[Pd]-Catalyzed *para*-Selective Allylation of Phenols: Access to 4-[(*E*)-3-Aryl/Alkylprop-2-enyl]phenols

Chinnabattigalla Sreenivasulu, Aditya Choudhury and Gedu Satyanarayana*

Supporting Information

Department of Chemistry, Indian Institute of Technology, Hyderabad

Kandi – 502 285, Sangareddy, Telangana, INDIA, Phone: (040) 2301 6251; Fax: (040) 2301 6003/32, E-mail: gvsatya@chy.iith.ac.in

1.	General procedure	S2-S3
2.	Optimization study and reaction mechanism	S4-S6
3.	Experimental procedures for all unknown compounds data	S7-S35
4.	¹ H and ¹³ C-NMR Spectral data for all new 1,3-Diarylpropanes	S36-S83
5.	Crystal structure data	S84-S100

Experimental:

General: IR spectra were recorded on a Bruker Tensor 37 (FTIR) spectrophotometer. ¹H NMR spectra were recorded on Bruker Avance 400 (400 MHz) spectrometer at RT in CDCl₃; chemical shifts (δ ppm) and coupling constants (Hz) are reported in standard fashion with reference to either internal standard tetramethylsilane (TMS) ($\delta_{\rm H} = 0.00$ ppm) or CHCl₃ ($\delta_{\rm H} = 7.25$ ppm). ¹³C{H} NMR spectra were recorded on Bruker Avance 400 (100 MHz) spectrometer at RT in CDCl₃; chemical shifts (δ ppm) are reported relative to CDCl₃ [$\delta_{\rm C}$ = 77.00 ppm (central line of the triplet)]. In the ${}^{13}C{H}$ NMR, the nature of carbons (C, CH, CH₂ and CH₃) was determined by recording the DEPT-135 spectra, and is given in parentheses and noted as s = singlet (for C), d = doublet (for CH), t = triplet (for CH₂) and q = quartet (for CH₃). In the ¹H-NMR, the following abbreviations were used throughout: s = singlet, d = doublet, t = triplet, q = quartet, qui = quintet, sept = septet, dd = doublet of doublet, m = multiplet and brs = broad singlet. The assignment of signals was confirmed by ¹H, ¹³C{¹H} CPD, and DEPT spectra. High-resolution mass spectra (HR-MS) were recorded on an Agilent 6538 UHD Q-TOF electron spray ionization (ESI) mode. Melting points are recorded using Tempo and Mettler FP1 melting point apparatus in capillary tubes and are uncorrected. All small-scale reactions were carried out using Schlenk tubes open air atmosphere. Reactions were monitored by TLC on silica gel using a combination of hexane and ethyl acetate as eluents. Solvents were distilled prior to use; petroleum ether with a boiling range of 60 to 80 °C was used. All vinyl Grignard reactions were performed in dry THF solvent. Palladium catalyzed reactions were done in DCE. Toluene, DMF, MeCN, Dioxane, THF, and DMSO solvents were purchased from the local chemicals and used as received. Acme's silica gel (60–120 mesh) was used for column chromatography (approximately 20 g per one gram of crude material). The catalysts Pd(OAc)₂, PdCl₂, PdCl₂(PPh₃)₂, NiCl₂, NiBr₂, and the base K₂CO₃ were purchased from Sigma-Aldrich and used as received. Substituted benzaldehydes, vinylmegnesiumbromide (1M in THF), and all the substituted phenols, 1-naphathol, 2-naphathol were purchased from TCI/local.

The following allylic alcohols were prepared using Grignard reaction of vinylmegnesiumbromide and substituted benzaldehydes in THF solvent at 0 °C to RT.¹

1 (1–3)

- 2 P. Niharika and G. Satyanarayana, Eur. J. Org. Chem., 2018, 2018, 971–979.
- 3 B. Suchand and G. Satyanarayana, *Eur. J. Org. Chem.*, 2017, **2017**, 3886–3895.

¹ P. Ramesh and G. Satyanarayana, J. Org. Chem., 2019, 84, 12856–12870.

⁴ I. Fernández, R. Hermatschweiler, F. Breher, P. S. Pregosin, L. F. Veiros and M. J. Calhorda, *Angew. Chem.*, *Int. Ed.*, 2006, **45**, 6386–6391.

⁵ Y. Lee, S. Shabbir, S. Lee, H. Ahn and H. Rhee, *Green Chem.*, 2015, **17**, 3579–3583.

⁶ B.-L. Chen, Y.-J. Wang, M.-Z. Shao and Z. Chen, *Tetrahedron Letters*, 2020, **61**, 151895.

⁷ K. Watanabe, T. Mino, T. Abe, T. Kogure and M. Sakamoto, J. Org. Chem., 2014, 79, 6695–6702.

⁸ B. M. Trost and M. L. Crawley, *Chem. Rev.*, 2003, **103**, 2921–2944.

⁹ H. Kinoshita, H. Shinokubo and K. Oshima, Org. Lett., 2004, 6, 4085–4088.

¹⁰ M. Kimura, Y. Horino, R. Mukai, S. Tanaka and Y. Tamaru, J. Am. Chem. Soc., 2001, 123, 10401–10402.

¹¹ P. Ramesh and G. Satyanarayana, J. Org. Chem., 2019, 84, 12856–12870.

¹² B. M. Trost, *Tetrahedron*, 2015, **71**, 5708–5733.

Table-2S: 1,3-diarylpropanes 3aa-ba.	
--------------------------------------	--

17	NiBr ₂	DCE	60	24	49	_ d
18	$CuCl_2$	DCE	60	24	44	10
19	PdCl ₂	DCE	60	24	55	8 ^e
20	PdCl ₂	DCE	60	24	46	20 ^f

Reaction Conditions: ^{*a*}**1a** (0.2 mmol), **2a** (0.3 mmol), catalyst (10 mol%) under open-air atmosphere at 60 °C, 24 h. ^{*b*}Isolated yields of products. ^{*c*}K₂CO₃ is used as a base (0.2 mmol). ^{*d*}*The ortho*-allylated product was also obtained in around 15% to 20% yields, respectively. ^{*e*}The reaction was conducted with 0.3 mmol of **1a** and 0.2 mmol of **2a**. ^{*f*}Reaction conducted under N₂ atmosphere.

We started our initial investigations with phenol **1a** and allylic alcohol **2a** as the starting materials and the outcomes are as present in Table 3S. Thus, initially, the reaction of phenol (0.2 mmol) 1a with allylic alcohol (0.3 mmol) 2a, base K_2CO_3 (1 equiv), in toluene (2 mL) in the presence of Pd(OAc)₂ (10 mol%) at 80 °C for 12 h under open-air conditions, furnished the desired product **3aa** in 36% along with 55% yield of by-product ketone **4a** (Table 3S, entry 1). When performed without base, the yield of **3aa** was increased to 52% with a decreased 20% yield of the ketone 4a (Table 3S, entry 2), which indicates that the use of base would promote the oxidation of the allylic alcohol 2a. Switching to solvent 1,2-dichloroethane (DCE), there was a further improvement in the yield of the product 3aa to 61% and with 15% of 4a (Table 3S, entry 3). The reaction using other solvents such as acetonitrile (MeCN) and dimethylformamide (DMF), resulted in "**3aa** in 56% and 26%" and "**4a** in 18% and 30%" yields, respectively (Table 3S, entries 4 & 5). Changing the catalyst from Pd(OAc)₂ to PdCl₂(PPh₃)₂ (10 mol%), in DCE as well as in MeCN at 80 °C for 12 h in the open air, afforded "3aa in decreased 42% and 38%" and "4a in 22% and 18%" yields, respectively (Table 3S, entries 6 & 7). On the other hand, using $PdCl_2$ (10 mol%) as a catalyst in MeCN (2 mL), at 80 °C for 12 h in the open air, gave **3aa** in 65% yield and 12% yield of 4a (Table 3S, entry 8). While the reaction under the same reaction conditions but in solvent DCE (2 mL), showed a further increase in the yield of the product **3aa** (71%) along with the decreased 8% yield of 4a (Table 3S, entry 9). Furthermore, the reaction at a slightly lower temperature (60 °C), furnished the desired products **3aa** in 75% yield (Table 3S, entry 10). To our delight, by increasing the reaction time to 24 h at 60 °C, in DCE (2 mL), the yield of 3aa was raised to 83% with less than 10% yield of the by-product 4a (Table 3S, entry 11). On the other hand, the reaction with other solvents like toluene, THF, dioxane, and DMSO, showed no improvement in the yield of the product **3aa** (Table 3S, entries 12 to 15). The reaction using NiCl₂

(10 mol%) as a catalyst in DCE (2 mL), at 60 °C for 24 h in open-air, delivered **3aa** in 46% along with 15% of the *ortho*-allylated product (Table 3S, entry 16). When NiBr₂ (10 mol%) was employed as a catalyst in DCE (2 mL), at 60 °C for 24 h in the open air, resulting in 49% yield of the product **3aa** and with 20% of the *ortho*-allylated product (Table 3S, entry 17). While the reaction in the presence of catalyst CuCl₂ (10 mol%), afforded **3aa** in moderate yields and with 10% of **4a** (Table 3S, entry 18). When the stoichiometric ratio of both the starting materials [i.e., phenol **1a** (0.3 mmol) and allylic alcohol **2a** (0.2 mmol)] is reversed, under the same conditions, **3aa** was isolated in 55% yield (Table 3S, entry 19). Also, the reaction was investigated under nitrogen atmosphere using PdCl₂ (10 mol%) in DCE (2 mL), at 60 °C for 24 h, the product **3aa** was obtained in a moderate yield of 46% (Table 3S, entry 20). Overall, the reaction gave the best yields of the product **3aa** in the open- air atmosphere in solvent DCE (2 mL) at 60 °C, for 24 h (Table 3S, entry 11).

Experimental:

GP-1 (General procedure for preparation of allylated phenols 3): To a solution of phenol **1ak** (19 – 34 mg, 0.2 mmol) and allylic alcohols **2a-n** (40 – 64 mg, 0.3 mmol) in a Schlenk tube in DCE (2 mL), was added PdCl₂ (4 mg, 0.02 mmol) at room temperature under open air atmosphere and allowed the reaction mixture to stir at 60 °C for 24 to 36 h. Completion of the reaction was monitored by TLC (5:95 to 15:85 ethyl acetate and hexane). The reaction mixture was quenched with aqueous ammonium chloride and extracted with ethyl acetate (3×15 mL). The combined organic layers were washed with brine solution, dried (Na₂SO₄) and evaporated under reduced pressure. Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate) furnished the 1,3-diarylproperne **3aa-3am** (62–90%) as viscous liquid.

GP-2 (General procedure for preparation of 4): To an oven dried Schlenk tube, were added 1,3-diarylpropene 3 (119 – 120 mg, 0.5 mmol), alkyl/benzyl halide (106 – 147 mg, 0.75 mmol) followed by K_2CO_3 (138 mg, 1 mmol) and then acetone (10 mL) at room temperature under nitrogen atmosphere. The reaction mixture was stirred at room temperature for 3 h. Completion of the reaction was monitored by TLC (5:95 ethyl acetate and hexane). The reaction mixture was quenched with aqueous ammonium chloride and extracted with ethyl acetate (3×15 mL). The

combined organic layers were washed with brine solution, dried (Na_2SO_4) and evaporated under reduced pressure. Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate) furnished the **4da** (92%) and **4cd** (94%) as viscous liquid.

(*E*)-4-(3-(4-Ethylphenyl)allyl)phenol (3ac): GP-1 was carried out with phenol 1a (19 mg, 0.2 mmol), PdCl₂ (4 mg, 0.02 mmol) and allylic alcohol 2c (49 mg, 0.3 mmol), in DCE (2 mL) solvent, at 60 °C for 24 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 100:0 to 90:10) furnished (*E*)-4-(3-(4-ethylphenyl)allyl)phenol 3ac (37 mg, 78%) as a pale yellow liquid. [TLC control (petroleum ether/ethyl acetate 93:07), R_f (1a) = 0.70, R_f (2c) = 0.40, R_f (3ac) = 0.50, UV detection]. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =3344, 3020, 2920, 1604, 1510, 1442, 1218, 968, 824, 752, 670 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ = 7.31 (d, 2H, *J* = 8.1 Hz, Ar-H), 7.13 (ddd, 4H, *J* = 9.3, 8.0, 5.5 Hz, Ar-H), 6.82 – 6.78 (m, 2H, Ar-H), 6.44 (d, 1H, *J* = 15.7 Hz, CH=CH-CH₂), 6.31 (dt, 1H, *J* = 15.7 and 6.8 Hz, CH=CH-CH₂), 5.24 (s, 1H, Ar-OH), 3.49 (d, 2H, *J* = 6.8 Hz, CH=CH-CH₂), 2.65 (q, 2H, *J* = 7.6 Hz, Ar-CH₂CH₃), 1.25 (t, 3H, *J* = 7.6 Hz, Ar-CH₂CH₃) ppm. ¹³C{H}-NMR (CDCl₃,100 MHz): δ =153.8 (s, Ar-C), 143.2 (s, Ar-C), 134.9 (s, Ar-C), 132.4 (s, Ar-C), 130.6 (d, CH=CH-CH₂), 129.7 (d, 2C, 2 × Ar-CH), 128.6 (d, CH=CH-CH₂), 28.5 (t, Ar-CH₂CH₃), 15.5 (q, Ar-CH₃) ppm. HR-MS (ESI⁺) m/z calculated for [C₁₇H₁₇]⁺=[(M+H) + (-H₂O)]⁺: calculated: 221.1325; found: 221.1321.

(*E*)-4-(3-(o-Tolyl)allyl)phenol (3ad): GP-1 was carried out with phenol 1a (19 mg, 0.5 mmol), PdCl₂ (4 mg, 0.02 mmol) and allylic alcohol 2d (44.4 mg, 0.3 mmol), in DCE (2 mL) solvent, at 60 °C for 24 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 100:0 to 90:10) furnished (*E*)-4-(3-(o-tolyl)allyl)phenol 3ad (36 mg, 81%) as

a pale-yellow liquid. [TLC control (petroleum ether/ethyl acetate 93:07), $R_f(1a) = 0.70$, $R_f(2d) = 0.40$, $R_f(3ad) = 0.50$, UV detection]. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =3432, 3026, 2894, 2825, 1714, 1640, 1583, 1435, 1251, 1204, 1024, 737, 692 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.42$ (dd, 1H, J = 6.8, 2.6 Hz, Ar-H), 7.16 – 7.09 (m, 5H, Ar-H), 6.82 – 6.73 (m, 2H, Ar-H), 6.64 (d, 1H, J = 15.6 Hz, CH=CH-CH₂), 6.20 (dt, 1H, J = 15.6 and 6.8 Hz, CH=CH-CH₂), 4.84 (s, 1H, Ar-OH), 3.50 (d, 2H, J = 6.8 Hz, CH=CH-CH₂), 2.34 (s, 3H, Ar-CH₃) ppm. ¹³C{H}-NMR (CDCl₃, 100 MHz): $\delta = 153.9$ (s, Ar-C), 136.6 (s, Ar-C), 135.1 (s, Ar-C), 132.4 (s, Ar-C), 130.9 (d, Ar-CH), 130.2 (d, Ar-CH), 129.7 (d, 2C, 2 × Ar-CH), 128.7 (d, Ar-CH), 127.0 (d, Ar-CH), 126.0 (d, Ar-CH), 125.5 (d, Ar-CH), 115.3 (d, 2C, 2 × Ar-CH), 38.7 (t, CH₂), 19.8 (q, Ar-CH₃) ppm. HR-MS (ESI⁺) m/z calculated for [C₁₆H₂₀NO]⁺=[M+NH₄]⁺: calculated: 242.1539; found: 242.1530.

