Supplementary Information

Deuteration of terminal alkynes realizes simultaneous live cell Raman imaging of similar alkyne-tagged biomolecules

Syusuke Egoshi, ${ }^{\text {a }}$ Kosuke Dodo, ${ }^{* a b}$ Kenji Ohgane ${ }^{\text {a }}$ and Mikiko Sodeoka*ab
*To whom correspondence should be addressed. Tel: +81-48-467-9373; Fax: +81-48-462-4666; e-mail: dodo@riken.jp and sodeoka@riken.jp
${ }^{\text {a }}$ Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
${ }^{\mathrm{b}}$ RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan

Contents

Supporting Scheme and Figures

Figure S1-S7 and Scheme S1 S2
Chemistry
General S11
Synthesis of deuterated terminal alkynes. S11
Biology
Cell culture S12
Raman experiments
Density functional theory calculation method S12
Raman spectra of alkynes S14
Molar ratio vs Raman peak-area ratio of \mathbf{H}-alkyne and D-alkyne S14
Analysis of \mathbf{H} / \mathbf{D} exchange of alkynes S14
Raman imaging of HeLa cells treated with C18 fatty acids S14
References. S15
NMR spectra S16

Figure S1 Comparison of Raman spectra between H-alkynes and D-alkynes. Left: Raman spectra collected from 710 to $3100 \mathrm{~cm}^{-1}$. Right: Raman spectra obtained from 2500 to $3500 \mathrm{~cm}^{-1}$. Raman spectra are shown without background using a modified polyfit technique. ${ }^{1}$ a) Raman spectra of $\mathbf{1}$ and D-1. The ratio of the peak areas at $1985 \mathrm{~cm}^{-1}$ for deuterated $\mathrm{C} \equiv \mathrm{C}$ and $2121 \mathrm{~cm}^{-1}$ for protonated $\mathrm{C} \equiv \mathrm{C}$ was 1:0.004 in Raman spectra of D-1. b) Raman spectra of $\mathbf{2}$ and D-2. The ratio of the peak areas at $1874 \mathrm{~cm}^{-1}$ for deuterated $\mathrm{C} \equiv \mathrm{C}$ and $2110 \mathrm{~cm}^{-1}$ for protonated $\mathrm{C} \equiv \mathrm{C}$ was 1:0.006 in Raman spectra of D-2.

Figure $\mathbf{S 2}$ Correlation curves obtained from the molar ratio vs. Raman peak area ratio of a) D-1/1 (D$\mathbf{1}$ at $1977 \mathrm{~cm}^{-1}$ and $\mathbf{1}$ at $2116 \mathrm{~cm}-1$) and b) D-2/2 (D-2 at $1970 \mathrm{~cm}^{-1}$ and $\mathbf{2}$ at $2109 \mathrm{~cm}^{-1}$). The Raman peak area ratios of the D -alkynes were obtained as percentages from mixtures of various molar ratios of the H / D-alkynes (100 mM in total) in DMSO. Data are presented as mean \pm SD.

```
a)
                                    D-1 (D-alkyne) \(\rightarrow 1\) (H-alkyne)
```



```
b)
```


Figure S3 Real-time analysis of D/H exchange from the D-alkynes to the H -alkynes in pH 7.0 phosphate buffer at different temperatures $\left(4,20\right.$, and $\left.37^{\circ} \mathrm{C}\right)$ for a) D-1 and b) D-2. Data are presented as mean $\pm \mathrm{SD}$.

a)

Figure S4 Real-time analysis of H / D exchange from the H -alkynes to the D -alkynes at different pD (6.0, 7.0 and 8.0) in deuterated phosphate buffer at $37^{\circ} \mathrm{C}$ for a) $\mathbf{1}$ and b) $\mathbf{2}$. Data are presented as mean \pm SD.

$\mathrm{NaOD}, \mathrm{D}_{2} \mathrm{O}$, EtOD $40^{\circ} \mathrm{C}$, overnight evaporation
$\mathrm{D}_{2} \mathrm{O}, \mathrm{EtOD}$
$40^{\circ} \mathrm{C}$, overnight
evaporation
$\mathrm{D}_{2} \mathrm{O}$, EtOD
$40^{\circ} \mathrm{C}$, overnight
99% yield

Scheme S1 Synthesis of D-labeled octadecynoic acid (D-3).

Figure S5 Raman spectra of the alkyne-containing C18 fatty acids of a) 3, b) D-3 (alkyne peak area of D-3:3 = 1:0.013), and c) 5.

