 112.9, 32.3 (q, J = 32.3 Hz); ¹⁹**F NMR** (377 MHz, CDCl₃) δ –64.34 (s, 3F), –115.79 (s, 1F); **IR (KBr)**: vmax = 3649, 2926, 1259, 1145, 825 cm⁻¹; **HRMS (EI)**⁺: m/z calcd for C₂₆H₁₆OF₄ (M)⁺: 420.1137, found: 420.1155.


By using the method C, To the stirred solution of 1a (72.5 mg, 0.24 mmol) in 1 mL of PEG-400 added **2h** (45.2 mg, 0.2 mmol) at room temperature. Then, Pd(PPh₃)₄ (11.5 mg, 5 mol%) was added to the reaction mixture and stirred at 100 °C (oil bath temperature) for 12 h. The reaction progress was monitored by TLC. After completion of the 2h, reaction mixture was cooled to room temperature and added $K_2S_2O_8$ (54.1 mg, 0.2 mmol). Then the temperature of reaction mixture was raised to 80 °C for 5 h. After completion of the reaction, mixture was diluted with water and extracted with ethyl acetate (3 X 15 mL). Combined organic layers were dried over sodium sulphate and concentrated on rotary evaporation. The obtained crude product was purified by using flash column chromatography hexane as a eluant to obtain 1-Phenyl-7-(thiophen-2-yl)-2-(2,2,2-trifluoroethyl) naphtho[2,1-b]furan 4i, off-white solid, 51 mg, 52% yield, $R_f = 0.5$ (hexane); mp: 152-154 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 1.5 Hz, 1H), 7.80 (d, J = 9.0 Hz, 1H), 7.70 (d, J = 9.0 Hz, 1H), 7.66 (d, J = 8.7 Hz, 1H), 7.58 (d, J = 10.0 Hz, 1H), 7.58 (d, J = 10 1.8 Hz, 1H), 7.55 (dd, J = 6.6, 2.1 Hz, 3H), 7.54 – 7.50 (m, 3H), 7.48 (dd, J = 5.0, 1.1 Hz, 1H), 7.41 (dd, J = 5.0, 2.9 Hz, 1H), 3.54 (q, J = 10.0 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 152.4, 143.2, 142.3, 132.6, 132.1, 131.3, 130.5, 129.1, 128.6, 127.2, 126.6, 126.5, 126.5, 126.0, 125.3, 124.7 (q, J = 278.1 Hz), 123.9, 123.6, 121.9, 120.4, 112.9, 32.3 (q, J= 32.4 Hz); ¹⁹F NMR (377) MHz, CDCl₃) δ –64.35(s, 3F); **IR** (**KBr**): vmax = 3694, 2928, 1257, 1142, 866 cm⁻¹; **HRMS** $(EI)^+$: m/z calcd for C₂₄H₁₅OF₃S (M)⁺: 408.0795, found: 408.0814.

Prpepration of (*E*)-1-(4-Phenylbut-3-en-2-yl) naphthalen-2-ol (5):