(*E*)-4-(3-(3-Methoxyphenyl)allyl)phenol (3ae): GP-1 was carried out with phenol 1a (19 mg, 0.2 mmol), PdCl₂ (4 mg, 0.02 mmol) and allylic alcohol 2e (49 mg, 0.3 mmol), in DCE (2 mL) solvent, at 60 °C for 24 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 100:0 to 87:13) furnished (*E*)-4-(3-(3-methoxyphenyl)allyl)phenol **3ae** (43 mg, 90%) as a pale-yellow liquid. [TLC control (petroleum ether/ethyl acetate 90:10), R_f (1a) = 0.70, R_f (2e) = 0.30, R_f (3ae) = 0.50, UV detection]. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =3486, 3295, 3028, 2893, 1572, 1424, 1322, 1205, 1067, 1013, 743 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ = 7.20 (t, 1H, *J* = 7.9 Hz, Ar-H), 7.09 (d, 2H, *J* = 8.5 Hz, Ar-H), 6.95 (d, 1H, *J* = 7.7 Hz, Ar-H), 6.89 (s, 1H, Ar-H), 6.81 – 6.73 (m, 3H, Ar-H), 6.39 (d, 1H, *J* = 15.7 Hz, CH=CH-CH₂), 6.32 (dt, 1H, *J* = 15.7 and 6.2 Hz, CH=CH-CH₂), 5.06 (s, 1H, Ar-OH), 3.80 (s, 3H, Ar-OCH₃), 3.46 (d, 2H, *J* = 6.2 Hz, CH=CH-CH₂) ppm. ¹³C{H}-NMR (CDCl₃,100 MHz): δ =159.7 (s, Ar-C), 139.0 (s, Ar-C), 132.2 (s, Ar-C), 130.6 (d, Ar-CH), 130.0 (d, Ar-CH), 129.8 (d, 2C, 2 × Ar-CH), 129.4 (d, Ar-CH), 118.8 (d, Ar-CH), 115.3 (d, 2C, 2 × Ar-CH), 112.8 (d, Ar-CH), 111.3 (d, Ar-CH), 55.2 (s, Ar-OCH₃), 38.4 (t, CH₂) ppm. HR-MS (ESI⁺) m/z calculated for [C₁₆H₁₇O₂]⁺=[M+H]⁺: calculated: 241.1223; found: 241.1221.

(*E*)-4-(3-(4-Bromophenyl)allyl)phenol (3ag): GP-1 was carried out with phenol 1a (19 mg, 0.2 mmol), PdCl₂ (4 mg, 0.02 mmol) and allylic alcohol 2g (64 mg, 0.3 mmol), in DCE (2 mL) solvent, at 60 °C for 36 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 100:0 to 90:10) furnished (*E*)-4-(3-(4-bromophenyl)allyl)phenol 3ag (49 mg, 85%) as a colorless liquid. [TLC control (petroleum ether/ethyl acetate 93:07), *R_f*(1a) = 0.70, *R_f*(2g) = 0.40, *R_f*(3ag) = 0.50, UV detection]. IR (MIR-ATR, 4000–600 cm⁻¹): *v_{max}*=3375, 2894, 2819, 1582, 1451, 1422, 1253, 1227, 1075, 1011, 952, 767, 732, 661 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ = 7.40 (d, 2H, *J* = 8.5 Hz, Ar-H), 7.24 – 7.16 (m, 2H, Ar-H), 7.09 (d, 2H, *J* = 8.5 Hz, Ar-H), 6.78 (d, 2H, *J* = 8.4 Hz, Ar-H), 6.34 – 6.31 (m, 2H, CH=CH-CH₂), 4.96 (s, 1H, Ar-OH), 3.45 (d, 2H, *J* = 5.1 Hz, CH=CH-CH₂) ppm. ¹³C{H}-NMR (CDCl₃,100 MHz): δ = 153.9 (s, Ar-C), 136.4 (s, Ar-C), 131.9 (s, Ar-C), 131.5 (d, 2C, 2 × Ar-CH), 130.5 (d, CH=CH-CH₂), 129.8 (d, 2C, 2 × Ar-CH), 129.5 (d, CH=CH-CH₂), 127.6 (d, 2C, 2 × Ar-CH), 120.7 (s, Ar-C), 115.3 (d, 2C, 2 × Ar-CH), 38.4 (t, CH₂) ppm. HR-MS (ESI⁺) m/z calculated for [C₁₅H₁₄Br⁷⁹O]⁺=[M+H]⁺: 289.0223; found 289.0201, calculated for [C₁₅H₁₄Br⁸¹O]⁺=[M+H]⁺: calculated: 291.0202; found: 291.0195.

(*E*)-4-(3-(3-Bromophenyl)allyl)phenol (3ah): GP-1 was carried out with phenol 1a (19 mg, 0.2 mmol), PdCl₂ (4 mg, 0.02 mmol) and allylic alcohol 2h (64 mg, 0.3 mmol), in DCE (2 mL) solvent, at 60 °C for 36 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 100:0 to 90:10) furnished (*E*)-4-(3-(3-bromophenyl)allyl)phenol 3ah (43 mg, 75%) as a colorless liquid. [TLC control (petroleum ether/ethyl acetate 93:07), R_f (1a)

= 0.70, $R_f(2\mathbf{h}) = 0.40$, $R_f(3\mathbf{ah}) = 0.50$, UV detection]. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =3299, 3022, 1589, 1495, 1325, 1249, 817, 726 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ = 7.62 (t, 1H, *J* = 1.8 Hz, Ar-H), 7.45 (ddd, 1H, *J* = 7.9, 1.9, 1.1 Hz, Ar-H), 7.40 – 7.36 (m, 1H, Ar-H), 7.28 (d, 1H, *J* = 7.8 Hz, Ar-H), 7.24 – 7.19 (m, 2H, Ar-H), 6.95 – 6.86 (m, 2H, Ar-H), 6.47 – 6.46 (m, 2H, CH=CH-CH₂), 5.03 (s, 1H, Ar-OH), 3.60 (d, 2H, *J* = 4.7 Hz, CH=CH-CH₂) ppm. ¹³C{H}-NMR (CDCl₃,100 MHz): δ = 154.0 (s, Ar-C), 139.7 (s, Ar-C), 131.8 (s, Ar-C), 131.3 (d, Ar-CH), 130.0 (d, Ar-CH), 129.9 (d, Ar-CH), 129.8 (d, 2C, 2 × Ar-CH), 129.3 (d, Ar-CH), 128.9 (d, Ar-CH), 124.7 (d, Ar-CH), 122.7 (s, Ar-C), 115.4 (d, 2C, 2 × Ar-CH), 38.3 (t, CH₂) ppm. HR-MS (ESI⁺) m/z calculated for [C₁₅H₁₄Br⁷⁹O]⁺=[M+H]⁺: 289.0223; found 289.0221, calculated for [C₁₅H₁₄Br⁸¹O]⁺=[M+H]⁺: calculated: 291.0202; found: 291.0208.

(*E*)-4-(3-(4-Fluorophenyl)allyl)phenol (3ap) & (*E*)-2-(3-(4-Fluorophenyl)allyl)phenol (3ap'): GP-1 was carried out with phenol 1c (500 mg, 5.3 mmol), PdCl₂ (47 mg, 0.265 mmol) and allylic alcohol 2d (1.2 g, 7.9 mmol), in DCE (20 mL) solvent, at 60 °C for 24 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 100:0 to 90:10) first the minor regioisomer (*E*)-2-(3-(4-Fluorophenyl)allyl)phenol 3ap' (60 mg, 5%) as a pale-yellow liquid followed by (*E*)-4-(3-(4-Fluorophenyl)allyl)phenol 3ap (1.02 g, 85%) as a pale-yellow liquid.

(*E*)-4-(3-(4-Fluorophenyl)allyl)phenol (3ap): [TLC control (petroleum ether/ethyl acetate 93:07), $R_f(1a) = 0.70$, $R_f(2p) = 0.40$, $R_f(3ap) = 0.50$, UV detection]. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =3308, 2996, 1584, 1490, 1424, 1207, 1149, 956, 818 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 7.34 – 7.27 (m, 2H), 7.09 (d, *J* = 8.5 Hz, 2H), 7.00 – 6.95 (m, 2H), 6.85 – 6.69 (m, 2H), 6.37 (d, *J* = 15.8 Hz, 1H), 6.23 (dt, *J* = 15.8, 6.7 Hz, 1H), 4.79 (s, 1H), 3.45 (d, *J* = 6.7 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ = 163.2, 160.8, 153.9, 133.6, 133.6, 132.2, 129.8, 129.5, 129.4, 129.4, 127.5, 127.5, 115.4, 115.3, 115.2, 38.3 ppm. HR-MS (ESI⁺) m/z calculated for [C₁₅H₁₄FO]⁺=[M+H]⁺: calculated: 229.1023; found: 229.1039.

(*E*)-2-(3-(4-Fluorophenyl)allyl)phenol (3ap'): [TLC control (petroleum ether/ethyl acetate 93:07), $R_f(1a) = 0.70$, $R_f(2p) = 0.40$, $R_f(3ap) = 0.60$, UV detection]. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =3375, 3004, 1579, 1487, 1438, 1316, 1209, 1146, 1084, 958, 828, 743 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.34 - 7.27$ (m, 2H), 7.17 - 712 (m, 2H), 7.01 - 6.93 (m, 2H), 6.90 (ddd, J = 7.4, 7.4, 1.1 Hz, 1H), 6.84 - 6.80 (m, 1H), 6.45 (d, J = 15.9 Hz, 1H), 6.30 (dt, J = 15.9, 6.5 Hz, 1H), 4.98 (s, 1H), 3.55 (d, J = 6.5 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) $\delta = 163.3, 160.9, 153.9, 133.3, 133.2, 130.4, 130.2, 129.6, 127.9, 127.7, 127.6, 127.6, 125.6, 121.0, 120.7, 115.7, 115.5, 115.3, 33.9$ ppm. HR-MS (ESI⁺) m/z calculated for [C₁₅H₁₇FNO]⁺=[M+NH₄]⁺: calculated: 246.1289; found: 246.1263.

(E)-4-(3-(4-Ethylphenyl)allyl)-2-methylphenol (3bc): GP-1 was carried out with phenol 1b (22 mg, 0.2 mmol), PdCl₂ (4 mg, 0.02 mmol) and allylic alcohol **2c** (49 mg, 0.3 mmol), in DCE (2 mL) solvent, at 60 °C for 36 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 100:0 to 90:10) furnished (E)-4-(3-(4ethylphenyl)allyl)-2-methylphenol **3bc** (38.3 mg, 76%) as a pale-yellow liquid. [TLC control (petroleum ether/ethyl acetate 93:07), $R_f(\mathbf{1b}) = 0.70$, $R_f(\mathbf{2c}) = 0.40$, $R_f(\mathbf{3bc}) = 0.50$, UV detection]. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =3486, 3290, 3028, 1571, 1481, 1205, 1012, 958, 743 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ = 7.27 (t, 2H, J = 9.2 Hz, Ar-H), 7.13 (d, 2H, J = 8.1 Hz, Ar-H), 6.99 (s, 1H, Ar-H), 6.94 (dd, 1H, J = 8.1, 1.8 Hz, Ar-H), 6.71 (d, 1H, J = 8.1 Hz, Ar-H), 6.41 (d, 1H, J = 15.7 Hz, CH=CH-CH₂), 6.28 (dt, 1H, J = 15.7 and 6.8 Hz, CH=CH-CH₂), 4.66 (s, 1H, Ar-OH), 3.44 (d, 2H, J = 6.8 Hz, CH=CH-CH₂), 2.62 (q, 2H, J = 7.6 Hz, Ar-CH₂CH₃), 2.23 (s, 3H, Ar-CH₃), 1.22 (t, 3H, J = 7.6 Hz, Ar-CH₂CH₃) ppm. ¹³C{H}-NMR (CDCl₃,100 MHz): $\delta =$ 152.1 (s, Ar-C), 143.2 (s, Ar-C), 135.0 (s, Ar-C), 132.4 (s, Ar-C), 131.2 (d, Ar-CH), 130.5 (d, Ar-CH), 128.8 (d, Ar-CH), 128.0 (d, 2C, 2 × Ar-CH), 127.1 (d, Ar-CH), 126.1 (d, 2C, 2 × Ar-CH), 123.6 (s, Ar-C), 114.9 (d, Ar-CH), 38.5 (t, CH₂), 28.5 (t, Ar-CH₂CH₃), 15.7 (q, Ar-CH₃) 15.6 (q, Ar-CH₃) ppm. HR-MS (ESI⁺) m/z calculated for $[C_{18}H_{21}O]^+=[M+H]^+$: calculated: 253.1587; found: 253.1571.

(*E*)-4-(3-(4-Chlorophenyl)allyl)-2-methylphenol (3bf): GP-1 was carried out with phenol 1b (22 mg, 0.2 mmol), PdCl₂ (4 mg, 0.02 mmol) and allylic alcohol 2f (51 mg, 0.3 mmol), in DCE (2 mL) solvent, at 60 °C for 24 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 100:0 to 90:10) furnished (*E*)-4-(3-(4-chlorophenyl)allyl)-2-methylphenol 3bf (43 mg, 82%) as a pale-yellow liquid. [TLC control (petroleum ether/ethyl acetate 93:07), R_f (1b) = 0.70, R_f (2f) = 0.40, R_f (3bf) = 0.50, UV detection]. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =3302, 2994, 2875, 1587, 1494, 1421, 1332, 1210, 1010, 955, 816, 737, 659 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ = 7.28 – 7.21 (m, 4H, Ar-H), 6.96 (s, 1H, Ar-H), 6.91 (dd, 1H, *J* = 8.1, 2.0 Hz, Ar-H), 6.70 (d, 1H, *J* = 8.1 Hz, Ar-H), 6.35 (d, 1H, *J* = 15.7 Hz, CH=CH-CH₂), 6.28 (dt, 1H, *J* = 15.7 and 6.2 Hz, CH=CH-CH₂), 4.85 (s, 1H, Ar-OH), 3.42 (d, 2H, *J* = 6.2 Hz, CH=CH-CH₂), 2.22 (s, 3H, Ar-CH₃) ppm. ¹³C{H}-NMR (CDCl₃,100 MHz): δ = 152.2 (s, Ar-C), 136.0 (s, Ar-C), 132.5 (s, Ar-C), 131.9 (s, Ar-C), 131.2 (d, Ar-CH), 130.6 (d, Ar-CH), 129.4 (d, Ar-CH), 128.6 (d, 2C, 2 × Ar-CH), 127.3 (d, 2C, 2 × Ar-CH), 127.1 (d, Ar-CH), 123.8 (s, Ar-C), 114.9 (d, Ar-CH), 38.4 (t, CH₂), 15.7 (q, Ar-CH₃) ppm. HR-MS (ESI⁺) m/z calculated for [C₁₆H₁₆ClO]⁺=[M+H]⁺: calculated: 259.0884; found: 259.0873.

