Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Organocatalytic Enantioselective aza-Friedel-Crafts Reaction between Benzothiazolimines and 2-Naphthols for Effective Preparation of Chiral 2'-aminobenzothiazolomethyl Naphthols

Chen-Yi Li, ^{a,b} Min Xiang,^{a,b} Jian Zhang, ^{a,b} Wen-Sheng Li, ^{a,b},Ying Zou,^{a,b} Fang Tian^a and Li-Xin Wang*^a

*E-mail: <u>wlxioc@cioc.ac.cn</u>

^a Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P.R. China

^b University of Chinese Academy of Sciences, Beijing 100039, P.R. China

Table of contents

1.	General information	S2
2.	General procedure for the Syntheses of reactants 1	S2
3.	General procedure for the synthesis of 3	S2
4.	Scale-up preparation and representative transformation of product of 3aa	S3-4
5.	X-ray diffraction parameters and data for 3aa	S4-5
6.	NMR data of products	S5-15
7.	HPLC,NMR spectra of products	S16-72

1. General Information

Commercial grade solvent was dried and purified by standard procedures as specified in Purification of Laboratory Chemicals. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker Avance (600 and 300 MHz for ¹H NMR, 150 and 75 MHz for ¹³ C NMR) instrument. Data for ¹H NMR are reported as chemical shift (ppm, tetramethylsilane as the internal standard), integration, multiplicity (s = singlet, d =doublet, t = triplet, q = quartet, m = multiplet), coupling constant (Hz). Data for ¹³C NMR are reported as chemical shift. High resolution mass spectra were obtained with Thermo Scientific LTQ Orbitrap XL mass spectrometer. Enantiomeric excess was determined by HPLC on chiralpak AD-H, IC. Optical rotations were measured at 589 nm at 20 °C. Melting points were recorded on a Buchi Melting Point B-545.Flash column chromatography was carried out using silica gel eluting with ethyl acetate and petroleum ether. Reactions were monitored by TLC and visualized with ultraviolet light.

2.General Procedure for the Syntheses of Reactants 1

Benzothiazolimines¹³ were prepared as reported procedures. Unless otherwise noted, materials were purchased from commercial suppliers and used without further purification.

3.General procedure for the synthesis of 3

A mixture of 0.1 mmol 1(23.8 mg), 0.15 mmol 2 (21.6 mg) and 10 mol (8h, Rf = 0.2, PE: EA = 6:1), the solvent was evaporated and the mixture was directly purified by flash column chromatography (petroleum ether/ethyl acetate 8/1 to 6/1) to afford product **3aa** (35.1 mg). Other reactants were operated by the same procedures.

4. Scale-up preparation and representative transformation of product 3aa

4.1 Scale-up preparation.

A solution of Benzothiazolimine**1a** (0.952g, 4.0 mmol, 1 equiv.), 2-naphthols **2a** (0.864 g,6 mmol, 1.5 equiv.), and cat **4e** (10% mol,) in DCE (40 mL, 0.1 M) was stirred at room temperature. After **1a** was consumed monitored by TLC, the solvent was evaporated and the mixture was directly purified by column chromatography on silica gel eluting with petroleum ether/ethyl acetate to afford product **3aa**.

4.2 Diacetylation and methylation of product **3aa^{[5b][17][18]}**

A solution of **3aa** (38.3mg, 0.1 mmol.), Et₃N (25.2 mg ,0.25 mmol,2.5 eq) and Ac₂O(25.5 mg ,0.25mmol, 2.5 eq) in DCM (1mL, 0.1 M) was stirred at room temperature. After **3aa** was consumed by TLC, the solvent was evaporated and the mixture was directly purified by column chromatography on silica gel eluting with petroleum ether/ethyl acetate to afford product **4**.

A solution of **3aa** (38.3mg, 0.1mmol,), CH_3I (35.5 mg, 0.25 mmol, 2.5 equiv.), and K_2CO_3 (69 mg, 0.5mmol, 5 equiv) in DMF (1mL, 0.1 M) was stirred at 25 °C. After **3aa** was consumed by TLC. the solvent was evaporated and the mixture was directly purified by column chromatography on silica gel eluting with petroleum ether/ethyl acetate to afford product **5**.

A solution of **3aa** (38.3mg, 0.1 mmol.), $(HCHO)_n$ (25.2 mg ,0.25 mmol,2.5 eq) and TFA (25.5 mg ,0.25mmol, 2.5 eq) in DCM (1mL, 0.1 M) was stirred at room temperature. After **3aa** was consumed by TLC, the solvent was evaporated and the mixture was directly purified by column chromatography on silica gel eluting with petroleum ether/DCM to afford product **6**.

references:

5. M. Montesinos-Magraner, C. Vila, R. Cantón, G. Blay, I. Fernández, M. C. Muñoz and J. R. Pedro, *RSC Adv.*, 2015, **5**, 60101;

13.Q.-J. Ni, X.-X. Song, J.-W. Xiong, G. Raabe, and D. Enders. *Chem. Commun.*, 2015,**51**, 1263-1266.

17.J. Alemµn, S. Cabrera, E. Maerten, J. Overgaard, K. A. Jørgensen, *Angew. Chem. Int. Ed.*, 2007, **46**, 5520-5523.

18. J. C. Wang, Y. Zhou, X. L. Xu, P. Liu, G. B. Dong, J. Am. Chem. Soc., 2020, 142, 3050-3059.

5.X-ray diffraction parameters and data for 3aa

Single crystals of compound **3aa** was obtained by EA/PE at room temperature. The ellipsoid contour was set at 50% probability levels. Details for data collection and structure refinement are summarized in Table S1. CCDC 2055754, contain supplementary crystallographic data for this paper.

Table S1: Important cry	stal data of compound 3a
Empirical formula	$C_{24}H_{18}N_2OS$
Formula weight	382.46
Temperature/K	293(2)
Crystal system	monoclinic
Space group	P2 ₁
a/Å	6.8325(3)
b/Å	15.6420(8)
c/Å	8.9374(5)
α/°	90
β/°	92.861(5)
γ/°	90
Volume/Å ³	953.99(8)
Z	2
$\rho_{calc}g/cm^3$	1.331
µ/mm⁻¹	1.633
F(000)	400.0
Crystal size/mm ³	$0.16 \times 0.1 \times 0.08$
Radiation	CuKα (λ = 1.54184)
20 range for data collection/°	9.91 to 134.14
Index ranges	-8 ≤ h ≤ 8, -18 ≤ k ≤ 18, 0 ≤ l ≤ 10
Reflections collected	3412
Independent reflections	3412 [R _{int} = ?, R _{sigma} = 0.0538]
Data/restraints/parameters	3412/2/226
Goodness-of-fit on F ²	1.048
Final R indexes [I>=2σ (I)]	R ₁ = 0.0566, wR ₂ = 0.1347
Final R indexes [all data]	R ₁ = 0.0676, wR ₂ = 0.1433
Largest diff. peak/hole / e Å ⁻³	0.26/-0.24
Flack parameter	0.00(2)

Figure S1. ORTEP plot of compound **3aa** Thermal ellipsoids are drawn at 50% probability level.

