Electronic supplementary information for Strategies for organelle targeting of fluorescent probes

Jiarun Lin^{1,2}, Kylie Yang¹, and Elizabeth J. New^{1,2,3,*}

¹ School of Chemistry, The University of Sydney, NSW 2006, Australia

² The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW 2006, Australia

³ Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW 2006, Australia

* elizabeth.new@sydney.edu.au

Nucleus

Structure of	Class of	Mechanism	Cargo / Examples	Selectivity
targeting group	targeting group			
PKKKRKV, NLS	Nuclear	Signal peptide is recognised by nuclear	Fluorescent proteins, including GFP, ¹	Selective for nucleus, also used in
from SV40 T	localisation	import proteins (importins).	RFP, ² CFP . ³	commercial products
antigen	sequence (NLS)			
Histone 2B	Protein	Cargo is attached to native nucleus-targeted	Fluorescent proteins, including GFP, ⁴	Selective for nucleus, also used in
		protein.	RFP, ⁵ GFP 11. ⁶	commercial products
Hoecsht	Minor groove	Localisation of eDHFR-GFP can be altered	Genetically expressed eDHFR-GFP. ⁷	Selective for nucleus.
	binder	after subsequent binding to a Hoechst		
		labelled trimethoprim (hoeTMP).		

Table S1: Targeting groups for genetically expressed fluorescent cargo to the nucleus

Table S2: Targeting groups for exogenous fluorescent cargo to the nucleus

Structure of	Class of	Mechanism	Cargo / Examples	Selectivity
targeting group	targeting group			
Hoescht	Minor groove binder	Binds to double-stranded DNA	Small molecule fluorophores <i>e.g.</i> sulforhodamine, ⁸ various xanthenes, ⁹ rhodamine, ¹⁰ fluorescein, ¹⁰ BODIPY. ¹⁰	Selective for nucleus
(pyridin-4- yl)piperazine	Minor groove binder	Hoechst mimic. Binds to double-stranded DNA.	Coumarin. ¹¹	Selective for nucleus in red channel. Staining of LDs was seen in blue channel due to ratiometric emission of the probe.
Pyrrole polyamide	Minor groove binder	Binds to double-stranded DNA	Fluorescein. ¹²	Nucleus strongly stained; some spots outside nucleus also stained.
KKKRK (SV40 T antigen)	NLS	Signal peptide is recognised by nuclear import proteins (importins).	BODIPY. ¹³	Plasma membrane must be punctured for the molecule to reach the nucleus.
VQRKRQKLMP (NLS50)	NLS	Signal peptide is recognised by nuclear import proteins (importins).	Carboxyfluorescein, ¹⁴ naphthalimide. ¹⁵	Generally selective for nucleus.
YKQCHKKGGK KGSG	Nucleolus targeting peptide NrTP	Unknown, although clatharin mediated uptake is involved.	Carboxyfluorescein. ¹⁴	Generally selective for nucleolus.
R ₈	NLS peptide mimic	Positively charged peptides are likely to be recognized by importins.	PyTPE. ¹⁶	Generally selective for nucleus.
RRRRKR	NLS peptide mimic	Positively charged peptides are likely to be recognized by importins.	PyTPE. ¹⁷	Generally selective for nucleus.
polyethylenimine	Multivalent polyamine	Multivalent polyamines bind to and neutralise the negatively charged DNA backbone.	FITC. ¹⁸	Nuclear localisation and weak cytoplasmic localisation in digitonin permeabilised cells

Mitochondria

Class of	Mechanism	Cargo / Examples	Selectivity
targeting group			
MTS	Pre-sequence interacts with mitochondrial	Fluorescent proteins, including ECFP, EYFP. ¹⁹	Selective for mitochondria
	import receptors and is cleaved after import		
	into mitochondria.		
MTS	Pre-sequence interacts with mitochondrial	GFP. ²⁰	Selective for mitochondria
	import receptors and is cleaved after import		
	into mitochondria.		
Protein	Cargo is attached to Mff, a native	GFP. ²¹	Selective for mitochondria
	mitochondrial outer membrane protein		
	Class of argeting group VITS VITS Protein	Class of argeting group Mechanism argeting group Pre-sequence interacts with mitochondrial import receptors and is cleaved after import into mitochondria. MTS Pre-sequence interacts with mitochondrial import receptors and is cleaved after import into mitochondria. MTS Pre-sequence interacts with mitochondrial import receptors and is cleaved after import into mitochondria. Protein Cargo is attached to Mff, a native mitochondrial outer membrane protein	Class of argeting group Mechanism Cargo / Examples ATS Pre-sequence interacts with mitochondrial import receptors and is cleaved after import into mitochondria. Fluorescent proteins, including ECFP, EYFP. ¹⁹ MTS Pre-sequence interacts with mitochondrial import receptors and is cleaved after import into mitochondria. GFP. ²⁰ Pre-sequence interacts with mitochondrial import receptors and is cleaved after import into mitochondria. GFP. ²⁰ Pre-sequence interacts with mitochondrial import receptors and is cleaved after import into mitochondria. GFP. ²¹ Protein Cargo is attached to Mff, a native mitochondrial outer membrane protein GFP. ²¹

Table S3: Targeting groups for endogenous fluorescent cargo to the mitochondria

COX = cytochrome c oxidase, Mff = Mitochondrial fission factor, MTS = mitochondrial targeting sequence.

Table S4: Targeting groups for exogenous fluorescent cargo to the mitochondria

Structure of	Class of	Mechanism	Cargo / Examples	Selectivity
targeting group	targeting group			
Rhodamine	DLC	Passive diffusion and accumulation to	Rhodamine 123. ²²	Selective for mitochondria
		negatively charged mitochondrial membrane.		
Rosamine	DLC	Passive diffusion and accumulation to	MitoTracker Orange, ²³ MitoTracker Red. ^{24, 25}	Selective for mitochondria
		negatively charged mitochondrial membrane.		
Cyanine	DLC	Passive diffusion and accumulation to	MitoTracker Deep Red. ^{25, 26}	Selective for mitochondria
		negatively charged mitochondrial membrane.		
TPP	DLC	Passive diffusion and accumulation to	Small molecule fluorophores including	Selective for mitochondria
		negatively charged mitochondrial membrane.	naphthalimide, ²⁷ BODIPY, ²⁸ fluorescein, ²⁹	
			flavin, ³⁰ etc. Nanomaterials include quantum	
			dots, ³¹ nanoparticles, ³² liposomes ³³ etc.	
F16	DLC	Passive diffusion and accumulation to	BODIPY. ³⁴	Selective for mitochondria
		negatively charged mitochondrial membrane.	2	
Methyl-	DLC	Passive diffusion and accumulation to	Hexachloro-fluorescein. ³⁵	Selective for mitochondria
substituted TPP		negatively charged mitochondrial membrane.	A	
CF ₃ -substituted	DLC	Passive diffusion and accumulation to	TAMRA. ³⁶	Selective for mitochondria
TPP		negatively charged mitochondrial membrane.		
SS peptide (4 aa,	MPP	Not fully elucidated, but some variants target	$[Dmt^1, Dap(atn)^4] DALDA,$	Selective for mitochondria,
alternating		cardiolipin. Others via mechanism not	$[Dmt^{1}, Dap(dns)^{4}]DALDA;^{37}$ [aladan]SS-31. ³⁸	can penetrate inner
aromatic/cationic		involving receptor mediated endocytosis.		mitochondrial membrane.
MPP (alternating	MPP	Not fully elucidated, but it is possible to	Thiazole orange, 2-aminobenzoic acid; ³⁹	Selective for mitochondria
hydrophobic and		target different compartments of the	TAMRA. ⁴⁰	
cationic)		mitochondria.		