Following the general procedure **B**, to the solution of (*E*)-tert-butyl (4-phenylbut-3-en-2-yl) carbonate **1j** (59.5 mg, 0.24 mmol) and naphthalen-2-ol **2a** (28.8 mg, 0.2 mmol) in 1 mL of PEG-400 in a reaction vial was added at room temperature. Then, Pd(PPh₃)₄ (11.5 mg, 5 mol%) was added and stirred at 100 °C (oil bath temperature) for 11 h. The crude product was purified by column chromatography on silica gel by using Ethyl acetate/ hexanes as an eluent to afford the corresponding product (*E*)-1-(4-phenylbut-3-en-2-yl)naphthalen-2-ol **5**, 43 mg, 65% yield, yellow oil, R_f = 0.5 (hexane/ethyl acetate = 9:1); ¹**H** NMR (500 MHz, CDCl₃) δ 8.05 (d, *J* = 8.6 Hz, 1H), 7.80 (d, *J* = 8.1 Hz, 1H), 7.68 (d, *J* = 8.8 Hz, 1H), 7.49 (t, *J* = 8.3, 7.1 Hz, 1H), 7.40 (d, *J* = 7.6 Hz, 2H), 7.34 (m, 3H), 7.26 – 7.22 (m, 1H), 7.07 (d, *J* = 8.8, 2.9 Hz, 1H), 6.76 (s, 2H), 5.89 (s, 1H), 4.64 (q, *J* = 7.0 Hz, 1H), 1.64 (d, *J* = 7.1, 3.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 152.4, 136.8, 133.7, 132.6, 130.6, 129.8, 129.1, 128.9, 128.8, 127.9, 126.7, 126.5, 123.2, 122.5, 121.4, 119.4, 33.6, 17.4; **IR (neat)**: vmax = 3350, 1704, 1260, 1214, 753 cm⁻¹; **HRMS (EI)**⁺: *m/z* calcd for C₂₀H₁₈O (M)⁺: 274.1357, found: 274.1344.

Synthesis of 1-phenyl-3-(trifluoromethyl)-3*H*-benzo[*f*]chromen-3-ol (6):



To the stirred solution of (*E*)-1-(4,4,4-trifluoro-1-phenylbut-2-en-1-yl) naphthalen-2-ol **3a** (78.7 mg, 0.24 mmol) in 1 mL of DMA and H₂O mixture (8:2), was added Pd(OAc)₂ (22.45 mg, 10 mol%) at room temperature under oxygen atmosphere and stirred at 100 °C (oil bath temperature) for 12 h. After completion of the reaction (monitored by TLC) the mixture was concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel by using Ethyl acetate/ hexanes as an eluent to afford the corresponding product 1-phenyl-3-(trifluoromethyl)-3*H*-benzo[f]chromen-3-ol **6**, 52 mg, 63%

yield, colorless oil; R_f = 0.5 (hexane/ethyl acetate = 9:1); ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 8.9 Hz, 1H), 7.79 (d, J = 8.1 Hz, 1H), 7.45 – 7.39 (m, 3H), 7.37 (s, 2H), 7.30 (m, 2H), 7.16 (d, J = 8.2 Hz, 1H), 7.11 – 7.07 (m, 1H), 5.99 (s, 1H), 3.49 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 149.5, 141.9, 140.1, 132.2, 131.0, 129.8, 128.9, 128.8, 128.6, 126.5, 126.4 (q, J = 258.0 Hz), 125.9, 124.3, 123.6, 118.3, 115.4, 114.1, 93.1 (q, J = 33.9 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ –83.84 (s, 3F); **IR (KBr**): vmax = 3713, 2930, 1715, 1191, 765 cm⁻¹; **HRMS (ESI**)⁻ : m/z calcd for C₂₀H₁₂O₂F₃ (M–H)⁻: 341.0783, found: 341.0799.

5) Gram scale reaction of 3a:

(Z)-1-(4,4,4-Trifluoro-1-phenylbut-1-en-1-yl) naphthalen-2-ol (3a):

Following the general procedure **B**, To a stirred solution of **1a** (1 g, 3.31 mmol) in 10 mL of PEG-400 was added **2a** (395 mg, 2.74 mmol) at room temperature. Then, Pd(PPh₃)₄ (11.5 mg, 5 mol%) was added to the reaction mixture and stirred at 100 °C (oil bath temperature) for 10 h. After completion of the reaction, mixture was diluted with water and extracted with ethyl acetate (3 X 25 mL). Combined organic layers were dried over sodium sulphate and concentrated on rotary evaporation. The obtained crude product was purified by flash column chromatography hexane/ethyl acetate is an eluant to obtain the (*Z*)-1-(4,4,4-Trifluoro-1-phenylbut-1-en-1-yl) naphthalen-2-ol **3a**, off-white solid, 966 mg, 89% yield.