(*E*)-4-(3-(3-Methoxyphenyl)allyl)-2-methylphenol (3be): GP-1 was carried out with phenol 1b (22 mg, 0.2 mmol), PdCl₂ (4 mg, 0.02 mmol) and allylic alcohol 2e (49 mg, 0.3 mmol), in DCE (2 mL) solvent, at 60 °C for 24 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 100:0 to 87:13) furnished (*E*)-4-(3-(3-methoxyphenyl)allyl)-2-methylphenol 3be (44 mg, 86%) as a pale-yellow liquid. [TLC control (petroleum ether/ethyl acetate 90:10), R_f (1b) = 0.70, R_f (2e) = 0.40, R_f (3be) = 0.50, UV detection].

IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =3487, 3026, 2894, 2825, 1640, 1583, 1436, 1254, 1203, 1023, 748, 690 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ = 7.24 (t, 1H, *J* = 7.9 Hz, Ar-H), 7.04 – 6.92 (m, 4H, Ar-H), 6.80 (ddd, 1H, *J* = 8.2, 2.6, 0.8 Hz, Ar-H), 6.72 (d, 1H, *J* = 8.1 Hz, Ar-H), 6.43 (d, 1H, *J* = 15.7 Hz, C*H*=CH-CH₂), 6.35 (dt, 1H, *J* = 15.7 and 6.4 Hz, CH=C*H*-CH₂), 4.97 (s, 1H, Ar-OH), 3.82 (s, 3H, Ar-OCH₃), 3.47 (d, 2H, *J* = 6.4 Hz, CH=CH-CH₂), 2.26 (s, 3H, Ar-CH₃) ppm. ¹³C{H}-NMR (CDCl₃,100 MHz): δ = 159.7 (s, Ar-C), 152.2 (s, Ar-C), 139.0 (s, Ar-C), 132.1 (s, Ar-C), 131.2 (d, Ar-CH), 130.4 (d, Ar-CH), 130.1 (d, Ar-CH), 129.4 (d, Ar-CH), 127.1 (d, Ar-CH), 123.8 (s, Ar-C), 118.8 (d, Ar-CH), 114.9 (d, Ar-CH), 112.7 (d, Ar-CH), 111.3 (d, Ar-CH), 55.2 (s, Ar-OCH₃), 38.4 (t, CH₂), 15.7 (q, Ar-CH₃) ppm. HR-MS (ESI⁺) m/z calculated for [C₁₇H₁₉O₂]⁺=[M+H]⁺: calculated: 255.1380; found: 255.1379.

(E)-4-(3-(3,4-Dimethoxyphenyl)allyl)-2-methylphenol (3bj): GP-1 was carried out with phenol **1b** (22 mg, 0.2 mmol), PdCl₂ (4 mg, 0.02 mmol) and allyl alcohol **2j** (58 mg, 0.3 mmol), in DCE (2 mL) solvent, at 60 °C for 24 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 100:0 to 85:15) furnished (E)-4-(3-(3,4dimethoxyphenyl)allyl)-2-methylphenol **3bj** (48 mg, 84%) as a pale-yellow liquid. [TLC control (petroleum ether/ethyl acetate 85:15), $R_f(1\mathbf{b}) = 0.70$, $R_f(2\mathbf{j}) = 0.30$, $R_f(3\mathbf{b}\mathbf{j}) = 0.50$, UV detection]. IR (MIR-ATR, 4000–600 cm⁻¹): *v_{max}*=3389, 2897, 2819, 1567, 1485, 1441, 1223, 1110, 992, 805, 724 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): $\delta = 6.99$ (d, 1H, J = 1.6 Hz, Ar-H), 6.96 – 6.87 (m, 3H, Ar-H), 6.80 (d, 1H, J = 8.2 Hz, Ar-H), 6.71 (d, 1H, J = 8.1 Hz, Ar-H), 6.36 (d, 1H, J = 15.7 Hz, CH=CH-CH₂), 6.19 (dt, 1H, J = 15.7 and 6.8 Hz, CH=CH-CH₂), 4.89 (s, 1H, Ar-OH), 3.87 (s, 3H, Ar-OCH₃), 3.86 (s, 3H, Ar-OCH₃), 3.43 (d, 2H, *J* = 6.8 Hz, CH=CH-CH₂), 2.23 (s, 3H, Ar-CH₃) ppm. ${}^{13}C{H}$ -NMR (CDCl₃,100 MHz): $\delta = 152.2$ (s, Ar-C), 148.9 (s, Ar-C), 148.3 (s, Ar-C), 132.3 (s, Ar-C), 131.2 (d, Ar-CH), 130.7 (s, Ar-C), 130.2 (d, Ar-CH), 127.9 (d, Ar-CH), 127.1 (d, Ar-CH), 123.8 (s, Ar-C), 119.1 (d, Ar-CH), 114.9 (d, Ar-CH), 111.1 (d, Ar-CH), 108.6 (d, Ar-CH), 55.9 (s, Ar-OCH₃), 55.7 (s, Ar-OCH₃), 38.4 (t, CH₂), 15.7 (q, Ar-CH₃) ppm. HR-MS (ESI⁺) m/z calculated for $[C_{18}H_{21}O_3]^+ = [M+H]^+$: calculated: 285.1485; found: 285.1490.

4-Cinnamyl-3-methylphenol (3ca): GP-1 was carried out with phenol **1c** (22 mg, 0.2 mmol), PdCl₂ (4 mg, 0.02 mmol) and allylic alcohol **2a** (40 mg, 0.3 mmol), in DCE (2 mL) solvent, at 60 °C for 24 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 100:0 to 90:10) furnished 4-cinnamyl-3-methylphenol **3ca** (35 mg, 77%) as a pale-yellow liquid. [TLC control (petroleum ether/ethyl acetate 93:07), R_f (**1c**) = 0.70, R_f (**2a**) = 0.40, R_f (**3ca**) = 0.50, UV detection]. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =3487, 3286, 2893, 2822, 1570, 1481, 1446, 1206, 1013, 958, 743 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ = 7.34 (d, 2H, *J* = 7.1 Hz, Ar-H), 7.29 (t, 2H, *J* = 7.5 Hz, Ar-H), 7.20 (ddd, 1H, *J* = 6.3, 2.5, 1.2 Hz, Ar-H), 7.05 (d, 1H, *J* = 8.1 Hz, Ar-H), 6.76 – 6.57 (m, 2H, Ar-H), 6.45 – 6.22 (m, 2H, CH=CH-CH₂), 4.89 (br.s, 1H, Ar-OH), 3.46 (d, 2H, *J* = 4.7 Hz, CH=CH-CH₂), 2.28 (s, 3H, Ar-CH₃) ppm. ¹³C{H}-NMR (CDCl₃,100 MHz): δ = 153.9 (s, 2C, 2 × Ar-C), 138.1 (s, Ar-C), 137.6 (s, Ar-C), 130.6 (d, Ar-CH), 130.5 (s, Ar-C), 130.4 (d, Ar-CH), 129.0 (d, Ar-CH), 128.5 (d, 2C, 2 × Ar-CH), 127.0 (d, Ar-CH), 126.1 (d, 2C, 2 × Ar-CH), 117.1 (d, Ar-CH), 112.7 (d, Ar-CH), 36.1 (t, CH₂), 19.6 (q, Ar-CH₃) ppm. HR-MS (ESI⁺) m/z calculated for [C₁₆H₁₇O]⁺=[M+H]⁺: calculated: 225.1274; found: 225.1271.

(*E*)-3-Methyl-4-(3-(*o*-tolyl)allyl)phenol (3cd) and (*E*)-5-Methyl-2-(3-(*o*-tolyl)allyl)phenol (3cd'): GP-1 was carried out with phenol 1c (216 mg, 2 mmol), PdCl₂ (17 mg, 0.1 mmol) and allylic alcohol 2d (444 mg, 3 mmol), in DCE (20 mL) solvent, at 60 °C for 24 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 100:0 to 90:10) first the minor regioisomer (*E*)-5-methyl-2-(3-(*o*-tolyl)allyl)phenol 3cd' (57 mg, 12%) as a pale-yellow solid followed by (*E*)-3-methyl-4-(3-(*o*-tolyl)allyl)phenol 3cd (252 mg, 53%) as a pale-yellow liquid.

(*E*)-3-methyl-4-(3-(*o*-tolyl)allyl)phenol (3cd): [TLC control (petroleum ether/ethyl acetate 93:07), $R_f(1c) = 0.70$, $R_f(2d) = 0.40$, $R_f(3cd) = 0.50$, UV detection]. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =3378, 2990, 2890, 1573, 1477, 1437, 1254, 1145, 955, 850, 727 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.45 - 7.36$ (m, 1H, Ar-H), 7.19 – 7.09 (m, 3H, Ar-H), 7.05 (d, J = 8.1 Hz, 1H, Ar-H), 6.72 – 6.59 (m, 2H, Ar-H), 6.55 (d, J = 15.6 Hz, 1H, CH=CH-CH₂), 6.16 (dt, J = 15.6 and 6.6 Hz, 1H, CH=CH-CH₂), 4.78 (d, J = 3.1 Hz, 1H, Ar-OH), 3.47 (dd, J = 6.6 and 1.3 Hz, 2H, CH=CH-CH₂), 2.29 (d, J = 3.5 Hz, 6H, 2 × Ar-CH₃) ppm. ¹³C{H}-NMR (CDCl₃,100 MHz): $\delta = 153.8$ (s, Ar-C), 137.9 (s, Ar-C), 136.7 (s, Ar-C), 135.0 (s, Ar-C), 130.6 (s, Ar-C), 130.3 (d, Ar-CH), 130.2 (d, Ar-CH), 130.1 (d, Ar-CH), 128.5 (d, Ar-CH), 126.9 (d, Ar-CH), 126.0 (d, Ar-CH), 125.5 (d, Ar-CH), 117.0 (d, Ar-CH), 112.7 (d, Ar-CH), 36.4 (t, CH₂), 19.7 (q, Ar-CH₃), 19.5 (q, Ar-CH₃) ppm. HR-MS (ESI⁺) m/z calculated for [C₁₇H₁₉O]⁺=[M+H]⁺: calculated: 239.1430; found: 239.1417.

(*E*)-5-Methyl-2-(3-(*o*-tolyl)allyl)phenol (3cd'): (57 mg, 12%) as a pale-yellow solid. [TLC control (petroleum ether/ethyl acetate 93:07), $R_f(1c) = 0.70$, $R_f(2d) = 0.40$, $R_f(3cd') = 0.60$, UV detection]. Mp: 117 – 119 °C; IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =3303, 2993, 2872, 1587, 1494, 1446, 1420, 1210, 1160, 1010, 954, 817, 737 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 7.44 – 7.35 (m, 1H, Ar-H), 7.16 – 7.09 (m, 3H, Ar-H), 7.04 (d, *J* = 7.6 Hz, 1H, Ar-H), 6.74 – 6.64 (m, 3H, Ar-H), 6.23 (dt, *J* = 15.7 and 6.7 Hz, 1H, CH=CH-CH₂), 4.88 (d, *J* = 1.5 Hz, 1H, Ar-OH), 3.54 (d, *J* = 6.7 Hz, 2H, CH=CH-CH₂), 2.31 (s, 3H, Ar-CH₃), 2.29 (s, 3H, Ar-CH₃) ppm. ¹³C{H}-NMR (CDCl₃,100 MHz): δ = 153.9 (s, Ar-C), 137.9 (s, Ar-C), 136.2 (s, Ar-C), 135.1 (s, Ar-C), 130.2 (d, Ar-CH), 130.1 (d, Ar-CH), 129.5 (d, Ar-CH), 129.4 (d, Ar-CH), 127.2 (d, Ar-CH), 126.0 (d, Ar-CH), 125.6 (d, Ar-CH), 122.5 (s, Ar-C), 121.7 (d, Ar-CH), 116.4 (d, Ar-CH), 34.2 (t, CH₂), 21.0 (q, Ar-CH₃), 19.8 (q, Ar-CH₃) ppm. HR-MS (ESI⁺) m/z calculated for [C₁₇H₁₉O]⁺=[M+H]⁺: calculated: 239.1430; found: 239.1416.

(*E*)-3-Methyl-4-(3-(3,4,5-trimethoxyphenyl)allyl)phenol (3cn): GP-1 was carried out with phenol 1c (22 mg, 0.2 mmol), PdCl₂ (4 mg, 0.02 mmol) and allylic alcohol 2n (67 mg, 0.3 mmol), in DCE (2 mL) solvent, at 60 °C for 24 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 100:0 to 90:10) furnished (*E*)-3-methyl-4-(3-(3,4,5-trimethoxyphenyl)allyl)phenol 3cn (45 mg, 71%) as a pale-yellow liquid. [TLC control (petroleum ether/ethyl acetate 93:07), R_f (1c) = 0.70, R_f (2n) = 0.40, R_f (3cn) = 0.50, UV detection]. Mp: 135 – 137 °C; IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =3390, 2897, 2820, 1567, 1485, 1441, 1224, 1110, 992, 805, 724 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 7.04 (d, *J* = 8.1 Hz, 1H, Ar-H), 6.70 – 6.61 (m, 2H, Ar-H), 6.55 (s, 2H, Ar-H), 6.23 – 6.21 (m, 2H, CH=CH-CH₂), 4.93 (br.s, 1H, Ar-OH), 3.84 (s, 6H, 2 × Ar-OCH₃), 3.82 (s, 3H, Ar-OCH₃), 3.44 (d, *J* = 4.5 Hz, 2H, CH=CH-CH₂), 2.26 (s, 3H, Ar-CH₃) ppm. ¹³C{H}-NMR (100 MHz, CDCl₃) δ = 154.1 (s, Ar-C), 153.2 (s, 2C, 2 × Ar-C), 138.0 (s, Ar-C), 137.2 (s, Ar-C), 133.3 (s, Ar-C), 130.4 (d, Ar-CH), 130.3 (d, Ar-CH), 130.2 (s, Ar-O), 128.6 (d, Ar-CH), 117.1 (d, Ar-CH), 112.7 (d, Ar-CH), 103.0 (d, 2C, 2 × Ar-CH), 60.9 (q, Ar-OCH₃), 56.0 (q, 2C, 2 × Ar-OCH₃), 35.9 (t, CH₂), 19.5 (q, Ar-CH₃) ppm. HR-MS (ESI⁺) m/z calculated for [C₁₉H₂₃O₄]⁺=[M+H]⁺: calculated: 315.1591; found: 315.1585.