Figure S6 Raman images of H-alkyne and D-alkyne signals in Hela cells treated with D-3 and EdU. HeLa cells were treated with $100 \mu \mathrm{M} \mathrm{D}-3$ for 6 h after 22 hour cultivation with $40 \mu \mathrm{M} \mathrm{EdU}$. Images were obtained from the Raman intensity of the D-alkyne detected at $1987 \mathrm{~cm}^{-1}$ and H -alkyne detected at $2120 \mathrm{~cm}^{-1}$. Two-color Raman images are the overlapped Raman images of the D-alkyne (red) and Halkyne (green). Scale bars are $10 \mu \mathrm{~m}$.

Figure S7 Raman images of H-alkyne or D-alkyne in HeLa cells treated with $\mathbf{3}$ or D-3 at different doses $(100,200$, or $400 \mu \mathrm{M})$ and times (3,6 , or 9 h). Raman images were obtained from the Raman intensity of the a) H -alkyne of $\mathbf{3}$ detected at $2120 \mathrm{~cm}^{-1}$ and b) D-alkyne of D-3 detected at $1987 \mathrm{~cm}^{-1}$. Scale bars are $10 \mu \mathrm{~m}$.

Figure $\mathbf{S 8}$ Raman images of the H -alkyne and \mathbf{C}-H bonds of cis-olefin in HeLa cells treated with $\mathbf{3}$ and 4 at different dose ratios ($1: 1,2: 1$, or $4: 1$) for 6 h . Images were obtained from the Raman intensity of the H -alkyne detected at $2120 \mathrm{~cm}^{-1}$ and the C-H bonds of cis-olefin detected at $3015 \mathrm{~cm}^{-1}$. Two-color Raman images are the overlapped Raman images of the H -alkyne (red) and the C -H bond of cis-olefin (green). Scale bars are $10 \mu \mathrm{~m}$.

Chemistry

General

${ }^{1} \mathrm{H},{ }^{2} \mathrm{H}$, and ${ }^{13} \mathrm{C}$ NMR spectra were recorded using a JNM-ECS 400 spectrometer and JNM-ECA 500 spectrometer (JEOL Inc., Japan). ESI-HRMS was taken on a micrOTOF-QII-rsL (Bruker Daltonics Inc., USA). APCI-HRMS was taken on a Synapt G2 (Waters corp., USA). Column chromatography was performed using silica gel $60(40-100 \mu \mathrm{~m})$ purchased from Kanto Chemical Co., Ltd. (Japan). Chemical reagents and solvents were purchased from Tokyo Chemical Industry Co., Ltd. (Japan), FUJIFILM Wako Pure Chemical Corp. (Japan), Nacalai Tesque, Inc. (Japan), and Sigma-Aldrich Japan, Inc. (Japan). 17-octadecynoic acid (3) and (9Z)-9-octadecen-17-ynoic acid (5) were purchased from Cayman Chemical Co., Inc. (USA), and oleic acid (4) was purchased from Tokyo Chemical Industry Co., Ltd. (Japan).

Synthesis of deuterated terminal alkynes

Deuterated 6-heptyn-1-ol (D-1)

To a solution of 6-heptyn-1-ol ($\mathbf{1}, 184.5 \mathrm{mg}, 1.645 \mathrm{mmol}$) in dry ethanol- $\mathrm{d}_{1}(6.0 \mathrm{~mL})$ was added $\mathrm{D}_{2} \mathrm{O}$ $(1.0 \mathrm{~mL})$ and $1 \mathrm{~N} \mathrm{NaOD}\left(1.0 \mathrm{~mL}\right.$, in $\left.\mathrm{D}_{2} \mathrm{O}\right)$, and then the solution was stirred at room temperature overnight. After stirring overnight, the solvent was evaporated, and ethanol- $\mathrm{d}_{1}(6.0 \mathrm{~mL})$ and $\mathrm{D}_{2} \mathrm{O}(2.0$ mL) were added to the dried residue. The solution was stirred again overnight, and the same operation was repeated twice. The resulting solution was cooled to $0{ }^{\circ} \mathrm{C}$, and then $1 \mathrm{~N} \mathrm{KDSO}\left(1.2 \mathrm{~mL}\right.$, in $\left.\mathrm{D}_{2} \mathrm{O}\right)$ was added. After the solution was concentrated, the residue was purified by column chromatography (EtOAc:hexane $=1: 4$ to 1:1) to yield the desired alkyne (D-1, $96.0 \mathrm{mg}, 0.848 \mathrm{mmol}, 52 \%)$ as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.65(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.63-1.45(\mathrm{~m}, 6 \mathrm{H})$, $1.39(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 84.1(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{C}), 68.2(\mathrm{t}, J=38.1 \mathrm{~Hz}, 1 \mathrm{C}), 62.9$, 32.3, 28.3, 25.0, 18.4. ${ }^{2} \mathrm{H}$ NMR ($77 \mathrm{MHz}, \mathrm{CHCl}_{3}$): 1.94 (br s, 1H). HRMS (APCI): Calculated for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{DO}^{+}[\mathrm{M}+\mathrm{H}]^{+}, 114.1024$: found, 114.1028.