6) X-ray analysis data of 3j:

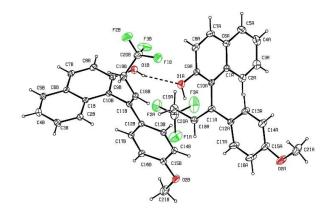
X-ray Crystallography:

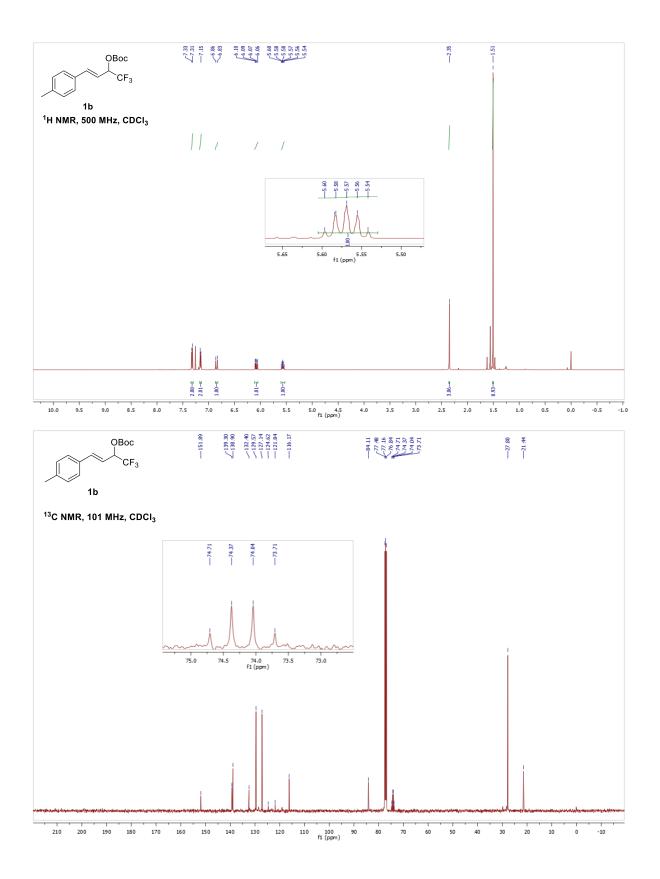
X-ray data for the compound **3j** was collected at room temperature on a Bruker D8 QUEST instrument with an I μ S Mo microsource ($\lambda = 0.7107$ A) and a PHOTON-100 detector. The raw data frames were reduced and corrected for absorption effects using the Bruker Apex 3 software suite programs.⁴ The structure was solved using intrinsic phasing method and further refined with the SHELXL⁵ program and expanded using Fourier techniques. Anisotropic

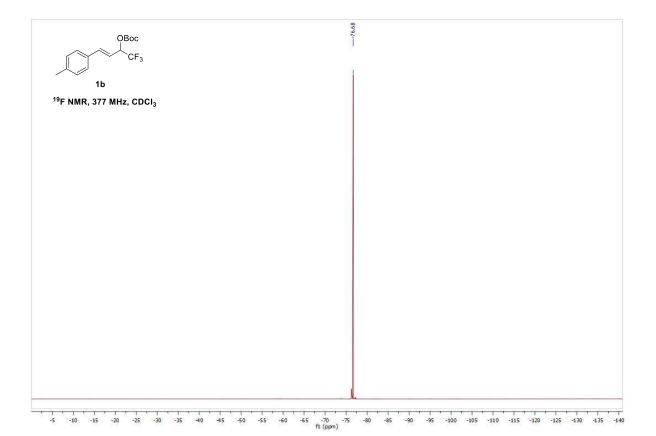
displacement parameters were included for all non-hydrogen atoms. The O bound H atoms were located in difference Fourier density map and their position and thermal parameters were refined isotropically. All C bound H atoms were positioned geometrically and treated as riding on their parent C atoms [C-H = 0.93-0.97 Å, and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H or $1.2U_{eq}(C)$ for other H atoms].