(*E*)-4-(3-(4-Chlorophenyl)allyl)-3-methylphenol (3cf): GP-1 was carried out with phenol 1c (22 mg, 0.2 mmol), PdCl₂ (4 mg, 0.02 mmol) and allylic alcohol 2f (51 mg, 0.3 mmol), in DCE (2 mL) solvent, at 60 °C for 24 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 100:0 to 90:10) furnished (*E*)-4-(3-(4-chlorophenyl)allyl)-3-methylphenol 3cf (34 mg, 66%) as a pale-yellow liquid. [TLC control (petroleum ether/ethyl acetate 93:07), R_f (1c) = 0.70, R_f (2f) = 0.40, R_f (3cf) = 0.50, UV detection]. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =3301, 2994, 2874, 1587, 1494, 1420, 1330, 1210, 1162, 1010, 955, 816, 738, 659

cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ = 7.23 (s, 4H, Ar-H), 7.01 (d, 1H, *J* = 8.1 Hz, Ar-H), 6.70 – 6.59 (m, 2H, Ar-H), 6.35 – 6.21 (m, 2H, C*H*=C*H*-CH₂), 5.15 (br.s, 1H, Ar-O*H*), 3.42 (d, 2H, *J* = 6.1 Hz, CH=CH-CH₂), 2.25 (s, 3H, Ar-CH₃) ppm. ¹³C{H}-NMR (CDCl₃,100 MHz): δ = 153.9 (s, Ar-C), 138.0 (s, Ar-C), 136.0 (s, Ar-C), 132.5 (s, Ar-C), 130.4 (d, Ar-CH), 130.1 (s, Ar-C), 129.7 (d, Ar-CH), 129.3 (d, Ar-CH), 128.5 (d, 2C, 2 × Ar-CH), 127.2 (d, 2C, 2 × Ar-CH), 117.1 (d, Ar-CH), 112.7 (d, Ar-CH), 35.9 (t, CH₂), 19.5 (q, Ar-CH₃) ppm. HR-MS (ESI⁺) m/z calculated for [C₁₆H₁₆ClO]⁺=[M+H]⁺: calculated: 259.0884; found: 259.0870.

(E)-4-(3-(2-Bromophenyl)allyl)-3-methylphenol (3ci): GP-1 was carried out with phenol 1c (22 mg, 0.2 mmol), PdCl₂ (4 mg, 0.02 mmol) and allylic alcohol 2i (64 mg, 0.3 mmol), in DCE (2 mL) solvent, at 60 °C for 24 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 100:0 to 90:10) furnished (E)-4-(3-(2-bromophenyl)allyl)-3methylphenol 3ci (38 mg, 62%) as a pale-yellow liquid. [TLC control (petroleum ether/ethyl acetate 93:07), $R_f(1c) = 0.70$, $R_f(2i) = 0.40$, $R_f(3ci) = 0.50$, UV detection]. IR (MIR-ATR, 4000– 600 cm⁻¹): *v_{max}*=3395, 2993, 2889, 1600, 1570, 1453, 1405, 1253, 952, 724, 696 cm⁻¹. ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta = 7.51 \text{ (dd}, J = 8.0, 1.2 \text{ Hz}, 1\text{H}, \text{Ar-H}), 7.46 \text{ (dd}, J = 7.8, 1.6 \text{ Hz}, 1\text{H}, \text{Ar-H}),$ 7.21 (ddd, J = 7.9, 7.4, 0.7 Hz, 1H, Ar-H), 7.05 (ddd, J = 7.5, 4.4, 1.8 Hz, 2H, Ar-H), 6.79 – 6.55 (m, 3H, Ar-H), 6.20 (dt, J = 15.7 and 6.6 Hz, 1H, CH=CH-CH₂), 4.68 (s, 1H, Ar-OH), 3.49 (dd, J = 6.6 and 1.5 Hz, 2H, CH=CH-CH₂), 2.29 (s, 3H, Ar-CH₃) ppm. ¹³C{H}-NMR (CDCl₃, 100 MHz): δ = 154.0 (s, Ar-C), 138.1 (s, Ar-C), 137.4 (s, Ar-C), 132.8 (d, Ar-CH), 132.1 (d, Ar-CH), 130.3 (d, Ar-CH), 130.1 (s, Ar-C), 129.6 (d, Ar-CH), 128.3 (d, Ar-CH), 127.4 (d, Ar-CH), 127.0 (d, Ar-CH), 123.2 (s, Ar-C), 117.1 (d, Ar-CH), 112.7 (d, Ar-CH), 36.2 (t, CH₂), 19.5 (q, Ar-CH₃) ppm. HR-MS (ESI⁺) m/z calculated for $[C_{16}H_{16}Br^{79}O]^+ = [M+H]^+$: calculated: 303.0379; found: 303.0374, calculated for $[C_{16}H_{16}Br^{81}O]^+ = [M+H]^+$: calculated: 305.0359; found: 305.0357.

(E)-4-(3-(3-Bromophenyl)allyl)-3-methylphenol (3ch): GP-1 was carried out with phenol 1c (22 mg, 0.2 mmol), PdCl₂ (4 mg, 0.02 mmol) and allylic alcohol **2h** (64 mg, 0.3 mmol), in DCE (2 mL) solvent, at 60 °C for 24 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 100:0 to 90:10) furnished (E)-4-(3-(3bromophenyl)allyl)-3-methylphenol 3ch (40 mg, 66%) as a pale-yellow liquid. [TLC control (petroleum ether/ethyl acetate 93:07), $R_f(1c) = 0.70$, $R_f(2h) = 0.40$, $R_f(3ch) = 0.50$, UV detection]. IR (MIR-ATR, 4000–600 cm⁻¹): *v_{max}*=3391, 2992, 2890, 1569, 1452, 1406, 1263, 1199, 1061, 952, 764, 674 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 7.46 (t, J = 1.8 Hz, 1H, Ar-H), 7.30 (ddd, J = 7.8, 1.8, 1.1 Hz, 1H, Ar-H), 7.22 (dd, J = 7.7, 1.1 Hz, 1H, Ar-H), 7.13 (t, J = 7.8 Hz, 1H, Ar-H), 7.01 (d, J = 8.1 Hz, 1H, Ar-H), 6.72 – 6.56 (m, 2H, Ar-H), 6.31 (dt, J = 15.8 and 6.1 Hz, 1H, CH=CH-CH₂), 6.22 (d, J = 15.8 Hz, 1H, CH=CH-CH₂), 4.70 (s, 1H, Ar-OH), 3.44 (d, J = 6.1 Hz, 2H, CH=CH-CH₂), 2.26 (s, 3H, Ar-CH₃) ppm. ¹³C{H}-NMR (CDCl₃,100 MHz): δ = 154.0 (s, Ar-C), 139.7 (s, Ar-C), 138.0 (s, Ar-C), 130.7 (d, Ar-CH), 130.4 (d, Ar-CH), 130.0 (s, Ar-C), 129.9 (d, Ar-CH), 129.8 (d, Ar-CH), 129.1 (d, Ar-CH), 128.9 (d, Ar-CH), 124.7 (d, Ar-CH), 122.7 (s, Ar-C), 117.1 (d, Ar-CH), 112.8 (d, Ar-CH), 35.9 (t, CH₂), 19.5 (q, Ar-CH₃) ppm. HR-MS (ESI⁺) m/z calculated for $[C_{16}H_{16}Br^{79}O]^+=[M+H]^+$: calculated: 303.0379; found: 303.0379, calculated for $[C_{16}H_{16}Br^{81}O]^+=[M+H]^+$: calculated: 305.0359; found: 305.0363.

(*E*)-4-(3-(4-Bromophenyl)allyl)-3-methylphenol (3cg): GP-1 was carried out with phenol 1c (22 mg, 0.2 mmol), PdCl₂ (4 mg, 0.02 mmol) and allylic alcohol 2g (64 mg, 0.3 mmol), in DCE (2 mL) solvent, at 60 °C for 24 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 100:0 to 90:10) furnished (*E*)-4-(3-(4-bromophenyl)allyl)-3-methylphenol 3cg (35 mg, 58%) as a pale-yellow liquid. [TLC control

(petroleum ether/ethyl acetate 93:07), $R_f(1c) = 0.70$, $R_f(2g) = 0.40$, $R_f(3cg) = 0.50$, UV detection]. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =3373, 2893, 1579, 1453, 1422, 1078, 1010, 951, 769, 740 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.41 - 7.35$ (m, 2H, Ar-H), 7.18 (d, 2H, J = 8.5 Hz, Ar-H), 7.02 (d, 1H, J = 8.1 Hz, Ar-H), 6.76 – 6.55 (m, 2H, Ar-H), 6.41 – 6.19 (m, 2H, CH=CH-CH₂), 4.77 (s, 1H, Ar-OH), 3.43 (d, 2H, J = 5.4 Hz, CH=CH-CH₂), 2.26 (s, 3H, Ar-CH₃) ppm. ¹³C{H}-NMR (CDCl₃, 100 MHz): $\delta = 154.0$ (s, Ar-C), 138.0 (s, Ar-C), 136.5 (s, Ar-C), 131.5 (d, 2C, 2 × Ar-CH), 130.4 (d, Ar-CH), 130.1 (s, Ar-C), 129.9 (d, Ar-CH), 129.4 (d, Ar-CH), 127.6 (d, 2C, 2 × Ar-CH), 120.6 (s, Ar-C), 117.1 (d, Ar-CH), 112.7 (d, Ar-CH), 36.0 (t, CH₂), 19.5 (q, Ar-CH₃) ppm. HR-MS (ESI⁺) m/z calculated for [C₁₆H₁₆Br⁷⁹O]⁺=[M+H]⁺: calculated: 303.0379; found: 303.0405, calculated for [C₁₆H₁₆Br⁸¹O]⁺=[M+H]⁺: calculated: 305.0359; found: 305.0349.

4-Cinnamyl-3-methoxyphenol (3da): GP-1 was carried out with phenol **1d** (25 mg, 0.2 mmol), PdCl₂ (4 mg, 0.02 mmol) and allylic alcohol **2a** (40 mg, 0.75 mmol), in DCE (2 mL) solvent, at 60 °C for 24 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 100:0 to 90:10) furnished 4-cinnamyl-3-methoxyphenol **3da** (33 mg, 69%) as a pale-yellow liquid. [TLC control (petroleum ether/ethyl acetate 93:07), R_f (**1d**) = 0.70, R_f (**2a**) = 0.40, R_f (**3da**) = 0.50, UV detection]. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =3377, 2896, 2816, 1583, 1452, 1422, 1256, 1185, 1077, 953, 736 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 7.35 (dd, *J* = 8.3 and 1.1 Hz, 2H, Ar-H), 7.29 (dd, *J* = 7.1 and 1.7 Hz, 2H, Ar-H), 7.23 – 7.15 (m, 1H, Ar-H), 7.01 (d, *J* = 8.1 Hz, 1H, Ar-H), 6.43 (d, *J* = 2.3 Hz, 1H, Ar-H), 6.44 – 6. 31 (m, 1H, Ar-H and 2H, C*H*=C*H*-CH₂), 4.80 (s, 1H, Ar-OH), 3.81 (s, 3H, Ar-OCH₃), 3.45 (d, *J* = 5.7 Hz, 2H, CH=CH-CH₂) ppm. ¹³C{H}-NMR (100 MHz, CDCl₃) δ = 158.3 (s, Ar-C), 155.2 (s, Ar-C), 137.8 (s, Ar-C), 130.4 (d, Ar-CH), 130.3 (d, Ar-CH), 129.9 (s, Ar-C), 106.6 (d, Ar-CH), 98.9 (d, Ar-CH), 55.4 (q, Ar-OCH₃), 32.7 (t, CH₂) ppm. HR-MS (ESI⁺) m/z calculated for [C₁₆H₁₇O₂]⁺=[M+H]⁺: calculated: 241.1223; found: 241.1227.

(E)-4-(3-(2-Bromophenyl)allyl)-3-methoxyphenol (3di): GP-1 was carried out with phenol 1d (25 mg, 0.2 mmol), PdCl₂ (4 mg, 0.02 mmol) and allylic alcohol **2i** (64 mg, 0.3 mmol), in DCE (2 mL) solvent, at 60 °C for 24 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 100:0 to 90:10) furnished (E)-4-(3-(2bromophenyl)allyl)-3-methoxyphenol **3di** (40 mg, 62%) as a pale-yellow liquid. [TLC control (petroleum ether/ethyl acetate 93:07), $R_f(1d) = 0.70$, $R_f(2i) = 0.40$, $R_f(3di) = 0.50$, UV detection]. IR (MIR-ATR, 4000–600 cm⁻¹): *v_{max}*=3329, 2942, 2831, 1593, 1444, 1021, 656 cm⁻¹. ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta = 7.56 - 7.44 \text{ (m, 2H, Ar-H)}, 7.25 - 7.17 \text{ (m, 1H, Ar-H)}, 7.04 \text{ (ddd, } J = 8.1, 1.16 \text{ (ddd, } J = 8.16 \text{$ 6.4 and 2.5 Hz, 2H, Ar-H), 6.75 (d, J = 15.6 Hz, 1H, CH=CH-CH₂), 6.43 (d, J = 2.4 Hz, 1H, Ar-H), 6.37 (dd, J = 8.1 and 2.4 Hz, 1H, Ar-H), 6.27 (dt, J = 15.6 and 6.9 Hz, 1H, CH=CH-CH₂), 4.76 (s, 1H, Ar-OH), 3.82 (s, 3H, Ar-OCH₃), 3.49 (dd, J = 6.9 and 1.4 Hz, 2H, CH=CH-CH₂) ppm. ¹³C{H}-NMR (100 MHz, CDCl₃) δ = 158.4 (s, Ar-C), 155.3 (s, Ar-C), 137.6 (s, Ar-C), 132.8 (d, Ar-CH), 132.3 (d, Ar-CH), 130.3 (d, Ar-CH), 129.3 (d, Ar-CH), 128.1 (d, Ar-CH), 127.3 (d, Ar-CH), 126.9 (d, Ar-CH), 123.2 (s, Ar-C), 120.5 (s, Ar-C), 106.7 (d, Ar-CH), 98.9 (d, Ar-CH), 55.4 (q, Ar-OCH₃), 33.0 (t, CH₂) ppm. HR-MS (ESI⁺) m/z calculated for $[C_{16}H_{16}Br^{79}O_2]^+ = [M+H]^+$: calculated: 319.0328: found: 319.0303. HR-MS (ESI^{+}) m/z calculated for $[C_{16}H_{16}Br^{81}O_2]^+ = [M+H]^+$: calculated: 321.0308; found: 321.0285.