TPP = triphenylphosphonium, TAMRA = carboxytetramethylrhodamine, F16 = ((E)-4-(1 H-indol-3-ylvinyl)-N-methylpyridinium iodide, SS = Szeto-Schiller, MPP = mitochondrial penetrating peptide, DLC delocalised lipophilic cation.

Lysosome

Structure of Class of Mechanism Cargo / Examples Selectivity targeting group targeting group Fluorescent proteins, including GFP,⁴¹ RFP,⁴² YFP.⁴³ LAMP1 Protein Cargo is attached to a native lysosomal Generally selective for lysosomes, may be found in other digestive organelles membrane protein GFP, mCherry.^{44, 45} LAMP2 Cargo is attached to a native lysosomal Generally selective for lysosomes, may Protein be found in other digestive organelles membrane protein

Table S5: Targeting groups for endogenous fluorescent cargo to the lysosome

LAMP = Lysosome-associated membrane glycoprotein

Table S6: Targeting groups for exogenous fluorescent cargo to the lysosome

Structure of	Class of	Mechanism	Cargo / Examples	Selectivity
targeting group	targeting group			
Morpholines	Tertiary amine	Passive diffusion and protonation in acidic lumen of lysosome.	Naphthalimide (LysoSensor Green). ²⁵	Selective for acidic lysosomes.
Dimethylamine	Tertiary amine	Passive diffusion and protonation in acidic lumen of lysosome.	BODIPY (LysoTracker Red and LysoTracker Green). ²⁵	Selective for acidic lysosomes.
Diethylamine	Tertiary amine	Passive diffusion and protonation in acidic lumen of lysosome.	Rhodamine. ⁴⁶	Selective for acidic lysosomes.
DAMP	Tertiary amine	Passive diffusion and protonation in acidic lumen of lysosome.	Nonfluorescent-activity based probes that later reacted with AlexaFluor 488. ⁴⁷	Selective for acidic lysosomes.
Histamine	Tertiary amine	Passive diffusion and protonation in acidic lumen of lysosome.	BODIPY FL histamine. ²⁵	Selective for acidic lysosomes.
N-linked glycans	Glycosylation	Unknown	Rhodamine spirolactam derivatives. ^{48, 49}	Selective for lysosomes (coloc with LysoTracker)
Methylcarbitol	Neutral	Unknown	Rhodamine spirolactam, ^{50, 51} carbazole- benzimidazole, ⁵² ethanoylcarbazole and terephthalaldehyde, ⁵³ rhodamine fused with tetrahydroquinoxaline. ⁵⁴	Selective for lysosomes.
CPP + epoxysuccinyl	Cathepsin targeting	CPP improves permeability; epoxysuccinyl scaffold forms covalent bond with cysteine cathepsin.	5(6)-carboxyfluorescein, rhodamine B; ⁵⁵ , Alexa Fluor 647, Atto 565, and Atto 488; ⁵⁶ FITC, rhodamine B, photo- activatable rhodamine B derivative. ⁵⁷	Selective for lysosomes.
Albumin / dextran	Macromolecules	Macromolecules cannot diffuse in the cell and are uptaken via endocytosis.	FITC-dextran. ⁵⁸	Tracks progress of endocytosis.

DAMP = (N-(3-((2,4-dinitrophenyl)amino)propyl)-N-(3-aminopropyl)methylamine, dihydrochloride), CPP = cell penetrating peptide, FITC = fluorescein isothiocyanate

Digestive organelles

Structure of	Class of	Mechanism	Cargo / Examples	Selectivity
targeting group	targeting group			
Rab5	Protein	Cargo is attached to a native early endosome protein.	GFP, ⁵⁹ RFP. ⁶⁰	Selective for early endosomes.
Rab7	Protein	Cargo is attached to a native late endosome	GFP, ⁶¹ RFP. ⁶²	Generally selective for late
		protein.		endosomes, but also found in other
				compartments.
Rab11	Protein	Cargo is attached to a native recycling	GFP, ⁶³ EGFP. ⁶⁴	Selective for recycling endosomes.
		endosome protein.		
EEA1	Protein	Cargo is attached to a native early endosome	GFP, photoactivatable GFP. ⁶⁵	Selective for early endosomes.
		protein.		
Transferrin	Protein	Cargo is attached to a native recycling	mCherry. ⁶⁶	Selective for recycling endosomes.
receptor		endosome protein.		
Arf6	Protein	Cargo is attached to a native recycling	GFP. ⁶⁷	Selective for recycling endosomes.
		endosome protein.		

Table S7: Targeting groups for endogenous fluorescent cargo to endosome related vesicles.

Rab = Ras analog in brain, EEA = early endosome antigen, Arf = ADP-ribosylation factor.

Table S8: Targeting groups for exogenous fluorescent cargo to endosome related vesicles.

Structure of	Class of	Mechanism	Cargo / Examples	Selectivity
targeting group	targeting group			
Weakly acidic	Modified tertiary	Passive diffusion and protonation in less	Fluorescent 'flipper' probe. ⁶⁸	Variants with higher pK_a values in the
benzyl substituted	amine	acidic lumen of endosomes.		less acidic early endosomes; those
amines				with lower pK_a values in more acidic
				late endosomes
macrocyclic	Endocytosis	Bind to phosphates on the outer cell	BODIPY, fluorescein. ⁶⁹	Selective for late endosomes
di(cyclo-	related	membrane and are then internalised through		
squaramides).		the cell via receptor-mediated endocytosis		
naphthylmethyl	Tertiary amine	pH partitioning; can stain pH flux from late	BODIPY. ⁷⁰	Sensitive to flux in pH from late
piperazine		endosome to lysosome		endosomes to the lysosome
$\text{DiIC}_{16}(3)$	Lipid stain	Unknown	Silicon-rhodamine. ⁷¹	Selective for late endosomes

Table S9: Targeting groups for endogenous fluorescent cargo to autophagy related vesicles

Structure of targeting group	Class of targeting group	Mechanism	Cargo / Examples	Selectivity
WIPI1/2	Protein	Cargo is attached to an ATG protein, associated before autophagosome closes.	GFP. ⁷²	Selective for open phagophores, useful for differentiating stages of autophagy.
ATG12-ATG5- ATG16	Protein	Cargo is attached to an ATG protein, associated before autophagosome closes.	GFP, mCherry. ⁷³	Selective for phagophores
ULK1	Protein	Cargo is attached to an ATG protein, associated before autophagosome closes.	GFP. ⁷⁴	Selective for phagophores
LC3	Protein	Cargo is attached to an ATG protein, associated with most autophagy stages.	GFP, mRFP-GFP-LC3. ⁷⁵	Selective for most stages of autophagy. Note that GFP is quenched in acidic conditions
STX17	Protein	Cargo is attached to an ATG protein, associated with the closed autophagosome.	GFP, ⁷⁶ Turquoise2. ⁷⁷	Selective for autophagosomes – autolysosomes.