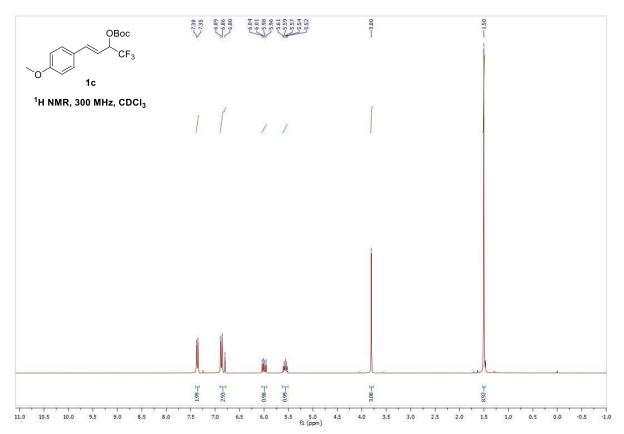
Crystal structure determination of 3j:

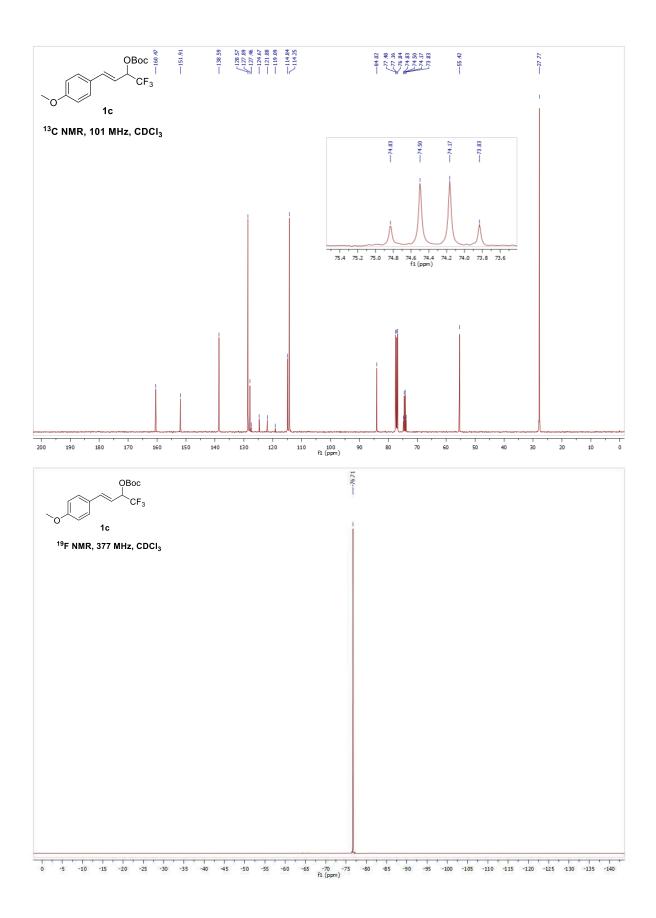
Crystal Data for C₂₁H₁₇O₂F₃ (*M* =358.35 g/mol): monoclinic, space group P2₁/n (no. 14), a = 10.3698(4) Å, b = 12.1098(5) Å, c = 29.2861(12) Å, $\beta = 92.224(2)^{\circ}$, V = 3674.9(3) Å³, Z = 8, T = 294.15 K, μ (MoK α) = 0.103 mm⁻¹, *Dcalc* = 1.295 g/cm³, 22819 reflections measured (4.366° $\leq 2\Theta \leq 49.998^{\circ}$), 6454 unique ($R_{int} = 0.0484$, $R_{sigma} = 0.0541$) which were used in all calculations. The final R_1 was 0.0671 (I > 2 σ (I)) and wR_2 was 0.2111 (all data). CCDC 2088167 contains supplementary Crystallographic data for the structure. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(0) 1223 336 033; email: deposit@ccdc.cam.ac.uk].