(*E*)-2-Fluoro-4-(3-(*p*-tolyl)allyl)phenol (3lb): GP-1 was carried out with phenol 1l (22 mg, 0.2 mmol), PdCl₂ (4 mg, 0.02 mmol) and allyl alcohol 2b (44 mg, 0.3 mmol), in DCE (2 mL) solvent, at 60 °C for 24 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 100:0 to 85:15) furnished (*E*)-2-Fluoro-4-(3-(*p*-tolyl)allyl)phenol **3lb** (37 mg, 77%) as a pale-yellow liquid. [TLC control (petroleum ether/ethyl acetate 85:15),

 $R_f(\mathbf{1l}) = 0.80, R_f(\mathbf{2b}) = 0.50, R_f(\mathbf{3lb}) = 0.40, UV \text{ detection}]. \text{ IR (MIR-ATR, 4000-600 cm^{-1}):}$ v_{max} =3376, 3004, 1579, 1487, 1439, 1210, 1147, 958, 829, 745 cm^{-1}. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.31$ (d, J = 8.1 Hz, 2H), 7.14 (d, J = 7.9 Hz, 2H), 6.99 – 6.96 (m, 1H), 6.94 – 6.82 (m, 2H), 6.69 (d, J = 16.0 Hz, 1H), 6.35 (dt, J = 16.0, 5.9 Hz, 1H), 4.65 (dd, J = 5.9, 1.4 Hz, 2H), 2.34 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) $\delta = 158.5, 154.7, 137.9, 133.5, 133.2, 129.3, 129.1, 129.1,$ 127.0, 126.5, 123.1, 115.9, 115.8, 115.7, 115.7, 69.4, 21.2 ppm. HR-MS (ESI⁺) m/z calculated for [C₁₆H₁₃FNa]⁺=[M+Na]-[H₂O]⁺: calculated: 247.0893; found: 247.0881.

2-Bromo-4-cinnamylphenol (**3ma**): **GP-1** was carried out with phenol **1m** (35 mg, 0.2 mmol), PdCl₂ (4 mg, 0.02 mmol) and allyl alcohol **2a** (40 mg, 0.3 mmol), in DCE (2 mL) solvent, at 60 °C for 24 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 100:0 to 85:15) furnished 2-Bromo-4-cinnamylphenol **3ma** (48 mg, 82%) as a pale-yellow liquid. [TLC control (petroleum ether/ethyl acetate 85:15), R_f (**1m**) = 0.70, R_f (**2a**) = 0.30, R_f (**3ma**) = 0.50, UV detection]. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =3302, 3027, 2890, 1685, 1582, 1477, 1432, 1272, 1165, 957, 741, 691 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 7.36 – 7.28 (m, 5H), 7.21 (ddd, J = 7.2, 3.9, 1.3 Hz, 1H), 7.08 (dd, J = 8.3, 2.0 Hz, 1H), 6.95 (d, J = 8.3 Hz, 1H), 6.43 (d, J = 15.7 Hz, 1H), 6.29 (dt, J = 15.7, 6.8 Hz, 1H), 5.41 (s, 1H), 3.45 (d, J = 6.8 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ = 150.6, 137.2, 133.8, 131.8, 131.3, 129.4, 128.6, 128.5, 127.2, 126.1, 115.9, 110.1, 38.1 ppm. HR-MS (ESI⁺) m/z calculated for [C₁₅H₁₄O]⁺=[M+H]–[Br]⁺: calculated: 210.1039; found: 210.1067.

(E)-4-(3-(4-Ethylphenyl)allyl)-2,6-dimethylphenol (3ec): GP-1 was carried out with phenol 1e (25 mg, 0.2 mmol), PdCl₂ (4 mg, 0.02 mmol) and allylic alcohol **2c** (49 mg, 0.3 mmol), in DCE (2 mL) solvent, at 60 °C for 24 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 100:0 to 90:10) furnished (E)-4-(3-(4ethylphenyl)allyl)-2,6-dimethylphenol **3ec** (46 mg, 87%) as a pale-yellow liquid. [TLC control (petroleum ether/ethyl acetate 93:07), $R_f(1e) = 0.70$, $R_f(2c) = 0.40$, $R_f(3ec) = 0.50$, UV detection]. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =3056, 2923, 2852, 1603, 1483, 1445, 1378, 1195, 1076, 1022, 941, 809, 764, 693 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.31$ (d, 2H, J = 8.1 Hz, Ar-H), 7.15 (d, 2H, J = 8.1 Hz, Ar-H), 6.87 (s, 2H, Ar-H), 6.44 (d, 1H, J = 15.7 Hz, CH=CH-CH₂), 6.30 (dt, 1H, J = 15.7 and 6.8 Hz, CH=CH-CH₂), 4.55 (s, 1H, Ar-OH), 3.43 (d, 2H, J = 6.8 Hz, CH=CH- CH_2), 2.64 (q, 2H, J = 7.6 Hz, Ar- CH_2 CH₃), 2.24 (s, 6H, 2 × Ar-CH₃), 1.24 (t, 3H, J = 7.6 Hz, Ar-CH₂CH₃) ppm. ¹³C{H}-NMR (CDCl₃,100 MHz): $\delta = 150.5$ (s, Ar-C), 143.2 (s, Ar-C), 135.1 (s, Ar-C), 131.8 (s, Ar-C), 130.4 (d, CH=CH-CH₂), 128.9 (d, CH=CH-CH₂), 128.7 (d, 2C, 2 × Ar-CH), 128.0 (d, 2C, 2 × Ar-CH), 126.1 (d, 2C, 2 × Ar-CH), 123.0 (s, Ar-C), 38.5 (t, CH₂), 28.5 (t, Ar- CH_2CH_3), 15.8 (q, 2 × Ar- CH_3), 15.7 (q, Ar- CH_2CH_3) ppm. HR-MS (ESI⁺) m/z calculated for $[C_{19}H_{21}O]^{+}=[M-H]^{+}$: calculated: 265.1587; found: 265.1588.

(*E*)-4-(3-(4-Chlorophenyl)allyl)-2,6-dimethylphenol (3ef): GP-1 was carried out with phenol 1e (25 mg, 0.2 mmol), PdCl₂ (4 mg, 0.02 mmol) and allylic alcohol 2f (51 mg, 0.3 mmol), in DCE (2 mL) solvent, at 60 °C for 24 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 100:0 to 90:10) furnished (*E*)-4-(3-(4-chlorophenyl)allyl)-2,6-dimethylphenol 3ef (46 mg, 84%) as a pale-yellow liquid. [TLC control (petroleum ether/ethyl acetate 93:07), R_f (1e) = 0.70, R_f (2f) = 0.40, R_f (3ef) = 0.50, UV detection]. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =3304, 2923, 2872, 1587, 1494, 1446, 1328, 1210, 1161, 1010, 955, 817, 737, 659 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ = 7.27 – 7.22 (m, 4H, Ar-H), 6.83 (s, 2H, Ar-H), 6.40 – 6.24 (m, 2H, CH=CH-CH₂), 4.53 (s, 1H, Ar-OH), 3.40 (d, 2H, *J* = 6.2 Hz, CH=CH-CH₂), 2.22 (s, 6H, 2 × Ar-CH₃) ppm. ¹³C{H}-NMR (CDCl₃, 100 MHz): δ = 150.6 (s, Ar-

C), 136.1 (s, Ar-C), 132.5 (s, Ar-C), 131.3 (s, Ar-C), 130.7 (d, CH=CH-CH₂), 129.2 (d, CH=CH-CH₂), 128.7 (d, 2C, $2 \times$ Ar-CH), 128.6 (d, 2C, $2 \times$ Ar-CH), 127.2 (d, 2C, $2 \times$ Ar-CH), 123.1 (s, Ar-C), 38.5 (t, CH₂), 15.9 (q, $2 \times$ Ar-CH₃) ppm. HR-MS (ESI⁺) m/z calculated for $[C_{17}H_{18}ClO]^+=[M+H]^+$: calculated: 273.1041; found: 373.1033.

(E)-4-(3-(4-Ethylphenyl)allyl)-3,5-dimethylphenol (3fc): GP-1 was carried out with phenol 1f (25 mg, 0.2 mmol), PdCl₂ (4 mg, 0.02 mmol) and allylic alcohol **2c** (49 mg, 0.3 mmol), in DCE (2 mL) solvent, at 60 °C for 24 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 100:0 to 90:10) furnished (E)-4-(3-(4ethylphenyl)allyl)-3,5-dimethylphenol **3fc** (41 mg, 78%) as a pale-yellow liquid. [TLC control (petroleum ether/ethyl acetate 93:07), $R_f(1f) = 0.70$, $R_f(2c) = 0.40$, $R_f(3fc) = 0.50$, UV detection]. IR (MIR-ATR, 4000–600 cm⁻¹): *v_{max}*=3399, 2993, 2870, 1587, 1494, 1446, 1420, 1326, 1210, 1160, 1010, 955, 817, 738 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.24$ (d, 2H, J = 8.2 Hz, Ar-H), 7.12 (d, 2H, J = 8.2 Hz, Ar-H), 6.55 (s, 2H, Ar-H), 6.32 – 6.05 (m, 2H, CH=CH-CH₂), 4.82 (s, 1H, Ar-OH), 3.47 (d, 2H, J = 4.2 Hz, CH=CH-CH₂), 2.62 (q, 2H, J = 7.6 Hz, Ar-CH₂CH₃), 2.29 (s, 6H, 2 × Ar-CH₃), 1.22 (t, 3H, J = 7.6 Hz, Ar-CH₂CH₃) ppm. ¹³C{H}-NMR (CDCl₃,100 MHz): δ = 153.3 (s, Ar-C), 143.1 (s, Ar-C), 138.3 (s, Ar-C), 135.1 (s, Ar-C), 129.5 (d, CH=CH-CH₂), 128.6 (s, Ar-C), 127.9 (d, 2C, 2 × Ar-CH), 126.9 (d, CH=CH-CH₂), 125.9 (d, 2C, 2 × Ar-CH), 114.7 (d, 2C, 2 × Ar-CH), 32.1 (t, CH₂), 28.5 (t, Ar-CH₂CH₃), 20.0 (q, 2 × Ar-CH₃), 15.6 (q, Ar-CH₂CH₃) ppm. HR-MS (ESI⁺) m/z calculated for $[C_{19}H_{23}O]^+=[M+H]^+$: calculated: 267.1743; found: 267.1739.

(*E*)-4-(3-(4-Chlorophenyl)allyl)-3,5-dimethylphenol (3ff): GP-1 was carried out with phenol 1f (25 mg, 0.2 mmol), PdCl₂ (4 mg, 0.02 mmol) and allylic alcohol 2f (51 mg, 0.3 mmol), in DCE (2 mL) solvent, at 60 °C for 24 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 100:0 to 90:10) furnished (*E*)-4-(3-(4-chlorophenyl)allyl)-3,5-dimethylphenol 3ff (40 mg, 73%) as a pale-yellow liquid. [TLC control (petroleum ether/ethyl acetate 93:07), R_f (1f) = 0.70, R_f (2f) = 0.40, R_f (3ff) = 0.50, UV detection]. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =3294, 2990, 1629, 1494, 1449, 1324, 1210, 1159, 1011, 953, 817, 735, 659 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ = 7.21 (d, 4H, *J* = 0.7 Hz, Ar-H), 6.54 (s, 2H, Ar-H), 6.24 (dt, 1H, *J* = 15.8 and 5.6 Hz, CH=CH-CH₂), 6.13 (dt, 1H, *J* = 15.8 and 1.6 Hz, CH=CH-CH₂), 4.62 (s, 1H, Ar-OH), 3.45 (dd, 2H, *J* = 5.6 and 1.5 Hz, CH=CH-CH₂), 2.27 (s, 6H, 2 × Ar-CH₃) ppm. ¹³C{H}-NMR (CDCl₃, 100 MHz): δ = 153.4 (s, Ar-C), 138.3 (s, Ar-C), 136.1 (s, Ar-C), 132.4 (s, Ar-C), 128.7 (d, CH=CH-CH₂), 128.5 (d, 2C, 2 × Ar-CH), 128.5 (d, CH=CH-CH₂), 20.0 (q, 2 × Ar-CH₃) ppm. HR-MS (ESI⁺) m/z calculated for [C₁₇H₁₈ClO]⁺=[M+H]⁺: calculated: 273.1041; found: 273.1040.

5-Cinnamyl-[1,1'-biphenyl]-2-ol (3ga): GP-1 was carried out with phenol **1g** (34 mg, 0.2 mmol), PdCl₂ (4 mg, 0.02 mmol) and allylic alcohol **2a** (40 mg, 0.3 mmol), in DCE (2 mL) solvent, at 60 °C for 24 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 100:0 to 90:10) furnished 5-cinnamyl-[1,1'-biphenyl]-2-ol **3ga** (43 mg, 76%) as a pale-yellow liquid. [TLC control (petroleum ether/ethyl acetate 95:05), R_f (**1g**) = 0.70, R_f (**2a**) = 0.30, R_f (**3ga**) = 0.50, UV detection]. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =3303, 2994, 1588, 1494, 1446, 1420, 1209, 1160, 1010, 955, 817, 737, 659 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ = 7.49 (d, 4H, *J* = 4.5 Hz, Ar-H), 7.44 – 7.36 (m, 3H, Ar-H), 7.31 (t, 2H, *J* = 7.6 Hz, Ar-H), 7.22 (t, 1H, *J* = 7.3 Hz, Ar-H), 7.18 – 7.11 (m, 2H, Ar-H), 6.95 (d, 1H, *J* = 8.0 Hz, Ar-H), 6.49 (d, 1H, *J* = 15.8 Hz, C*H*=CH-CH₂), 6.38 (dt, 1H, *J* = 15.8 and 6.6 Hz, CH=CH-CH₂), 5.18 (s, 1H, Ar-OH), 3.54 (d, 2H, J = 6.6 Hz, CH=CH-CH₂) ppm. ¹³C{H}-NMR(CDCl₃,100MHz): $\delta = 150.8$ (s, Ar-C), 137.4 (s, Ar-C), 137.1 (s, Ar-C), 132.4 (s, Ar-C), 130.8 (d, Ar-CH), 130.3 (d, Ar-CH), 129.4 (d, Ar-CH), 129.2 (d, Ar-CH), 129.2 (d, 2C, 2 × Ar-CH), 129.0 (d, 2C, 2 × Ar-CH), 128.5 (d, 2C, 2 × Ar-CH), 128.1 (s, Ar-C), 127.8 (d, Ar-CH), 127.1 (d, Ar-CH), 126.1 (d, 2C, 2 × Ar-CH), 115.8 (d, Ar-CH), 32.0 (t, CH₂) ppm. HR-MS (ESI⁺) m/z calculated for [C₂₁H₁₉O]⁺=[M+H]⁺: calculated: 287.1430; found: 287.1422.