6. ¹H and ¹³C NMR data for all compounds

(S)-1-((benzo[d]thiazol-2-ylamino)(phenyl)methyl)naphthalen-2-o l(3aa)

white solid, mp: 202.7-204.6 °C, 92% yield (35.1 mg), 97% ee, $[\alpha]_D^{20} = -197.3$ (*c* = 1.0, EA); The ee was determined by chiral HPLC (Chiralcel AD-H column, hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{major} = 8.523$ min, $t_{minor} = 12.548$ min).

¹**H NMR** (300 MHz, DMSO): ¹H NMR (300 MHz, DMSO) δ 10.22 (s, 1H), 8.85 (d, *J* = 7.2 Hz, 1H), 7.88 (s, 1H), 7.81 (dd, *J* = 8.2, 3.5 Hz, 2H), 7.68 (d, *J* = 7.7 Hz, 1H), 7.42–7.14 (m, 11H), 7.02 (t, *J* = 7.5 Hz, 1H).

¹³C NMR (75 MHz, DMSO-d6):δ 166.3, 153.2, 152.1, 142.5, 132.2, 130.8, 129.6, 128.7, 128.6, 128.1, 126.2, 126.1, 125.5, 123.9, 122.4, 121.0, 120.9, 118.7, 118.4, 118.1, 53.1. HRMS (ESI) m/z calcd for $C_{24}H_{19}N_2OS^+$ (M+H)⁺ 383.1212, found 383.1213.

(S)-1-((benzo[d]thiazol-2-ylamino)(4-chlorophenyl)methyl)naphthalen-2-ol (3ba)

white solid, Mp: 147.8-149.2 °C 95% yield (39.5 mg), 98% ee ,[α]_D²⁰ = -190 (c = 1.0, EA); The ee was determined by chiral HPLC (Chiralcel AD-H column, hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ =254 nm, t_{major} = 7.668 min, t_{minor} =9.433 min).

¹H NMR (300 MHz, DMSO-d6): ¹H NMR (300 MHz, DMSO) δ 10.21 (s, 1H), 8.81 (s, 1H), 7.81 (dd, J

= 8.2, 4.0 Hz, 3H), 7.67 (d, *J* = 7.6 Hz, 1H), 7.47–7.12 (m, 10H), 7.02 (t, *J* = 7.4 Hz, 1H). ¹³C NMR (75 MHz, DMSO) δ 166.2, 153.2, 152.1, 141.8, 132.0, 130.9, 130.7, 129.9, 128.7, 128.1, 127.9, 126.4, 125.5 123.7, 122.6, 121.2, 121.0, 118.3, 118.2, 52.6. HRMS (ESI) m/z calcd for $C_{24}H_{18}CIN_2OS^+$ (M+H)⁺ 417.0822, found 417.0823.

(S)-1-((benzo[d]thiazol-2-ylamino)(4-bromophenyl)methyl)naphthalen-2-ol (3ca)

white solid, Mp: 141.6-143.4 °C, 95% yield (43.7 mg), 98% ee, $[\alpha]_D^{20}$ = -156.3 (*c* = 1.0, EA); The ee was determined by chiral HPLC (Chiralcel AD-H column, hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ =254 nm, t_{maior} =8.023 min, t_{minor} = 9.715 min).

¹**H NMR** (300 MHz, DMSO): ¹H NMR (300 MHz, DMSO) δ 10.25 (s, 1H), 8.87 (d, *J* = 6.9 Hz, 1H), 7.82 (d, *J* = 9.0 Hz, 3H), 7.69 (d, *J* = 7.6 Hz, 1H), 7.47 (d, *J* = 8.4 Hz, 2H), 7.41 (d, *J* = 7.8 Hz, 2H), 7.35–7.26 (m, 3H), 7.25–7.16 (m, 3H), 7.03 (t, *J* = 7.4 Hz, 1H). ¹³**C NMR** (75 MHz, DMSO) δ 166.2, 153.2, 152.1, 142.2, 132.0, 131.0, 129.8, 128.6, 128.3, 126.4, 125.5, 123.7, 122.5, 121.1, 120.9, 119.2, 118.4, 118.2, 118.2, 52.6.

HRMS (ESI) m/z calcd for $C_{24}H_{18}BrN_2OS^+$ (M+H)+ 461.0317, found 461.03226.

(S)-1-((benzo[d]thiazol-2-ylamino)(4-(trifluoromethyl)phenyl)methyl)naphthalen-2-ol (3da) white solid, Mp: 205.8-207.1 °C, 85 % yield(38.3 mg), 98% ee, $[\alpha]_D^{20} = -132.5$ (c = 1.0, EA); The ee was determined by chiral HPLC (Chiralcel AD-H column, hexane/*i*-PrOH = 92/8, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{major} = 12.015$ min, $t_{minor} = 13.382$ min).

¹**H NMR** (600 MHz, DMSO) δ 10.26 (s, 1H), 8.91 (d, *J* = 7.1 Hz, 1H), 7.84 (d, *J* = 9.0 Hz, 3H), 7.70 (d, *J* = 7.7 Hz, 1H), 7.66 (d, *J* = 8.4 Hz, 2H), 7.47 (d, *J* = 8.2 Hz, 2H), 7.41 (d, *J* = 7.9 Hz, 3H), 7.34 – 7.18 (m, 3H), 7.07–6.99 (m, 1H).

¹³**C NMR** (150MHz, DMSO) δ 166.6, 153.7, 152.5, 148.2, 132.5, 131.4, 130.9 (d, J = 142.4 Hz), 130.4, 129.1, 127.4, 127.2 (d, J = 7.5 Hz), 126.8, 125.9, 125.7, 125.5, 123.9, 121.6 121.4, 118.8 (d, J = 9.6 Hz), 118.5, 53.3.

HRMS (ESI) m/z calcd for $C_{25}H_{18}F_3N_2OS^+$ (M+H)⁺ 451.1086, found 451.1088.

(S)-1-((benzo[d]thiazol-2-ylamino)(4-fluorophenyl)methyl)naphthalen-2-ol (3ea)

white solid, Mp: 127.4-129.3 °C, 92 % yield(36.8 mg), 95% ee, $[\alpha]_D^{20}$ = -312.6 (*c* = 1.0, EA); The ee was determined by chiral HPLC (Chiralcel AD-H column, hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ =254 nm, t_{major} =7.507 min, t_{minor} = 9.907 min).

