Supporting Information

Transition-metal-free and base promoted C-C bond formation via C-N bond cleavage of organoammonium salts

Tao Zhang, Kunyu Wang, Yuting Ke, Yuanyuan Tang, Long Liu,* Tianzeng Huang, Chunya Li, Zhi Tang and Tieqiao Chen*

Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources,
Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
E-mail: hainanliulong@hainanu.edu.cn; chentieqiao@hnu.edu.cn.

Table of contents

1. General Information S2
2. Experimental Procedure S2-S3
3. Characterization Data for the Products S4-S17
4. References S18-S19
5. Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR Spectra of the Products S20-S57

1. General Information

The reactions were carried out in Schlenk tubes of 25 mL under N_{2} atmosphere. For reactions that require heating, heating mantle was used as the heat source. Organoammonium salts $\mathbf{1}$ were prepared according to the reported literatures. ${ }^{1}$ All solvents were purified according to standard operation procedures. All solvents and reagents were purchased from Tansoole, Meryer, Heowns, Energy Chemical, Alfa Aesar, and Aladdin. Column chromatography was performed using Silica Gel 60 ($300-400$ mesh). The reactions were monitored by GC and GC-MS, GC-MS results were recorded on GC-MS QP2010, and GC analysis was performed on GC 2014. The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra were recorded on a Brucker ADVANCE III spectrometer at $400 \mathrm{MHz}, 100 \mathrm{MHz}$ respectively, and chemical shifts were reported in parts per million (ppm). The electron ionization (EI) method was used as the ionization method for the HRMS measurement, and the mass analyzer type is TOF for EI.

2. Experimental Procedure

2.1 General Experimental Procedure for the Synthesis of C-C Bond formation via C-N bond cleavage of organoammonium salts.

In an oven dried 25 mL Schlenk tube charged with $\mathbf{1}(0.2 \mathrm{mmol}), \mathbf{2}(0.2 \mathrm{mmol}, 1.0$ equiv), and $\mathrm{KO}^{\prime} \mathrm{Bu}\left(0.22 \mathrm{mmol}, 1.1\right.$ equiv), after charging N_{2} for three times, toluene (2 mL) were added. The reaction mixture was reacted at $100^{\circ} \mathrm{C}$ for 2 h . The experiment was conducted in two sets, and the reaction mixtures of two sets were combined and concentrated after completion of the reaction. The desired product was isolated by column chromatography over silica gel (300-400 mesh) using petroleum ether/ethyl acetate ($\mathrm{PE} / \mathrm{EA}$) as eluent.

2.2 Procedure for the Synthesis of α, β-unsaturated ketones.

In an oven-dried 25 mL Schlenk tube was charged with 1,3-diphenylpropan-1-one 3a (0.2 $\mathrm{mmol})$, KI ($10 \mathrm{~mol} \%$), $\mathrm{I}_{2}(2.5 \mathrm{~mol} \%)$, and $\mathrm{DMSO}(3 \mathrm{~mL})$ under N_{2}. The reaction mixture was reacted at $140{ }^{\circ} \mathrm{C}$ for 16 h . After completion of the reaction, the reaction mixture was washed with NaCl saturated solution, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The desired product was isolated by column chromatography over silica gel (300-400 mesh) using petroleum ether/ethyl acetate $=50: 1$ as eluent to afford a pale-yellow solid $\mathbf{4 a}$ in 90% yield (51.1 $\mathrm{mg}) .{ }^{2}$

3. Characterization Data for the Products

1,2,3-Triphenylpropan-1-one (3a)

The title compound was prepared according to the Experimental Procedure, and purified by column chromatography on silica gel with $\mathrm{PE} / \mathrm{EA}=50: 1(\mathrm{v} / \mathrm{v})$ to afford a white solid in 86% yield $(98.5 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.17(\mathrm{~m}, 7 \mathrm{H}), 7.15-7.07(\mathrm{~m}, 3 \mathrm{H}) 4.81(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=12.0,8.8$ $\mathrm{Hz}, 1 \mathrm{H}$), $3.06(\mathrm{dd}, J=14.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 199.2, 139.8, 139.2, 136.7, 132.8, 129.1, 128.9, 128.7, 128.4, 128.3, 128.2, 127.1, 126.1, 55.9, 39.7. This compound is known. ${ }^{3}$

1,2-Diphenyl-3-(o-tolyl)propan-1-one (3b)

The title compound was prepared according to the Experimental Procedure, and purified by column chromatography on silica gel with $\mathrm{PE} / \mathrm{EA}=100: 1(\mathrm{v} / \mathrm{v})$ to afford a pale-yellow solid in 84% yield (101.3 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 5 \mathrm{H}), 7.09-6.96(\mathrm{~m}, 4 \mathrm{H}), 4.80(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=$ $14.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=14.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $199.3,139.2,137.9,136.7,136.3,132.8,130.2,129.7,128.9,128.7,128.5,128.2,127.1,126.2$, $125.7,54.5,37.1,19.5$. This compound is known. ${ }^{4}$

1,2-Diphenyl-3-(p-tolyl)propan-1-one (3c)

The title compound was prepared according to the Experimental Procedure, and purified by
column chromatography on silica gel with $\mathrm{PE} / \mathrm{EA}=50: 1(\mathrm{v} / \mathrm{v})$ to afford white solid in 82% yield $(98.7 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.17(\mathrm{~m}, 5 \mathrm{H}), 7.01-6.96(\mathrm{~m}, 4 \mathrm{H}), 4.79(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=13.2$, $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=13.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.2$, $139.2,136.2,136.7,135.5,132.8,129.0,128.9,128.9,128.7,128.4,128.3,127.1,56.0,39.7,21.0$. This compound is known. ${ }^{5}$

3-(4-Methoxyphenyl)-1,2-diphenylpropan-1-one (3d)

