Organic & Biomolecular Chemistry

Supporting Information

Contonta

Enhanced Duplex- and Triplex-forming Ability and Enzymatic Resistance of Oligodeoxynucleotides Modified by a Tricyclic Thymine Derivative

Yuki Kishimoto,^{a,b} Akane Fujii,^{a,b} Osamu Nakagawa^{*a,b,c} and Satoshi Obika^{*a,b}

^a Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan. ^b Core Research for Evolutional Science and Technology (CREST), Japan Sciences and Technology Agency (JST), 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan.

^c Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihamahoji, Yamashiro-cho, Tokushima 770-8514, Japan

E-mail: obika@phs.osaka-u.ac.jp (S.Obika), osamu nakagawa@ph.bunri-u.ac.jp (O. Nakagawa)

CO	intents.	
≻	Fig. S1	2-S6
	¹ H-NMR, ¹³ C-NMR, ³¹ P-NMR spectra of each compound.	
\triangleright	Fig. S2	S7
	Absorption spectrum of OBN nucleoside 6.	
\triangleright	Table S1	S7
	Absorption data of OBN nuculeoside 6.	
\triangleright	Table S2	S8
	Sequence and MALDI-TOF-Mass data of OBN-modified ODNs.	
\triangleright	Fig. S3 S9	-S12
	HPLC chart of oligodeoxynucleotides (ODNs) containing OBN (B).	
\triangleright	Fig. S4 S12	2-S20
	MALDI-TOF mass spectrometry data obtained for ODNs containing OBN (B).	
\triangleright	Fig. S5 S21	-S24
	UV melting curves for the duplexes containing OBN (B).	
≻	Fig. S6	S24
	UV melting curves for the duplexes contaning OBN (B) with matched and mismatched base pairs	3.
\triangleright	Fig. S7	S25
	Fluorescent spectrum of OBN-modified ODN2 (5'-d(GCGTTBTTTGCT)-3').	
\triangleright	Fig. S8 S25	5-S28
	UV melting curves for the triplexes containing TFO2-8.	
\triangleright	Fig. S9	S28
	Snapshots of molecular dynamics (MD)	
≻	Fig. S10	S29
	Hysteresis of sigmoidal curve in TFO/dsDNA	

Fig. S1 ¹H-NMR, ¹³C-NMR, ³¹P-NMR spectra of each compound.

(a) ¹H-NMR (DMSO- d_6) of compound **2**

¹³C-NMR (DMSO- d_6) of compound **2**

(b) ¹H-NMR (DMSO- d_6) of compound **3**

¹³C-NMR (DMSO- d_6) of compound **3**

(c) ¹H-NMR (CD₃OD) of compound $\mathbf{6}$

¹³C-NMR (CD₃OD) compound **6**

(d) ¹H-NMR (CDCl₃) compound 7

 13 C-NMR (CDCl₃) of compound 7

(e) ¹H-NMR (CDCl₃) of compound 8

³¹P-NMR (CDCl₃) of compound 8

Fig. S2 Absorption spectrum of OBN nucleoside 6.

OBN nucleoside **6** was dissolved in water containing 0.1% (v/v) of DMSO at 25μ M (final concentration). The absorption spectrum was measured by UV-1800 spectrometers (SHIMADZU).

Table S1Aborption data of OBN nucloiside 6.

Molar Absorptivity (L/(mol·cm)) was calculated according Lambert-Beer law based on each absorption maximum picked up from Fig S2.

Absorption maximum (nm)	Molar Absorptivity (L/(mol·cm))	
260	30,000	
269	26,000	
334	16,000	

<u>C</u>	MALDI-TOF-Mass [M-H] ⁻	
Sequence	Calcd.	Found
ODN2: 5'-d(GCGTT B TTTGCT)-3'	3702.5	3703.8
ODN3: 5'-d(GCGTBTBTTGCT)-3'	3772.6	3772.7
ODN4: 5'-d(GCGTTBBTTGCT)-3'	3772.6	3772.4
ODN5: 5'-d(GCGBTBTBTGCT)-3'	3842.7	3843.4
ODN6: 5'-d(GCGTBBBTTGCT)-3'	3842.7	3843.8
ODN8: 5'-d(GCGTC B ATTGCT)-3'	3696.5	3697.3
ODN10: 5'-d(GCGTCBCTTGCT)-3'	3672.5	3673.5
ODN12: 5'-d(GCGTABATTGCT)-3'	3720.5	3722.4
ODN14: 5'-d(GCGTGBGTTGCT)-3'	3752.5	3753.2
TFO2: 5'-d(TTTTT <u>C</u> T B T <u>C</u> T <u>C</u> T <u>C</u> T)-3'	4566.1	4567.3
TFO3: 5'-d(TTTT B <u>C</u> TTT <u>C</u> T <u>C</u> T <u>C</u> T)-3'	4566.1	4565.0
TFO4: 5'-d(TTTTTCBTTCTCTCT)-3'	4566.1	4565.6
TFO5: 5'-d(TTTT B<u>C</u>BTT<u>C</u>T<u>C</u>T<u>C</u>T)-3'	4636.2	4638.8
TFO6: 5'-d(TTTT B <u>C</u> TT B <u>C</u> T <u>C</u> T <u>C</u> T)-3'	4636.2	4636.6
TFO7: 5'-d(TTTTT <u>C</u> T BB <u>C</u> T <u>C</u> T <u>C</u> T)-3'	4636.2	4637.0
TFO8: 5'-d(TTTTTCBBBCTCTCT)-3'	4706.3	4706.8
ODN18: 5'-d(TTTTTTTTT B)-3'	3049.1	3049.0

 Table S2
 Sequence and MALDI-TOF-Mass data of OBN-modified ODNs.

 $\mathbf{B} = OBN, \mathbf{\underline{C}} = 2'$ -deoxy-5-mehtylcytidine

Fig. S3 HPLC chart of oligodeoxynucleotides (ODNs) containing OBN (B).
HPLC conditions: Detection: UV 260 nm, flow rate: 1.0 mL/min, mobile Phase (A): 0.1 M TEAA (pH 7.0), (B): acetonitrile (ACN), column: waters XBridgeTM OST C18 2.5μm (4.6×50 mm), temperature: 50 °C.
(B: OBN, <u>C</u>: 2'-deoxy5-methylcytidine)

(e) 5'-d(GCGTBBBTTGCT)-3'

[B conc. ACN: 11-16% (20 min)]

(f) 5'-d(GCGTC**B**AGTTGCT)-3' (ODN**8**)

[B conc. ACN: 6-12% (20 min)]

(k) 5'-d(TTTTBCTTTCTCTCT)-3'(TFO3)

[B conc. ACN: 9-18% (20 min)]

[B conc. ACN: 9-18% (20 min)]

(l) 5'-d(TTTTTCBTTCTCTCT)-3' (TFO4)

[B conc. ACN: 9-18% (20 min)]

(n) 5'-d(TTTTBCTTBCTCTCT)-3'(TFO6)

[B conc. ACN: 9-18% (20 min)]

(p) 5'-d(TTTTT<u>CBBBC</u>T<u>C</u>T<u>C</u>T)-3' (TFO8) [B conc. ACN: 9-18% (20 min)]

(q) 5'-d(TTTTTTTT**B**)-3' (ODN**18**)

[B conc. ACN: 9-18% (20 min)]

Fig. S4 MALDI-TOF mass spectrometry data obtained for ODNs containing OBN (B).