Deuterated 4-ethynylbenzyl alcohol (D-2)

To a solution of 4-ethynylbenzyl alcohol ($\mathbf{2}, 131.2 \mathrm{mg}, 0.993 \mathrm{mmol}$) in dry ethanol-d $(7.5 \mathrm{~mL})$ was added $\mathrm{D}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ and $1 \mathrm{~N} \mathrm{NaOD}\left(1.5 \mathrm{~mL}\right.$, in $\left.\mathrm{D}_{2} \mathrm{O}\right)$, and then the solution was stirred at room temperature overnight. The solvent was then evaporated, and ethanol- $\mathrm{d}_{1}(7.5 \mathrm{~mL})$ and $\mathrm{D}_{2} \mathrm{O}(2.5 \mathrm{~mL})$
were added to the dried residue. The solution was stirred again overnight, and solvent was evaporated; this same procedure was repeated twice more. The final solution was cooled to $0{ }^{\circ} \mathrm{C}$ and then 1 N $\mathrm{KDSO}_{4}\left(2 \mathrm{~mL}\right.$, in $\left.\mathrm{D}_{2} \mathrm{O}\right)$ was added. After the solution was concentrated, the residue was purified by column chromatography (EtOAc:hexane $=1: 4$ to 1:1) to yield the desired alkyne (D-2, $130.6 \mathrm{mg}, 0.981$ mmol, 99%) as a white solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz , methanol-d d): $\delta 7.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz , methanol-d 4): $\delta 143.6,133.0,127.8(2 \mathrm{C}), 122.5(2 \mathrm{C}), 83.9(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{C})$, 78.1 (t, $J=38.6 \mathrm{~Hz}, 1 \mathrm{C}$), 64.7. ${ }^{2} \mathrm{H}$ NMR (77 MHz , methanol): 3.39 (br s, 1H). HRMS (ESI): Calculated for $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{DO}^{-}[\mathrm{M}-\mathrm{H}]^{-}, 132.0565$: found, 132.0566.

Octadec-17-ynoic-18-d acid (D-3)

To a solution of 17 -octadecynoic acid ($\mathbf{3}, 9.8 \mathrm{mg}, 35.9 \mu \mathrm{~mol}$) in dry ethanol- $\mathrm{d}_{1}(1.0 \mathrm{~mL})$ was added $\mathrm{D}_{2} \mathrm{O}$ ($450 \mu \mathrm{~L}$) and $1 \mathrm{~N} \mathrm{NaOD} \mathrm{(} 50 \mu \mathrm{~L}$, in $\mathrm{D}_{2} \mathrm{O}$), and then the solution was warmed to $40{ }^{\circ} \mathrm{C}$ and stirred overnight. After stirring overnight, the solvent was evaporated, and ethanol- $\mathrm{d}_{1}(600 \mu \mathrm{~L})$ and $\mathrm{D}_{2} \mathrm{O}(300$ $\mu \mathrm{L}$) were added to the dried residue. The solution was then warmed again at $40^{\circ} \mathrm{C}$, stirred overnight, and the solvent was evaporated; this same operation was repeated twice. The resulting solution was cooled to $0{ }^{\circ} \mathrm{C}$, and then $1 \mathrm{~N} \mathrm{KDSO}_{4}\left(100 \mu \mathrm{~L}\right.$, in $\left.\mathrm{D}_{2} \mathrm{O}\right)$ was added. After the solution was concentrated, the residue was purified by column chromatography (EtOAc:hexane $=1: 4$) to yield the desired alkyne (D-3, $9.8 \mathrm{mg}, 0.848 \mathrm{mmol}, 99 \%$) as a white solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.35(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-1.59(\mathrm{~m}, 2 \mathrm{H})$, $1.56-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.25(\mathrm{~m}, 22 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 179.9,84.5(\mathrm{t}, \boldsymbol{J}=7.3 \mathrm{~Hz}, 1 \mathrm{C})$, $67.9(\mathrm{t}, \boldsymbol{J}=37.6 \mathrm{~Hz}, 1 \mathrm{C}), 34.1,29.8$ (3C), 29.8 (2C), 29.8, 29.7, 29.6, 29.4, 29.3, 29.2, 28.9, 28.7, 24.8. ${ }^{2} \mathrm{H}$ NMR ($77 \mathrm{MHz}, \mathrm{CHCl}_{3}$): 1.93 (br s, 1H). HRMS (ESI): Calculated for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{DO}_{2}{ }^{-}[\mathrm{M}-\mathrm{H}]{ }^{-}$, 280.2392: found, 280.2390 .