¹**H NMR** (600 MHz, DMSO) δ 10.22 (s, 1H), 8.86 (d, *J* = 6.3 Hz, 1H), 7.88 (s, 1H), 7.81 (t, *J* = 8.3 Hz, 2H), 7.68 (d, *J* = 7.7 Hz, 1H), 7.39 (t, *J* = 8.2 Hz, 2H), 7.33 (d, *J* = 6.6 Hz, 1H), 7.28 (t, *J* = 11.6 Hz, 4H), 7.21 (t, *J* = 7.6 Hz, 1H), 7.10 (t, *J* = 8.6 Hz, 2H), 7.02 (t, *J* = 7.5 Hz, 1H).

¹³C NMR (150MHz, DMSO) δ 166.7, 161.23 (d, J = 242.0 Hz), 153.6, 152.5, 139.0, 132.5 131.3, 130.1, 129.0, 128.4 (d, J = 7.9 Hz), 126.8, 125.9, 122.9, 121.5, 121.3, 118.9, 118.6, 115.3 (d, J = 21.3 Hz), 53.0.

HRMS (ESI) m/z calcd for $C_{24}H_{18}FN_2OS^+$ (M+H)⁺ 401.1118, found 401.11212.

(S)-1-((benzo[d]thiazol-2-ylamino)(p-tolyl)methyl)naphthalen-2-ol (3fa)

White solid, mp: 186.7-188.9 °C, 94% yield (37.2 mg), 95% ee, $[\alpha]_D^{20}$ = -290.6 (*c* = 1.0, EA); The ee was determined by chiral HPLC (Chiralcel AD-H column, hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ =254 nm, t_{major} =8.140 min, t_{minor} = 11.540 min).

¹**H NMR** (600 MHz, DMSO) δ 10.18 (s, 1H), 8.82 (d, *J* = 6.0 Hz, 1H), 8.03 – 7.82 (m, 1H), 7.79 (t, *J* = 9.1 Hz, 2H), 7.67 (d, *J* = 7.6 Hz, 1H), 7.27 (m, 8H), 7.09 – 6.98 (m, 3H), 2.22 (s, 3H). ¹³**C NMR** (150 MHz, DMSO) δ 166.8, 153.6, 152.6, 139.9, 135.6, 132.6, 131.2, 129.9, 129.1, 129.0, 126.5, 125.9, 122.8, 121.4, 121.3, 119.3, 118.9, 118.5, 53.4, 18.5. HRMS (ESI) m/z calcd for $C_{25}H_{21}N_2OS^+$ (M+H)⁺ 397.1369, found 397.1370.

(S)-1-((benzo[d]thiazol-2-ylamino)(4-methoxyphenyl)methyl)naphthalen-2-ol (3ga)

white solid, Mp: 178.2-180.3 °C, 98 % yield(40.3 mg), 85% ee, $[\alpha]_D^{20} = -346.3$ (*c* = 1.0, EA); The ee was determined by chiral HPLC (Chiralcel AD-H column, hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{major} = 12.073$ min, $t_{minor} = 23.790$ min).

¹**H NMR** (300 MHz, DMSO):δ 10.19 (s, 1H), 8.82 (d, *J* = 7.0 Hz, 1H), 7.90 (s, 1H), 7.82–7.75 (m, 2H), 7.67 (d, *J* = 7.7 Hz, 1H), 7.38 (d, *J* = 7.9 Hz, 2H), 7.32–7.13 (m, 6H), 7.01 (t, *J* = 7.6 Hz, 1H), 6.84 (d, *J* = 8.7 Hz, 2H), 3.68 (s, 3H).

¹³C NMR (75 MHz, DMSO) δ 166.3, 157.7, 153.1, 152.2, 134.2 132.1, 130.7, 129.5, 128.7, 128.6, 127.3, 126.2, 125.5, 123.9, 122.4, 121.0, 120.9, 118.8, 118.4, 118.1, 113.5, 55.0, 52.8. HRMS (ESI) m/z calcd for $C_{25}H_{21}N_2O_2S^+$ (M+H)⁺ 413.1318, found 413.1318.

(S)-1-((benzo[d]thiazol-2-ylamino)(3-bromophenyl)methyl)naphthalen-2-ol (3ha)

white solid, Mp: 199.2-200.1 °C, 96 % yield (44.1 mg), 98% ee, $[\alpha]_D^{20}$ = -191.5 (*c* = 1.0, EA); The ee was determined by chiral HPLC (Chiralcel AD-H column, hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ =254 nm, t_{major} = 7.607 min, t_{minor} = 8.757 min).

¹**H NMR** (600 MHz, DMSO) δ 10.25 (s, 1H), 8.88 (d, *J* = 7.4 Hz, 1H), 7.88 (d, *J* = 36.7 Hz, 1H), 7.83 (t, *J* = 7.7 Hz, 2H), 7.69 (d, *J* = 7.7 Hz, 1H), 7.47–7.34 (m, 5H), 7.29 (dd, *J* = 8.0, 4.9 Hz, 2H), 7.26–7.20 (m, 3H), 7.07–7.00 (m, 1H).

¹³C NMR (150 MHz, DMSO) δ166.6, 153.7, 152.4, 146.1, 132.5, 131.3, 130.8, 130.3, 129.5, 129.1, 129.0, 127.0, 125.9, 125.7, 123.0, 122.0, 121.6, 121.4, 118.8, 118.7, 118.5, 53.1. HRMS (ESI) m/z calcd for $C_{24}H_{18}BrN_2OS^+$ (M+H)⁺ 461.0317, found 461.0323.

(S)-1-((benzo[d]thiazol-2-ylamino)(3-chlorophenyl)methyl)naphthalen-2-ol (3ia)

white solid, Mp: 183.8-184.9 °C, 92 % yield(38.2 mg), 93% ee, $[\alpha]_D^{20} = -170.5$ (*c* = 1.0, EA); The ee was determined by chiral HPLC (Chiralcel AD-H column, hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{major} = 6.300$ min, $t_{minor} = 7.225$ min).

¹**H NMR** (600 MHz, DMSO) δ 10.25 (s, 1H), 8.90 (t, *J* = 22.9 Hz, 1H), 7.92 (t, *J* = 45.5 Hz, 1H), 7.85–7.80 (m, 2H), 7.69 (d, *J* = 7.6 Hz, 1H), 7.41 (d, *J* = 7.9 Hz, 2H), 7.36 (d, *J* = 7.3 Hz, 1H), 7.32 – 7.19 (m, 7H), 7.06–7.01 (m, 1H).

¹³C NMR (150 MHz, DMSO) δ 166.6, 153.7, 152.4, 145.9, 133.3, 132.5, 131.3, 130.5, 130.3 129.1, 129.0, 127.0, 126.6, 126.2, 125.9, 125.3, 123.0, 121.6, 121.4, 118.8, 118.7, 118.5, 53.1, HRMS (ESI) m/z calcd for $C_{24}H_{18}CIN_2OS^+$ (M+H)⁺ 417.0822, found 417.0822.