WIPI = WD repeat domain phosphoinositide-interacting protein 1, ATG = autophagy related protein, ULK1 = Unc-51 Like Autophagy Activating Kinase 1, LC3 = Microtubule-associated protein 1A/1B-light chain 3, STX = syntaxin

Table S10: Targeting groups for exogenous fluorescent cargo to autophagy related vesicles

Structure of	Class of	Mechanism	Cargo / Examples	Selectivity
targeting group	targeting group			
Unknown	Cationic	Unknown	Cyto-ID. ⁷⁸	Selective for autophagic
	amphiphilic tracer			compartments.
Piperazine	Amphiphilic	Unknown; alkyl chain with terminal amino	DALGreen (naphthalimide). ⁷⁹	Selective for all autophagic
	detergent	may contribute to uptake		compartments.
Aminopentyl	Amphiphilic	Unknown; alkyl chain with terminal amino	DAPGreen (naphthalimide). ⁷⁹	pH dependent; stains flux and is more
	detergent	may contribute to uptake		fluorescent in late-stage autophagy
Morpholine	Tertiary amine	Passive diffusion and protonation in acidic	Coumarin, ⁸⁰ p-methoxyphenylacetylene-	Sensitive to autophagic flux from
_		lumen of lysosomes. Fluorescence response	substituted carbazole. ⁸¹	lysosome to autolysosome.
		to pH flux after fusion with autophagosomes.		

Peroxisomes

Table S11: Targeting groups for endogenous fluorescent cargo to peroxisomes

Structure of targeting group	Class of targeting group	Mechanism	Cargo / Examples	Selectivity
PTS-1 (AKL or SKL)	Peptide	Active transport by peroxin 5.	GFP, ^{82, 83} fluorescent calcium sensor. ^{83,} ⁸⁴	Selective for peroxisomes (including use in commercial products).

PTS = peroxisome targeting signal

Table S12: Targeting groups for exogenous fluorescent cargo to peroxisomes

Structure of	Class of	Mechanism	Cargo / Examples	Selectivity
targeting group	targeting group			
PTS-1 (C- terminal AKL)	Peptide	Active transport by peroxin 5.	fluorescein, BODIPY, pH-sensor SNAFL-2, C2-BODIPY. ⁸⁵	Selective for peroxisomes

Endoplasmic reticulum

Structure of	Class of	Mechanism	Cargo / Examples	Selectivity
targeting group	targeting group			
Upstream prolactin	Signal peptide	Signal sequence targets the ER lumen whilst KDEL	GFP. ⁸⁶	Selective for
secretory sequence	and ER retention	prevents the protein moving to the Golgi apparatus		ER
and KDEL	signal			
retention sequence				
signal sequence of	Signal peptide	Uses endogenous protein targeting mechanism whilst	GFP, ⁸⁷ RFP. ⁸⁸	Selective for
calreticulin and	and ER retention	KDEL prevents the protein moving to the Golgi apparatus		ER
KDEL retention	signal			
sequence				

Table S13: Targeting groups for endogenous fluorescent cargo to the endoplasmic reticulum.

T-11. 014 T	.	M	41.
-1 and $N(4)$ -1 argen	ng graiins far evagena	lis fillorescent cargo to	The endoblasmic reficilition
0		0	

Structure of	Class of	Mechanism	Cargo / Examples	Selectivity
targeting group	targeting group			
Signal peptide	Peptide	The fluorescent peptide passively enters the cell and KDEL	BODIPY. ¹³	Selective to ER
(KDEL)		retains the protein inside the endoplasmic reticulum		
Glibenclamide	Sulfonylurea	Binding to the sulfonylurea receptor in the ER	naphthalimide-based Zn sensor, ⁸⁹ BODIPY (ER-Tracker TM Red). ²⁵	Selective to ER
methyl sulphonamide (i.e. <i>p</i> -toluene- sulfonamide, sulfanilamide)	Sulfonylamide	Analogue of sulfonylurea compounds that likely bind to the K^+ channel related proteins which are mainly located in ER	Amino-NBD conjugated to diethymamino coumarin, ⁹⁰ 1,8-naphthalimide conjugated to benzothiazoline, ⁹¹ 4-nitro-1,8- naphthamimide, ⁹² 4-azido-1,8 naphthalimide, ⁹³ 4-methylthio naphthalimide, ⁹⁴ ER-Tracker Blue-White DPX (also has PFP). ²⁵	Selective to ER
Ethylene glycol	Lipophilic chain	Thought to take advantage of tendency of lipophilic or glycosylated compounds to localise in ER.	Naphthalimide ⁹⁵	Similar structure used for other organelles
Alkyl chain linker	Lipophilic chain	Thought to take advantage of tendency of lipophilic or glycosylated compounds to localise in ER	BODIPY-coumarin, ⁹⁶ BODIPY-Nile Red ⁹⁷	Similar structure used for other organelles
Pentafluorophenyl (PFP)	Covalent bond	Reacts with thiols in ER proteins, but often used with other moieties or probe structures that may be more directing to the ER.	ER Tracker Blue White (contains sulfonamide), Nile Red derivative (+ ethylene glycol chain) ⁹⁸ fluorescent flipper (+ ethylene glycol chain) ⁹⁹ , BODIPY. ¹⁰⁰	Often used with other moieties
chlorine (propyl chloride)	Covalent bond	Chlorine is suspected to bind to the chlorine pump in the ER	Fluorene derivative, ¹⁰¹ Nile Red derivative. ⁵⁰	Selective to ER

Fluorinated hydrophobic rhodols	Fluorinated hydrophobic rhodols (inherently fluorescent)	Unknown, suggested that hydrophobic and amphipathic properties allow localisation in cholesterol-poor ER membranes	p-aminophenol; ¹⁰² electrophilic nitrofuran; ¹⁰³ coumarin-3-carboxylic acid; ¹⁰⁴ chloroalkane, sulfonylfluoride, thioester. ¹⁰⁵	Selective to ER
Fluorescent dansyl	N/A	Targeting mechanism of the dansyl group is not explained,	Nanoparticle. ¹⁰⁶	Some
group		but sulfonamide could play a role. Self-assembled NPs		mitochondrial
		were observed to localize into the ER of HeLa cervical		localisation
		cancer cells after internalisation via macropinocytosis		also observed
1-homoarginine	Membrane	Crescent shaped peptide assemblies interact with synthetic	Nanoparticle. ¹⁰⁷	Some green
	interaction	lipid membranes. As ER is the largest membranous		fluorescence in
		structure in cells, design allows ER targeting.		HeLa cell
				membrane
Ceramide	Lipid	Lipid inserts into the membrane of the ER (and Golgi)	Trans-cyclooctene (to undergo tetrazine click	Also targets
	_		reaction with silicon rhodamine). ¹⁰⁸	the Golgi

Golgi apparatus

Structure of	Class of targeting	Mechanism	Cargo / Examples	Selectivity
targeting group	group			
N-acetylgalactos- aminyltransferase	Protein	Cargo is attached to a native Golgi enzyme.	GFP, ¹⁰⁹ RFP. ¹¹⁰	Selective for Golgi (used in commercial stains).
B4GALT1	Protein	Cargo is attached to a native Golgi enzyme.	GFP. ¹⁹	Selective for Golgi
SXYQRL	Peptide	Cargo is attached to sequence from native Golgi protein TGN38.	Glycophorin A (confirmed via immunofluorescence)	Selective for Golgi; note that cargo and TGN38 are both integral membrane proteins.

Table S15: Targeting groups for endogenous fluorescent cargo to Golgi apparatus

B4GALT1 = Beta-1,4-Galactosyltransferase 1; TGN38 = trans-Golgi network integral membrane protein 38.

Table S16 [.]	Targeting	groups for	r exogenous	fluorescent	cargo to	Golgi apparatus
14010 010.	1 un gournig	Sloups to	e chogenous	ind of escent	0415010	Solgi uppulutus

Structure of	Class of	Mechanism	Cargo / Examples	Selectivity
targeting group	targeting group			
Ceramide /	Lipid	Stains the Golgi apparatus of fixed and live cells, most	BODIPY, ¹¹¹ 4-nitrobenzo-2-	Generally selective staining of Golgi
sphingosine		likely through interaction(s) with endogenous lipids and	oxa-1,3-diazole, ¹¹² silicon-	apparatus, though some labeling of
		cholesterol. Fluorescence emission maxima strongly	rhodamine, ¹¹³ rhodamine	other intracellular membranes may
		dependent upon the molar density of the probes in the	$B.^{114}$	also occur.
		membrane. (Primary part of sphingolipids that		
		composes the skeleton targeting motif.)		
SDYQRL	Trans golgi	The sequence SXYQRL is a retention signal for proteins	BODIPY. ¹³	Selective staining of Golgi
	network	residing in the trans-Golgi network		
	localising peptide			
Indomethacin	Drug	Indomethacin binds to COX-2 which is overexpressed in	acenaphtho[1,2-	Selective staining of Golgi in cancer
		cancer cell lines and accumulates significantly in the	b]quinoxaline. ¹¹⁵	cell lines but no staining was observed
		Golgi apparatus.		in COS-7 cells and HEK 293 cells
L-Cysteine	Amino acid	Mimicking cysteine residues in Golgi apparatus	Fluorescein, meso-tetra(4-	Selective staining of Golgi.
		localized galactosyltransferase and protein kinase D;	carboxyphenyl)porphine,	
		while the mechanism has not been fully elucidated, the	silica nanoparticles,	
		authors noted the necessity of free thiol groups for	quantum dots; ¹¹⁶	
		targeting and suggested they may bind to the sulfhydryl	Near infra-red	
		receptor site via formation of disulphide bonds.	hemicyanine. ¹¹⁷	

COX-2 = Cyclooxygenase-2, COS-7 = CV-1 (simian) in origin and carrying SV40 genetic material cell line, HEK 293 = human embryonic kidney 293

Lipid droplets

Table S17: Targeting groups for endogenous fluorescent cargo to lipid droplets

Structure of targeting	Class of targeting group	Mechanism	Cargo / Examples	Selectivity
group				
Perilipin-3	Protein	Cargo is attached to a LD membrane protein.	GFP. ¹¹⁸	Selective for LD membrane only.

Table S18: Targeting groups for exogenous fluorescent cargo to lipid droplets

Structure of	Class of targeting	Mechanism	Cargo / Examples	Selectivity
targeting	group			
group				
N/A	Highly conjugated	Solvatochromic shift and/or fluorogenic turn	Nile Red, ¹¹⁹ BODIPY 493/503. ¹²⁰	May also stain intracellular and
	lipophilic structures	on in non-polar hydrophobic environments		plasma membranes.
		compared to aqueous environments.		
Cyclohexyl	Alkyl rings	Improves affinity for LD core compared to	Merocyanine, ¹²¹ Nile Red. ⁹⁸	Selective staining for LD core.
rings		the membrane.		

Plasma membrane

Structure of	Class of	Mechanism	Cargo / Examples	Selectivity
targeting group	targeting group			
myristolyation/	Palmitoylation	Palmitoylation is a common post-translational	GFP, ^{122, 123} RFP. ¹²⁴	Selective to plasma
palmitoylation	sequence	modification used to attach fluorescent proteins to the		membrane.
sequence from Lck		plasma membrane.		
tyrosine kinase				
palmitoylation	Palmitoylation	Palmitoylation is a common post-translational	GFP. ¹²⁵	Selective to plasma
sequence from	sequence	modification used to attach fluorescent proteins to the		membrane.
GAP43		plasma membrane.		

Table S19: Targeting groups for endogenous fluorescent cargo to the plasma membrane

GAP43 = Growth Associated Protein 43

Table S20: Targeting groups for exogenous fluorescent cargo to the plasma membrane

Structure of	Class of	Mechanism	Cargo / Examples	Selectivity
targeting group	targeting group			
Long hydrocarbon	Membrane lipid	Can insert into plasma membrane due to similarity in	Laurdan, ¹²⁶ Prodan, ¹²⁷ Dil. ¹²⁸	Selective to plasma
tail and polar heads	mimic	structure to existing phospholipids.		membrane.
Cholesterol	Membrane lipid	Fluorescent analogue of membrane lipids will have	Chloestatrienol. ¹²⁹	May be incorporated into
	mimic	similar activity to the unmodified lipid		other compartments.
methotrexate	Ligand-directed	Small molecule ligand (methotrexate) can bind to	Fluorescein. ¹³⁰	Selective to plasma
		plasma membrane protein (folate).		membrane.
carbetocin	Ligand-directed	Small molecule ligand (carbotoxin) can bind to	Nile Red. ¹³¹	Selective to plasma
		plasma membrane protein (oxytocin).		membrane.
aptamer sgc8 and	DNA activatable	DNA aptamer (sgc8) can interact with membrane	6-carboxyfluorescein, Cy5. ¹³²	Selective to plasma
optimised forms	aptamer	protein (tyrosine kinase-7)		membrane.
DPA-Zn	Phospholipid	DPA-Zn will selectively bind externalised	Coumarin. ¹³³	Selectively stains
	binder	phosphatidylserine via intramolecular indicator		membrane during
		displacement.		apoptosis only.

DPA-Zn = bis(zinc-dipicolylamine).

Cytoskeleton

Structure of	Class of	Mechanism	Cargo / Examples	Selectivity
targeting group	targeting group			
α-tubulin	Protein	Labelled protein monomers are incorporated into microtubules	GFP1. ¹³⁴	Selective for α -tubulin
β-tubulin	Protein	Labelled protein monomers are incorporated into microtubules	GFP 11, ¹³⁵ GFP, ¹³⁶ RFP. ¹³⁷	Selective for β-tubulin
Talin	Protein	Protein associated with focal adhesions	GFP, ¹³⁶ RFP ¹³⁸	Selective for talin
phospho-deficient version of the microtubule-binding domain of Tau (mTMBD)	Cytoskeletal binding protein	Protein binds to microtubules	mCherry. ¹³⁹	Selective for microtubules
β-actin	Cytoskeletal protein	Labelled protein monomers are incorporated into actin fibres	GFP, ^{140, 141} RFP. ¹⁴²	Selective for actin

Table S21: Targeting groups for endogenous fluorescent cargo to the cytoskeleton

Table S22: Targeting groups for exogenous fluorescent cargo to the cytoskeleton

Structure of	Class of targeting	Mechanism	Cargo / Examples	Selectivity
targeting group	group			
jasplakinolide	F-Actin-binding	Jasplakinolide binds to and stabilises actin dimers	Silicon-rhodamine, ¹⁴³ rhodamine	For SiR, selective in 5/10
	ligand		derivative (MaP55). ¹⁴⁴	cell lines from 5 organisms
				and 4/10 showed improved
				staining after verapamil
				addition. For MaP55,
				selective in U2OS cells.
docetaxel	Tubulin binding	docetaxel binds to a hydrophobic pocket on β -	Silicon-rhodamine, ¹⁴³ rhodamine	Generally selective for
	ligand	tubulin	derivative (MaP55), ¹⁴⁴ Tubulin	tubulin.
			Tracker Deep Red. ²⁵	
paclitaxel / taxol	Tubulin binding	Targets tubulin	Oregon Green 488, BODIPY 564/570,	Generally selective for
	ligand		Tubulin Tracker Green. ²⁵	actin.
phalloidin	F-Actin-binding	Phalloidin binds specifically at the interface between	TRITC. ¹⁴⁵	Generally selective for
	ligand	F-actin subunits, locking adjacent subunits together		actin.