Biology

Cell culture

HeLa cells were maintained in Dulbecco's modified Eagle's medium supplemented with $100 \mathrm{U} / \mathrm{mL}$ penicillin, $100 \mu \mathrm{~g} / \mathrm{mL}$ streptomycin, and 10% heat-inactivated fetal bovine serum (FBS). The cells were grown in a humidified incubator at $37^{\circ} \mathrm{C}$ under $5 \% \mathrm{CO}_{2} / 95 \%$ air.

Raman experiments

Density functional theory calculation method

DFT calculations were done by using "Gaussian 16 " software. ${ }^{2}$ The calculations (geometry optimizations and frequency calculations) of 1-hexyne/D-1-hexyne were done in water by using the B3LYP functional and the $6-31 G^{*}$ basis set. Final geometries of structure follow.

C1	-2.8811452	-0.497967	0.0000102
C2	-1.6923752	0.4684373	-0.0001685
C3	-0.3391783	-0.2517399	0.0001258
C4	0.8507237	0.731886	0.000085
C5	2.1538408	0.0625163	0.0000746
C6	3.2204756	-0.5076774	-0.0001149
H7	-3.8336728	0.0439821	-0.00022
H8	-2.8647596	-1.1456779	-0.8851171
H9	-2.864903	-1.145175	0.8855074
H10	-1.7529609	1.1256167	0.8786768
H11	-1.752832	1.1251327	-0.8793828
H12	-0.2647647	-0.9040426	-0.8797705
H13	-0.2649664	-0.9036813	0.8803099
H14	0.7804759	1.3891677	0.8778825
H15	0.7804158	1.3891707	-0.8777081
H16	4.163919	-1.0072244	-0.0002513

	$\left(\mathrm{C} \equiv \mathrm{C}\right.$ vibrational frequency: $\left.1972 \mathrm{~cm}^{-1}\right)$		
C 1	-2.8811435	-0.4979682	0.0000099
C 2	-1.6923748	0.4684372	-0.0001666
C 3	-0.3391778	-0.2517395	0.0001247
C4	0.8507232	0.7318875	0.0000843
C5	2.1538404	0.0625183	0.0000728
C6	3.2204734	-0.5076795	-0.0001132
H7	-3.8336705	0.0439811	-0.0002171
H8	-2.8647589	-1.1456759	-0.8851196
H9	-2.8649002	-1.1451793	0.8855048
H10	-1.7529606	1.1256142	0.8786804
H11	-1.7528328	1.1251351	-0.8793791
H12	-0.2647644	-0.9040403	-0.879773
H13	-0.2649642	-0.9036826	0.8803074
H14	0.780475	1.389169	0.8778818
H15	0.7804154	1.3891719	-0.8777088
D16	4.1639156	-1.0072291	-0.0002491

Raman spectra of alkynes (Figure S1 and S5)

Raman spectra were obtained using a RAMAN-11 slit-scanning Raman microscope (Nanophoton Corp., Japan) at 532 nm excitation. The alkynes were placed on a quartz substrate during the measurements. The laser output was focused on each sample by a $60 \times / 1.27$ numerical aperture (NA) water immersion objective lens (CFI Plan Apo IR 60X WI, NIKON Corp., Japan). The slit width of the spectrograph was $50 \mu \mathrm{~m}$. The exposure time for each line was 10 s . The light intensity at the sample plane was $1.5 \mathrm{~mW} / \mu \mathrm{m}^{2}$. Raman spectra of alkynes were obtained from an average intensity of 900 (X $\times Y=30 \times 30$ or 60×15) pixels.

Molar ratio vs. Raman peak area ratio of \mathbf{H}-alkyne and D-alkyne (Figure S2)

Solutions containing several proportions of H-alkyne and D-alkyne were obtained by blending 100 mM H-alkynes in DMSO and 100 mM D-alkynes in DMSO. Raman spectra of the solutions were measured using a 532 nm line laser. The exposure time for each line was 10 s , and the light intensity at the sample plane was $3.0 \mathrm{~mW} / \mathrm{mm}^{2}$. The obtained spectra were subtracted from the background of DMSO. The peak areas of the D-alkyne and H-alkyne were computed using "Raman Viewer" software equipped on the Raman microscope. Finally, a correlation curve was calculated from the Raman peak area ratio between H -alkyne and D -alkyne, and the molar ratio of H -alkyne and D -alkyne in the solutions.