(S)-1-((benzo[d]thiazol-2-ylamino)(3-methoxyphenyl)methyl)naphthalen-2-ol (3ja)

white solid, Mp: 189.1-190.9 °C, 95% yield(39.1 mg) ,95% ee, $[\alpha]_D^{20} = -160.5$ (c = 1.0, EA); The ee was determined by chiral HPLC (Chiralcel AD-H column, hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{major} = 9.632$ min, $t_{minor} = 13.282$ min).

¹**H NMR** (300 MHz, DMSO):δ 10.22 (s, 1H), 8.86 (d, *J* = 7.6 Hz, 1H), 7.91 (s, 1H), 7.81 (dd, *J* = 8.4, 4.0 Hz, 2H), 7.69 (d, *J* = 7.8 Hz, 1H), 7.47–7.09 (m, 7H), 7.02 (t, *J* = 7.5 Hz, 1H), 6.91–6.82 (m, 2H), 6.76 (d, *J* = 6.5 Hz, 1H), 3.65 (s, 3H).

¹³**C NMR** (75 MHz, DMSO) δ 166.3, 159.2, 153.2, 152.1, 144.3, 132.2, 130.8, 129.6, 129.3, 128.6, 128.6, 126.3, 125.5, 123.9, 122.5, 121.0, 120.9, 118.7, 118.5, 118.1,54.9, 53.0. HRMS (ESI) m/z calcd for $C_{25}H_{21}N_2O_2S^+$ (M+H)⁺ 413.1318, found 413.1319.

(S)-1-((benzo[d]thiazol-2-ylamino)(naphthalen-2-yl)methyl)naphthalen-2-ol (3ka)

white solid, Mp: 197.8-199.8 °C, 80% yield(34.5 mg), 97% ee, $[\alpha]_D^{20} = -138.2$ (*c* = 1.0, EA); The ee was determined by chiral HPLC (Chiralcel AD-H column, hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ =254 nm, 97% ee: t_{major} = 9.273 min, t_{minor} =12.590 min).

1H NMR (300 MHz, DMSO) δ 10.26 (s, 1H), 8.97 (d, J = 7.1 Hz, 1H), 7.99 (s, 1H), 7.87 – 7.67 (m, 6H), 7.59–7.43 (m, 2H), 7.39 (m, 6H), 7.29–7.17 (m, 2H), 7.03 (t, J = 7.6 Hz, 1H). ¹³C NMR (75 MHz, DMSO) δ 166.3, 153.5, 152.4, 147.3, 132.5, 131.2, 130.3, 129.0, 127.1, 126.8, 125.9, 125.0, 124.5, 122.9, 121.6, 121.4, 118.8, 118.7, 118.5, 50.8. HRMS (ESI) m/z calcd for C₂₈H₂₁N₂OS⁺ (M+H)⁺ 433.1369, found 433.1370.

(R)-1-((benzo[d]thiazol-2-ylamino)(thiophen-2-yl)methyl)naphthalen-2-ol (3la)

white solid, Mp: 197.8-199.8 °C, 92% yield(35.6 mg), 91% ee, $[\alpha]_D^{20} = -165.5$ (*c* = 1.0, EA); The ee was determined by chiral HPLC (Chiralcel AD-H column, hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm, 97% ee: $t_{major} = 10.607$ min, $t_{minor} = 17.658$ min).

¹**H NMR** (600 MHz, DMSO) δ 10.30 (s, 1H), 8.99 (s, 1H), 8.03 (s, 1H), 7.81 (t, J = 8.6 Hz, 2H), 7.68 (d, J = 7.7 Hz, 1H), 7.52 (d, J = 7.5 Hz, 1H), 7.42 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 5.0 Hz, 1H), 7.30 – 7.17 (m, 3H), 7.02 (t, J = 7.5 Hz, 1H), 6.95–6.76 (m, 2H).

¹³C NMR (150 MHz, DMSO) δ 166.3, 153.5, 152.4, 147.3, 132.5, 131.2, 130.3, 129.0, 127.1, 126.8, 125.9, 125.0, 124.5, 122.9, 121.6, 121.4, 118.8, 118.7, 118.5, 50.8.

HRMS (ESI) m/z calcd for $C_{22}H_{17}N_2OS_2^+$ (M+H)⁺ 389.0776, found 389.0775.

(R)-1-((benzo[d]thiazol-2-ylamino)(furan-2-yl)methyl)naphthalen-2-ol (3ma)

white solid, Mp: 180.1-181.5 °C, 90% yield (33.4 mg), 95% ee, $[\alpha]_D^{20}$ = + 84.4 (*c* = 1.0, EA); The ee was determined by chiral HPLC (Chiralcel AD-H column, hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ =254 nm, 97% ee: t_{maior} = 10.710 min, t_{minor} = 13.930 min).

¹**H NMR** (300 MHz, DMSO) δ 10.24 (s, 1H), 8.90 (d, J = 7.5 Hz, 1H), 8.08 (d, J = 8.6 Hz, 1H), 7.85 – 7.72 (m, 2H), 7.66 (d, J = 7.5 Hz, 1H), 7.51 (s, 1H), 7.40 (d, J = 7.7 Hz, 2H), 7.27 (dd, J = 12.3, 8.1 Hz, 4H), 7.01 (t, J = 7.1 Hz, 1H), 6.38 (s, 1H), 6.22 (s, 1H).

¹³**C NMR** (75 MHz, DMSO) δ 165.8, 154.5, 153.4, 151.9, 141.8, 132.4, 130.6, 129.8, 128.5, 126.2, 125.5, 123.3, 122.4, 121.0, 120.9, 118.4, 118.1, 116.1, 110.5, 106.4, 48.7. **HRMS** (ESI) m/z calcd for $C_{22}H_{16}N_2O_2S_2^+$ (M+H)⁺ 373.1005, found 373.1024.

1-((benzo[d]thiazol-2-ylamino)(2-methoxyphenyl)methyl)naphthalen-2-ol (3na)

white solid, Mp: 178.5-179.6 °C,85% yield(37.9 mg), >99% ee, $[\alpha]_D^{20}$ = -180.5(*c* = 1.0, EA); The ee was determined by chiral HPLC (Chiralcel AD-H column, hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ =254 nm, t_{major} = 8.723 min, t_{minor} = 20.923 min).

¹**H NMR** (600 MHz, DMSO) δ 9.91 (s, 1H), 8.64 (d, *J* = 7.8 Hz, 1H), 8.22 (d, *J* = 8.6 Hz, 1H), 7.76 (d, *J* = 7.9 Hz, 1H), 7.71 (d, *J* = 8.8 Hz, 1H), 7.62 (d, *J* = 7.6 Hz, 1H), 7.51 (d, *J* = 6.1 Hz, 1H), 7.41 (t, *J* = 7.2 Hz, 1H), 7.34–7.13 (m, 6H), 6.99–6.85 (m, 3H), 3.58 (s, 3H).

¹³C NMR (75 MHz, DMSO) δ 166.4, 153.3, 152.1, 140.2, 132.8, 132.2, 131.8, 130.8, 129.7, 128.7, 128.6, 127.7, 127.6, 126.3, 126.1, 125.4, 125.0, 123.9, 121.0, 120.9, 118.6, 118.6, 118.5, 53.3 . HRMS (ESI) m/z calcd for $C_{25}H_{21}N_2O_2S^+$ (M+H)⁺413.1318, found 413.1317.

(S)-1-((benzo[d]thiazol-2-ylamino)(2,4-dichlorophenyl)methyl)naphthalen-2-ol (3oa) white solid, Mp: 192.5-193.6 °C, 65% yield(29.3 mg), 90% ee, $[\alpha]_D^{20} = -199.4$ (c = 1.0, EA); The ee was determined by chiral HPLC (Chiralcel AD-H column, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{maior} = 7.607$ min, $t_{minor} = 13.740$ min).

¹**H NMR** (600 MHz, DMSO) δ 9.97 (s, 1H), 8.90 (d, J = 6.9 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.80 (dd, J = 18.5, 8.5 Hz, 2H), 7.67 (dd, J = 12.5, 8.2 Hz, 2H), 7.50 (d, J = 1.7 Hz, 1H), 7.46 – 7.32 (m, 3H), 7.27 (t, J = 7.4 Hz, 1H), 7.21–7.10 (m, 3H), 7.01 (t, J = 7.6 Hz, 1H).

¹³**C NMR** (151 MHz, DMSO) δ 165.6, 154.2, 152.6, 139.5, 133.4, 133.1, 132.2, 131.5, 131.2, 130.4, 129.1, 128.7, 127.0, 125.9, 122.8, 121.5, 121.4, 119.0, 118.8, 116.3, 52.8.

HRMS (ESI) m/z calcd for $C_{24}H_{17}Cl_2N_2OS^+$ (M+H)+451.0433, found 451.0435.

(S)-1-(1-(benzo[d]thiazol-2-ylamino)propyl)naphthalen-2-ol (3pa)

white solid, Mp: 109.7-110.4°C, 50% yield(16.7 mg), 45% ee, $[\alpha]_D^{20}$ = -199.4 (*c* = 1.0, EA); The ee was determined by chiral HPLC (Chiralcel AD-H column, hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ =254 nm, t_{major} =5.657min, t_{minor} = 8.082 min).

¹**H NMR** (300 MHz, DMSO) δ 10.05 (s, 1H), 8.51 (d, J = 7.8 Hz, 1H), 8.16 (d, J = 8.6 Hz, 1H), 7.74 (dd, J = 16.5, 8.3 Hz, 2H), 7.61 (d, J = 7.7 Hz, 1H), 7.38 (dd, J = 14.3, 7.4 Hz, 2H), 7.22 (dt, J = 16.0, 7.4 Hz, 3H), 6.96 (t, J = 7.4 Hz, 1H), 6.45 (d, J = 7.5 Hz, 1H), 5.49 (s, 1H), 2.33–1.84 (m, 2H), 0.88 (t, J = 7.5 Hz, 3H).

¹³C NMR (75 MHz, DMSO) δ 166.2, 153.3, 152.1, 132.9, 132.7, 130.4, 129.1, 128.5, 128.4, 125.8, 125.4, 125.2, 123.7, 122.3, 120.8, 120.7, 118.4, 117.8, 117.2, 56.0, 20.6, 14.4, 14.0. HRMS (ESI) m/z calcd for $C_{24}H_{17}Cl_2N_2OS^+$ (M+H)⁺ 335.1212, found 335.1075.

(S)-1-(((4-methylbenzo[d]thiazol-2-yl)amino)(phenyl)methyl)naphthalen-2-ol (3qa)

white solid, Mp:198.3-199.9 °C, 92% yield(36.4 mg), 96% ee, $[\alpha]_D^{20}$ = -360.2 (*c* = 1.0, EA); The ee was determined by chiral HPLC (Chiralcel AD-H column, hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ =254 nm, t_{major} = 5.292 min, t_{minor} = 4.693 min).

¹**H NMR** (600 MHz, DMSO) δ 10.17 (s, 1H), 8.90 (d, J = 5.3 Hz, 1H), 8.17–7.92 (m, 1H), 7.78 (d, J = 8.9 Hz, 2H), 7.47 (d, J = 7.7 Hz, 1H), 7.38 (d, J = 1.2 Hz, 2H), 7.29 (dt, J = 19.5, 6.0 Hz, 6H), 7.18 (t, J = 7.2 Hz, 1H), 7.02 (d, J = 7.4 Hz, 1H), 6.90 (t, J = 7.6 Hz, 1H), 2.43 (s, 3H).

¹³C NMR (150 MHz, DMSO-d6) δ 166.0, 155.7, 153.8, 151.3, 142.6, 132.8, 130.5, 129.9, 129.7, 128.9, 128.5, 128.0, 127.6, 126.7, 126.6, 126.4, 123.1, 122.8, 121.3, 119.5, 119.0, 118.7, 53.7. HRMS (ESI) m/z calcd for $C_{25}H_{21}N_2OS^+$ (M+H)⁺ 397.1369, found 397.1371.

(S)-1-(((5-chlorobenzo[d]thiazol-2-yl)amino)(phenyl)methyl)naphthalen-2-ol (3ra)

white solid, Mp:182.4-184.5 °C, 88% yield(36.5 mg), 97% ee, $[\alpha]_D^{20} = -254.5$ (*c* = 1.0, EA); The ee was determined by chiral HPLC (Chiralcel AD-H column, hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{major} = 8.832$ min, $t_{minor} = 10.665$ min).

¹**H NMR** (600 MHz, DMSO) δ 10.17 (s, 1H), 8.90 (d, *J* = 5.3 Hz, 1H), 8.17–7.92 (m, 1H), 7.78 (d, *J* = 8.9 Hz, 2H), 7.47 (d, *J* = 7.7 Hz, 1H), 7.38 (d, *J* = 1.2 Hz, 2H), 7.29 (m, 6.0 Hz, 6H), 7.18 (t, *J* = 7.2 Hz, 1H), 7.02 (d, *J* = 7.4 Hz, 1H), 6.90 (t, *J* = 7.6 Hz, 1H), 2.43 (s, 3H).

¹³C NMR (150 MHz, DMSO-d6) δ 166.0, 155.7, 153.8, 151.3, 142.6, 132.8, 130.5, 129.9, 129.7, 128.9, 128.5, 128.0, 127.6, 126.7, 126.6, 126.4, 123.1, 122.8, 121.3, 119.5, 119.0, 118.7, 53.7. HRMS (ESI) m/z calcd for $C_{24}H_{18}CIN_2OS^+$ (M+H)⁺ 417.0821, found 417.0827.