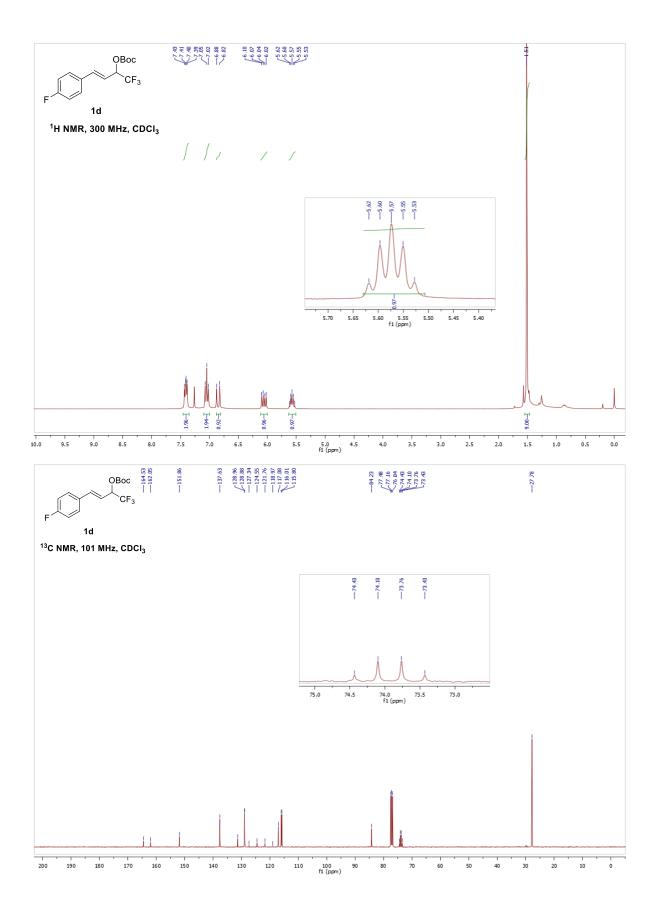



Fig.1. A view of **3j**, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented by circles of arbitrary radii. Hydrogen bond is shown as dashed lines. The asymmetric unit contains two crystallographically independent molecules.


7) References:


 (a) Zhou, M.; Zhang, J.; Zhang, X. G.; Zhang, X. Ni-Catalyzed Defluorination for the Synthesis of gem-Difluoro-1,3-dienes and Their [4 + 2] Cycloaddition Reaction. *Org. Lett.* 2019, 21, 671-674. (b) Ortega, A.; Manzano, R.; Uria, U.; Carrillo, L.; Reyes, E.; Tejero, T.; Merino, P.; Vicario, J. L. Catalytic Enantioselective Cloke–Wilson Rearrangement. *Angew. Chem., Int. Ed.* 2018, 57, 8225–8229.


- (a) Li, C.; Xing, J.; Zhao, J.; Huynh, P.; Zhang, W.; Jiang, P.; Zhang, Y. J. Pd-catalyzed regioselective and stereospecific SuzukiMiyaura coupling of allylic carbonates with arylboronic acids. *Org. Lett.* 2012, *14*, 390–393. (b) Hirakawa, T.; Ikeda, K.; Ikeda, D.; Tanaka, T.; Ogasa, H.; Kawatsura, M.; Itoh, T. Regioselective synthesis of trifluoromethyl group containing allylic amines by palladium-catalyzed allylic amination and sequential isomerization. *Tetrahedron* 2011, *67*, 8238
- 3) Wu, M.; Kong, L. Y.; Wang, K. W.; Jin, R. H.; Cheng, T. Y.; Liu, G. H. Enantioselective 1,2-reductions of β-trifluoromethylated-α,βunsaturated ketones to chiral allylic alcohols over organorutheniumfunctionalized mesoporous silica nanospheres. *Catal. Sci. Technol.* 2015, 5, 1750–1757.
- Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
- 5) Sheldrick G. M. (2015) Acta Crystallography C71: 3-8.


8) ¹H NMR and ¹³C NMR and¹⁹F spectral copies of compounds:

