Photoinduced efficient synthesis of cyanoalkylsulfonylated oxindoles via sulfur dioxide insertion

Fan Teng, † a Juan Du, † ab Changping Xun, a Mengxue Zhu, a Ziqin Lu, a Hongmei Jiang, a Yuling Chen, a Yu Li a and Qing-Wen Gui * a

a College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China
b International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China; College of Chemistry and Materials Science, Hunan Agricultura University, Changsha 410128, China

E-mail: gqw1216@163.com

Table of Content

1. General Information S2
2. Experimental Section S3
3. Characterization Data of Products S7
4. References S17
5. 1H, 13C and 19F NMR Spectra of Products S18
1. General Information

All reactions were carried out in anhydrous solvent and commercially available reagents were used as received unless otherwise stated. Analytical thin layer chromatography (TLC) was performed on precoated aluminium-backed silica gel 60 F254 plates (EMD Millipore, 200 µm thickness). Flash column chromatography was performed using Tsingtao silica gel (200-300). 1H, 13C and 19F NMR spectra were recorded on a Bruker Avance DRX - 400 spectrometers; chemical shifts (δ) are given in ppm and calibrated using the signal of residual undeuterated solvent as internal reference (CDCl3: δH = 7.26 ppm and δC = 77.16 ppm). Data for 1H NMR, 13C and 19F NMR are reported as follows: chemical shift (δ, ppm), multiplicity, integration, and coupling constant (Hz).

The Light Source and the Material of the Irradiation Vessel

Manufacturer: Beijin Rogertech Ltd.

Model: RLH-18

Wavelength range: 365 nm – 440 nm

Material of the irradiation vessel: quartz tube

Not use any filters

Figure S1
2. Experimental Section

(1) General experimental procedures for compound 3a-3x

In a vial was placed N-arylmethacrylamides (0.2 mmol), cycloketone oxime esters (0.3 mmol), K$_2$S$_2$O$_5$ (0.4 mmol) and 2 mL MeOH, then the contents were reacted under nitrogen atmosphere and irradiated by 10 W LED for 12 h at room temperature. Upon completion, the reaction mixture was quenched by addition of 10 mL of water. The aqueous layer was extracted three times with EtOAc (10 mL × 3), and the combine organic layers were washed with saturated sodium sulfite solution and dried over anhydrous sodium sulfate, evaporated to dryness, and purified by column chromatography on silica gel (60-120 mesh) using petroleum ether: ethyl acetate = 1:1 as an eluent to afford the desired products.

(2) Unsuccessful substrates

(3) Test of the evolution of SO$_2$ gas

![Figure S2]
A piece of test strip prepared from magenta solution was put into the reaction tube and sealed. After the completion of the reaction, the magenta was fade rapidly (Figure S2).

(4) Wavelength optimization for 2b-2e

Table S1 the yields of 3a with irradiation wavelength of visible-light (R = C₆H₅CO)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Variation from the standard conditions</th>
<th>Yield (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None</td>
<td>76</td>
</tr>
<tr>
<td>2</td>
<td>365 nm instead of 390 nm</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>375 nm instead of 390 nm</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>385 nm instead of 390 nm</td>
<td>46</td>
</tr>
<tr>
<td>5</td>
<td>395 nm instead of 390 nm</td>
<td>67</td>
</tr>
<tr>
<td>6</td>
<td>400 nm instead of 390 nm</td>
<td>57</td>
</tr>
<tr>
<td>7</td>
<td>405 nm instead of 390 nm</td>
<td>48</td>
</tr>
<tr>
<td>8</td>
<td>410 nm instead of 390 nm</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>415 nm instead of 390 nm</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>425 nm instead of 390 nm</td>
<td>trace</td>
</tr>
<tr>
<td>11</td>
<td>440 nm instead of 390 nm</td>
<td>N.R.</td>
</tr>
<tr>
<td>12</td>
<td>In dark</td>
<td>N.R.</td>
</tr>
</tbody>
</table>

aReaction conditions: 1a (0.2 mmol), 2b (1.5 equiv), K₂S₂O₅ (2 equiv), solvents (1.5 mL), under N₂ at room temperature for 12 h. bIsolated yield.

Table S2 the yields of 3a with irradiation wavelength of visible-light (R = p-NO₂C₆H₅CO)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Variation from the standard conditionsa</th>
<th>Yield (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None</td>
<td>36</td>
</tr>
<tr>
<td>2</td>
<td>365 nm instead of 390 nm</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>375 nm instead of 390 nm</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>385 nm instead of 390 nm</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>395 nm instead of 390 nm</td>
<td>36</td>
</tr>
<tr>
<td>6</td>
<td>400 nm instead of 390 nm</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>405 nm instead of 390 nm</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>410 nm instead of 390 nm</td>
<td>trace</td>
</tr>
<tr>
<td>9</td>
<td>415 nm instead of 390 nm</td>
<td>trace</td>
</tr>
<tr>
<td>10</td>
<td>425 nm instead of 390 nm</td>
<td>N.R.</td>
</tr>
<tr>
<td>11</td>
<td>440 nm instead of 390 nm</td>
<td>N.R.</td>
</tr>
<tr>
<td>12</td>
<td>In dark</td>
<td>N.R.</td>
</tr>
</tbody>
</table>
Table S3 the yields of 3a with irradiation wavelength of visible-light (R = p-FC₆H₅CO)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Variation from the standard conditions</th>
<th>Yield (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None</td>
<td>29</td>
</tr>
<tr>
<td>2</td>
<td>365 nm instead of 390 nm</td>
<td>N.R.</td>
</tr>
<tr>
<td>3</td>
<td>375 nm instead of 390 nm</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>385 nm instead of 390 nm</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>395 nm instead of 390 nm</td>
<td>28</td>
</tr>
<tr>
<td>6</td>
<td>400 nm instead of 390 nm</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>405 nm instead of 390 nm</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>410 nm instead of 390 nm</td>
<td>trace</td>
</tr>
<tr>
<td>9</td>
<td>415 nm instead of 390 nm</td>
<td>trace</td>
</tr>
<tr>
<td>10</td>
<td>425 nm instead of 390 nm</td>
<td>N.R.</td>
</tr>
<tr>
<td>11</td>
<td>440 nm instead of 390 nm</td>
<td>N.R.</td>
</tr>
<tr>
<td>12</td>
<td>In dark</td>
<td>N.R.</td>
</tr>
</tbody>
</table>

Table S4 the yields of 3a with irradiation wavelength of visible-light (R = p-MeC₆H₅CO)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Variation from the standard conditions</th>
<th>Yield (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None</td>
<td>trace</td>
</tr>
<tr>
<td>2</td>
<td>365 nm instead of 390 nm</td>
<td>N.R.</td>
</tr>
<tr>
<td>3</td>
<td>375 nm instead of 390 nm</td>
<td>N.R.</td>
</tr>
<tr>
<td>4</td>
<td>385 nm instead of 390 nm</td>
<td>N.R.</td>
</tr>
<tr>
<td>5</td>
<td>395 nm instead of 390 nm</td>
<td>N.R.</td>
</tr>
<tr>
<td>6</td>
<td>400 nm instead of 390 nm</td>
<td>N.R.</td>
</tr>
<tr>
<td>7</td>
<td>405 nm instead of 390 nm</td>
<td>N.R.</td>
</tr>
<tr>
<td>8</td>
<td>410 nm instead of 390 nm</td>
<td>N.R.</td>
</tr>
<tr>
<td>9</td>
<td>415 nm instead of 390 nm</td>
<td>N.R.</td>
</tr>
<tr>
<td>10</td>
<td>425 nm instead of 390 nm</td>
<td>N.R.</td>
</tr>
<tr>
<td>11</td>
<td>440 nm instead of 390 nm</td>
<td>N.R.</td>
</tr>
<tr>
<td>12</td>
<td>In dark</td>
<td>N.R.</td>
</tr>
</tbody>
</table>
(5) UV-visible absorption spectra

Figure S3 Absorption spectra of 2a, 2v, 2w and 2x (0.1M dissolved in MeOH)
3. Characterization data of products

4-(((1,3-dimethyl-2-oxoindolin-3-yl)methyl)sulfonyl)butanenitrile (3a)

White solid (58.8 mg, 96%), mp: 147.8-148.5 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 7.36 - 7.34\) (m, 2 H), 7.14 (td, \(J = 7.6\) Hz, 0.8 Hz, 1 H), 7.14 (d, \(J = 7.6\) Hz, 1 H), 3.72 (d, \(J = 14.8\) Hz, 1 H), 3.57 (d, \(J = 14.6\) Hz, 1 H), 3.27 (s, 3 H), 2.94 – 2.87 (m, 1 H), 2.84 – 2.76 (m, 1 H), 2.49 (td, \(J = 7.2\) Hz, 3.2 Hz, 2 H), 2.11 – 2.04 (m, 2 H), 1.46 (s, 3 H); \(^1\)C NMR (101 MHz, CDCl\(_3\)): \(\delta 177.87, 143.40, 130.11, 129.35, 123.50, 122.92, 118.20, 109.10, 59.65, 53.02, 45.61, 26.79, 25.23, 18.15, 16.32\).

4-(((1,3-dimethyl-2-oxo-5-phenylindolin-3-yl)methyl)sulfonyl)butanenitrile (3b)

Yellow solid (62.7 mg, 82%), mp: 125.2-125.7 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 7.59 - 7.55\) (m, 4 H), 7.43 (t, \(J = 7.6\) Hz, 2 H), 7.33 (t, \(J = 7.2\) Hz, 1 H), 6.98 (d, \(J = 8.8\) Hz, 1 H), 3.74 (d, \(J = 14.8\) Hz, 1 H), 3.62 (d, \(J = 14.8\) Hz, 1 H), 3.29 (s, 3 H), 2.97 – 2.82 (m, 2 H), 2.45 (t, \(J = 7.2\) Hz, 2 H), 2.07 (t, \(J = 7.2\) Hz, 2 H), 1.50 (s, 3 H); \(^1\)C NMR (101 MHz, CDCl\(_3\)): \(\delta 177.92, 142.68, 140.67, 136.36, 130.81, 128.99, 128.09, 127.30, 126.99, 122.59, 118.17, 109.25, 59.54, 53.11, 45.79, 26.90, 25.29, 18.11, 16.27\); HRMS (ESI) m/z calcd. for \(C_{21}H_{23}N_2O_3S\) [M+H]: 383.1424, found 383.1427.

4-(((1,3,5-trimethyl-2-oxoindolin-3-yl)methyl)sulfonyl)butanenitrile (3c)

White solid (50.6 mg, 79%), mp: 123.9-124.6 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 7.19 - 7.12\) (m, 2 H), 7.18 (d, \(J = 1.6\) Hz, 1 H), 3.69 (d, \(J = 14.8\) Hz, 1 H), 3.54 (d, \(J = 14.8\) Hz, 1 H), 3.23 (s, 3 H), 2.94 – 2.87 (m, 1 H), 2.84 – 2.77 (m, 1 H), 2.48 (dt, \(J = 14.8, 2.4\) Hz, 2 H), 2.36 (s, 3
H), 2.07 (t, $J = 7.6$ Hz, 2 H), 1.43 (s, 3 H); 13C NMR (101 MHz, CDCl$_3$): δ 177.75, 140.98, 132.55, 130.24, 129.58, 124.21, 118.18, 108.81, 59.68, 53.04, 45.72, 26.80, 25.31, 21.30, 18.13, 16.33.

4-(((5-(tert-butyl)-1,3-dimethyl-2-oxoindolin-3-yl)methyl)sulfonyl)butanenitrile (3d)1

Yellow solid (62.3 mg, 86%), mp: 107.2–107.8 °C; 1H NMR (400 MHz, CDCl$_3$): δ 7.38 – 7.34 (m, 2 H), 6.53 (d, $J = 8.0$ Hz, 1 H), 3.69 (d, $J = 14.4$ Hz, 1 H), 3.61 (d, $J = 14.8$ Hz, 1 H), 3.23 (s, 3 H), 2.91 – 2.84 (m, 1 H), 2.71 – 2.64 (m, 1 H), 2.48 – 2.40 (m, 2 H), 2.05 – 2.02 (m, 2 H), 1.45 (s, 3 H), 1.31 (s, 9 H); 13C NMR (101 MHz, CDCl$_3$): δ 177.91, 145.97, 140.89, 129.67, 125.68, 120.89, 118.23, 108.35, 59.66, 52.85, 45.73, 34.65, 31.58, 26.69, 25.01, 17.92, 16.18.

4-(((1,3-dimethyl-2-oxo-5-phenoxyindolin-3-yl)methyl)sulfonyl)butanenitrile (3e)1

White oil (73.3 mg, 92%); 1H NMR (400 MHz, CDCl$_3$): δ 7.32 – 7.28 (m, 2 H), 7.11 (d, $J = 2.3$ Hz, 1 H), 7.05 (t, $J = 7.4$ Hz, 1 H), 7.00 (dd, $J = 8.4$ Hz, 2.4 Hz, 1 H), 6.98 – 6.93 (m, 2H), 6.86 (d, $J = 8.4$ Hz, 1 H), 3.71 (d, $J = 14.6$ Hz, 1 H), 3.53 (d, $J = 14.6$ Hz, 1 H), 3.24 (s, 3 H), 2.99 – 2.84 (m, 2 H), 2.47 (t, $J = 7.2$ Hz, 2 H), 2.10 – 7.02 (m, 2 H), 1.41 (s, 3 H); 13C NMR (101 MHz, CDCl$_3$): δ 177.68, 158.07, 152.35, 139.10, 131.67, 129.78, 122.84, 120.11, 118.31, 117.70, 116.28, 109.61, 58.90, 52.90, 45.71, 26.79, 25.21, 18.03, 16.10.

4-(((5-methoxy-1,3-dimethyl-2-oxoindolin-3-yl)methyl)sulfonyl)butanenitrile (3f)1

Yellow oil (54.5 mg, 81%); 1H NMR (400 MHz, CDCl$_3$): δ 7.00 – 6.97 (m, 1 H), 6.89 – 6.81 (m, 2 H), 3.81 (s, 3 H), 3.71 (d, $J = 14.8$ Hz, 1 H), 3.58 (d, $J = 14.7$ Hz, 1 H), 3.24 (s, 3 H), 2.45 (s, 3 H), 1.85 (s, 3 H), 1.41 (s, 3 H).
2.98 – 2.82 (m, 2 H), 2.50 (t, \(J = 7.2 \) Hz, 2 H), 2.12 – 2.05 (m, 2 H), 1.45 (s, 3 H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)): \(\delta \) 177.45, 156.21, 136.72, 131.60, 118.21, 113.09, 111.29, 109.35, 60.51, 55.93, 53.05, 46.07, 26.85, 25.29, 18.14, 16.31.

4-(((1,3-dimethyl-2-oxo-5-(trifluoromethoxy)indolin-3-yl)methyl)sulfonyl)butanenitrile (3g)

White solid (57.7 mg, 72%, mp: 150.6-151.1 °C); \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta \) 7.27 – 7.22 (m, 2 H), 6.91 (d, \(J = 8.4 \) Hz, 1 H), 3.75 (d, \(J = 14.6 \) Hz, 1 H), 3.59 (s, 1 H), 3.27 (s, 3 H), 2.03 – 2.85 (m, 2 H), 2.52 (t, \(J = 7.2 \) Hz, 2 H), 2.11 (t, \(J = 7.2 \) Hz, 2 H), 1.48 (s, 3H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)): \(\delta \) 177.75, 144.84 (t, \(J = 1.9 \) Hz, 1 C), 142.03, 131.66, 130.64, 122.45, 118.14, 117.93, 109.52, 59.28, 53.17, 45.91, 26.99, 25.17, 18.07, 16.30; \(^{19}\)F NMR (376 MHz, CDCl\(_3\)): \(\delta \) -58.29 (s, 3 F); HRMS (ESI) m/z calcd. for C\(_{16}\)H\(_{18}\)F\(_3\)N\(_2\)O\(_4\)S [M+H]\(^+\): 391.0934, found 391.0941.

4-(((5-fluoro-1,3-dimethyl-2-oxoindolin-3-yl)methyl)sulfonyl)butanenitrile (3h)

White solid (46.7 mg, 72%, mp: 160.1-160.7 °C); \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta \) 7.13 (dd, \(J = 7.8 \) Hz, 2.6 Hz, 1 H), 7.05 (td, \(J = 9.0 \) Hz, 2.6 Hz, 1 H), 6.84 (dd, \(J = 8.6 \) Hz, 4.2 Hz, 1 H), 3.73 (d, \(J = 14.6 \) Hz, 1 H), 3.57 (s, 1 H), 3.25 (s, 3 H), 3.05 – 2.91 (m, 2 H), 2.53 (t, \(J = 7.2 \) Hz, 2 H), 2.15 – 2.09 (m, 2 H), 1.46 (s, 3 H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)): \(\delta \) 177.66, 159.34 (d, \(J = 242.6 \) Hz, 1 C), 139.18, 131.88 (d, \(J = 8.2 \) Hz, 1 C), 118.20, 115.53 (d, \(J = 23.6 \) Hz, 1 C), 111.93 (d, \(J = 25.0 \) Hz, 1 C), 109.60 (d, \(J = 8.2 \) Hz, 1 C), 59.18, 53.12, 46.07 (d, \(J = 1.5 \) Hz, 1 C), 26.95, 25.27, 18.11, 16.32; \(^{19}\)F NMR (376 MHz, CDCl\(_3\)): \(\delta \) -119.41 (s, 1 F).

4-(((5-chloro-1,3-dimethyl-2-oxoindolin-3-yl)methyl)sulfonyl)butanenitrile (3i)
Grey solid (54.4 mg, 72%, mp: 156.0-156.5 °C); ^1H NMR (400 MHz, CDCl₃): δ 7.35 – 7.29 (m, 2 H), 6.83 (d, J = 8.4 Hz, 1 H), 3.71 (d, J = 14.8 Hz, 1 H), 3.56 (d, J = 14.8 Hz, 1 H), 3.24 (s, 3 H), 3.03 – 2.88 (m, 2 H), 2.51 (t, J = 7.2 Hz, 2 H), 2.13 – 2.06 (m, 2 H), 1.44 (s, 3 H); ^13C NMR (101 MHz, CDCl₃): δ 177.45, 141.87, 131.98, 129.14, 128.24, 124.13, 118.21, 109.97, 59.15, 53.14, 45.79, 26.90, 25.25, 18.11, 16.29.

4-(((5-bromo-1,3-dimethyl-2-oxoindolin-3-yl)methyl)sulfonyl)butanenitrile (3j)

White oil (58.4 mg, 76%); ^1H NMR (400 MHz, CDCl₃): δ 7.51 – 7.40 (m, 2 H), 6.79 (d, J = 8.2 Hz, 1 H), 3.72 (d, J = 14.8 Hz, 1 H), 3.57 (d, J = 14.8 Hz, 1 H), 3.23 (s, 3 H), 3.02 – 2.89 (m, 2 H), 2.51 (t, J = 7.2 Hz, 2 H), 2.15 – 2.06 (m, 2 H), 1.44 (s, 3 H); ^13C NMR (101 MHz, CDCl₃): δ 177.40, 142.35, 132.36, 132.04, 126.85, 118.22, 115.47, 110.49, 59.12, 53.15, 45.74, 26.89, 25.23, 18.12, 16.29.

4-(((5-iodo-1,3-dimethyl-2-oxoindolin-3-yl)methyl)sulfonyl)butanenitrile (3k)

Yellow solid (62.8 mg, 80%, mp: 108.2-108.7 °C); ^1H NMR (400 MHz, CDCl₃): δ 7.66 – 7.54 (m, 2 H), 6.69 (d, J = 8.2 Hz, 1 H), 3.71 (d, J = 14.8 Hz, 1 H), 3.56 (d, J = 14.8 Hz, 1 H), 3.22 (s, 3 H), 2.98 – 2.86 (m, 2 H), 2.51 (t, J = 7.2 Hz, 2 H), 2.15 – 2.05 (m, 2 H), 1.43 (s, 3 H); ^13C NMR (101 MHz, CDCl₃): δ 177.22, 143.06, 137.97, 132.69, 132.33, 118.22, 111.06, 85.20, 59.12, 53.15, 45.53, 26.83, 25.21, 18.13, 16.30.

4-(((1,3-dimethyl-2-oxo-5-(trifluoromethyl)indolin-3-yl)methyl)sulfonyl)butanenitrile (3l)
Yellow solid (62.1 mg, 83%, mp: 59.8-60.3 °C); 1H NMR (400 MHz, CDCl$_3$): δ 7.63 – 7.60 (m, 2 H), 6.98 (d, $J = 8.4$ Hz, 1 H), 3.74 (d, $J = 14.6$ Hz, 1 H), 3.63 (d, $J = 14.8$ Hz, 1 H), 3.28 (s, 3 H), 3.03 - 2.94 (m, 1 H), 2.93 – 2.85 (m, 1 H), 2.48 (t, $J = 7.2$ Hz, 2 H), 2.11 – 2.04 (m, 2 H), 1.46 (s, 3 H); 13C NMR (101 MHz, CDCl$_3$): δ 177.94, 146.34, 130.88, 126.94 (q, $J = 3.9$ Hz, 1 C), 124.97 (q, $J = 32.6$ Hz, 1 C), 122.98, 120.82 (q, $J = 3.7$ Hz, 1 C), 118.19, 108.80, 59.06, 53.15, 45.49, 26.98, 25.18, 18.03, 16.22; 19F NMR (376 MHz, CDCl$_3$): δ - 61.31 (s, 3 F).

methyl 3-(((3-cyanopropyl)sulfonyl)methyl)-1,3-dimethyl-2-oxoindoline-5-carboxylate (3m)

White solid (62.1 mg, 83%, mp: 59.8-60.3 °C); 1H NMR (400 MHz, CDCl$_3$): δ 8.09 (dd, $J = 8.4$ Hz, 1.4 Hz, 1 H), 8.01 (s, 1 H), 6.95 (d, $J = 8.4$ Hz, 1 H), 3.90 (s, 3 H), 3.76 (d, $J = 14.8$ Hz, 1 H), 3.64 (d, $J = 14.8$ Hz, 1 H), 3.29 (s, 3 H), 2.96 – 2.82 (m, 2 H), 2.49 (t, $J = 7.2$ Hz, 2 H), 2.11 – 2.06 (m, 2 H), 1.46 (s, 3 H); 13C NMR (101 MHz, CDCl$_3$): δ 178.25, 166.70, 147.51, 131.89, 130.25, 124.83, 124.70, 118.14, 108.65, 59.35, 53.14, 52.33, 45.39, 27.02, 25.31, 18.10, 16.29; HRMS (ESI) m/z calcd. for C$_{17}$H$_{21}$N$_2$O$_5$S [M+H]$^+$: 365.1166, found 365.1171.

3-(((3-cyanopropyl)sulfonyl)methyl)-1,3-dimethyl-2-oxoindoline-5-carbonitrile (3n)

White solid (47.7 mg, 72%, mp: 116.5-117.2 °C); 1H NMR (400 MHz, CDCl$_3$): δ 7.67 (d, $J = 8.4$ Hz, 1 H), 7.64 (s, 1 H), 6.98 (d, $J = 8.2$ Hz, 1 H), 3.76 (d, $J = 14.6$ Hz, 1 H), 3.63 (d, $J = 14.6$ Hz, 1 H), 3.29 (s, 3 H), 3.11 – 2.95 (m, 2 H), 2.53 (t, $J = 7.0$ Hz, 2 H), 2.15 – 2.08 (m, 2 H), 1.46 (s, 3 H); 13C NMR (101 MHz, CDCl$_3$): δ 177.83, 147.18, 134.41, 131.43, 127.22,
119.10, 118.16, 109.45, 106.06, 58.93, 53.26, 45.33, 27.06, 25.24, 18.10, 16.31; HRMS (ESI) m/z calcd. for C_{16}H_{18}N_{3}O_{3}S [M+H]^+: 332.1063, found 332.1068.

4-(((1,3-dimethyl-2-oxo-2,3-dihydro-1H-benzo[f]indol-3-yl)methyl)sulfonyl)butanenitrile

Yellow oil (59.2 mg, 83%); ^1^H NMR (400 MHz, CDCl$_3$): δ 8.00 (dd, J = 12.2 Hz, 8.6 Hz, 2 H), 7.87 (d, J = 8.2 Hz, 1 H), 7.65 (t, J = 7.6 Hz, 1 H), 7.47 (t, J = 7.6 Hz, 1 H), 7.35 (d, J = 8.8 Hz, 1 H), 4.20 (d, J = 14.4 Hz, 1 H), 3.98 (d, J = 14.8 Hz, 1 H), 3.44 (s, 3 H), 2.56 – 2.41 (m, 2 H), 2.21 – 2.12 (m, 2 H), 1.94 – 1.81 (m 2 H), 1.73 (s, 3 H); ^1^C NMR (101 MHz, CDCl$_3$): δ 178.93, 141.64, 130.73, 130.25, 129.31, 127.90, 126.95, 123.89, 121.08, 120.88, 118.03, 110.27, 59.44, 52.16, 46.38, 26.95, 24.36, 18.03, 15.81; HRMS (ESI) m/z calcd. for C_{19}H_{21}N_{3}O_{3}S [M+H]^+: 357.1267, found 357.1270.

4-(((1-benzyl-3-methyl-2-oxoindolin-3-yl)methyl)sulfonyl)butanenitrile (3p)^l

Yellow oil (60.3 mg, 79%); ^1^H NMR (400 MHz, CDCl$_3$): δ 7.36 – 2.29 (m, 6 H), 7.21 – 7.19 (m, 1 H), 7.08 (t, J = 7.6 Hz, 1 H), 6.78 (d, J = 7.8 Hz, 1 H), 5.03 (d, J = 15.8 Hz, 1 H), 4.87 (d, J = 15.6 Hz, 1 H), 3.77 (d, J = 14.8 Hz, 1 H), 3.64 (d, J = 14.8 Hz, 1 H), 2.93 – 2.86 (m, 1 H), 2.83 – 2.77 (m, 1 H), 2.41 (td, J = 7.2 Hz, 2.6 Hz, 2 H), 2.03 (s, 2 H), 1.49 (s, 3 H); ^1^C NMR (101 MHz, CDCl$_3$): δ 177.95, 142.50, 135.66, 130.22, 129.18, 128.77, 127.65, 127.43, 123.51, 122.98, 118.22, 110.12, 59.32, 53.06, 45.72, 44.36, 25.96, 18.19, 16.28.

4-(((3-benzyl-1-methyl-2-oxoindolin-3-yl)methyl)sulfonyl)butanenitrile (3q)^l

Yellow oil (57.3 mg, 75%); ^1^H NMR (400 MHz, CDCl$_3$): δ 7.31 – 7.25 (m, 2 H), 7.17 – 7.06
(m, 4 H), 6.81 (d, J = 6.8 Hz, 2 H), 6.68 (d, J = 8.0 Hz, 1 H), 3.92 (d, J = 14.8 Hz, 1 H), 3.72 (d, J = 14.8 Hz, 1 H), 3.07 (d, J = 3.8 Hz, 2 H), 3.01 (s, 3 H), 2.96 – 2.90 (m, 1 H), 2.89 – 2.80 (m, 1 H), 2.48 (td, J = 7.2 Hz, 2.8 Hz, 2 H), 2.10 – 2.03 (m, 2 H); 13C NMR (101 MHz, CDCl$_3$): δ 176.59, 143.80, 133.29, 130.11, 129.28, 127.74, 127.27, 127.23, 124.52, 122.25, 118.29, 108.67, 58.36, 53.11, 50.80, 44.50, 26.30, 18.00, 16.14.

4-(((1,3,4,6-tetramethyl-2-oxoindolin-3-yl)methyl)sulfonyl)butanenitrile (3r)

Yellow oil (50.8 mg, 76%); 1H NMR (400 MHz, CDCl$_3$): δ 6.69 (s, 1 H), 6.59 (s, 1 H), 3.82 – 3.70 (m, 2 H), 3.21 (s, 3 H), 2.93 (dt, J = 14.4 Hz, 7.2 Hz, 1 H), 2.87 – 2.78 (m, 1 H), 2.46 (t, J = 7.2 Hz, 2 H), 2.38 (s, 3 H), 2.33 (s, 3 H), 2.07 – 2.02 (m, 2 H), 1.44 (s, 3 H); 13C NMR (101 MHz, CDCl$_3$): δ 178.13, 143.46, 139.00, 134.29, 125.75, 123.96, 118.28, 107.53, 57.89, 52.26, 45.25, 26.61, 23.11, 21.60, 18.32, 17.76, 16.01; HRMS (ESI) m/z calcd. for C$_{17}$H$_{23}$N$_2$O$_2$S [M+H]$^+$: 335.1424, found 335.1431.

4-(((4,6-dichloro-1,3-dimethyl-2-oxoindolin-3-yl)methyl)sulfonyl)butanenitrile (3s)

Yellow oil (68.1 mg, 91%); 1H NMR (400 MHz, CDCl$_3$): δ 7.05 (d, J = 1.8 Hz, 1 H), 6.83 (d, J = 1.8 Hz, 1 H), 4.03 (d, J = 14.4 Hz, 1 H), 3.72 (d, J = 14.4 Hz, 1 H), 3.22 (s, 3 H), 3.05 – 2.02 (m, 1 H), 2.89 – 2.84 (m, 1 H), 2.51 (t, J = 7.2 Hz, 2 H), 3.14 – 2.06 (m, 2 H), 1.51 (s, 3 H); 13C NMR (101 MHz, CDCl$_3$): δ 177.41, 145.99, 135.91, 131.34, 124.87, 123.24, 118.16, 108.59, 57.13, 52.62, 46.03, 27.13, 22.21, 18.05, 16.29; HRMS (ESI) m/z calcd. for C$_{15}$H$_{17}$Cl$_2$N$_2$O$_3$S [M+H]$^+$: 375.0331, found 375.0335.

4-(((5,7-dimethyl-6-oxo-6,7-dihydro-5H-[1,3]dioxolo[4,5-f]indol-7-yl)methyl)sulfonyl)butanenitrile (3t)
Yellow oil (49.7 mg, 71%); 1H NMR (400 MHz, CDCl$_3$): δ 6.87 (s, 1 H), 6.49 (s, 1 H), 5.93 (s, 2 H), 3.64 (d, $J = 14.6$ Hz, 1 H), 3.52 (d, $J = 14.6$ Hz, 1 H), 3.17 (s, 3 H), 3.14 – 2.06 (m, 2 H), 2.47 (d, $J = 7.0$ Hz, 2 H), 2.06 (d, $J = 7.2$ Hz, 2 H), 1.37 (s, 3 H); 13C NMR (101 MHz, CDCl$_3$): δ 177.97, 148.11, 143.37, 137.63, 121.54, 118.31, 105.03, 101.37, 92.72, 59.17, 52.81, 45.68, 26.79, 25.23, 17.88, 16.12; HRMS (ESI) m/z calcd. for C$_{16}$H$_{19}$N$_2$O$_5$S [M+H]$^+$: 351.1009, found 351.1013.

4-(((1-methyl-2-oxo-1,2,5,6-tetrahydro-4H-pyrrolo[3,2,1-ij]quinolin-1-yl)methyl)sulfonyl)butanenitrile (3u)

White oil (55.3 mg, 83%); 1H NMR (400 MHz, CDCl$_3$): δ 7.17 (d, $J = 7.3$ Hz, 1 H), 7.09 (d, $J = 7.6$ Hz, 1 H), 7.00 (t, $J = 7.6$ Hz, 1 H), 3.77 – 3.70 (m, 2 H), 3.67 (d, $J = 14.8$ Hz, 1 H), 3.57 (d, $J = 14.8$ Hz, 1 H), 2.91 – 2.84 (m, 1 H), 2.81 – 2.73 (m, 3 H), 2.47 (td, $J = 7.2$ Hz, 1.8 Hz, 2 H), 2.08 – 1.99 (m, 4 H), 1.45 (s, 3 H); 13C NMR (101 MHz, CDCl$_3$): δ 176.56, 139.22, 128.56, 128.05, 122.25, 121.28, 121.16, 118.26, 59.51, 52.88, 46.66, 39.23, 24.77, 24.58, 21.03, 18.11, 16.23; HRMS (ESI) m/z calcd. for C$_{17}$H$_{21}$N$_2$O$_3$S [M+H]$^+$: 333.1267, found 333.1274.