Cytosol

Table S23: Targeting groups for endogenous fluorescent cargo to the cytosol

Structure of targeting	Class of	Mechanism	Cargo / Examples	Selectivity
group	targeting			
	group			
SELQNKLEELDLDSYK	Nuclear export	NES is appended onto proteins for export through	mScarlet. ¹⁴⁶	Allows cytosolic
	sequence	the NPC, thus preventing passive diffusion of small		retention, prevents
	(NES)	FPs.		nuclear uptake.

References

- 1. *CellLight™ Nucleus-GFP, BacMam 2.0*, C10602, Thermo Fisher Scientific, <u>https://www.thermofisher.com/order/catalog/product/C10602#/C10602</u>, (accessed June 12, 2021).
- 2. *CellLight™ Nucleus-RFP, BacMam 2.0*, C10603, Thermo Fisher Scientific, <u>https://www.thermofisher.com/order/catalog/product/C10603#/C10603</u>, (accessed June 12, 2021).
- 3. *CellLight™ Nucleus-CFP, BacMam 2.0*, C10616, Thermo Fisher Scientific, <u>https://www.thermofisher.com/order/catalog/product/C10616#/C10616</u>, (accessed June 12, 2021).
- 4. *CellLight™ Histone 2B-GFP, BacMam 2.0*, C10594, Thermo Fisher Scientific, <u>https://www.thermofisher.com/order/catalog/product/C10594#/C10594</u>, (accessed June 12, 2021).
- 5. *CellLight™ Histone 2B-RFP, BacMam 2.0*, C10595, Thermo Fisher Scientific, <u>https://www.thermofisher.com/order/catalog/product/C10595#/C10595</u>, (accessed June 12, 2021).
- 6. D. Kamiyama, S. Sekine, B. Barsi-Rhyne, J. Hu, B. Chen, L. A. Gilbert, H. Ishikawa, M. D. Leonetti, W. F. Marshall, J. S. Weissman and B. Huang, *Nature Communications*, 2016, **7**, 11046.
- 7. M. Ishida, H. Watanabe, K. Takigawa, Y. Kurishita, C. Oki, A. Nakamura, I. Hamachi and S. Tsukiji, *Journal of the American Chemical Society*, 2013, **135**, 12684-12689.
- 8. X. Zhang, Z. Ye, X. Zhang, H. Man, Z. Huang, N. Li and Y. Xiao, *Chemical Communications*, 2019, 55, 1951-1954.
- 9. J. Bucevicius, J. Keller-Findeisen, T. Gilat, S. W. Hell and G. Lukinavicius, *Chemical Science*, 2019, **10**, 1962-1970.
- 10. A. Nakamura, K. Takigawa, Y. Kurishita, K. Kuwata, M. Ishida, Y. Shimoda, I. Hamachi and S. Tsukiji, *Chemical Communications*, 2014, **50**, 6149-6152.
- 11. K. N. Wang, L. Y. Liu, D. Mao, S. Xu, C. P. Tan, Q. Cao, Z. W. Mao and B. Liu, Angew. Chem., 2021, DOI: 10.1002/anie.202104163.
- 12. M. Ikeda, H. Nakagawa, S. Ban, H. Tsumoto, T. Suzuki and N. Miyata, Free Radical Biol. Med., 2010, 49, 1792-1797.
- 13. E. H. Pap, T. B. Dansen, R. van Summeren and K. W. Wirtz, *Exp. Cell Res.*, 2001, **265**, 288-293.
- 14. A. Gronewold, M. Horn and I. Neundorf, *Beilstein Journal of Organic Chemistry*, 2018, 14, 1378-1388.
- 15. Y. Wen, K. Liu, H. Yang, Y. Li, H. Lan, Y. Liu, X. Zhang and T. Yi, Analytical Chemistry, 2014, 86, 9970-9976.
- 16. Y. Cheng, C. Sun, R. Liu, J. Yang, J. Dai, T. Zhai, X. Lou and F. Xia, Angew. Chem., 2019, 58, 5049-5053.
- 17. Y. Cheng, C. Sun, X. Ou, B. Liu, X. Lou and F. Xia, *Chemical Science*, 2017, **8**, 4571-4578.
- 18. M. Saito and H. Saitoh, *Biosci., Biotechnol., Biochem.*, 2012, **76**, 1777-1780.
- 19. J. Llopis, J. M. McCaffery, A. Miyawaki, M. G. Farquhar and R. Y. Tsien, *Proceedings of the National Academy of Sciences*, 1998, 95, 6803.
- 20. R. Rizzuto, M. Brini, P. Pizzo, M. Murgia and T. Pozzan, Curr. Biol., 1995, 5, 635-642.
- 21. J. R. Friedman, L. L. Lackner, M. West, J. R. DiBenedetto, J. Nunnari and G. K. Voeltz, Science, 2011, 334, 358.
- 22. A. Baracca, G. Sgarbi, G. Solaini and G. Lenaz, Biochimica et Biophysica Acta (BBA) Bioenergetics, 2003, 1606, 137-146.
- 23. L. Scorrano, V. Petronilli, R. Colonna, F. Di Lisa and P. Bernardi, *Journal of Biological Chemistry*, 1999, 274, 24657-24663.
- 24. T. Minamikawa, A. Sriratana, D. A. Williams, D. N. Bowser, J. S. Hill and P. Nagley, Journal of Cell Science, 1999, 112, 2419-2430.
- 25. The Molecular Probes® Handbook, Life Technologies, 11 edn., 2010.
- 26. J. Zielonka, J. Joseph, A. Sikora, M. Hardy, O. Ouari, J. Vasquez-Vivar, G. Cheng, M. Lopez and B. Kalyanaraman, *Chemical Reviews*, 2017, **117**, 10043-10120.
- 27. Y. L. Pak, J. Li, K. C. Ko, G. Kim, J. Y. Lee and J. Yoon, Analytical Chemistry, 2016, 88, 5476-5481.