(E)-5-(3-(4-Ethylphenyl)allyl)-[1,1'-biphenyl]-2-ol (3gc): GP-1 was carried out with phenol 1g (34 mg, 0.2 mmol), PdCl₂ (4 mg, 0.02 mmol) and allylic alcohol 2c (49 mg, 0.3 mmol), in DCE (2 mL) solvent, at 60 °C for 24 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 100:0 to 90:10) furnished (E)-5-(3-(4ethylphenyl)allyl)-[1,1'-biphenyl]-2-ol **3gc** (46 mg, 73%) as a pale-yellow liquid. [TLC control (petroleum ether/ethyl acetate 95:05), $R_f(1g) = 0.70$, $R_f(2c) = 0.30$, $R_f(3gc) = 0.50$, UV detection]. IR (MIR-ATR, 4000–600 cm⁻¹): *v_{max}*=3381, 2893, 2823, 1490, 1443, 1248, 1188, 1102, 960, 808 cm^{-1} . ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.54 - 7.44$ (m, 4H, Ar-H), 7.42 - 7.36 (m, 1H, Ar-H), 7.29 (d, 2H, J = 8.1 Hz, Ar-H), 7.13 (d, 4H, J = 7.9 Hz, Ar-H), 6.93 (d, 1H, J = 8.1 Hz, Ar-H), 6.45 (d, 1H, J = 8.1 Hz), 6.45 (d, 2H, 2H), 6.45 (d, 2H), 6.45 (d,1H, J = 15.8 Hz, CH=CH-CH₂), 6.32 (dt, 1H, J = 15.8 and 6.8 Hz, CH=CH-CH₂), 5.14 (s, 1H, Ar-OH), 3.51 (d, 2H, J = 6.8 Hz, CH=CH-CH₂), 2.62 (q, 2H, J = 7.6 Hz, Ar-CH₂CH₃), 1.22 (t, 3H, J= 7.6 Hz, Ar-CH₂CH₃) ppm. ¹³C{H}-NMR (CDCl₃,100 MHz): δ = 150.7 (s, Ar-C), 143.3 (s, Ar-C), 137.1 (s, Ar-C), 134.9 (s, Ar-C), 132.6 (s, Ar-C), 130.7 (d, Ar-CH), 130.3 (d, Ar-CH), 129.2 (d, Ar-CH), 129.2 (d, 2C, 2 × Ar-CH), 129.1 (d, 2C, 2 × Ar-CH), 128.5 (d, Ar-CH), 128.0 (s, Ar-C), 128.0 (d, 2C, 2 × Ar-CH), 127.8 (d, Ar-CH), 126.1 (d, 2C, 2 × Ar-CH), 115.8 (d, Ar-CH), 38.5 (t, CH₂), 28.5 (t, Ar-CH₂CH₃), 15.6 (q, Ar-CH₂CH₃) ppm. HR-MS (ESI⁺) m/z calculated for $[C_{23}H_{23}O]^{+}=[M+H]^{+}$: calculated: 315.1743; found: 315.1744.

(E)-5-(3-(4-Chlorophenyl)allyl)-[1,1'-biphenyl]-2-ol (3gf): GP-1 was carried out with phenol 1g (34 mg, 0.2 mmol), PdCl₂ (4 mg, 0.02 mmol) and allylic alcohol **2f** (51 mg, 0.3 mmol), in DCE (2 mL) solvent, at 60 °C for 18 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 100:0 to 90:10) furnished (E)-5-(3-(4chlorophenyl)allyl)-[1,1'-biphenyl]-2-ol **3gf** (45 mg, 70%) as a pale-yellow liquid. [TLC control (petroleum ether/ethyl acetate 95:05), $R_f(1g) = 0.70$, $R_f(2f) = 0.30$, $R_f(3gf) = 0.50$, UV detection]. IR (MIR-ATR, 4000–600 cm⁻¹): *v_{max}*=3299, 2994, 1588, 1494, 1446, 1420, 1208, 1160, 1010, 955, 817, 736 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ = 7.45 (d, 4H, J = 4.5 Hz, Ar-H), 7.36 (ddd, 1H, J = 8.8, 5.1, 3.7 Hz, Ar-H), 7.24 (d, 4H, J = 2.9 Hz, Ar-H), 7.14 – 7.07 (m, 2H, Ar-H), 6.92 (d, 1H, J = 8.1 Hz, Ar-H), 6.38 (d, 1H, J = 15.8 Hz, CH=CH-CH₂), 6.31 (dt, 1H, J = 15.8 and 6.2 Hz, CH=CH-CH₂), 5.17 (s, 1H, Ar-OH), 3.48 (d, 2H, J = 6.2 Hz, CH=CH-CH₂) ppm. ¹³C{H}-NMR (CDCl₃, 100 MHz): δ = 150.8 (s, Ar-C), 137.1 (s, Ar-C), 135.9 (s, Ar-C), 132.6 (s, Ar-C), 132.1 (s, Ar-C), 130.3 (d, Ar-CH), 130.2 (d, Ar-CH), 129.6 (d, Ar-CH), 129.2 (d, Ar-CH), 129.2 (d, 2C, 2 × Ar-CH), 129.0 (d, 2C, 2 × Ar-CH), 128.6 (d, 2C, 2 × Ar-CH), 128.1 (s, Ar-C), 127.8 (d, Ar-CH), 127.3 (d, 2C, 2 × Ar-CH), 115.9 (d, Ar-CH), 38.5 (t, CH₂) ppm. HR-MS (ESI⁺) m/z calculated for $[C_{21}H_{18}CIO]^+=[M+H]^+$: calculated: 321.1041; found: 321.1038.

(*E*)-5-(3-(4-Bromophenyl)allyl)-[1,1'-biphenyl]-2-ol (3gg): GP-1 was carried out with phenol 1g (34 mg, 0.2 mmol), PdCl₂ (4 mg, 0.02 mmol) and allylic alcohol 2g (64 mg, 0.3 mmol), in DCE (2 mL) solvent, at 60 °C for 20 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 100:0 to 90:10) furnished (*E*)-5-(3-(4-bromophenyl)allyl)-[1,1'-biphenyl]-2-ol 3gg (47 mg, 64%) as a pale-yellow liquid. [TLC control

(petroleum ether/ethyl acetate 93:07), $R_f(1g) = 0.70$, $R_f(2g) = 0.30$, $R_f(3gg) = 0.50$, UV detection]. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =3393, 2895, 2818, 1583, 1452, 1258, 1184, 1076, 1013, 953, 738 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.51 - 7.44$ (m, 4H, Ar-H), 7.42 – 7.36 (m, 3H, Ar-H), 7.24 – 7.17 (m, 2H, Ar-H), 7.15 – 7.07 (m, 2H, Ar-H), 6.93 (d, 1H, J = 8.1 Hz, Ar-H), 6.45 – 6.25 (m, 2H, CH=CH-CH₂), 5.14 (s, 1H, Ar-OH), 3.50 (d, 2H, J = 5.3 Hz, CH=CH-CH₂) ppm. ¹³C{H}-NMR (CDCl₃, 100 MHz): $\delta = 150.9$ (s, Ar-C), 137.1 (s, Ar-C), 136.4 (s, Ar-C), 132.0 (s, Ar-C), 131.5 (d, 2C, 2 × Ar-CH), 130.4 (d, Ar-CH), 130.3 (d, Ar-CH), 129.7 (d, Ar-CH), 129.3 (d, 3C, 3 × Ar-CH), 129.0 (d, 2C, 2 × Ar-CH), 128.1 (s, Ar-C), 127.9 (d, Ar-CH), 127.7 (d, 2C, 2 × Ar-CH), 120.7 (s, Ar-C), 115.9 (d, Ar-CH), 38.5 (t, CH₂) ppm. HR-MS (ESI⁺) m/z calculated for [C₂₁H₂₁Br⁷⁹NO]⁺=[M+NH₄]⁺: calculated: 382.0801; found: 382.0799. calculated for [C₂₁H₂₁Br⁸¹NO]⁺=[M+NH₄]⁺: calculated: 384.0781; found: 384.0808.

(E)-1-(3-(4-Chlorophenyl)allyl)naphthalen-2-ol (3hf): GP-1 was carried out with phenol 1h (29 mg, 0.2 mmol), PdCl₂ (4 mg, 0.02 mmol) and allylic alcohol **2f** (51 mg, 0.3 mmol), in DCE (2 mL) solvent, at 60 °C for 16 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl 100:0 90:10) furnished (*E*)-1-(3-(4acetate, to chlorophenyl)allyl)naphthalen-2-ol **3hf** (47 mg, 79%) as a pale-yellow liquid. [TLC control (petroleum ether/ethyl acetate 93:07), $R_f(\mathbf{1h}) = 0.70$, $R_f(\mathbf{2f}) = 0.40$, $R_f(\mathbf{3hf}) = 0.50$, UV detection]. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =3329, 2942, 2831, 1593, 1444, 1021, 656 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ = 7.95 (d, 1H, J = 8.5 Hz, Ar-H), 7.80 (d, 1H, J = 8.1 Hz, Ar-H), 7.69 (d, 1H, J = 8.8 Hz, Ar-H), 7.50 (ddd, 1H, J = 8.4, 6.8, 1.3 Hz, Ar-H), 7.36 (ddd, 1H, J = 8.0, 6.9, 1.0 Hz, Ar-H), 7.19 (s, 4H, Ar-H), 7.09 (d, 1H, J = 8.8 Hz, Ar-H), 6.67 – 6.18 (m, 2H, CH=CH-CH₂), 5.13 (s, 1H, Ar-OH), 3.97 (d, 2H, J = 4.9 Hz, CH=CH-CH₂) ppm. ¹³C{H}-NMR (CDCl₃,100 MHz): $\delta = 151.0$ (s, Ar-C), 135.7 (s, Ar-C), 133.2 (s, Ar-C), 132.6 (s, Ar-C), 129.5 (d, Ar-CH), 129.4 (s, Ar-C), 128.6 (d, Ar-CH), 128.5 (d, 2C, 2 × Ar-CH), 128.4 (d, 2C, 2 × Ar-CH), 127.3 (d, 2C, 2 × Ar-CH), 126.7 (d, Ar-CH), 123.3 (d, Ar-CH), 123.0 (d, Ar-CH), 117.8 (d, Ar-CH), 117.8

(s, Ar-C), 28.3 (t, CH₂) ppm. HR-MS (ESI⁺) m/z calculated for $[C_{19}H_{15}CINaO]^+=[M+Na]^+$: calculated: 317.0704; found: 317.0728.

4-Cinnamylnaphthalen-1-ol (3ia): GP-1 was carried out with phenol **1i** (29 mg, 0.2 mmol), PdCl₂ (4 mg, 0.02 mmol) and allylic alcohol **2a** (40 mg, 0.3 mmol), in DCE (2 mL) solvent, at 60 °C for 14 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 100:0 to 90:10) furnished 4-cinnamylnaphthalen-1-ol **3ia** (43 mg, 82%) as a pale-yellow liquid. [TLC control (petroleum ether/ethyl acetate 93:07), R_f (**1i**) = 0.70, R_f (**2a**) = 0.40, R_f (**3ia**) = 0.50, UV detection]. ¹H NMR (400 MHz, CDCl₃): δ = 8.19 – 8.11 (m, 1H), 7.94 (d, J = 7.8 Hz, 1H), 7.49 – 7.37 (m, 2H), 7.24 (d, *J* = 7.6 Hz, 2H), 7.21 – 7.16 (m, 2H), 7.11 (dd, *J* = 13.2, 7.3 Hz, 2H), 6.67 (d, *J* = 7.6 Hz, 1H), 6.46 – 6.27 (m, 2H), 3.82 (d, *J* = 5.1 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 150.4, 137.5, 133.0, 131.0, 129.3, 128.6, 128.4, 127.0, 126.5, 126.2, 126.0, 124.9, 124.7, 124.1, 122.2, 108.2, 36.0 ppm.

(*E*)-4-(3-(4-ethylphenyl)allyl)naphthalen-1-ol (3ic): GP-1 was carried out with phenol 1i (29 mg, 0.2 mmol), PdCl₂ (4 mg, 0.02 mmol) and allylic alcohol 2c (49 mg, 0.3 mmol), in DCE (2 mL) solvent, at 60 °C for 14 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 100:0 to 90:10) furnished (*E*)-2-(3-(4-ethylphenyl)allyl)naphthalen-1-ol 3ic (38 mg, 65%) as a pale-yellow liquid. [TLC control (petroleum ether/ethyl acetate 93:07), R_f (1i) = 0.70, R_f (2c) = 0.40, R_f (3ic) = 0.50, UV detection]. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =3382, 2893, 2827, 1490, 1442, 1322, 1248, 1187, 1102, 960, 807 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ = 8.31 – 8.13 (m, 1H, Ar-H), 8.02 (dd, 1H, *J* = 7.2, 2.1

Hz, Ar-H), 7.59 – 7.46 (m, 2H, Ar-H), 7.25 (t, 2H, J = 4.1 Hz, Ar-H), 7.20 (d, 1H, J = 7.6 Hz, Ar-H), 7.10 (d, 2H, J = 8.2 Hz, Ar-H), 6.76 (d, 1H, J = 7.6 Hz, Ar-H), 6.57 – 6.22 (m, 2H, $CH=CH-CH_2$), 5.28 (s, 1H, Ar-OH), 3.89 (d, 2H, J = 4.2 Hz, CH=CH-CH₂), 2.60 (q, 2H, J = 7.6 Hz, Ar-CH₂CH₃), 1.20 (t, 3H, J = 7.6 Hz, Ar-CH₂CH₃) ppm. ¹³C{H}-NMR (CDCl₃,100 MHz): $\delta = 151.0$ (s, Ar-C), 135.7 (s, Ar-C), 133.2 (s, Ar-C), 132.6 (s, Ar-C), 129.5 (d, Ar-CH), 129.4 (s, Ar-C), 128.6 (d, Ar-CH), 128.5 (d, 2C, 2 × Ar-CH), 128.4 (d, 2C, 2 × Ar-CH), 127.3 (d, 2C, 2 × Ar-CH), 126.7 (d, Ar-CH), 123.3 (d, Ar-CH), 123.0 (d, Ar-CH), 117.8 (d, Ar-CH), 117.8 (s, Ar-C), 28.3 (t, CH₂) ppm. HR-MS (ESI⁺) m/z calculated for [C₂₁H₂₁O]⁺=[M+H]⁺: calculated: 289.1587; found: 289.1579.

(E)-4-(3-(4-Chlorophenyl)allyl)naphthalen-1-ol (3if): GP-1 was carried out with phenol 1i (29 mg, 0.2 mmol), PdCl₂ (4 mg, 0.02 mmol) and allylic alcohol **2f** (51 mg, 0.3 mmol), in DCE (2 mL) solvent, at 60 °C for 18 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate. 100:0 to 90:10) furnished (*E*)-2-(3-(4chlorophenyl)allyl)naphthalen-1-ol **3if** (37 mg, 63%) as a pale-yellow liquid. [TLC control (petroleum ether/ethyl acetate 93:07), $R_f(1i) = 0.70$, $R_f(2f) = 0.40$, $R_f(3if) = 0.50$, UV detection]. IR (MIR-ATR, 4000–600 cm⁻¹): *v_{max}*=3312, 2991, 1594, 1580, 1494, 1449, 1420, 1210, 1158, 1010, 953, 817, 735, 659 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.13$ (dd, 1H, J = 4.7, 4.1 Hz, Ar-H), 7.78 (dd, 1H, J = 6.1, 3.0 Hz, Ar-H), 7.51 – 7.39 (m, 2H, Ar-H), 7.35 – 7.05 (m, 6H, Ar-H), 6.46 (d, 1H, J = 15.7 Hz, CH=CH-CH₂), 6.37 (dt, 1H, J = 15.7 and 5.9 Hz, CH=CH-CH₂), 5.46 (d, 1H, J = 2.4 Hz, Ar-OH), 3.69 (d, 2H, J = 5.9 Hz, CH=CH-CH₂) ppm. ¹³C{H}-NMR (CDCl₃,100 MHz): $\delta = 149.3$ (s, Ar-C), 135.2 (s, Ar-C), 133.8 (s, Ar-C), 133.1 (s, Ar-C), 130.5 (d, Ar-CH), 128.7 (d, 2C, 2 × Ar-CH), 128.3 (d, Ar-CH), 128.2 (d, Ar-CH), 127.6 (d, Ar-CH), 127.4 (d, 2C, 2 × Ar-CH), 125.8 (d, Ar-CH), 125.4 (d, Ar-CH), 124.7 (s, Ar-C), 121.1 (d, Ar-CH), 120.6 (d, Ar-CH), 118.1 (s, Ar-C), 34.4 (t, CH₂) ppm. HR-MS (ESI⁺) m/z calculated for $[C_{19}H_{16}ClO]^+ = [M+H]^+$: calculated: 295.0884; found: 295.0878.