The title compound was prepared according to the Experimental Procedure, and purified by column chromatography on silica gel with $\mathrm{PE} / \mathrm{EA}=150: 1(\mathrm{v} / \mathrm{v})$ to afford white solid in 80% yield $(101.8 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 5 \mathrm{H}), 6.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.77(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{dd}, J=14.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=13.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 199.4,157.7,139.1,136.8,132.8,131.8,130.0,128.8,128.6,128.4,128.3$, 127.1, 113.6, 56.1, 55.1, 39.3. This compound is known. ${ }^{6}$

3-(4-(Methylthio)phenyl)-1,2-diphenylpropan-1-one (3e)

The title compound was prepared according to the Experimental Procedure, and purified by column chromatography on silica gel with $\mathrm{PE} / \mathrm{EA}=200: 1(\mathrm{v} / \mathrm{v})$ to afford white solid in 90% yield (119.7 mg). mp 122-123 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.2, \mathrm{~Hz}$, $1 \mathrm{H}), 7.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.00$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.77(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=13.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=14.0$, $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 199.1, 138.9, 136.8, 136.6, 135.7, 132.9, 129.6, 128.9, 128.6, 128.5, 128.3, 127.2, 126.8, 55.9, 39.6, 16.0. HRMS (EI) m/z: [M] ${ }^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{OS}: 332.1235$; found: 332.1235 .

3-(4-(Tert-butyl)phenyl)-1,2-diphenylpropan-1-one (3f)

The title compound was prepared according to the Experimental Procedure, and purified by column chromatography on silica gel with $\mathrm{PE} / \mathrm{EA}=150: 1(\mathrm{v} / \mathrm{v})$ to afford a pale-yellow solid in 79% yield (108.2 mg). mp 116-118 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 2H), $4.83(\mathrm{dd}, \mathrm{J}=8.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=13.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=13.6,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.26(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 199.2,148.9,139.3,136.8,136.7,136.6,132.6$, 128.9, 128.7, 128.4, 128.3, 127.1, 125.1, 55.8, 39.6, 34.3, 31.3. HRMS (EI) m/z: $[\mathrm{M}]^{+}$calcd. for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}: 342.1984$; found: 342.1983 .

3-([1,1'-Biphenyl]-4-yl)-1,2-diphenylpropan-1-one (3g)

The title compound was prepared according to the Experimental Procedure, and purified by column chromatography on silica gel with $\mathrm{PE} / \mathrm{EA}=100: 1(\mathrm{v} / \mathrm{v})$ to afford white solid in 86% yield (124.1 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.37(\mathrm{~m}$, $5 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.23-7.14(\mathrm{~m}, 3 \mathrm{H}), 4.85(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}$, $J=13.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=13.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.2$, $140.9,139.1,138.9,138.9,132.9,129.6,128.9,128.7,128.7,128.5,128.3,127.2,127.0,126.9$, $55.9,39.8$. This compound is known. ${ }^{7}$

3-(Benzo[d][1,3]dioxol-5-yl)-1,2-diphenylpropan-1-one (3h)

The title compound was prepared according to the Experimental Procedure, and purified by column chromatography on silica gel with $\mathrm{PE} / \mathrm{EA}=150: 1(\mathrm{v} / \mathrm{v})$ to afford white solid in 90% yield
$(118.8 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.28-7.16(\mathrm{~m}, 5 \mathrm{H}), 6.64-6.52(\mathrm{~m}, 3 \mathrm{H}), 5.85(\mathrm{~s}, 2 \mathrm{H}), 4.76(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J$ $=13.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=14.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.2,147.4$, $145.8,139.0,136.7,133.5,132.5,128.9,128.7,128.6,128.2 .127 .2,122.1,109.5,108.0,100.7$, $56.1,39.8$. This compound is known. ${ }^{8}$

3-(Naphthalen-1-yl)-1,2-diphenylpropan-1-one (3i)

The title compound was prepared according to the Experimental Procedure, and purified by column chromatography on silica gel with $\mathrm{PE} / \mathrm{EA}=120: 1(\mathrm{v} / \mathrm{v})$ to afford white solid in 81% yield $(108.8 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.82(\mathrm{~m}, 3 \mathrm{H}), 7.66(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 6 \mathrm{H})$, $7.11(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=14.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=$ $14.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 199.2,139.4,136.7,135.5,133.9,132.8,131.8$, 129.0, 128.9, 128.7, 128.4, 128.1, 127.6, 127.2, 127.0, 126.0, 125.4, 123.4, 54.6, 36.9. This compound is known. ${ }^{8}$

3-(4-Fluorophenyl)-1,2-diphenylpropan-1-one (3j)

The title compound was prepared according to the Experimental Procedure, and purified by column chromatography on silica gel with $\mathrm{PE} / \mathrm{EA}=120: 1(\mathrm{v} / \mathrm{v})$ to afford a pale-yellow solid in 84% yield (101.8 mg). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.19(\mathrm{~m}, 5 \mathrm{H}), 7.02(\mathrm{dd}, J=8.4,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $4.75(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=13.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=13.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.1,162.6(\mathrm{~d}, J=242.5 \mathrm{~Hz}), 138.8,136.6$, $135.4(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 132.9,130.6(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 128.9,128.6,128.5,128.2,127.2,115.1(\mathrm{~d}, J=$

$21.0 \mathrm{~Hz}), 56.1,39.0 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-117.1$. This compound is known. ${ }^{10}$

3-(4-Chlorophenyl)-1,2-diphenylpropan-1-one (3k)

The title compound was prepared according to the Experimental Procedure, and purified by column chromatography on silica gel with $\mathrm{PE} / \mathrm{EA}=50: 1(\mathrm{v} / \mathrm{v})$ to afford white solid in 90% yield (115.4 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.2-7.14(\mathrm{~m}, 5 \mathrm{H}), 7.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.75(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.51(\mathrm{dd}, J=14.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=13.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 198.9,138.7,138.2,136.5,133.0,131.9,130.5,129.0,128.7,128.5,128.3,128.2,127.3,55.8$, 39.4. This compound is known. ${ }^{6}$

3-(2-Chlorophenyl)-1,2-diphenylpropan-1-one (31)

The title compound was prepared according to the Experimental Procedure, and purified by column chromatography on silica gel with $\mathrm{PE} / \mathrm{EA}=100: 1(\mathrm{v} / \mathrm{v})$ to afford white solid in 94% yield (121 mg). mp 69-70 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.33(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 5 \mathrm{H}), 7.10-7.00(\mathrm{~m}, 3 \mathrm{H}), 5.01(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}$, $J=13.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=13.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 199.0$, $139.0,137.2,136.6,134.1,132.9,132.1,129.3,128.9,128.7,128.5,128.2,127.7,127.2,126.5$, 53.1, 38.0. HRMS (EI) m/z: [M] ${ }^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{ClO}: 320.0968$; found: 320.0968 .