3-(benzyloxy)-4-(((1,3-dimethyl-2-oxoindolin-3-yl)methyl)sulfonyl)butanenitrile (3v)1
Yellow oil (75.8 mg, 81%, \(dr = 1.6:1 \)); \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta \) 7.40 – 7.23 (m, 7 H), 7.09 – 7.01 (m, 1 H), 6.82 (d, \(J = 7.8 \) Hz, 1 H), 4.64 – 4.45 (m, 2 H), 4.15 – 4.09 (m, 1 H), 3.72 – 3.60 (m, 1.5 H), 3.45 (d, \(J = 14.8 \) Hz, 0.5 H), 3.19 – 3.14 (m, 3.3 H), 3.00 – 2.90 (m, 1 H), 2.67 – 2.55 (m, 2 H), 2.36 – 2.32 (m, 0.7 H), 1.24 (s, 1.15 H), 1.15 (s, 1.85 H);

\(^{13}\)C NMR (101 MHz, CDCl\(_3\)): \(\delta \) 178.04 (2 C), 143.59, 143.31, 136.34, 136.16, 130.30, 129.50, 129.27, 128.89, 128.77, 128.71, 128.59 (2 C), 128.48, 128.37, 128.34, 124.17, 123.60, 122.88, 122.73, 115.88, 108.93 (2 C), 72.99, 72.69, 70.45, 69.77, 61.03, 60.73, 58.71, 57.96, 45.52, 45.45, 26.72, 26.70, 25.15, 24.88, 23.10, 22.64.

\textit{benzyl 3-cyano-2-(((1,3-dimethyl-2-oxoindolin-3-yl)methyl)sulfonyl)methyl)propanoate (3w)\(^d\)\)

![Diagram of compound 3w]

Yellow oil (71.0 mg, 86%, \(dr = 1:1 \)); \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta \) 7.38 – 7.31 (m, 7 H), 7.08 (q, \(J = 7.2 \) Hz, 1 H), 6.90 (t, \(J = 8.2 \) Hz, 1 H), 5.23 – 5.12 (m, 2 H), 3.77 (d, \(J = 14.6 \) Hz, 1 H), 3.67 – 3.61 (m, 1 H), 3.45 – 3.40 (m, 0.5 H), 3.28 – 3.21 (m, 5 H), 2.87 – 2.78 (m, 2.5 H), 1.43 (s, 1.5 H), 1.43 (s, 1.5 H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)): \(\delta \) 177.78, 177.73, 169.34 (2 C), 143.41, 143.30, 134.61, 134.58, 129.41, 129.26, 128.91 (2 C), 128.82 (2 C), 128.81, 128.69, 125.54, 125.50, 123.55, 122.88, 116.61, 116.42, 109.15, 109.06, 68.45, 68.40, 60.62, 60.42, 54.00 (2 C), 45.58, 45.53, 35.74, 35.71, 26.74 (2 C), 25.10, 25.01, 19.36, 19.34.

\textit{2-(((1,3-dimethyl-2-oxoindolin-3-yl)methyl)sulfonyl)methoxy)acetonitrile (3x)\(^d\)\)

![Diagram of compound 3x]

Yellow oil (52.4 mg, 85%); \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta \) 7.22 (td, \(J = 7.8 \) Hz, 1.2 Hz, 1 H), 7.13 – 7.08 (m, 1 H), 7.00 (t, \(J = 7.6 \) Hz, 1 H), 6.80 (d, \(J = 7.8 \) Hz, 1 H), 3.94 – 3.85 (d, \(J = 3.8 \) Hz, 2 H), 3.31 – 3.25 (m, 1 H), 3.20 – 3.15 (m, 1 H), 3.14 (s, 3 H), 3.35 – 3.25 (m, 1 H), 1.96 – 1.90 (m, 1 H), 1.30 (s, 3 H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)): \(\delta \) 180.21, 143.22, 132.58, 128.14, 122.58, 122.53, 115.73, 108.30, 68.07, 55.82, 46.31, 36.72, 26.24, 24.40.
ethyl 4-(((1,3-dimethyl-2-oxo-2,3-dihydro-1H-benzo[f]indol-3-yl)methyl)sulfonyl)butanoate

(6)

![Chemical structure of the compound](image)

Yellow oil (61.3 mg, 76%); 1H NMR (500 MHz, CDCl$_3$): δ 7.99 (dd, $J = 15.4$, 8.7 Hz, 2 H), 7.88 (d, $J = 8.5$ Hz, 1 H), 7.64 (t, $J = 7.3$ Hz, 1 H), 7.47 (t, $J = 7.6$ Hz, 1 H), 7.35 (d, $J = 8.4$ Hz, 1 H), 4.21 – 4.10 (m, 3 H), 3.99 (d, $J = 14.7$ Hz, 1 H), 3.46 (s, 3 H), 2.53 – 2.40 (m, 2 H), 2.21 – 2.14 (m, 1 H), 2.10 – 2.04 (m, 1 H), 1.97 – 1.85 (m, 2 H), 1.74 (s, 3 H), 1.29 (t, $J = 7.2$ Hz, 3 H); 13C NMR (126 MHz, CDCl$_3$): δ 179.20, 171.94, 141.74, 130.64, 130.37, 130.23, 129.51, 128.33, 127.83, 123.84, 121.24, 110.26, 60.69, 58.97, 53.37, 46.50, 32.11, 27.02, 24.50, 17.49, 14.25; HRMS (ESI) m/z calcd. for C$_{21}$H$_{26}$NO$_5$S [M+H]$^+$: 404.1526, found 404.1529.
4. References
5. 1H, 13C and 19F NMR spectra of products

4-(((1,3-dimethyl-2-oxoindolin-3-yl)methyl)sulfonyl)butanenitrile (3a)

1H NMR spectrum of 3a

13C NMR spectrum of 3a

19F NMR spectrum of 3a
4-(((1,3-dimethyl-2-oxo-5-phenylindolin-3-yl)methyl)sulfonyl)butanenitrile (3b)

1H NMR spectrum of 3b

13C NMR spectrum of 3b
$4-((1,3,5 \text{-}{trimethyl-2-oxindolin-3-yl})\text{methyl}sulfonyl)\text{butanenitrile (3c)}$