(S)-1-(((6-methoxybenzo[d]thiazol-2-yl)amino)(phenyl)methyl)naphthalen-2-ol (3sa)

white solid, Mp: 172.3-174.6 °C, 90% yield(37.1 mg), 72% ee, $[\alpha]_D^{20}$ = -340.5 (*c* = 1.0, EA); The ee was determined by chiral HPLC (Chiralcel AD-H column, hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ =254 nm, t_{major} = 15.365 min, t_{minor} = 24.298 min).

¹**H NMR** (600 MHz, DMSO) δ 10.17 (s, 1H), 8.62 (d, *J* = 6.9 Hz, 1H), 7.85 (d, *J* = 25.3 Hz, 1H), 7.79 (t, *J* = 9.4 Hz, 2H), 7.29 (m, 10H), 7.16 (t, *J* = 6.6 Hz, 1H), 6.81 (dd, *J* = 8.7, 2.5 Hz, 1H), 3.72 (s, 3H). ¹³**C NMR** (150 MHz, DMSO) δ 165.2, 154.8, 153.6, 146.6, 143.1, 132.3, 129.9, 129.0 128.5, 126.5, 126.5, 122.8, 119.4, 118.9 113.3, 105.9, 56.0, 53.4.

HRMS (ESI) m/z calcd for $C_{25}H_{21}N_2O_2S^+$ (M+H)⁺ 413.1318, found 413.1317.

(S)-1-(((6-bromobenzo[d]thiazol-2-yl)amino)(phenyl)methyl)naphthalen-2-ol (3ta)

white solid, Mp: 193.6-194.5°C, 90% yield(41.3 mg), 98% ee, $[\alpha]_D^{20} = -274.5$ (*c* = 1.0, EA); The ee was determined by chiral HPLC (Chiralcel AD-H column, hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{major} = 11.990$ min, $t_{minor} = 21.9408$ min).

¹H NMR (600 MHz, DMSO) δ 10.17 (s, 1H), 8.62 (d, J = 6.9 Hz, 1H), 7.85 (d, J = 25.3 Hz, 1H), 7.79 (t, J = 9.4 Hz, 2H), 7.29 (m, 10H), 7.16 (t, J = 6.6 Hz, 1H), 6.81 (dd, J = 8.7, 2.5 Hz, 1H), 3.72 (s, 3H). ¹³C NMR (150 MHz, DMSO) δ 165.2, 154.8, 153.6, 146.6, 143.1, 132.3, 129.9, 129.0 128.5, 126.5, 126.5, 122.8, 119.4, 118.9 113.3, 105.9, 56.0, 53.4. HRMS (ESI) m/z calcd for C₂₅H₂₁N₂O₂S⁺ (M+H)⁺ 463.0317, found 463.0298.

(S)-1-(((6-chlorobenzo[d]thiazol-2-yl)amino)(phenyl)methyl)naphthalen-2-ol (3ua)

white solid, Mp: 202.5-204.3 °C, 90 % yield(37.4 mg), 96% ee, $[\alpha]_D^{20}$ = -240.5 (*c* = 1.0, EA); The ee was determined by chiral HPLC (Chiralcel AD-H column, hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ =254 nm, t_{major} = 10.598 min, t_{minor} = 20.440 min).

¹**H NMR** (600 MHz, DMSO) δ 10.18 (s, 1H), 8.96 (d, *J* = 7.5 Hz, 1H), 7.89 (m,1H), 7.81 (dd, *J* = 9.3, 5.4 Hz, 3H), 7.37 (d, *J* = 8.6 Hz, 3H), 7.31 – 7.24 (m, 6H), 7.22 (dd, *J* = 8.6, 2.2 Hz, 1H), 7.17 (dt, *J* = 8.4, 4.0 Hz, 1H).

¹³**C NMR** (150 MHz, DMSO) δ 167.3, 153.6, 151.5, 142.8, 133.0, 132.6, 130.1, 129.0, 128.6, 126.7, 126.5, 126.0, 125.1, 122.9, 121.0, 119.4, 118.9, 118.8, 53.6.

HRMS (ESI) m/z calcd for $C_{24}H_{18}CIN_2OS^+$ (M+H)⁺ 417.0822, found 417.0823.

(S)-1-((benzo[d]thiazol-2-ylamino)(phenyl)methyl)-7-methoxynaphthalen-2-ol (3ab)

white solid, Mp: 190.1-192.3 °C, 85% yield(35.1 mg),95% ee, $[\alpha]_D^{20} = -370.3$ (c = 1.0, EA); The ee was determined by chiral HPLC (Chiralcel AD-H column, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{major} = 17.933$ min, $t_{minor} = 22.342$ min).

¹**H NMR** (300 MHz, DMSO) δ 10.15 (s, 1H), 8.86 (d, *J* = 7.3 Hz, 1H), 7.70 (dd, *J* = 7.7, 4.0 Hz, 3H), 7.40 (d, *J* = 7.5 Hz, 2H), 7.36–7.25 (m, 4H), 7.24–7.09 (m, 4H), 7.03 (t, *J* = 7.5 Hz, 1H), 6.91 (d, *J* = 7.0 Hz, 1H), 3.65 (s, 3H).

¹³C NMR (75MHz, DMSO) δ 166.7, 154.1, 152.5, 143.2, 131.2, 130.4, 129.7, 129.5, 128.5, 126.4, 126.3, 125.9, 124.4, 121.4, 121.3, 118.6, 118.5, 116.1, 114.7, 108.5, 104.9, 55.5, 55.2, 53.3. HRMS (ESI) m/z calcd for $C_{25}H_{21}N_2O_2S^+$ (M+H)⁺ 413.1318, found 413.1317.

(S)-1-((benzo[d]thiazol-2-ylamino)(phenyl)methyl)-7-bromonaphthalen-2-ol (3ac)

white solid, Mp: 204.1-206.2 °C, 94% yield(43.2 mg),90% ee, $[\alpha]_D^{20} = -335.5(c = 1.0, EA)$; The ee was determined by chiral HPLC (Chiralcel AD-H column, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{major} = 11.148$ min, $t_{minor} = 12.232$ min).

¹**H NMR** (300 MHz, DMSO) δ 10.15 (s, 1H), 8.86 (d, *J* = 7.3 Hz, 1H), 7.70 (dd, *J* = 7.7, 4.0 Hz, 3H), 7.40 (d, *J* = 7.5 Hz, 2H), 7.36–7.25 (m, 4H), 7.24–7.09 (m, 4H), 7.03 (t, *J* = 7.5 Hz, 1H), 6.91 (d, *J* = 7.0 Hz, 1H), 3.65 (s, 3H).

¹³C NMR (75MHz, DMSO) δ 166.7, 154.1, 152.5, 143.2, 131.2, 130.4, 129.7, 129.5, 128.5, 126.4, 126.3, 125.9, 124.4, 121.4, 121.3, 118.6, 118.5, 116.1, 114.7, 108.5, 104.9, 55.5, 55.2, 53.3. HRMS (ESI) m/z calcd for $C_{24}H_{18}BrN_2OS^+$ (M+H)⁺ 463.0317, found 463.0299.