3-(2-Bromophenyl)-1,2-diphenylpropan-1-one (3m)

The title compound was prepared according to the Experimental Procedure, and purified by
column chromatography on silica gel with $\mathrm{PE} / \mathrm{EA}=100: 1(\mathrm{v} / \mathrm{v})$ to afford a pale-yellow oil in 83% yield (121.8 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.17(\mathrm{~m}, 5 \mathrm{H}), 7.08-6.98(\mathrm{~m}, 3 \mathrm{H}), 5.04(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=13.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=13.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 198.9,138.9,138.8,136.6,132.9,132.7,132.2,128.9,128.7,128.5,128.2,128.0,127.2$, 127.1, 124.6, 53.2, 40.1. This compound is known. ${ }^{6}$

3-(3-Bromophenyl)-1,2-diphenylpropan-1-one (3n)

The title compound was prepared according to the Experimental Procedure, and purified by column chromatography on silica gel with $\mathrm{PE} / \mathrm{EA}=100: 1(\mathrm{v} / \mathrm{v})$ to afford ligh yellow in 80% yield $(116.3 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.06-6.96(\mathrm{~m}, 2 \mathrm{H}), 4.76(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.52$ $(\mathrm{dd}, J=14.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=13.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 198.7$, $142.1,138.7,136.5,133.0,132.1,129.7,129.3,129.0,128.7,128.5,128.2,127.8,127.3,122.2$, 55.8, 39.7. HRMS (EI) m/z: [M] ${ }^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{BrO}: 364.0463$; found: 364.0464 .

3-(4-Bromophenyl)-1,2-diphenylpropan-1-one (30)

The title compound was prepared according to the Experimental Procedure, and purified by column chromatography on silica gel with $\mathrm{PE} / \mathrm{EA}=50: 1(\mathrm{v} / \mathrm{v})$ to afford a white solid in 85% yield (123.2 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 3 \mathrm{H}), 6.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, 2H), $4.74(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=13.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=14.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 198.9,138.7,138.7,136.5,132.9,131.3,130.9,129.0,128.6,128.5$, $128.2,127.3,120.0,55.7,39.4$. This compound is known. ${ }^{11}$

3-(4-Iodophenyl)-1,2-diphenylpropan-1-one (3p)

The title compound was prepared according to the Experimental Procedure, and purified by column chromatography on silica gel with $\mathrm{PE} / \mathrm{EA}=75: 1(\mathrm{v} / \mathrm{v})$ to afford white solid in 85% yield $(140.6 \mathrm{mg}) . \mathrm{mp} 120-122{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.44(\mathrm{~m}, 3 \mathrm{H})$, 7.37-7.27 (m, 3H), 7.24-7.18 (m, 4H), $6.82(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 4.74(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J$ $=13.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=14.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 198.8,139.4$, $138.7,137.2,136.5,133.0,131.2,129.0,128.7,128.5,128.2,127.3,91.4,55.8,39.6$. HRMS (EI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}]^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{IO}: 412.0324$; found: 412.0326.

1,2-Diphenyl-3-(4-(trifluoromethyl)phenyl)propan-1-one (3q)

The title compound was prepared according to the Experimental Procedure, and purified by column chromatography on silica gel with $\mathrm{PE} / \mathrm{EA}=50: 1(\mathrm{v} / \mathrm{v})$ to afford white solid in 81% yield $(115.7 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 5 \mathrm{H}), 4.79(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=13.6,7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=13.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 198.6,143.9,138.6$, $136.4,133.0,129.5,129.1,128.7,128.5,128.2,127.4,125.1(\mathrm{q}, J=3.6 \mathrm{~Hz}), 124.2(\mathrm{q}, J=270.2$ $\mathrm{Hz}), 55.6,39.7 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ-62.4. This compound is known. ${ }^{6}$

4-(3-Oxo-2,3-diphenylpropyl)benzonitrile (3r)

The title compound was prepared according to the Experimental Procedure, and purified by column chromatography on silica gel with $\mathrm{PE} / \mathrm{EA}=125: 1(\mathrm{v} / \mathrm{v})$ to afford white solid in 82% yield $(102.3 \mathrm{mg}) . \mathrm{mp} 150-152{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $3 \mathrm{H}), 7.35(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 5 \mathrm{H}), 4.76(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.57$ (dd, $J=13.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=14.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 198.4$,
$145.4,138.3,136.3,133.1,132.0,130.0,129.1,128.7,128.6,128.2,127.5,118.9,110.1,55.5$, 40.1. HRMS (EI) m/z: [M] ${ }^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}$: 311.1310; found: 311.1316.

3-(5-Chlorobenzo[b]thiophen-3-yl)-1,2-diphenylpropan-1-one (3s)

The title compound was prepared according to the Experimental Procedure, and purified by column chromatography on silica gel with $\mathrm{PE} / \mathrm{EA}=100: 1(\mathrm{v} / \mathrm{v})$ to afford a pale-yellow solid in 81% yield (122.3 mg). mp 120-122 ${ }^{\circ} \mathrm{C}^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.66(\mathrm{~m}$, $2 \mathrm{H}), 7.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 4 \mathrm{H}), 4.25-4.21(\mathrm{~m}, 4 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=14.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=14.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 198.1,140.1,139.0,136.4,133.4,133.0,130.4,129.1,128.7,128.5,128.1,127.4,125.2$, 124.5, 123.8, 121.2, 53.6, 32.5. HRMS (EI) m/z: [M] ${ }^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{ClOS}: 376.0689$; found: 376.0688 .