Analysis of the H/D exchange rate (Figure 2, S3 and S4)

A 1 M DMSO stock solution of alkynes was dissolved in 25 mM phosphate buffer ($\mathrm{pH} 6.0,7.0$, or 8.0) or 25 mM deuterated phosphate buffer ($\mathrm{pD} 6.0,7.0$, or 8.0). The sample solutions (20 mM) were maintained at $4-37{ }^{\circ} \mathrm{C}$ in a block incubator (BI-516S, Astec Co., Ltd., Japan). Raman spectra of the sample solutions were measured using a 532 nm line laser. The exposure time for each line was 10 s , and the light intensity at the sample plane was $3.0 \mathrm{~mW} / \mu \mathrm{m}^{2}$. The obtained spectra were subtracted from the background of the buffers containing 2\% DMSO. The peak areas of D-alkyne and H-alkyne were computed using "Raman Viewer" software equipped on the Raman microscope. Finally, the conversion ratio was calculated from the Raman peak area ratio between the D -alkyne and H -alkyne at different reaction times.

Raman imaging experiments of HeLa cells treated with C18 fatty acids (Figure 4, 5, S7 and S8)

HeLa cells ($2.4 \mathrm{~mL}, 5.0 \times 10^{4}$ cells $/ \mathrm{mL}$) were placed on a sterilized $\Phi 25 \mathrm{~mm}$ quartz substrate in a TPP tissue culture dish (No. 93040; TPP Techno Plastic Products AG, Switzerland). After overnight incubation, the fatty acid stock solutions $(50 \mathrm{mM}$ in EtOH$)$ were added and incubated for different durations $(3,6,9,12$, or 24 h$)$. The medium was replaced with Tyrode's buffer $(150 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM}$ glucose, 10 mM HEPES, $4 \mathrm{mM} \mathrm{KCl}, 1 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM} \mathrm{CaCl}_{2}$, and 4 mM NaOH) after washing with
phosphate buffered saline (PBS) (-). A quartz substrate was used to observe the Raman spectra with a RAMAN-11 slit-scanning Raman microscope at 532 nm excitation. The laser output was focused onto the sample using a $60 \times / 1 / .27$ NA water immersion objective lens. The slit width of the spectrograph was $50 \mu \mathrm{~m}$. The exposure time for each line was 10 s . The light intensity at the sample plane was calculated as $3.0 \mathrm{~mW} / \mu^{2}$.
To obtain the Raman images, the Raman spectral data set was further processed using the singular value decomposition (SVD) technique for noise reduction. ${ }^{3}$ We selected several spectral regions (705$3105 \mathrm{~cm}^{-1}$ for the C-H bond of cis-olefin, 1900-2050 cm^{-1} for the $\mathrm{C} \equiv \mathrm{C}$ bond of $\mathrm{D}-\mathrm{alkyne}$, and 2050$2200 \mathrm{~cm}^{-1}$ for the $\mathrm{C} \equiv \mathrm{C}$ bond of H -alkyne) in the calculation procedure for SVD to avoid artifacts in the constructed images. A modified polyfit technique was then used at each pixel to determine the autofluorescence baseline signal, which was subtracted from the original Raman spectrum. ${ }^{1}$ Finally, the Raman images were reconstructed using each vibrational band of interest. All data processing was performed using "Raman Viewer" image processing software (Nanophoton Corp., Japan).

References

1 A. Mahadevan-Jansen and C. A. Lieber, Appl. Spectrosc., 2003, 57, 1363-1367.
2 Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

3 H. J. Van Manen, Y. M. Kraan, D. Roos and C. Otto, J. Phys. Chem. B, 2004, 108, 1876218771.

NMR spectra of deuterated terminal alkynes:

${ }^{1}$ H NMR of D-1

${ }^{13}$ C NMR of D-1

${ }^{2}$ H NMR of D-1

${ }^{1} \mathrm{H}$ NMR of D-2

${ }^{13} \mathrm{C}$ NMR of D-2

${ }^{2} \mathrm{H}$ NMR of D-2

${ }^{1} \mathrm{H}$ NMR of D-3

${ }^{13} \mathrm{C}$ NMR of D-3

${ }^{2}$ H NMR of D-3