$^{1}H\text{ NMR spectrum of 3c}$

$^{13}C\text{ NMR spectrum of 3c}$
4-(((5-(tert-butyl)-1,3-dimethyl-2-oxoindolin-3-yl)methyl)sulfonyl)butanenitrile (3d)

^{1}H NMR spectrum of 3d

^{13}C NMR spectrum of 3d
4-(((1,3-dimethyl-2-oxo-5-phenoxyindolin-3-yl)methyl)sulfonyl)butanenitrile (3e)

1H NMR spectrum of 3e

13C NMR spectrum of 3e
4-(((5-methoxy-1,3-dimethyl-2-oxindolin-3-yl)methyl)sulfonyl)butanenitrile (3f)

$\text{H NMR spectrum of 3f}$

$\text{C NMR spectrum of 3f}$

$\text{1H NMR spectrum of 3f}$

$\text{1C NMR spectrum of 3f}$
4-(((1,3-dimethyl-2-oxo-5-(trifluoromethoxy)indolin-3-yl)methyl)sulfonyl)butanenitrile (3g)

$\text{H NMR spectrum of 3g}$

$\text{C NMR spectrum of 3g}$
4-\(((5\text{-fluoro-1,3-dimethyl-2-oxoindolin-3-yl)methyl}sulfonyl)butanenitrile (3h)

\[{^{19}}F \text{ NMR spectrum of 3g} \]

\[{^1}H \text{ NMR spectrum of 3h} \]
13C NMR spectrum of 3h

19F NMR spectrum of 3h
4-(((5-chloro-1,3-dimethyl-2-oxoindolin-3-yl)methyl)sulfonyl)butanenitrile (3i)

1H NMR spectrum of 3i

13C NMR spectrum of 3i
4-(((5-bromo-1,3-dimethyl-2-oxoindolin-3-yl)methyl)sulfonyl)butanenitrile (3j)

1H NMR spectrum of 3j

13C NMR spectrum of 3j
4-(((5-iodo-1,3-dimethyl-2-oxoindolin-3-yl)methyl)sulfonyl)butanenitrile (3k)

1H NMR spectrum of 3k

1C NMR spectrum of 3k
4-(((1,3-dimethyl-2-oxo-5-(trifluoromethyl)indolin-3-yl)methyl)sulfonyl)butanenitrile (3l)

$\text{H NMR spectrum of 3l}$

$\text{C NMR spectrum of 3l}$
methyl 3-(((3-cyanopropyl)sulfonyl)methyl)-1,3-dimethyl-2-oxoindoline-5-carboxylate (3m)
3-(((3-cyanopropyl)sulfonyl)methyl)-1,3-dimethyl-2-oxoindoline-5-carbonitrile (3n)

13C NMR spectrum of 3n

1H NMR spectrum of 3n
4-(((1,3-dimethyl-2-oxo-2,3-dihydro-1H-benzo[ff]indol-3-yl)methyl)sulfonyl)butanenitrile (3o)

^{13}C NMR spectrum of 3o

1H NMR spectrum of 3o
4-(((1-benzyl-3-methyl-2-oxindolin-3-yl)methyl)sulfonyl)butanenitrile (3p)

13C NMR spectrum of 3o

1H NMR spectrum of 3p
4-(((3-benzyl-1-methyl-2-oxoindolin-3-yl)methyl)sulfonyl)butanenitrile (3q)

13C NMR spectrum of 3p

1H NMR spectrum of 3q
$4-((1,3,4,6\text{-tetramethyl-2-oxoindolin-3-yl})\text{methyl})\text{ sulfonyl})\text{butanenitrile (3r)}$

13C NMR spectrum of 3q

1H NMR spectrum of 3r
4-(((4,6-dichloro-1,3-dimethyl-2-oxoindolin-3-yl)methyl)sulfonyl)butanenitrile (3s)

$\text{^{13}C NMR spectrum of 3r}$

$\text{^1H NMR spectrum of 3s}$
4-(((5,7-dimethyl-6-oxo-6,7-dihydro-5H-[1,3]dioxolo[4,5-f]indol-7-yl)methyl)sulfonyl)butanenitrile (3t)

13C NMR spectrum of 3s

1H NMR spectrum of 3t
4-(((1-methyl-2-oxo-1,2,5,6-tetrahydro-4H-pyrrolo[3,2,1-ij]quinolin-1-yl)methyl)sulfonyl)butanenitrile e (3u)

$\text{H NMR spectrum of 3u}$

$\text{13C NMR spectrum of 3t}$
$3\text{-}(\text{benzyloxy})\text{-}4\text{-}(((1,3\text{-dimethyl}-2\text{-oxindolin}-3\text{-yl})\text{methyl})\text{sulfonyl})\text{butanenitrile} \ (3v)$

$\text{^1}C \text{ NMR spectrum of 3u}$

$\text{^1}H \text{ NMR spectrum of 3v}$
benzyl 3-cyano-2-(((1,3-dimethyl-2-oxindolin-3-yl)methyl)sulfonylmethyl)propanoate (3w)

13C NMR spectrum of 3v

1H NMR spectrum of 3w
2-(((1,3-dimethyl-2-oxoindolin-3-yl)methyl)sulfonyl)methoxy)acetonitrile (3x)

\[\text{NMR spectrum of 3x} \]

\[\text{1H NMR spectrum of 3x} \]
ethyl 4-(((1,3-dimethyl-2-oxo-2,3-dihydro-1H-benzo[f]indol-3-yl)methyl)sulfonyl)butanoate (6)

\[\text{1H NMR spectrum of 6} \]
13C NMR spectrum of 6