(E)-1,2,5-Triphenylpent-4-en-1-one (3t)

The title compound was prepared according to the Experimental Procedure, and purified by column chromatography on silica gel with $\mathrm{PE} / \mathrm{EA}=100: 1(\mathrm{v} / \mathrm{v})$ to afford a pale-yellow solid in 80% yield (95.5 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.9-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.27$ $(\mathrm{m}, 7 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 6 \mathrm{H}), 6.41(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 6.17-6.10(\mathrm{~m}, 1 \mathrm{H}), 4.67(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.14-3.06(m, 1H), 2.75-2.68(m, 1H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.1,139.0,137.4,136.6$, 132.87, 132.0, 129.0, 128.7, 128.5, 128.4, 128.2, 127.7, 127.2, 127.0, 126.0, 54.1, 37.5. This compound is known. ${ }^{12}$

Methyl 2,3-diphenylpropanoate (3u)

The title compound was prepared according to the Experimental Procedure, and purified by column chromatography on silica gel with $\mathrm{PE} / \mathrm{EA}=100: 1(\mathrm{v} / \mathrm{v})$ to afford a yellow oil in 83% yield (95.1 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.12-7.10(\mathrm{~m}, 2 \mathrm{H}), 3.87-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{dd}, J=13.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.03$ $(\mathrm{dd}, J=13.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.8,139.0,138.6,128.9,128.6$, $128.3,127.9,127.4,126.4,53.6,52.0,39.8$. This compound is known. ${ }^{13}$

N,N-dimethyl-2,3-diphenylpropanamide (3v)

The title compound was prepared according to the Experimental Procedure, and purified by column chromatography on silica gel with $\mathrm{PE} / \mathrm{EA}=100: 1(\mathrm{v} / \mathrm{v})$ to afford white solid in 65% yield $(65.4 \mathrm{mg}){ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27-7.15(\mathrm{~m}, 8 \mathrm{H}), 7.09-7.06(\mathrm{~m}, 2 \mathrm{H}), 3.97(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=13.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=13.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 172.5,140.1,139.5,129.1,128.6,128.1,128.0,126.9,126.0,51.2$, $41.2,37.1,35.9$. This compound is known. ${ }^{14}$

2,3,4-Triphenylbutanenitrile (3w)

The title compound was prepared according to the Experimental Procedure, and purified by column chromatography on silica gel with $\mathrm{PE} / \mathrm{EA}=50: 1(\mathrm{v} / \mathrm{v})$ to afford a yellow solid in 91% yield (102.9 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.27(\mathrm{~m}, 10 \mathrm{H}), 7.21-7.12(\mathrm{~m}, 3 \mathrm{H}), 6.90-$ $6.85(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 140.0,134.6,130.5,128.7,127.9$, $127.9,127.4,127.3,121.8,52.9,45.3$. This compound is known. ${ }^{15}$

Diphenyl(2-phenyl-1-(p-tolyl)ethyl)phosphine oxide (3x)

The title compound was prepared according to the Experimental Procedure, and purified by
column chromatography on silica gel with $\mathrm{PE} / \mathrm{EA}=10: 1(\mathrm{v} / \mathrm{v})$ to afford white solid in 76% yield $(120.5 \mathrm{mg}) . \mathrm{mp} 224-226{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.55(\mathrm{~m}$, $3 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.04(\mathrm{~m}, 5 \mathrm{H}), 6.92(\mathrm{~d}, J=$ 8.0 Hz, 2H), $6.82(\mathrm{dd}, J=7.6,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.66-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.30-3.25(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 139.6(\mathrm{~d}, J=14.0 \mathrm{~Hz}), 136.5(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 131.8(\mathrm{~d}, J=2.6 \mathrm{~Hz})$, 131.4 (d, $J=8.2 \mathrm{~Hz}), 131.2(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 131.0(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 129.9(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 128.9(\mathrm{~d}, J=$ $1.3 \mathrm{~Hz}), 128.8(\mathrm{~d}, J=11.2 \mathrm{~Hz}), 128.7(\mathrm{~d}, J=58.0 \mathrm{~Hz}), 128.5(\mathrm{~d}, J=11.5 \mathrm{~Hz}), 126.1,49.0(\mathrm{~d}, J=65.9$ Hz), 35.9, 21.0 . HRMS (EI) m/z: [M] ${ }^{+}$calcd. for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{OP}: 396.1643$; found: 396.1643 .

Methyl 3-phenyl-2-(p-tolyl)propanoate (3y)

The title compound was prepared according to the Experimental Procedure, and purified by column chromatography on silica gel with $\mathrm{PE} / \mathrm{EA}=50: 1(\mathrm{v} / \mathrm{v})$ to afford a colorless oil in 76% yield (77 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-$ $7.10(\mathrm{~m}, 4 \mathrm{H}), 3.82(\mathrm{dd}, J=8.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{dd}, J=13.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}$, $J=13.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 174.0,139.2,137.0,135.6$, $129.3,128.9,128.3,127.8,126.3,53.2,52.0,39.8,21.0$. This compound is known. ${ }^{16}$

Methyl 2-(4-(tert-butyl)phenyl)-3-phenylpropanoate (3z)

The title compound was prepared according to the Experimental Procedure, and purified by column chromatography on silica gel with $\mathrm{PE} / \mathrm{EA}=50: 1(\mathrm{v} / \mathrm{v})$ to afford a colorless oil in 92% yield (109.2 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.14$ $(\mathrm{m}, 3 \mathrm{H}), 3.85(\mathrm{dd}, J=9.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{dd}, J=13.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=$ $13.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.0,150.3,139.3,135.7,128.9$, $128.3,127.4,126.3,125.6,53.1,51.9,40.0,34.5,31.3$. This compound is known. ${ }^{17}$

Methyl 2-(4-fluorophenyl)-3-phenylpropanoate (3za)

The title compound was prepared according to the Experimental Procedure, and purified by column chromatography on silica gel with $P E / E A=100: 1(\mathrm{v} / \mathrm{v})$ to afford a colorless oil in 70% yield (72 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{dd}, J=13.6,7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=13.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.7,163.3(\mathrm{~d}, J=244.3$ Hz) $138.7,134.3(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 129.6(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 128.9,128.4,126.5,115.6(\mathrm{~d}, J=21.3 \mathrm{~Hz})$, $52.7(\mathrm{~d}, J=74.5 \mathrm{~Hz}), 39.8,29.7 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta:-115.2 . \mathrm{HRMS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}:[\mathrm{M}]^{+}$calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{FO}_{2}: 258.1056$; found: 258.1059 .

Methyl 2-(4-chlorophenyl)-3-phenylpropanoate (3zb)

The title compound was prepared according to the Experimental Procedure, and purified by column chromatography on silica gel with $\mathrm{PE} / \mathrm{EA}=100: 1(\mathrm{v} / \mathrm{v})$ to afford a colorless oil in 83% yield (92.1 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 6 \mathrm{H}), 7.09-7.07$ $(\mathrm{m}, 2 \mathrm{H}), 3.82(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{dd}, J=13.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=14.0$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 173.5,138.5,136.9,133.3,129.4,128.9,128.8$, $128.4,126.5,53.0,52.1,39.7$. This compound is known. ${ }^{16}$

Methyl 2-(4-bromophenyl)-3-phenylpropanoate (3zc)

The title compound was prepared according to the Experimental Procedure, and purified by column chromatography on silica gel with $\mathrm{PE} / \mathrm{EA}=50: 1(\mathrm{v} / \mathrm{v})$ to afford a colorless oil in 70% yield (88.9 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.19-$ $7.15(\mathrm{~m}, 3 \mathrm{H}), 7.09-7.07(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{dd}, J=13.6,8.4 \mathrm{~Hz}$,
$1 \mathrm{H}), 2.99(\mathrm{dd}, J=13.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.4,138.5,137.5,131.7$, $129.7,128.9,128.4,126.5,121.4,53.0,52.1,39.6$. This compound is known. ${ }^{18}$

Methyl 2-(2-iodophenyl)-3-phenylpropanoate (3zd)

The title compound was prepared according to the Experimental Procedure, and purified by column chromatography on silica gel with $\mathrm{PE} / \mathrm{EA}=50: 1(\mathrm{v} / \mathrm{v})$ to afford pale-yellow oil in 78% yield $(114.5 \mathrm{mg}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.32$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.96-6.92(\mathrm{~m}, 1 \mathrm{H}), 4.36(\mathrm{dd}, J=9.2$, $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{dd}, J=13.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=12.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 173.2,141.5,139.8,138.5,129.1,129.0,128.7,128.3,127.9,126.9$, 101.4, 56.9, 52.1, 39.6. This compound is known. ${ }^{19}$

Methyl 2-(4-cyanophenyl)-3-phenylpropanoate (3ze)

The title compound was prepared according to the Experimental Procedure, and purified by column chromatography on silica gel with $\mathrm{PE} / \mathrm{EA}=50: 1(\mathrm{v} / \mathrm{v})$ to afford a colorless solid in 54% yield (57.1 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.26-7.18 (m, 3H), $7.05(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{dd}, J=$ $13.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=13.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.7,143.6$, $137.9,132.4,128.9,128.8,128.5,126.7,118.6,111.4,53.6,52.3,39.6$. This compound is known. ${ }^{20}$

Methyl 4-(1-methoxy-1-oxo-3-phenylpropan-2-yl)benzoate (3zf)

The title compound was prepared according to the Experimental Procedure, and purified by column chromatography on silica gel with $\mathrm{PE} / \mathrm{EA}=25: 1(\mathrm{v} / \mathrm{v})$ to afford a pale-yellow oil in 72% yield (86.2 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.23-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.69-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.42$ (dd, $J=13.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=14.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.2$, $166.8,143.6,138.4,129.9,129.3,128.9,128.4,128.1,126.5,53.6,52.2,52.1,39.6$. This compound is known. ${ }^{21}$

Methyl 3-phenyl-2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)propanoate (3zg)

The title compound was prepared according to the Experimental Procedure, and purified by column chromatography on silica gel with $\mathrm{PE} / \mathrm{EA}=50: 1(\mathrm{v} / \mathrm{v})$ to afford a colorless oil in 60% yield (87.9 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.09(\mathrm{~m}, 3 \mathrm{H}), 3.88-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{dd}, J=13.6,8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.03(\mathrm{dd}, J=13.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.6,141.7$, $138.9,135.1,128.9,128.3,128.2,127.4,126.4,83.8,53.7,52.0,39.6,24.8$. This compound is known. ${ }^{20}$

Methyl 2-(naphthalen-2-yl)-3-phenylpropanoate (3zh)

The title compound was prepared according to the Experimental Procedure, and purified by column chromatography on silica gel with $\mathrm{PE} / \mathrm{EA}=100: 1(\mathrm{v} / \mathrm{v})$ to afford white solid in 52% yield (60.9 mg). mp 51-53 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82-7.73(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 3 \mathrm{H})$, $7.24-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 3 \mathrm{H}), 4.02(\mathrm{dd}, J=8.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{dd}, J=$ 13.6, 8.4 Hz, 1H), $3.14(\mathrm{dd}, J=13.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.8,139.0$, $136.0,133.4,132.7,130.5,128.9,128.4,127.9,127.8,127.6,126.9,126.4,126.2,125.9,53.7$,
52.0, 39.7. HRMS (EI) m/z: [M] ${ }^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{2}: 290.1307$; found: 290.1306 .

Methyl 2-(6-methoxynaphthalen-2-yl)-2-methyl-3-phenylpropanoate (3zi)

The title compound was prepared according to the Experimental Procedure, and purified by column chromatography on silica gel with $\mathrm{PE} / \mathrm{EA}=50: 1(\mathrm{v} / \mathrm{v})$ to afford white solid in 80% yield $(107.1 \mathrm{mg}) . \mathrm{mp} 118.6-120^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{dd}, J=14.8,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.60$ $(\mathrm{d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.12(\mathrm{~m}, 5 \mathrm{H}), 6.91-6.89(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{~s}$, $3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 176.5,157.8,138.3,137.4,133.4,130.5,129.6,128.6,127.8,126.8,126.4$, 125.4, 124.6, 118.9, 105.4, 55.3, 52.2, 51.2, 45.2, 22.1. HRMS (EI) m/z: [M] calcd. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{3}$: 334.1569; found: 334.1571 .

(E)-1,2,3-Triphenylprop-2-en-1-one (4a)

The title compound was prepared according to the Procedure for the Synthesis of α, β unsaturated ketones, and purified by column chromatography on silica gel with $P E / E A=50: 1(\mathrm{v} / \mathrm{v})$ to afford a pale-yellow solid in 90% yield $(51.1 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 4 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 199.4,140.8,138.0,136.3,135.4,133.6,130.1,129.7,128.9$, $128.8,128.7,128.4,128.2,128.0,126.4$. This compound is known. ${ }^{22}$

4.References

(1) Maity, P.; Shacklady-McAtee, D. M.; Yap, G. P. A.; Sirianni, E. R.; Watson, M. P. J. Am. Chem. Soc. 2013, 135, 280-285.
(2) Cao, Y. J.; Liu, L.; Huang, T. Z.; Chen, T. Q. New J. Chem., 2020, 44, 8697-8701.
(3) Bugarin, A.; Connell, B. T. Chem. Commun. 2011, 47, 7218-7220.
(4) Alanthadka, A.; Bera, S.; Banerjee, D. J. Org. Chem. 2019, 84, 11676-11686.
(5) Sido, A. S. S.; Chassaing, S.; Kumarraja, M.; Paleb, P.; Sommera, J. Tetrahedron Lett 2007, 48, 5911-5914.
(6) Cao, X.-N.; Wan, X.-M.; Yang, F.-L.; Li, K.; Hao, X.-Q.; Shao, T.; Zhu, X. J.; Song, M.-P. J. Org. Chem. 2018, 83, 3657-3668.
(7)Alanthadka, A.; Bera, S.; Banerjee, D. J. Org. Chem. 2019, 84, 11676-11686.
(8) Kabadwal, L. M.; Das, J.; Banerjee, D. Chem. Commun. 2018, 54, 14069-14072.
(9) Zimmerman, H. E.; Nuss, J. M.; Tantillo, A. W. J. Org. Chem. 1988, 53, 3792-3803.
(10) Kaiser, D.; Veiros, L. F.; Maulidea, N. Adv. Synth. Catal. 2017, 359, 64-77.
(11) Schlepphorst, C.; Maji, B.; Glorius, F. ACS Catal. 2016, 6, 4184-4188.
(12) Watson, R. B.; Schindler, C. S. Org. Lett. 2018, 20, 68-71.
(13) Sang, R.; Kucmierczyk, P.; Dong, K. W.; Franke, R.; Neumann, H.; Jackstell, R.; Beller, M. J. Am. Chem. Soc. 2018, 140, 5217-5223.
(14) Lambert, C.;Caillaux, B.; Viehe, H, G. Tetrahedron Lett 1985, 41, 3331-3338.
(15) Orecchia, P.; Yuan, W. M.; Oestreich, M. Angew. Chem. Int. Ed. 2019, 58, 3579-3583.
(16) Mbuvi, H. M.; Woo, L. K. Porphyrins Phthalocyanines 2009, 13, 136-152.
(17) Ornstein, P. L.; Zimmerman, D. M.; Arnold, M. B.; Bleisch, T. J.; Cantrell, B.; Simon, R.; Zarrinmayeh, H.; Baker, S. R.; Gates, M.; Tizzano, J. P.; Bleakman, D.; Mandelzys, A.; Jarvie. K. R.; Ho, K.; Deverill, M.; Kamboj, R. K. J. Med. Chem. 2000, 43, 4354-4358.
(18) Davies, H. M. L.; Jin, Q. H.; Ren, P. D.; Kovalevsky, A. Y. J. Org. Chem. 2002, 67, 41654169.
(19) Altermann, S. M.; Richardson, R. D.; Page, T. K.; Schmidt, R. K.; Holland, E.; Mohammed, U.; Paradine, S. M.; French, A. N.; Richter, C.; Bahar, A. M.; Witulski, B.; Wirth, T. Eur. J. Org. Chem. 2008, 31, 5315-5328
(20) Wang, H.; Gao, Y. Z.; Zhou, C. L.; Li, G. J. Am. Chem. Soc. 2020, 142, 8122-8129.
(21) Wang, D.-M.; Feng, W.; Wu, Y. C.; Liu, T.; Wang, P. Angew. Chem. Int. Ed. 2020, 59, 20399-20404.
(22) Shan, L. D.; Wu, G.; Liu, M. C.; Gao, W. X.; Ding, J. C.; Huang, X. B.; Wu, H. Y. Org. Chem. Front. 2018, 5, 1651-1654.