(b) ODN3: 5'-d(GCGT**B**T**B**TTGCT)-3' (**B**: OBN)

(c) ODN4: 5'-d(GCGTT**BB**TTGCT)-3' (**B**: OBN)

[calcd. (M-H)⁻: 3772.6, found: 3772.4]

(d) ODN**5**: 5'-d(GCG**B**T**B**T**B**TGCT)-3' (**B**: OBN)

[calcd. (M-H)⁻: 3842.7, found: 3843.4]

(e) ODN6: 5'-d(GCGT**BBB**TTGCT)-3' (**B**: OBN)

[calcd. (M-H)⁻: 3842.7, found: 3843.8]

(g) ODN10: 5'-d(GCGTCBCTTGCT)-3' (B: OBN) [calcd. (M-H)⁻: 3672.5, found: 3673.5]

(h) ODN**12**: 5'-d(GCGTA**B**ATTGCT)-3' (**B**: OBN) [calcd. (M-H)⁻: 3720.5, found: 3722.4]

(i) ODN14: 5'-d(GCGTG**B**GTTGCT)-3' (**B**: OBN)

(j) TFO**2**: 5'-d(TTTTT<u>C</u>T**B**T<u>C</u>T<u>C</u>T<u>C</u>T)-3' (**B**: OBN, <u>C</u>: 2'-deoxy5-methylcytidine) [calcd. (M-H)⁻: 4566.1, found: 4567.3]

(k) TFO3: 5'-d(TTTTB<u>C</u>TTT<u>C</u>T<u>C</u>T<u>C</u>T)-3' (B: OBN, <u>C</u>: 2'-deoxy5-methylcytidine)

[calcd. (M-H)⁻: 4566.1, found: 4565.0]

(l) TFO4: 5'-d(TTTTT<u>C</u>**B**TT<u>C</u>T<u>C</u>T<u>C</u>T)-3'(**B**: OBN, <u>C</u>: 2'-deoxy-5-methylcytidine)

[calcd. (M-H)⁻: 4566.1, found: 4565.6]

(m) TFO**5**: 5'-d(TTTT**B**<u>C</u>**B**TT<u>C</u>T<u>C</u>T<u>C</u>T)-3' (**B**: OBN, <u>C</u>: 2'-deoxy-5-methylcytidine) [calcd. (M-H)⁻: 4636.2, found: 4638.8]

(n) TFO6: 5'-d(TTTTBCTTBCTCTCT)-3' (B: OBN, C: 2'-deoxy-5-methylcytidine)

[calcd. (M-H)⁻: 4636.2, found: 4636.6]

(o) TFO7: 5'-d(TTTTT<u>C</u>**BB**T<u>C</u>T<u>C</u>T<u>C</u>T)-3' (**B**: OBN, <u>C</u>: 2'-deoxy-5-methylcytidine) [calcd. (M-H)⁻: 4636.2, found: 4637.0]

(p) TFO8: 5'-d(TTTTT<u>C</u>BBB<u>C</u>T<u>C</u>T<u>C</u>T)-3' (B: OBN, <u>C</u>: 2'-deoxy-5-methylcytidine)

[calcd. (M-H)⁻: 4706.3, found: 4706.8]

(q) ODN18: 5'-d(TTTTTTTT**B**)-3' (**B**: OBN)

[calcd. (M-H)⁻: 3049.1, found: 3049.0]

S20

Fig. S5 UV melting curves for the duplexes containing OBN (B).

UV melting profiles were measured in 2 mM sodium phosphate buffer (pH 7.2) containing 20 mM NaCl at a scan rate of 0.5°C/min at 260 nm. The concentration of oligonucleotide used was 2 μ M for each strand. The error in $T_{\rm m}$ values was $\pm 0.5^{\circ}$ C.

(N: A, C, T, G or B (=OBN), Q: Corresponding matching base (A, C, T (or U), or G)).

(a) 5'-d(GCGTTBTTTGCT)-3' (ODN2) /cDNA1

(b) 5'-d(GCGTTBTTTGCT)-3' (ODN2) /cRNA1

(c) 5'-d(GCGTBTBTTGCT)-3' (ODN3) /cDNA1

1.05

0.95

0.9

0.85

0.8

5

Normalized Abs.