(E)-4-(3-(4-Bromophenyl)allyl)naphthalen-1-ol (3ig): GP-1 was carried out with phenol 1i (29 mg, 0.2 mmol), PdCl₂ (4 mg, 0.02 mmol) and allylic alcohol **2g** (64 mg, 0.3 mmol), in DCE (2 mL) solvent, at 60 °C for 20 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 100:0 to 90:10) furnished (E)-2-(3-(4bromophenyl)allyl)naphthalen-1-ol **3ig** (42 mg, 61%) as a pale-yellow liquid. [TLC control (petroleum ether/ethyl acetate 93:07), $R_f(1i) = 0.70$, $R_f(2g) = 0.40$, $R_f(3ig) = 0.50$, UV detection]. IR (MIR-ATR, 4000–600 cm⁻¹): *v_{max}*=3304, 2994, 1587, 1494, 1421, 1330, 1211, 1163, 1011, 955, 817, 738, 660 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.23 - 8.13$ (m, 1H, Ar-H), 7.91 - 7.78 (m, 1H, Ar-H), 7.48 (ddd, 3H, J = 14.1, 7.2, 5.2 Hz, Ar-H), 7.44 – 7.39 (m, 2H, Ar-H), 7.28 (d, 1H, J = 8.3 Hz, Ar-H) 7.22 - 7.17 (m, 2H, Ar-H), 6.54 - 6.36 (m, 2H, CH=CH-CH₂), 5.49 (s, 1H, Ar-OH), 3.70 (d, 2H, J = 5.2 Hz, CH=CH-CH₂) ppm. ¹³C{H}-NMR (CDCl₃,100 MHz): $\delta = 149.2$ (s, Ar-C), 135.6 (s, Ar-C), 133.7 (s, Ar-C), 131.6 (d, 2C, 2 × Ar-CH), 130.5 (d, Ar-CH), 128.3 (d, Ar-CH), 128.3 (d, Ar-CH), 127.7 (d, 2C, 2 × Ar-CH), 127.6 (d, Ar-CH), 125.8 (d, Ar-CH), 125.4 (d, Ar-CH), 124.7 (s, Ar-C), 121.2 (s, Ar-C), 121.1 (d, Ar-CH), 120.6 (d, Ar-CH), 118.1 (s, Ar-C), 34.4 (t, CH₂) ppm. HR-MS (ESI⁺) m/z calculated for $[C_{19}H_{16}Br^{79}O]^+=[M+H]^+$: calculated: 339.0379; found: 339.0365, calculated for $[C_{19}H_{16}Br^{81}O]^+=[M+H]^+$: calculated: 341.0359; found: 341.0374.

(*E*)-2-(3-(4-Bromophenyl)allyl)-4-ethylphenol (3jg): GP-1 was carried out with phenol 1j (25 mg, 0.2 mmol), PdCl₂ (4 mg, 0.02 mmol) and allylic alcohol 2g (64 mg, 0.3 mmol), in DCE (2 mL) solvent, at 60 °C for 24 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 100:0 to 90:10) furnished (*E*)-2-(3-(4-

bromophenyl)allyl)-4-ethylphenol **3jg** (48 mg, 75%) as a pale-yellow liquid. [TLC control (petroleum ether/ethyl acetate 93:07), $R_f(1j) = 0.70$, $R_f(2g) = 0.40$, $R_f(3jg) = 0.50$, UV detection]. Mp: 123 – 125 °C; IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =3303, 2993, 2873, 2805, 1587, 1494, 1421, 1331, 1212, 1162, 1011, 955, 817, 738, 660 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.42 - 7.36$ (m, 2H, Ar-H), 7.23 – 7.18 (m, 2H, Ar-H), 7.01 – 6.93 (m, 2H, Ar-H), 6.73 (d, 1H, J = 8.5 Hz, Ar-H), 6.47 – 6.33 (m, 2H, CH=CH-CH₂), 4.81 (s, 1H, Ar-OH), 3.52 (d, 2H, J = 5.2 Hz, CH=CH-CH₂), 2.57 (q, 2H, J = 7.6 Hz, Ar-CH₂CH₃), 1.20 (t, 3H, J = 7.6 Hz, Ar-CH₂CH₃) ppm. ¹³C{H}-NMR (CDCl₃,100 MHz): $\delta = 151.7$ (s, Ar-C), 136.8 (s, Ar-C), 136.1 (s, Ar-C), 131.5 (d, 2C, 2 × Ar-CH), 125.2 (s, Ar-C), 120.9 (s, Ar-C), 115.6 (d, Ar-CH), 34.1 (t, CH₂), 28.0 (t, Ar-CH₂CH₃), 15.9 (q, Ar-CH₂CH₃) ppm. HR-MS (ESI⁺) m/z calculated for [C₁₇H₁₈Br⁸¹O]⁺=[M+H]⁺: calculated: 317.0536; found: 317.0492, calculated for [C₁₇H₁₈Br⁸¹O]⁺=[M+H]⁺: calculated: 319.0510.

(*E*)-4-(*tert*-Butyl)-2-(3-(*p*-tolyl)allyl)phenol (3kb): GP-1 was carried out with phenol 1k (30 mg, 0.2 mmol), PdCl₂ (4 mg, 0.02 mmol) and allylic alcohol 2b (44 mg, 0.3 mmol), in DCE (2 mL) solvent, at 60 °C for 24 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 100:0 to 90:10) furnished (*E*)-4-(*tert*-butyl)-2-(3-(*p*-tolyl)allyl)phenol 3kb (46 mg, 82%) as a pale-yellow liquid. [TLC control (petroleum ether/ethyl acetate 93:07), R_f (1k) = 0.70, R_f (2b) = 0.40, R_f (3kb) = 0.50, UV detection]. IR (MIR-ATR, 4000–600 cm⁻¹): V_{max} =3308, 2993, 2872, 1587, 1494, 1446, 1420, 1210, 1160, 1010, 955, 817, 737 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 7.31 – 7.26 (m, 2H, Ar-H), 7.20 – 7.16 (m, 2H, Ar-H), 7.12 (d, J = 8.1 Hz, 2H, Ar-H), 6.77 (dd, J = 7.4, 1.4 Hz, 1H, Ar-H), 6.53 (d, J = 15.8 Hz, 1H, CH=CH-CH₂), 6.36 (dt, J = 15.8 and 6.6 Hz, 1H, CH=CH-CH₂), 4.97 (s, 1H, Ar-OH), 3.58 (dd, J = 6.6 and 0.9 Hz, 2H, CH=CH-CH₂), 2.34 (s, 3H, Ar-CH₃), 1.32 (s, 9H, Ar- 3 × CH₃) ppm. ¹³C{H}-NMR (CDCl₃,100 MHz): δ = 151.9 (s, Ar-C), 143.7 (s, Ar-C), 137.0 (s, Ar-C), 134.3 (s, Ar-C),

131.2 (d, Ar-CH), 129.2 (d, 2C, 2 × Ar-CH), 127.3 (d, Ar-CH), 127.1 (d, Ar-CH), 126.1 (d, 2C, 2 × Ar-CH), 124.9 (s, Ar-C), 124.6 (d, Ar-CH), 115.3 (d, Ar-CH), 34.8 (t, CH₂), 34.1 (s, C(CH₃)₃), 31.6 (q, 3 × Ar-CH₃), 21.1 (q, Ar-CH₃) ppm. HR-MS (ESI⁺) m/z calculated for $[C_{20}H_{25}O]^+=[M+H]^+$: calculated: 281.1900; found: 281.1894.

(*E*)-4-(3-Phenylbut-2-en-1-yl)phenol (3al): GP-1 was carried out with phenol 1a (19 mg, 0.2 mmol), PdCl₂ (4 mg, 0.02 mmol) and allylic alcohol 2l (44.4 mg, 0.3 mmol), in DCE (2 mL) solvent, at rt for 12 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 100:0 to 90:10) furnished (*E*)-4-(3-phenylbut-2-en-1-yl)phenol 3al (26 mg, 58%) as a pale-yellow liquid. [TLC control (petroleum ether/ethyl acetate 93:07), R_f (1a) = 0.70, R_f (2l) = 0.40, R_f (3al) = 0.50, UV detection]. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =3379, 2893, 2827, 1590, 1489, 1443, 1248, 1186, 1101, 1022, 901, 807 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 7.45 – 7.39 (m, 2H, Ar-H), 7.36 – 7.28 (m, 2H, Ar-H), 7.23 (ddd, J = 6.3, 3.9, 1.3 Hz, 1H, Ar-H), 7.15 – 7.08 (m, 2H, Ar-H), 6.81 – 6.74 (m, 2H, Ar-H), 5.95 (ddd, J = 8.8, 6.0, 1.4 Hz, 1H, CH=CH-CH₂), 4.71 (s, 1H, Ar-OH), 3.50 (d, J = 7.4 Hz, 2H, CH=CH-CH₂), 2.14 (dt, J = 1.4, 0.7 Hz, 3H, CH₃) ppm. ¹³C{H}- NMR (100 MHz, CDCl₃) δ =153.7 (s, Ar-C), 143.7 (s, Ar-C), 135.4 (s, Ar-C), 133.2 (s, Ar-C), 129.5 (d, 2 × Ar-CH), 128.2 (d, 2 × Ar-CH), 127.1 (d, Ar-CH), 126.7 (d, Ar-CH), 125.7 (d, 2 × Ar-CH), 115.3 (d, 2 × Ar-CH), 34.0 (t, CH₂), 15.9 (q, CH₃) ppm. HR-MS (ESI⁺) m/z calculated for [C₁₆H₁₄K]⁺=[(M+K) – (H₂O)]⁺: calculated: 245.0727; found: 245.0730.

(E)-2-Methyl-4-(3-phenylbut-2-en-1-yl)phenol (3bl): GP-1 was carried out with phenol 1b (22 mg, 0.2 mmol), PdCl₂ (4 mg, 0.02 mmol) and allylic alcohol **2l** (44.4 mg, 0.3 mmol), in DCE (2 mL) solvent, at rt for 12 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 100:0 to 90:10) furnished (E)-2-methyl-4-(3-phenylbut-2-en-1yl)phenol **3al** (27 mg, 57%) as a pale-yellow liquid. [TLC control (petroleum ether/ethyl acetate 93:07), $R_f(\mathbf{1b}) = 0.70$, $R_f(\mathbf{2l}) = 0.40$, $R_f(\mathbf{3bl}) = 0.50$, UV detection]. IR (MIR-ATR, 4000–600 cm⁻) ¹): v_{max} =3380, 2889, 2822, 1580, 1481, 1440, 1252, 1187, 1025, 911, 827 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 7.41 (dd, J = 8.4, 1.1 Hz, 2H, Ar-H), 7.30 (dd, J = 8.1, 7.0 Hz, 2H, Ar-H), 7.25 -7.19 (m, 1H, Ar-H), 6.98 (s, 1H, Ar-H), 6.93 (d, J = 8.1 Hz, 1H, Ar-H), 6.69 (d, J = 8.1 Hz, 1H, Ar-H), 5.99 - 5.88 (m, 1H, CH=CH-CH₂), 4.66 (d, J = 3.8 Hz, 1H, Ar-OH), 3.46 (d, J = 7.4 Hz, 2H, CH=CH-CH₂), 2.22 (s, 3H, Ar-CH₃), 2.13 (s, 3H, CH₃) ppm. ¹³C{H}- NMR (100 MHz, CDCl₃) *b*=151.9 (s, Ar-C), 143.6 (s, Ar-C), 135.1 (s, Ar-C), 133.1 (s, Ar-C), 131.0 (d, Ar-CH), 128.1 (d, 2 × Ar-CH), 127.3 (d, Ar-CH), 126.8 (d, Ar-CH), 126.6 (d, Ar-CH), 125.7 (d, 2 × Ar-CH), 123.7 (s, Ar-C), 114.8 (d, Ar-CH), 34.0 (t, CH₂), 15.9 (q, Ar-CH₃), 15.8 (q, CH₃) ppm. HR-MS (ESI⁺) m/z calculated for $[C_{17}H_{16}K]^+=[(M+K) - (H_2O)]^+$: calculated: 259.0883; found: 259.0860.

(*E*)-4-(Oct-2-en-1-yl)phenol (3am): GP-1 was carried out with phenol 1a (19 mg, 0.2 mmol), PdCl₂ (4 mg, 0.02 mmol) and allylic alcohol 2m (64 mg, 0.5 mmol), in DCE (2 mL) solvent, at 60 °C for 24 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 100:0 to 90:10) furnished (*E*)-4-(oct-2-en-1-yl)phenol 3am (26 mg, 63%) as a colorless liquid. [TLC control (petroleum ether/ethyl acetate 93:07), R_f (1a) = 0.70, R_f (2m) = 0.40, R_f (3am) = 0.50, UV detection]. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =3301, 2893, 2821, 1588, 1495, 1429, 1344, 1213, 814 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 7.05 (d, *J* = 8.6 Hz, 2H, Ar-H), 6.75 (d, *J* = 8.6 Hz, 2H, Ar-H), 5.83 – 5.30 (m, 2H, CH=CH-CH₂), 4.63 (s, 1H, Ar-OH), 3.25 (d, *J* = 5.5 Hz, 2H, CH=CH-CH₂), 2.08 – 1.92 (m, 2H, CH₂), 1.33 – 1.26 (m, 6H, 3 × CH₂), 0.88 (m, 3H, CH₃) ppm. ¹³C{H}-NMR (100 MHz, CDCl₃) δ = 131.9, 129.5, 129.0, 115.1, 38.1, 32.4, 31.4, 29.2, 22.5, 14.1, 1.0 ppm. HR-MS (ESI⁺) m/z calculated for [C₁₄H₂₁O]⁺=[M+H]⁺: calculated: 205.1587; found: 205.1595.