5. Copies of ${ }^{\mathbf{1}} \mathbf{H},{ }^{13} \mathbf{C}$ NMR Spectra of the Products

${ }^{1} H$ NMR Spectrum of 1,2,3-triphenylpropan-1-one (3a)

${ }^{13} \mathrm{C}$ NMR Spectrum of1,2,3-triphenylpropan-1-one (3a)

${ }^{1} \mathrm{H}$ NMR Spectrum of 1,2-diphenyl-3-(o-tolyl)propan-1-one (3b)

${ }^{13}$ C NMR Spectrum of 1,2-diphenyl-3-(o-tolyl)propan-1-one (3b)
-199.305

200

${ }^{1} \mathrm{H}$ NMR Spectrum of 1,2-diphenyl-3-(p-tolyl)propan-1-one (3c)

${ }^{13} \mathrm{C}$ NMR Spectrum of 1,2-diphenyl-3-(p-tolyl)propan-1-one (3c)
त्से
i
i

\%
0
0
0
0
N

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	1	10	,	-10
									10		(ppm)								1		-10

${ }^{1} \mathrm{H}$ NMR Spectrum of 3-(4-methoxyphenyl)-1,2-diphenylpropan-1-one (3d)

${ }^{13}$ C NMR Spectrum of 3-(4-methoxyphenyl)-1,2-diphenylpropan-1-one (3d)

${ }^{1} \mathrm{H}$ NMR Spectrum of 3-(4-(methylthio)phenyl)-1,2-diphenylpropan-1-one (3e)

${ }^{13}$ C NMR Spectrum of 3-(4-(methylthio)phenyl)-1,2-diphenylpropan-1-one (3e)
8
8
1

${ }^{1} \mathrm{H}$ NMR Spectrum of 3-(4-(tert-butyl)phenyl)-1,2-diphenylpropan-1-one (3f)

${ }^{13}$ C NMR Spectrum of 3-(4-(tert-butyl)phenyl)-1,2-diphenylpropan-1-one (3f)

${ }^{1} \mathrm{H}$ NMR Spectrum of 3-([1,1'-biphenyl]-4-yl)-1,2-diphenylpropan-1-one (3g)

${ }^{13}$ C NMR Spectrum of 3-([1,1'-biphenyl]-4-yl)-1,2-diphenylpropan-1-one (3g)

	19		17					1													
200	190	180	170	160	150	140	130	120	110	100	(ppm) ${ }^{90}$	80	70	60	50	40	30	20	10	0	-10

${ }^{1} \mathrm{H}$ NMR Spectrum of 3-(benzo[d][1,3]dioxol-5-yl)-1,2-diphenylpropan-1-one (3h)

${ }^{13}$ C NMR Spectrum of 3-(benzo[d][1,3]dioxol-5-yl)-1,2-diphenylpropan-1-one (3h)
$\stackrel{\overline{\overline{0}}}{\stackrel{\rightharpoonup}{\phi}}$
$\stackrel{2}{\bar{\alpha}}$
$\stackrel{\rightharpoonup}{p}$

${ }^{1} \mathrm{H}$ NMR Spectrum of 3-(naphthalen-1-yl)-1,2-diphenylpropan-1-one (3i)

${ }^{13} \mathrm{C}$ NMR Spectrum of 3-(naphthalen-1-yl)-1,2-diphenylpropan-1-one (3i)

```
#
```



```
M8%g
```


${ }^{1} \mathrm{H}$ NMR Spectrum of 3-(4-fluorophenyl)-1,2-diphenylpropan-1-one (3j)

${ }^{13}$ C NMR Spectrum of 3-(4-fluorophenyl)-1,2-diphenylpropan-1-one (3j)

${ }^{19}$ F NMR Spectrum of 3-(4-fluorophenyl)-1,2-diphenylpropan-1-one (3j)
$\stackrel{\varrho}{i}$

${ }^{1}$ H NMR Spectrum of 3-(4-chlorophenyl)-1,2-diphenylpropan-1-one (3k)

${ }^{13}$ C NMR Spectrum of 3-(4-chlorophenyl)-1,2-diphenylpropan-1-one (3k)

${ }^{1} \mathrm{H}$ NMR Spectrum of 3-(2-chlorophenyl)-1,2-diphenylpropan-1-one (3I)

${ }^{13} \mathrm{C}$ NMR Spectrum of 3-(2-chlorophenyl)-1,2-diphenylpropan-1-one (3I)

${ }^{1}$ H NMR Spectrum of 3-(2-bromophenyl)-1,2-diphenylpropan-1-one (3m)

\%
8
0
1

${ }^{13} \mathrm{C}$ NMR Spectrum of 3-(2-bromophenyl)-1,2-diphenylpropan-1-one (3m)

${ }^{1}$ H NMR Spectrum of 3-(3-bromophenyl)-1,2-diphenylpropan-1-one (3n)

8
8
1

${ }^{13}$ C NMR Spectrum of 3－（3－bromophenyl）－1，2－diphenylpropan－1－one（3n）

${ }^{1} \mathrm{H}$ NMR Spectrum of 3－（4－bromophenyl）－1，2－diphenylpropan－1－one（30）
或ぎす

$$
\begin{aligned}
& 8 \\
& \hline
\end{aligned}
$$

${ }^{13} \mathrm{C}$ NMR Spectrum of 3-(4-bromophenyl)-1,2-diphenylpropan-1-one (30)

${ }^{1} \mathrm{H}$ NMR Spectrum of 3-(4-iodophenyl)-1,2-diphenylpropan-1-one (3p)

$$
\begin{aligned}
& 8 \\
& 0 \\
& 1
\end{aligned}
$$

${ }^{13} \mathrm{C}$ NMR Spectrum of 3-(4-iodophenyl)-1,2-diphenylpropan-1-one (3p)

${ }^{1} \mathrm{H}$ NMR Spectrum of 1,2-diphenyl-3-(4-(trifluoromethyl)phenyl)propan-1-one (3q)

${ }^{13} \mathrm{C}$ NMR Spectrum of 1,2-diphenyl-3-(4-(trifluoromethyl)phenyl)propan-1-one (3q)

${ }^{19}$ F NMR Spectrum of 1,2-diphenyl-3-(4-(trifluoromethyl)phenyl)propan-1-one (3q)

${ }^{1} \mathrm{H}$ NMR Spectrum of 4-(3-oxo-2,3-diphenylpropyl)benzonitrile (3r)

${ }^{13} \mathrm{C}$ NMR Spectrum of 4-(3-oxo-2,3-diphenylpropyl)benzonitrile (3r)