(S)-1-((benzo[d]thiazol-2-ylamino)(phenyl)methyl)-6-methoxynaphthalen-2-ol (3ad)

white solid, Mp: 191.3-192.5°C, 90% yield (37.1mg), 98% ee , $[\alpha]_D^{20} = -264.8(c = 1.0, EA)$; The ee was determined by chiral HPLC (Chiralcel AD-H column, hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{major} = 14.390$ min, $t_{minor} = 13.190$ min).

¹H NMR (600 MHz, DMSO) δ 10.37 (s, 1H), 8.83 (d, *J* = 7.3 Hz, 1H), 8.09 (d, *J* = 2.1 Hz, 1H), 7.74 (m, 3H), 7.46 (d, *J* = 8.1 Hz, 1H), 7.37 (d, *J* = 7.9 Hz, 1H), 7.34 – 7.16 (m, 8H), 7.06 – 6.95 (m, 1H). ¹³C NMR (150 MHz, DMSO) δ 166.6, 154.1, 152.5, 142.6, 131.2, 130.6, 129.3, 128.6, 126.7, 126.5, 125.9, 121.5, 121.3, 120.0, 119.5, 118.6, 115.7, 53.3. HBMS (FSI) m/z calcd for C H = N = 0.5t (M+H) t 413 1218, found 413 1211

HRMS (ESI) m/z calcd for $C_{25}H_{21}N_2O_2S^+$ (M+H)⁺ 413.1318, found413.1311.

(S)-1-((benzo[d]thiazol-2-ylamino)(phenyl)methyl)-6-bromonaphthalen-2-ol (3ae)

white solid, Mp: 197.8-198.9 °C, 92 % yield (42.3 mg), 92% ee , $[\alpha]_D^{20}$ = -216.7 (*c* = 1.0, EA); The ee was determined by chiral HPLC (Chiralcel AD-H column, hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ =254 nm, t_{major} = 10.432 min, t_{minor} =8.365 min).

¹**H NMR** (600 MHz, DMSO) δ 10.37 (s, 1H), 8.83 (d, *J* = 7.3 Hz, 1H), 8.09 (d, *J* = 2.1 Hz, 1H), 7.74 (m, 3H), 7.46 (d, *J* = 8.1 Hz, 1H), 7.37 (d, *J* = 7.9 Hz, 1H), 7.34 –7.16 (m, 8H), 7.06 – 6.95 (m, 1H). ¹³**C NMR** (150 MHz, DMSO) δ 166.6, 154.1, 152.5, 142.6, 131.2, 130.6, 129.3, 128.6, 126.7, 126.5, 125.9, 121.5, 121.3, 120.0, 119.5, 118.6, 115.7, 53.3. **HRMS** (ESI) m/z calcd for $C_{24}H_{18}BrN_2OS^+$ (M+H)⁺ 463.0317, found 463.0323.

(S)-1-((benzo[d]thiazol-2-ylamino)(phenyl)methyl)naphthalen-2-yl acetate (4)

white solid, Mp: 180.1-181.5 °C, 90% yield(41.9 mg), 97% ee , $[\alpha]_D^{20} = -364.6$ (*c* = 1.0, EA); The ee was determined by chiral HPLC (Chiralcel AD-H column, hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{major} = 8.198$ min, $t_{minor} = 8.965$ min).

¹**H NMR** (300 MHz, DMSO) δ 7.98 (d, J = 9.7 Hz, 2H), 7.91 (d, J = 8.1 Hz, 2H), 7.80 (d, J = 8.1 Hz, 1H), 7.57 (d, J = 8.3 Hz, 1H), 7.44 (t, J = 7.7 Hz, 3H), 7.40–7.18 (m, 7H), 2.04 (s, 3H), 1.75 (s, 3H). ¹³**C NMR** (75 MHz, DMSO) δ 169.8, 168.3, 160.9, 148.8, 148.6, 139.8, 135.8, 132.5, 131.5, 130.9, 128.8, 128.4, 126.6, 126.3, 125.9, 125.8, 125.3, 123.7, 123.0, 122.6, 122.0, 55.7, 22.6, 20.1. .**HRMS** (ESI) m/z calcd for C₂₈H₂₂BrN₂OS⁺ (M+H)⁺ 467.1423, found 467.1427.

(S)-N-((2-methoxynaphthalen-1-yl)(phenyl)methyl)benzo[d]thiazol-2-amine (5)

white solid, Mp: 145.6-147.1 °C, 92 % yield(37.7 mg), 97% ee , $[\alpha]_D^{20}$ = -212.5 (*c* = 1.0, EA); The ee was determined by chiral HPLC (Chiralcel IC column, hexane/*i*-PrOH = 97/3, flow rate 1.0 mL/min, λ =254 nm, t_{major} = 5.330 min, t_{minor} =4.785 min).

¹**H NMR** (300 MHz, DMSO) δ 8.39–8.25 (m, 1H), 7.87 (d, J = 9.0 Hz, 1H), 7.81 – 7.71 (m, 1H), 7.55 (d, J = 9.1 Hz, 1H), 7.43 (t, J = 6.1 Hz, 3H), 7.22 (m, 6H), 7.03 (d, J = 8.0 Hz, 1H), 6.93 (s, 1H), 6.40 (s, 1H), 4.11 (s, 3H), 3.50 (s, 3H).

13C NMR (75 MHz, DMSO) δ 155.1, 154.8, 144.2, 140.5, 131.3, 129.6, 129.5, 128.1, 128.0, 126.8, 126.4, 126.1, 126.0, 125.2, 123.0, 122.1, 121.6, 120.8, 113.5, 109.1, 60.6, 57.1, 30.1. HRMS (ESI) m/z calcd for C₂₆H₂₂BrN₂OS⁺ 410.1453, found 410.1396

(S)-2-(benzo[d]thiazol-2-yl)-1-phenyl-2,3-dihydro-1H-naphtho[1,2-e][1,3]oxazine (6)

white solid, Mp: 98.5-99.6 °C, 65 % yield 25.6 mg), 96% ee , $[\alpha]_D^{20}$ = +284.4 (*c* = 1.0, EA); The ee was determined by chiral HPLC (Chiralcel AD-H column, hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ =254 nm, t_{major} = 6.773min, t_{minor} =7.332 min).

¹**H NMR** (300 MHz, DMSO) δ 8.39–8.25 (m, 1H), 7.87 (d, J = 9.0 Hz, 1H), 7.81–7.71 (m, 1H), 7.55 (d, J = 9.1 Hz, 1H), 7.43 (t, J = 6.1 Hz, 3H), 7.22 (m, 6H), 7.03 (d, J = 8.0 Hz, 1H), 6.93 (s, 1H), 6.40 (s, 1H), 4.11 (s, 3H), 3.50 (s, 3H).