- 28. J. Miao, Y. Huo, Q. Liu, Z. Li, H. Shi, Y. Shi and W. Guo, *Biomaterials*, 2016, 107, 33-43.
- 29. S. S. Denisov, E. A. Kotova, E. Y. Plotnikov, A. A. Tikhonov, D. B. Zorov, G. A. Korshunova and Y. N. Antonenko, *Chemical Communications*, 2014, **50**, 15366-15369.
- 30. A. Kaur, K. W. L. Brigden, T. F. Cashman, S. T. Fraser and E. J. New, Organic & Biomolecular Chemistry, 2015, 13, 6686-6689.
- 31. F. Du, Y. Min, F. Zeng, C. Yu and S. Wu, *Small*, 2014, **10**, 964-972.
- 32. S. Marrache and S. Dhar, *Proceedings of the National Academy of Sciences*, 2012, **109**, 16288-16293.
- 33. G. G. M. D'Souza, S.-M. Cheng, S. V. Boddapati, R. W. Horobin and V. Weissig, J. Drug Targeting, 2008, 16, 578-585.
- 34. H. He, D.-W. Li, L.-Y. Yang, L. Fu, X.-J. Zhu, W.-K. Wong, F.-L. Jiang and Y. Liu, Scientific Reports, 2015, 5, 13543.
- 35. Z. Hu, Y. Sim, O. L. Kon, W. H. Ng, A. J. Ribeiro, M. J. Ramos, P. A. Fernandes, R. Ganguly, B. Xing, F. Garcia and E. K. Yeow, *Bioconjugate Chem.*, 2017, 28, 590-599.
- 36. C. A. Kulkarni, B. D. Fink, B. E. Gibbs, P. R. Chheda, M. Wu, W. I. Sivitz and R. J. Kerns, J. Med. Chem., 2021, 64, 662-676.
- 37. I. Berezowska, N. N. Chung, C. Lemieux, B. Zelent, H. H. Szeto and P. W. Schiller, *Peptides*, 2003, 24, 1195-1200.
- 38. A. V. Birk, S. Liu, Y. Soong, W. Mills, P. Singh, J. D. Warren, S. V. Seshan, J. D. Pardee and H. H. Szeto, J. Am. Soc. Nephrol., 2013, 24, 1250-1261.
- 39. K. L. Horton, K. M. Stewart, S. B. Fonseca, Q. Guo and S. O. Kelley, Chemistry & Biology, 2008, 15, 375-382.
- 40. T. Zhao, X. Liu, S. Singh, X. Liu, Y. Zhang, J. Sawada, M. Komatsu and K. D. Belfield, *Bioconjugate Chem.*, 2019, 30, 2312-2316.
- 41. *CellLight™ Lysosomes-GFP, BacMam 2.0*, C10596, Thermo Fisher Scientific, <u>https://www.thermofisher.com/order/catalog/product/C10596#/C10596</u>, (accessed June 12, 2021).
- 42. *CellLight™ Lysosomes-RFP, BacMam 2.0*, C10597, Thermo Fisher Scientific, <u>https://www.thermofisher.com/order/catalog/product/C10597#/C10597</u>, (accessed June 12, 2021).
- 43. N. M. Sherer, M. J. Lehmann, L. F. Jimenez-Soto, A. Ingmundson, S. M. Horner, G. Cicchetti, P. G. Allen, M. Pypaert, J. M. Cunningham and W. Mothes, *Traffic*, 2003, **4**, 785-801.
- 44. A. L. Ambrosio, J. A. Boyle and S. M. Di Pietro, *Blood*, 2012, **120**, 4072-4081.
- 45. Z. D'Souza, J. B. Blackburn, T. Kudlyk, I. D. Pokrovskaya and V. V. Lupashin, Frontiers in Cell and Developmental Biology, 2019, 7.
- 46. H. S. Lv, S. Y. Huang, B. X. Zhao and J. Y. Miao, Anal. Chim. Acta, 2013, 788, 177-182.
- 47. S. D. Wiedner, L. N. Anderson, N. C. Sadler, W. B. Chrisler, V. K. Kodali, R. D. Smith and A. T. Wright, Angew. Chem., 2014, 53, 2919-2922.
- 48. N. B. Yapici, Y. Bi, P. Li, X. Chen, X. Yan, S. R. Mandalapu, M. Faucett, S. Jockusch, J. Ju, K. M. Gibson, W. J. Pavan and L. Bi, *Scientific Reports*, 2015, **5**, e8576.
- 49. X. Chen, Y. Bi, T. Wang, P. Li, X. Yan, S. Hou, C. E. Bammert, J. Ju, K. M. Gibson, W. J. Pavan and L. Bi, Scientific Reports, 2015, 5, 9004.
- 50. H. Zhu, J. Fan, Q. Xu, H. Li, J. Wang, P. Gao and X. Peng, *Chemical Communications*, 2012, 48, 11766-11768.
- 51. X. Wang, L. Fan, Y. Wang, C. Zhang, W. Liang, S. Shuang and C. Dong, Journal of Materials Chemistry B, 2020, 8, 1466-1471.
- 52. J. Ge, L. Fan, K. Zhang, T. Ou, Y. Li, C. Zhang, C. Dong, S. Shuang and M. S. Wong, Sensors and Actuators B: Chemical, 2018, 262, 913-921.
- 53. X.-d. Wang, L. Fan, J.-y. Ge, F. Li, C.-h. Zhang, J.-j. Wang, S.-m. Shuang and C. Dong, *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 2019, **221**, 117175.
- 54. Q. Xia, S. Feng, J. Hong and G. Feng, *Talanta*, 2021, **228**, 122184.
- 55. F. Fan, S. Nie, D. Yang, M. Luo, H. Shi and Y. H. Zhang, *Bioconjugate Chem.*, 2012, 23, 1309-1317.
- 56. Y. Han, M. Li, F. Qiu, M. Zhang and Y. H. Zhang, *Nature Communications*, 2017, 8, 1307.
- 57. D. Pan, Z. Hu, F. Qiu, Z. L. Huang, Y. Ma, Y. Wang, L. Qin, Z. Zhang, S. Zeng and Y. H. Zhang, *Nature Communications*, 2014, 5, 5573.