${ }^{1} \mathrm{H}$ NMR Spectrum of 3－（5－chlorobenzo［b］thiophen－3－yl）－1，2－diphenylpropan－1－one（3s）

${ }^{13} \mathrm{C}$ NMR Spectrum of 3－（5－chlorobenzo［b］thiophen－3－yl）－1，2－diphenylpropan－1－one（3s）

$\stackrel{\circ}{\pi}$
$\stackrel{\leftrightarrow}{4}$

这
ジ

[^0]${ }^{1} \mathrm{H}$ NMR Spectrum of (E)-1,2,5-triphenylpent-4-en-1-one (3t)

${ }^{13} \mathrm{C}$ NMR Spectrum of (E)-1,2,5-triphenylpent-4-en-1-one (3t)

${ }^{1} \mathrm{H}$ NMR Spectrum of methyl 2,3-diphenylpropanoate (3u)

${ }^{13}$ C NMR Spectrum of methyl 2,3-diphenylpropanoate (3u)

${ }^{1} \mathrm{H}$ NMR Spectrum of N,N-dimethyl-2,3-diphenylpropanamide (3v)

${ }^{13}$ C NMR Spectrum of N,N-dimethyl-2,3-diphenylpropanamide (3v)

${ }^{1} \mathrm{H}$ NMR Spectrum of 2,3,4-triphenylbutanenitrile (3w)

${ }^{13}$ C NMR Spectrum of 2,3,4-triphenylbutanenitrilen (3w)

${ }^{1} \mathrm{H}$ NMR Spectrum of diphenyl(2-phenyl-1-(p-tolyl)ethyl)phosphine oxide (3x)

${ }^{13} \mathrm{C}$ NMR Spectrum of diphenyl(2-phenyl-1-(p-tolyl)ethyl)phosphine oxide (3x)

${ }^{1}$ H NMR Spectrum of methyl 3-phenyl-2-(p-tolyl)propanoate (3y)

${ }^{13}$ C NMR Spectrum of methyl 3-phenyl-2-(p-tolyl)propanoate (3y)

${ }^{1} \mathrm{H}$ NMR Spectrum of methyl 2-(4-(tert-butyl)phenyl)-3-phenylpropanoate (3z)

${ }^{13}$ C NMR Spectrum of methyl 2-(4-(tert-butyl)phenyl)-3-phenylpropanoate (3z)
8
1
1

${ }^{1}$ H NMR Spectrum of methyl 2-(4-fluorophenyl)-3-phenylpropanoate (3za)

${ }^{13} \mathrm{C}$ NMR Spectrum of methyl 2-(4-fluorophenyl)-3-phenylpropanoate (3za)

[^1]${ }^{19}$ F NMR Spectrum of methyl 2-(4-fluorophenyl)-3-phenylpropanoate (3za)

${ }^{1} \mathrm{H}$ NMR Spectrum of methyl 2-(4-chlorophenyl)-3-phenylpropanoate (3zb)

${ }^{13} \mathrm{C}$ NMR Spectrum of methyl 2-(4-chlorophenyl)-3-phenylpropanoate (3zb)

${ }^{1} \mathrm{H}$ NMR Spectrum of methyl 2-(4-bromophenyl)-3-phenylpropanoate (3zc)

${ }^{13} \mathrm{C}$ NMR Spectrum of methyl 2-(4-bromophenyl)-3-phenylpropanoate (3zc)
$\stackrel{n}{2}$
$\stackrel{n}{1}$
$\stackrel{1}{1}$

${ }^{1} \mathrm{H}$ NMR Spectrum of methyl 2-(2-iodophenyl)-3-phenylpropanoate (3zd)

${ }^{13} \mathrm{C}$ NMR Spectrum of methyl 2-(2-iodophenyl)-3-phenylpropanoate (3zd)

$\frac{2}{\frac{\alpha}{1}}$	 	$\begin{gathered} \overline{g_{0}^{\prime}} \\ \stackrel{\rightharpoonup}{\overline{1}} \end{gathered}$		8 \% \% ¢ 1

${ }^{1} \mathrm{H}$ NMR Spectrum of methyl 2-(4-cyanophenyl)-3-phenylpropanoate (3ze)

8
8
i

${ }^{13} \mathrm{C}$ NMR Spectrum of methyl 2-(4-cyanophenyl)-3-phenylpropanoate (3ze)

${ }^{1} \mathrm{H}$ NMR Spectrum of methyl 4-(1-methoxy-1-oxo-3-phenylpropan-2-yl)benzoate (3zf)

8
8
i

${ }^{13} \mathrm{C}$ NMR Spectrum of methyl 4-(1-methoxy-1-oxo-3-phenylpropan-2-yl)benzoate (3zf)

${ }^{1} \mathrm{H}$ NMR Spectrum of methyl 3-phenyl-2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)phenyl)propanoate (3zg)

${ }^{13} \mathrm{C}$ NMR Spectrum of methyl 3-phenyl-2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)phenyl)propanoate (3zg)

${ }^{1} \mathrm{H}$ NMR Spectrum of methyl 2-(naphthalen-2-yl)-3-phenylpropanoate (3zh)

${ }^{13} \mathrm{C}$ NMR Spectrum of methyl 2-(naphthalen-2-yl)-3-phenylpropanoate (3zh)

${ }^{1} H$ NMR Spectrum of methyl 2-(6-methoxynaphthalen-2-yl)-2-methyl-3-phenylpropanoate (3zi)

${ }^{13} \mathrm{C}$ NMR Spectrum of methyl 2-(6-methoxynaphthalen-2-yl)-2-methyl-3-phenylpropanoate (3zi)

${ }^{1} \mathrm{H}$ NMR Spectrum of (E)-1,2,3-triphenylprop-2-en-1-one (4a)

${ }^{13}$ C NMR Spectrum of (E)-1,2,3-triphenylprop-2-en-1-one (4a)

[^0]:

[^1]: $\begin{array}{lllllllllllllllllll}1 \\ 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 9 & & 1\end{array}$