13C NMR (75 MHz, DMSO) δ 155.1, 154.8, 144.2, 140.5, 131.3, 129.6, 129.5, 128.1, 128.0, 126.8, 126.4, 126.1, 126.0, 125.2, 123.0, 122.1, 121.6, 120.8, 113.5, 109.1, 60.6, 57.1, 30.1. **HRMS** (ESI) m/z calcd for C₂₅H₁₈N₂OS⁺ (M+H)⁺ 395.1212, found 395.1215

7 .HPLC,NMR spectra of products

3aa

3ba

Peak#	Ret. Time (min)	Height (mV*sec)	Area (mv)	Area (%)	
1	8.007	47803.188	637159.813	49.6793	
 2	9.657	37356.355	645384.875	50.3207	

Peak# Ret. Time (min) Height (mV*sec) Area (mv) Area (%)

1	8.023	642294.875	8880231.000	99.1121
2	9.715	4185.954	79551.961	0.8879

+.	m	5
		-

Peak#	Ret. Time (min)	Height (mV*sec)	Area (mv)	Area (%)
1	12.015	281270.188	5888700.500	99.2370
2	13.382	1444.781	45273.535	0.7630

1	7.507	326965.844	4021054.250	49.9278
2	9.907	240057.219	4032676.000	50.0722

Peak#	Ret. Time (min)	Height (mV*sec)	Area (mv)	Area (%)
1	7.507	703042.063	701308.000	97.3544
2	9.907	14327.000	236456.297	2.6456

3fa

Peak#	Ret. Time (min)	Height (mV*sec)	Area (mv)	Area (%)
1	8.148	109042.781	1523715.875	49.9619
2	11.548	75587.508	1526038.875	50.0381

3ga

Peak#	Ret. Time (min)	Height (mV*sec)	Area (mv)	Area (%)
1	11.873	121126.328	2620573.750	50.0023
2	22.823	61030.250	2620334.500	49.9977

Peak#	Ret. Time (min)	Height (mV*sec)	Area (mv)	Area (%)
1	12.073	138869.109	3165810.250	92.6276
2	23.790	5450.775	251973.906	7.3724

Peak#	Ret. Time (min)	Height (mV*sec)	Area (mv)	Area (%)
1	7.557	96532.813	1211480.750	50.5840
2	8.673	80006.063	1183509.250	49.4160

Peak#	Ret. Time (min)	Height (mV*sec)	Area (mv)	Area (%)
1	7.607	407577.031	5295992.000	98.9284
2	8.757	3904.750	57364.301	1.0716

3ha

-

S25

1	6.300	780771.688	7838786.500	96.2398
2	7.225	25234.920	306272.219	3.7602

Peak#	Ret. Time (min)	Height (mV*sec)	Area (mv)	Area (%)
1	9.598	106978.102	2036837.750	49.9146
2	13.173	77374.039	2043810.375	50.0854

Peak#	Ret. Time (min)	Height (mV*sec)	Area (mv)	Area (%)
1	9.632	453973.563	8235654.500	97.4943
2	13.282	8288.007	211660.297	2.5057

1	9.273	238114.203	4140383.250	98.6271
2	12.590	2395.122	57632.602	1.3729

Peak#	Ret. Time (min)	Height (mV*sec)	Area (mv)	Area (%)
1	10.607	539487.313	10148960.000	95.6469
2	17.658	14434.413	461906.469	4.3531

Peak#	Ret. Time (min)	Height (mV*sec)	Area (mv)	Area (%)
1	10.623	102390.078	1741645.375	51.9279
2	13.723	71460.461	1612321.500	48.0721

Peak#	Ret. Time (min)	Height (mV*sec)	Area (mv)	Area (%)
1	10.710	543389.375	9627044.000	97.3318
2	13.930	11547.053	263908.563	2.6682

Peak#	Ret. Time (min)	Height (mV*sec)	Area (mv)	Area (%)
1	8.690	21036.607	342912.406	50.3763
2	20.790	8758.305	337788.813	49.6236

Peak#	Ret. Time (min)	Height (mV*sec)	Area (mv)	Area (%)
1	8.723	207264.047	3193744.000	99.8703
2	20.923	111.505	4148.000	0.1297

1	7.615	169371.922	2536585.250	50.6551
2	13.848	93501.430	2470975.000	49.3449

Peak#	Ret. Time (min)	Height (mV*sec)	Area (mv)	Area (%)
1	7.607	106127.859	1569139.375	95.2093
2	13.740	3050.131	78955.148	4.7907

Зра

0					_^_	M	\frown	1	<u> </u>				
0	1	2	3	4	5	6	7	8	9	10	11	12	13
						time							

Peak#	Ret. Time (min)	Height (mV*sec)	Area (mv)	Area (%)
1	5.657	241767.000	2007547.250	72.1178
2	8.082	61316.758	776159.438	27.8822

S35

Peak#	Ret. Time (min)	Height (mV*sec)	Area (mv)	Area (%)
1	15.582	105389.063	2919095.750	49.7084
2	24.882	59336.141	2953338.750	50.2916

Peak#	Ret. Time (min)	Height (mV*sec)	Area (mv)	Area (%)
1	15.365	126085.805	3484544.000	85.9216

Peak#	Ret. Time (min)	Height (mV*sec)	Area (mv)	Area (%)
1	11.990	218125.828	4303426.000	98.9127
2	21.940	1270.353	47306.000	1.0873

51843.641

1923248.000

50.2392

2

19.990

C	2	o
С	Э	С

Peak#	Ret. Time (min)	Height (mV*sec)	Area (mv)	Area (%)
1	10.598	382101.719	6904129.500	97.9246
2	20.440	3926.406	146323.203	2.0754

Peak# Ret. Time (min) Height (mV*sec) Area (mv) Area (%)

1	17.730	76191.742	2492876.750	50.7228
2	21.995	60027.770	2421831.500	49.2772

3ad

S43

513132.813

6168.544

7450997.000

130463.898

98.2792

1.7208

4 .HPLC analysis of scale-up experiment and transformations of product **3aa** scale-up product **3aa**

1

2

8.498

12.523

S46

Peak#	Ret. Time (min)	Height (mV*sec)	Area (mv)	Area (%)
1	4.785	7360.049	66226.086	1.4847
2	5.330	488855.438	12038578.000	98.5153

Peak#	Ret. Time (min)	Height (mV*sec)	Area (mv)	Area (%)
1	6.773	416487.031	3620665.000	98.2464
2	7.332	6923.368	64623.594	1.7536

5.NMR spectra of products 3

3aa

3ba

3da

3fa

3ga

3ha

3ia

3ja

3ka

3la

3ma

3na

3oa

S67

3ra

3sa

3ta

3ua

S75

3ad

3ae

5