- 58. W. I. Lencer, P. Weyer, A. S. Verkman, D. A. Ausiello and D. Brown, Am. J. Physiol., 1990, 258, C309-317.
- 59. *CellLight*[™]*Early Endosomes-GFP, BacMam* 2.0, C10586, Thermo Fisher Scientific,_ <u>https://www.thermofisher.com/order/catalog/product/C10586#/C10586</u>, (accessed June 12, 2021).
- 60. *CellLight™ Early Endosomes-RFP, BacMam 2.0*, C10587, Thermo Fisher Scientific,_ <u>https://www.thermofisher.com/order/catalog/product/C10587#/C10587</u>, (accessed June 12, 2021).
- 61. *CellLight*[™]*Late Endosomes-GFP, BacMam* 2.0, C10588, Thermo Fisher Scientific,_ <u>https://www.thermofisher.com/order/catalog/product/C10588#/C10588</u>, (accessed June 12, 2021).
- 62. *CellLight*[™]*Late Endosomes-RFP, BacMam* 2.0, C10589, Thermo Fisher Scientific,_ <u>https://www.thermofisher.com/order/catalog/product/C10589#/C10589</u>, (accessed June 12, 2021).
- 63. D. Sheff, L. Pelletier, C. B. O'Connell, G. Warren and I. Mellman *Journal of Cell Biology*, 2002, **156**, 797-804.
- 64. A. Choudhury, M. Dominguez, V. Puri, D. K. Sharma, K. Narita, C. L. Wheatley, D. L. Marks and R. E. Pagano, *The Journal of Clinical Investigation*, 2002, **109**, 1541-1550.
- 65. T. Bergeland, L. Haugen, O. J. B. Landsverk, H. Stenmark and O. Bakke, *EMBO reports*, 2008, 9, 171-178.
- 66. A. Burtey, M. Wagner, E. Hodneland, K. O. Skaftnesmo, J. Schoelermann, I. R. Mondragon, H. Espedal, A. Golebiewska, S. P. Niclou, R. Bjerkvig, T. Kögel and H.-H. Gerdes, *The FASEB Journal*, 2015, **29**, 4695-4712.
- 67. G. Montagnac, H. de Forges, E. Smythe, C. Gueudry, M. Romao, J. Salamero and P. Chavrier, Curr. Biol., 2011, 21, 574-579.
- 68. F. Piazzolla, V. Mercier, L. Assies, N. Sakai, A. Roux and S. Matile, Angew. Chem., 2021, 60, 12258-12263.
- 69. A. Sampedro, R. Villalonga-Planells, M. Vega, G. Ramis, S. Fernandez de Mattos, P. Villalonga, A. Costa and C. Rotger, *Bioconjugate Chem.*, 2014, **25**, 1537-1546.
- 70. F. Miao, S. Uchinomiya, Y. Ni, Y. T. Chang and J. Wu, *ChemPlusChem*, 2016, **81**, 1209-1215.
- 71. A. Gupta, F. Rivera-Molina, Z. Xi, D. Toomre and A. Schepartz, Nature Chemical Biology, 2020, 16, 408-414.
- 72. E. Itakura and N. Mizushima, *Autophagy*, 2010, **6**, 764-776.
- 73. R. Le Bars, J. Marion, R. Le Borgne, B. Satiat-Jeunemaitre and M. W. Bianchi, *Nature Communications*, 2014, **5**, 4121.
- 74. A. S. Löffler, S. Alers, A. M. Dieterle, H. Keppeler, M. Franz-Wachtel, M. Kundu, D. G. Campbell, S. Wesselborg, D. R. Alessi and B. Stork, *Autophagy*, 2011, **7**, 696-706.
- 75. S. Kimura, T. Noda and T. Yoshimori, Autophagy, 2007, 3, 452-460.
- 76. E. Itakura, C. Kishi-Itakura and N. Mizushima, *Cell*, 2012, **151**, 1256-1269.
- 77. K. Tsuboyama, I. Koyama-Honda, Y. Sakamaki, M. Koike, H. Morishita and N. Mizushima, *Science*, 2016, **354**, 1036-1041.
- 78. S. Guo, Y. Liang, S. F. Murphy, A. Huang, H. Shen, D. F. Kelly, P. Sobrado and Z. Sheng, Autophagy, 2015, 11, 560-572.
- 79. H. Iwashita, H. T. Sakurai, N. Nagahora, M. Ishiyama, K. Shioji, K. Sasamoto, K. Okuma, S. Shimizu and Y. Ueno, FEBS Letters, 2018, 592, 559-567.
- 80. J. Jiang, X. Tian, C. Xu, S. Wang, Y. Feng, M. Chen, H. Yu, M. Zhu and X. Meng, *Chemical Communications*, 2017, 53, 3645-3648.
- 81. P. Ning, L. Hou, Y. Feng, G. Xu, Y. Bai, H. Yu and X. Meng, *Chemical Communications*, 2019, 55, 1782-1785.
- 82. *CellLight™ Peroxisome-GFP, BacMam 2.0*, C10604, Thermo Fisher Scientific, <u>https://www.thermofisher.com/order/catalog/product/C10604#/C10604</u>, (accessed June 12, 2021).
- 83. T. Yano, M. Oku, N. Akeyama, A. Itoyama, H. Yurimoto, S. Kuge, Y. Fujiki and Y. Sakai, Mol. Cell. Biol., 2010, 30, 3758-3766.
- 84. I. Drago, M. Giacomello, P. Pizzo and T. Pozzan, Journal of Biological Chemistry, 2008, 283, 14384-14390.
- 85. T. B. Dansen, E. H. W. Pap, R. J. Wanders and K. W. Wirtz, *The Histochemical Journal*, 2001, **33**, 65-69.

- 86. M. J. Dayel, E. F. Y. Hom and A. S. Verkman, *Biophysical Journal*, 1999, **76**, 2843-2851.
- 87. *CellLight*TM*ER-GFP*, *BacMam* 2.0, C10590, Thermo Fisher Scientific, <u>https://www.thermofisher.com/order/catalog/product/C10590#/C10590</u>, (accessed June 12, 2021).
- 88. *CellLight™ ER-RFP, BacMam 2.0*, C10590, Thermo Fisher Scientific, <u>https://www.thermofisher.com/order/catalog/product/C10591#/C10591</u>, (accessed June 12, 2021).
- 89. L. Fang, G. Trigiante, R. Crespo-Otero, C. S. Hawes, M. P. Philpott, C. R. Jones and M. Watkinson, *Chemical Science*, 2019, 10, 10881-10887.
- 90. H. Zhang, J. Chen, H. Xiong, Y. Zhang, W. Chen, J. Sheng and X. Song, Org Biomol Chem, 2019, 17, 1436-1441.
- 91. H. Xiao, X. Liu, C. Wu, Y. Wu, P. Li, X. Guo and B. Tang, *Biosens Bioelectron*, 2017, 91, 449-455.
- 92. A. Xu, Y. Tang and W. Lin, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 204, 770-776.
- 93. Y. Tang, A. Xu, Y. Ma, G. Xu, S. Gao and W. Lin, Scientific Reports, 2017, 7, 12944.
- 94. W. Song, B. Dong, Y. Lu, X. Kong, A. H. Mehmood and W. Lin, New J. Chem., 2019, 43, 12103-12108.
- 95. Y. H. Lee, N. Park, Y. B. Park, Y. J. Hwang, C. Kang and J. S. Kim, *Chemical Communications*, 2014, 50, 3197-3200.
- 96. H. Lee, Z. Yang, Y. Wi, T. W. Kim, P. Verwilst, Y. H. Lee, G.-i. Han, C. Kang and J. S. Kim, *Bioconjugate Chem.*, 2015, 26, 2474-2480.
- 97. Z. Yang, Y. He, J. H. Lee, W.-S. Chae, W. X. Ren, J. H. Lee, C. Kang and J. S. Kim, *Chemical Communications*, 2014, 50, 11672-11675.
- 98. D. I. Danylchuk, P. H. Jouard and A. S. Klymchenko, *Journal of the American Chemical Society*, 2021, 143, 912-924.
- 99. A. Goujon, A. Colom, K. Straková, V. Mercier, D. Mahecic, S. Manley, N. Sakai, A. Roux and S. Matile, *Journal of the American Chemical Society*, 2019, **141**, 3380-3384.
- 100. A. R. Sekhar, B. Mallik, V. Kumar and J. Sankar, Organic & Biomolecular Chemistry, 2019, 17, 3732-3736.
- 101. H. Zhang, J. Fan, H. Dong, S. Zhang, W. Xu, J. Wang, P. Gao and X. Peng, Journal of Materials Chemistry B, 2013, 1, 5450-5455.
- 102. K. E. Knewtson, D. Rane and B. R. Peterson, ACS Chem. Biol., 2018, 13, 2595-2602.
- 103. J. M. Meinig, L. Fu and B. R. Peterson, Angew. Chem., 2015, 54, 9696-9699.
- 104. Y. Zhao, H. Li, Z. Chai, W. Shi, X. Li and H. Ma, Chemical Communications, 2020, 56, 6344-6347.
- 105. A. Fujisawa, T. Tamura, Y. Yasueda, K. Kuwata and I. Hamachi, Journal of the American Chemical Society, 2018, 140, 17060-17070.
- 106. C. Ghosh, A. Nandi and S. Basu, Nanoscale, 2019, 11, 3326-3335.
- 107. Z. Feng, H. Wang, S. Wang, Q. Zhang, X. Zhang, A. A. Rodal and B. Xu, Journal of the American Chemical Society, 2018, 140, 9566-9573.
- 108. A. D. Thompson, J. Bewersdorf, D. Toomre and A. Schepartz, *Biochemistry*, 2017, 56, 5194-5201.
- 109. *CellLight™ Golgi-GFP, BacMam 2.0*, C10592, Thermo Fisher Scientific, <u>https://www.thermofisher.com/order/catalog/product/C10592#/C10592</u>, (accessed June 12, 2021).
- 110. *CellLight™ Golgi-RFP, BacMam* 2.0, C10593, Thermo Fisher Scientific, <u>https://www.thermofisher.com/order/catalog/product/C10593#/C10593</u>, (accessed June 12, 2021).
- 111. R. E. Pagano, O. C. Martin, H. C. Kang and R. P. Haugland, Journal of Cell Biology, 1991, 113, 1267-1279.
- 112. N. G. Lipsky and R. E. Pagano, Proceedings of the National Academy of Sciences, 1983, 80, 2608-2612.
- 113. R. S. Erdmann, H. Takakura, A. D. Thompson, F. Rivera-Molina, E. S. Allgeyer, J. Bewersdorf, D. Toomre and A. Schepartz, *Angewandte Chemie* (*International ed. in English*), 2014, **53**, 10242-10246.
- 114. L. Fan, X. Wang, J. Ge, F. Li, C. Zhang, B. Lin, S. Shuang and C. Dong, *Chemical Communications*, 2019, 55, 6685-6688.
- 115. H. Zhang, J. Fan, J. Wang, S. Zhang, B. Dou and X. Peng, *Journal of the American Chemical Society*, 2013, **135**, 11663-11669.
- 116. R. S. Li, P. F. Gao, H. Z. Zhang, L. L. Zheng, C. M. Li, J. Wang, Y. F. Li, F. Liu, N. Li and C. Z. Huang, *Chemical Science*, 2017, 8, 6829-6835.