1

(i) 5'-d(GCGTBBBTTGCT)-3' (ODN8) /cDNA1

(j) 5'-d(GCGTBBBTTGCT)-3' (ODN8) /cRNA1

(o) 5'-d(GCGTABATTGCT)-3' (ODN12) /cDNA4 (p) 5'-d(GCGTABATTGCT)-3' (ODN12) /cRNA4

65

85

S23

Fig. S6 UV melting curves for the duplexes containing OBN (**B**) with matched and mismatched base pairs. (a) 5'-d(GCGTT**B**TTTGCT)-3' (ODN**2**) /ssDNA (b) 5'-d(GCGTT**B**TTTGCT)-3' (ODN**2**) /ssRNA

UV melting profiles were measured in 2 mM sodium phosphate buffer (pH 7.2) containing 20 mM NaCl at a scan rate of 0.5°C/min at 260 nm. The concentration of oligonucleotide used was 2 μ M for each strand. The error in $T_{\rm m}$ values was $\pm 0.5^{\circ}$ C.

Sequence: 5'-d(GCGTT**B**TTTGCT)-3' (ODN**2**) /3'-(CGCAYAAACGA-5') (**Y**: A, G, C, and T (or U)). **B**: OBN.

Fluorescent spectrums of ODN2 (4μ M) were meassured in the 10 mM of citric acid buffer (pH 4.0 and 5.0), 10 mM of phosphate buffer (6.0, 7.0, and 8.0), NaOH-glysine buffer (pH 9.0 and 10.0) at 10 °C. Excited at 335 nm.

Fig. S8 UV melting curves for the triplexes containing TFO2-8.

UV melting profiles were measured in 7 mM sodium phosphate buffer (pH 7.0 or pH 6.0) containing 140 mM KCl and 10 mM MgCl₂ at a scan rate of 0.5° C/min at 260 nm. The concentration of oligonucleotide used was 1.5 μ M for each strand. The error in $T_{\rm m}$ values was $\pm 0.5^{\circ}$ C. (**B**: OBN, <u>C</u>: 2'-deoxy-5-methylcytidine)

(I) Under pH 7.0 contidions

(g) 5'-d(TTTTTCBBBCTCTCT)-3' (TFO8) /dsDNA

(g) 5'-d(TTTTTCBBBBCTCTCT)-3' (TFO8) /dsDNA

Fig. S9 Snapshots of molecular dynamics (MD) caluculation of OBN-modified ODN/dsDNA.

MD calculation was conducted by MacroModel software [Schrödinger, LLC]; OPLS3 force field (in water at 300 K for 2.0 ns). The initial structure was constructed with 1D3X [PDB ID: $1D3X^{1}$]. The sequence of TFO is 5'-d(TCC**B**₁**B**₂TTT)-3'. The sequences of target dsDNA are 5'-d(AGGAAAAA)-3' and 3'd(TCCTTTTT)-5'. Purple: **B**₁ (= OBN) at 5'-adjacent of another OBN (= **B**₂). Green: **B**₂ (= OBN) at 5'adjacent of thymidine. C: 2'-deoxy-5-methylcytidine. Gray dsDNA is shown as space-filling model.

Fig. S10 Hysteresis of sigmoidal curve in TFO/dsDNA

UV melting profiles were measured in 7 mM sodium phosphate buffer (pH 6.0) containing 140 mM KCl and 10 mM MgCl₂ at a scan rate of 0.2°C/min or 0.5°C/min at 260 nm. The concentration of oligonucleotide used was 1.5 μ M for each strand. The error in T_m values was $\pm 0.5^{\circ}$ C. Plain; sigmoidal curve with cooling, dashed; sigmoidal curve with heating. (B: OBN, C: 2'-deoxy-5-methylcytidine)

(I) Ramp rate: 0.2°C/min

 $T_{\rm m}$: 61 °C (with heating), 60 °C (with cooling)

 $T_{\rm m}$: 63°C (with heating), 63°C (with cooling)

 $T_{\rm m}$: 67 °C (with heating), 67 °C (with cooling)

(c) 5'-d(TTTTTCBBTCTCTCT)-3' (TFO7) /dsDNA

1) M. Tarkçy, A. K. Phipps, P. Schultze, J. Feigon, Biochemistry, 1998, 37, 5810-5819.