- 117. P. Li, X. Guo, X. Bai, X. Wang, Q. Ding, W. Zhang, W. Zhang and B. Tang, Analytical Chemistry, 2019, 91, 3382-3388.
- 118. S. Miura, J.-W. Gan, J. Brzostowski, M. J. Parisi, C. J. Schultz, C. Londos, B. Oliver and A. R. Kimmel, *Journal of Biological Chemistry*, 2002, 277, 32253-32257.
- 119. P. Greenspan, E. P. Mayer and S. D. Fowler, *The Journal of cell biology*, 1985, **100**, 965-973.
- 120. P. M. Gocze and D. A. Freeman, *Cytometry*, 1994, **17**, 151-158.
- 121. M. Collot, T. K. Fam, P. Ashokkumar, O. Faklaris, T. Galli, L. Danglot and A. S. Klymchenko, *Journal of the American Chemical Society*, 2018, **140**, 5401-5411.
- 122. *CellLight*[™]*Plasma Membrane-GFP, BacMam* 2.0, C10607, Thermo Fisher Scientific,_ <u>https://www.thermofisher.com/order/catalog/product/C10607#/C10607</u>, (accessed June 12, 2021).
- 123. A. M. Benediktsson, S. J. Schachtele, S. H. Green and M. E. Dailey, J. Neurosci. Methods, 2005, 141, 41-53.
- 124. *CellLight*[™]*Plasma Membrane-RFP, BacMam* 2.0, C10608, Thermo Fisher Scientific,_ <u>https://www.thermofisher.com/order/catalog/product/C10608#/C10608</u>, (accessed June 12, 2021).
- 125. T. Matsuda and C. L. Cepko, Proceedings of the National Academy of Sciences, 2007, 104, 1027-1032.
- 126. T. Parasassi, M. Di Stefano, M. Loiero, G. Ravagnan and E. Gratton, *Biophysical Journal*, 1994, 66, 763-768.
- 127. E. K. Krasnowska, E. Gratton and T. Parasassi, *Biophysical Journal*, 1998, 74, 1984-1993.
- 128. C. S. von Bartheld, D. E. Cunningham and E. W. Rubel, Journal of Histochemistry and Cytochemistry, 1990, 38, 725-733.
- 129. R. T. Fischer, F. A. Stephenson, A. Shafiee and F. Schroeder, *Chemistry and Physics of Lipids*, 1984, 36, 1-14.
- 130. S. H. Fujishima, R. Yasui, T. Miki, A. Ojida and I. Hamachi, *Journal of the American Chemical Society*, 2012, **134**, 3961-3964.
- 131. I. A. Karpenko, R. Kreder, C. Valencia, P. Villa, C. Mendre, B. Mouillac, Y. Mely, M. Hibert, D. Bonnet and A. S. Klymchenko, *ChemBioChem*, 2014, 15, 359-363.
- 132. H. Shi, X. He, K. Wang, X. Wu, X. Ye, Q. Guo, W. Tan, Z. Qing, X. Yang and B. Zhou, *Proceedings of the National Academy of Sciences*, 2011, **108**, 3900-3905.
- 133. V. E. Zwicker, B. L. Oliveira, J. H. Yeo, S. T. Fraser, G. J. L. Bernardes, E. J. New and K. A. Jolliffe, Angew. Chem., 2019, 58, 3087-3091.
- 134. M. Kimble, C. Kuzmiak, K. N. McGovern and E. L. de Hostos, Cell Motil., 2000, 47, 48-62.
- 135. D. Kamiyama, S. Sekine, B. Barsi-Rhyne, J. Hu, B. Chen, L. A. Gilbert, H. Ishikawa, M. D. Leonetti, W. F. Marshall, J. S. Weissman and B. Huang, *Nature Communications*, 2016, **7**, 11046.
- 136. *CellLight™ Tubulin-GFP, BacMam 2.0*, C10509, Thermo Fisher Scientific, <u>https://www.thermofisher.com/order/catalog/product/C10509#/C10509</u>, (accessed June 12, 2021).
- 137. *CellLight™ Tubulin-RFP, BacMam 2.0*, C10503, Thermo Fisher Scientific, <u>https://www.thermofisher.com/order/catalog/product/C10503#/C10503</u>, (accessed June 12, 2021).
- 138. *CellLight™ Talin-RFP, BacMam 2.0*, C10612, Thermo Fisher Scientific, <u>https://www.thermofisher.com/order/catalog/product/C10612#/C10612</u>, (accessed June 12, 2021).
- 139. P. Mooney, T. Sulerud, J. F. Pelletier, M. R. Dilsaver, M. Tomschik, C. Geisler and J. C. Gatlin, Cytoskeleton, 2017, 74, 221-232.
- 140. L. Hodgson, W. Qiu, C. Dong and A. J. Henderson, *Biotechnol. Progr.*, 2000, 16, 1106-1114.
- 141. *CellLight™ Actin-GFP, BacMam 2.0*, C10506, Thermo Fisher Scientific, <u>https://www.thermofisher.com/order/catalog/product/C10506#/C10506</u>, (accessed June 12, 2021).

- 142. *CellLight*[™]*Actin-RFP*, *BacMam* 2.0, C10502, Thermo Fisher Scientific, <u>https://www.thermofisher.com/order/catalog/product/C10502#/C10502</u>, (accessed June 12, 2021).
- 143. G. Lukinavičius, L. Reymond, E. D'Este, A. Masharina, F. Göttfert, H. Ta, A. Güther, M. Fournier, S. Rizzo, H. Waldmann, C. Blaukopf, C. Sommer, D. W. Gerlich, H.-D. Arndt, S. W. Hell and K. Johnsson, *Nature Methods*, 2014, **11**, 731-733.
- 144. L. Wang, M. Tran, E. D'Este, J. Roberti, B. Koch, L. Xue and K. Johnsson, Nat. Chem., 2020, 12, 165-172.
- 145. M. L. Cano, L. Cassimeris, M. Joyce and S. H. Zigmond, Cell Motil., 1992, 21, 147-158.
- 146. D. S. Bindels, L. Haarbosch, L. van Weeren, M. Postma, K. E. Wiese, M. Mastop, S. Aumonier, G. Gotthard, A. Royant, M. A. Hink and T. W. J. Gadella, *Nature Methods*, 2017, **14**, 53-56.