(*E*)-3,5-Dimethyl-4-(oct-2-en-1-yl)phenol (3fm): GP-1 was carried out with phenol 1a (24 mg, 0.2 mmol), PdCl₂ (4 mg, 0.02 mmol) and allylic alcohol 2m (64 mg, 0.5 mmol), in DCE (2 mL) solvent, at 60 °C for 24 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 100:0 to 95:05) furnished (*E*)-3,5-dimethyl-4-(oct-2-en-1-yl)phenol 3fm (31 mg, 66%) as a colorless liquid. [TLC control (petroleum ether/ethyl acetate 95:05), $R_f(1f) = 0.70$, $R_f(2m) = 0.40$, $R_f(3fm) = 0.70$, UV detection]. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =3318, 2894, 2830, 1581, 1445, 1293, 1137, 1016, 958, 828 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 6.50 (s, 2H), 5.44 – 5.37 (m, 1H), 5.29 – 5.21 (m, 1H), 4.59 (s, 1H), 3.22 (dd, *J* = 5.7, 1.3 Hz, 2H), 2.23 (s, 6H), 1.96 – 1.90 (m, 2H), 1.31 – 1.23 (m, 6H), 0.86 (t, *J* = 6.8 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ = 153.1, 138.1(2C), 130.8, 129.5, 126.8, 114.6(2C), 32.5, 31.8, 31.4, 29.2, 22.5, 19.9(2C), 14.1 ppm. HR-MS (ESI⁺) m/z calculated for [C₁₆H₂₄NaO]⁺=[M+Na]⁺: calculated: 255.1719; found: 255.1920.

(*E*)-5-(Oct-2-en-1-yl)-[1,1'-biphenyl]-2-ol (3gm): GP-1 was carried out with phenol 1g (34 mg, 0.2 mmol), PdCl₂ (4 mg, 0.02 mmol) and allylic alcohol 2m (64 mg, 0.5 mmol), in DCE (2 mL) solvent, at 60 °C for 24 h. Purification of the crude material by silica-gel column chromatography (petroleum ether/ethyl acetate, 100:0 to 90:10) furnished (*E*)-5-(oct-2-en-1-yl)-[1,1'-biphenyl]-2- ol 3gm (40 mg, 72%) as a colorless liquid. [TLC control (petroleum ether/ethyl acetate 93:07), $R_f(1g) = 0.70, R_f(2m) = 0.40, R_f(39m) = 0.60, UV$ detection]. IR (MIR-ATR, 4000–600 cm⁻¹):

 v_{max} =3317, 2924, 2894, 2829, 1580, 1447, 1294, 1136, 1015, 960, 827 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 7.52 – 7.43 (m, 4H), 7.42 – 7.35 (m, 1H), 7.11 – 7.00 (m, 2H), 6.90 (d, *J* = 8.0 Hz, 1H), 5.60 – 5.43 (m, 2H), 5.10 (s, 1H), 3.28 (d, *J* = 5.6 Hz, 2H), 2.03 – 1.98 (m, 2H), 1.38 – 1.27 (m, 6H), 0.85 (t, *J* = 7.0 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ = 150.5, 137.3, 133.4, 132.0, 130.1, 129.2, 129.1(2C), 128.9, 127.8, 127.8, 115.7, 38.2, 32.5, 31.4, 29.1, 22.5, 14.1 ppm. HR-MS (ESI⁺) m/z calculated for [C₂₀H₂₈NO]⁺=[M+NH₄]⁺: calculated: 298.2165; found: 298.2184.

S36

-5.05

 ^{13}C NMR (100 MHz) spectrum of **3be** in CDCl₃

 ^{13}C NMR (100 MHz) spectrum of **3cf** in CDCl₃

¹H NMR (400 MHz) spectrum of 3gg in CDCl₃

¹H NMR (400 MHz) spectrum of **3hf** in CDCl₃

¹³C NMR (100 MHz) spectrum of **3ig** in CDCl₃

mo_GSCBS5_265_2_0ma

e refinement for mo_GSCBS5_265_2_0ma.
mo_GSCBS5_265_2_0ma
$C_{34}H_{36}O_2$
476.63
273.15
triclinic
P-1
4.787(7)
13.87(2)
21.66(2)
72.77(5)
90
90
1373(3)
2
1.153
0.070
512.0
0.24 imes 0.21 imes 0.12
MoKa ($\lambda = 0.71073$)
3.938 to 53.72
$-6 \le h \le 5, -17 \le k \le 12, -23 \le l \le 26$
7877
5234 [$R_{int} = 0.2286$, $R_{sigma} = 0.8537$]
5234/0/332
0.838
$R_1 = 0.1342, \ wR_2 = 0.2736$
$R_1 = 0.5151, wR_2 = 0.5038$
0.20/-0.25

Table 2 Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic Displacement
Parameters (Å ² ×10 ³) for mo_GSCBS5_265_2_0ma. U _{eq} is defined as 1/3 of of the trace of
the orthogonalised U1J tensor.

Atom	x	у	z	U(eq)
O2	1777(17)	7526(8)	5321(4)	76(3)
O1	6755(17)	7474(7)	4677(4)	72(3)
C1	5850(30)	7072(11)	4208(6)	57(4)
C18	860(30)	7931(12)	5804(7)	57(4)
C20	1070(30)	7937(13)	6857(7)	75(5)
C3	6040(30)	7049(11)	3126(6)	67(4)
C4	4100(30)	6266(11)	3266(7)	68(4)
C2	6970(20)	7458(12)	3605(6)	65(4)
C23	-960(30)	8728(13)	5672(7)	67(5)
C5	3090(20)	5868(11)	3868(7)	64(4)
C6	4000(20)	6264(11)	4355(6)	62(4)
C19	2040(30)	7533(12)	6389(7)	64(4)
C24	4120(20)	6696(11)	6563(6)	64(4)
C22	-1890(30)	9140(12)	6129(8)	64(4)
C7	9070(20)	8308(11)	3438(6)	69(4)
C26	5450(30)	5766(11)	7686(7)	71(5)
C9	10380(30)	9285(13)	2314(9)	83(5)
C25	3720(30)	5904(12)	7225(8)	81(5)
C21	-880(30)	8717(14)	6751(8)	84(5)
C8	8690(30)	9067(12)	2795(9)	83(5)
C17	990(20)	5010(10)	4051(6)	76(5)
C10	10160(40)	10039(17)	1670(10)	89(6)
C34	-3990(30)	9997(12)	5975(7)	90(5)
C27	5140(30)	4989(13)	8298(7)	74(5)
C32	3470(40)	4133(17)	8377(9)	107(6)
C28	6370(40)	5052(17)	8838(10)	108(7)
C11	11530(40)	9930(20)	1158(13)	120(7)
C15	8380(50)	10860(20)	1644(9)	119(8)
C12	11110(40)	10730(20)	554(11)	128(8)
C29	6160(50)	4330(20)	9426(12)	152(10)
C30	4430(60)	3500(20)	9478(11)	153(11)
C13	9320(60)	11510(20)	564(13)	150(9)
C14	7870(50)	11580(20)	1087(14)	147(9)
C31	2980(40)	3408(19)	8935(13)	154(9)
C33	8300(30)	5919(16)	8846(8)	138(8)
C16	13360(40)	9094(16)	1162(8)	127(7)

Atom	U11	U22	U33	U23	U13	U12
O2	64(7)	108(9)	54(6)	-18(6)	1(5)	-5(6)
01	65(7)	97(8)	59(6)	-33(6)	15(5)	-23(5)
C1	56(9)	90(13)	30(8)	-27(8)	1(7)	2(8)
C18	46(9)	68(12)	59(11)	-23(9)	11(8)	-12(8)
C20	45(10)	95(15)	71(12)	-2(10)	5(8)	-17(9)
C3	79(11)	72(12)	41(9)	-4(8)	8(7)	2(9)
C4	64(10)	66(12)	74(11)	-22(9)	17(8)	-20(8)
C2	45(9)	115(14)	40(9)	-31(9)	4(7)	7(9)
C23	32(9)	90(14)	69(11)	-9(10)	-9(8)	-11(9)
C5	40(8)	85(12)	62(10)	-12(9)	-1(7)	-12(8)
C6	40(8)	87(13)	57(9)	-21(9)	18(7)	-22(8)
C19	59(10)	85(13)	52(10)	-25(9)	2(8)	7(9)
C24	39(8)	87(13)	74(11)	-35(9)	6(7)	-7(8)
C22	37(9)	76(13)	82(12)	-30(10)	17(9)	-17(8)
C7	49(9)	90(13)	64(10)	-16(9)	9(7)	-12(8)
C26	86(12)	76(13)	50(10)	-18(9)	15(8)	-20(9)
C9	74(12)	75(14)	103(15)	-29(12)	-5(10)	-1(9)
C25	59(11)	103(15)	88(12)	-37(11)	15(9)	-17(9)
C21	53(11)	122(17)	84(13)	-44(11)	-6(9)	-19(10)
C8	73(12)	66(13)	109(15)	-25(11)	-9(10)	-21(9)
C17	46(9)	74(12)	110(12)	-29(9)	21(8)	-10(8)
C10	70(13)	87(18)	102(17)	-16(14)	11(12)	-14(11)
C34	64(11)	113(16)	96(12)	-37(11)	11(8)	-8(10)
C27	104(13)	67(14)	57(11)	-29(10)	-10(10)	14(10)
C32	120(16)	91(17)	99(16)	-13(13)	30(11)	9(13)
C28	106(15)	130(20)	69(14)	0(14)	-17(11)	29(13)
C11	89(16)	160(20)	110(20)	-41(19)	20(14)	-2(14)
C15	140(20)	130(20)	69(14)	-7(15)	-34(13)	-23(16)
C12	117(19)	160(30)	104(19)	-34(19)	8(13)	-23(16)
C29	180(30)	160(30)	110(20)	-30(20)	-50(17)	32(19)
C30	180(30)	170(30)	64(16)	29(17)	4(16)	100(20)
C13	170(30)	120(20)	140(30)	-2(19)	20(19)	-28(18)
C14	130(20)	180(30)	120(20)	-40(20)	7(18)	-5(16)
C31	150(20)	150(20)	130(20)	18(19)	22(17)	-2(15)
C33	109(15)	180(20)	142(18)	-68(16)	-28(13)	-8(15)
C16	113(15)	170(20)	111(15)	-62(15)	55(11)	-29(15)

Table 3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for mo_GSCBS5_265_2_0ma. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Table	Table 4 Bond Lengths for mo_GSCBS5_265_2_0ma.						
Atom	Atom	Length/Å	Atom	Atom	Length/Å		
O2	C18	1.398(14)	C7	C8	1.489(17)		
01	C1	1.368(12)	C26	C25	1.268(14)		
C1	C2	1.366(15)	C26	C27	1.446(19)		
C1	C6	1.390(16)	C9	C8	1.279(18)		
C18	C23	1.367(17)	C9	C10	1.48(2)		
C18	C19	1.347(16)	C10	C11	1.34(2)		
C20	C19	1.378(17)	C10	C15	1.41(3)		
C20	C21	1.398(19)	C27	C32	1.40(2)		
C3	C4	1.389(16)	C27	C28	1.336(19)		
C3	C2	1.395(16)	C32	C31	1.34(2)		
C4	C5	1.348(15)	C28	C29	1.37(3)		
C2	C7	1.512(17)	C28	C33	1.52(2)		
C23	C22	1.357(18)	C11	C12	1.46(3)		
C5	C6	1.395(16)	C11	C16	1.45(3)		
C5	C17	1.517(17)	C15	C14	1.34(2)		
C19	C24	1.488(18)	C12	C13	1.39(3)		
C24	C25	1.538(18)	C29	C30	1.39(3)		
C22	C21	1.388(17)	C30	C31	1.40(3)		
C22	C34	1.516(19)	C13	C14	1.35(3)		

Table 5 Bond Angles for mo_GSCBS5_265_2_0ma.

Atom	n Aton	n Atom	Angle/°	Aton	Aton	n Atom	Angle/°
01	C1	C6	120.6(12)	C25	C26	C27	123.5(15)
C2	C1	01	117.1(13)	C8	C9	C10	130.8(18)
C2	C1	C6	122.1(12)	C26	C25	C24	123.7(14)
C23	C18	O2	121.5(14)	C22	C21	C20	118.5(16)
C19	C18	O2	115.3(15)	C9	C8	C7	128.0(17)
C19	C18	C23	123.1(14)	C11	C10	C9	122(2)
C19	C20	C21	124.6(15)	C11	C10	C15	124(2)
C4	C3	C2	120.9(13)	C15	C10	C9	115(2)
C5	C4	C3	121.5(13)	C32	C27	C26	123.2(15)
C1	C2	C3	117.1(13)	C28	C27	C26	122.1(18)
C1	C2	C7	123.1(12)	C28	C27	C32	114.7(18)
C3	C2	C7	119.8(13)	C31	C32	C27	126(2)
C22	C23	C18	123.1(14)	C27	C28	C29	124(2)
C4	C5	C6	118.6(13)	C27	C28	C33	122.3(19)
C4	C5	C17	123.8(13)	C29	C28	C33	113(2)
C6	C5	C17	117.6(13)	C10	C11	C12	116(2)

Table 5 Bond Angles for mo_GSCBS5_265_2_0ma.

Atom	n Atom	n Atom	Angle/°	Aton	1 Aton	n Atom	Angle/°
C1	C6	C5	119.7(12)	C10	C11	C16	125(3)
C18	C19	C20	114.0(15)	C16	C11	C12	119(3)
C18	C19	C24	126.2(15)	C14	C15	C10	122(2)
C20	C19	C24	119.7(14)	C13	C12	C11	118(2)
C19	C24	C25	116.3(12)	C28	C29	C30	119(2)
C23	C22	C21	116.4(16)	C29	C30	C31	120(2)
C23	C22	C34	122.1(15)	C14	C13	C12	125(3)
C21	C22	C34	121.5(17)	C15	C14	C13	116(3)
C8	C7	C2	115.3(11)	C32	C31	C30	116(2)

Table 6 Torsion Angles for mo_GSCBS5_265_2_0ma.

A	B	С	D	Angle/°	A	B	С	D	Angle/°
O2	C18	3C23	3 C22	180.0(12)	C26	5C27	C28	C33	-3(3)
02	C18	3C19	9C20	- 179.3(12)	C9	C10	C11	C12	- 179.9(15)
O2	C18	3C19	OC24	-2(2)	C9	C10	C11	C16	0(3)
01	C1	C2	C3	- 179.8(12)	C9	C10	C15	C14	_ 177.2(16)
01	C1	C2	C7	-1.3(19)	C25	5 C 2 6	6C27	C32	21(3)
01	C1	C6	C5	179.7(12)	C25	5C26	C27	C28	_ 157.2(17)
C1	C2	C7	C8	140.3(14)	C21	C20	C19	C18	-2(2)
C18	3C23	3 C 2 2	2C21	1(2)	C21	C20	C19	C24	_ 179.5(13)
C18	3C23	3 C 2 2	2C34	_ 177.6(12)	C8	C9	C10	C11	_ 155.2(19)
C18	3C19	0C24	4C25	- 138.8(14)	C8	C9	C10	C15	24(3)
C20	C19	0C24	4C25	38.1(19)	C17	'C5	C6	C1	- 178.0(12)
C3	C4	C5	C6	1(2)	C10)C9	C8	C7	_ 178.6(15)
C3	C4	C5	C17	-	C10)C11	C12	C13	-1(3)
C3	C2	C7	C8	38(2)	C10)C15	C14	C13	-4(3)
C4	C3	C2	C1	-2(2)	C34	C22	C21	C20	_ 179.3(13)
C4	C3	C2	C7	180.0(13)	C27	7 C26	C25	C24	_ 177.0(14)

Tab	ole 6	Tor	sion A	Angles for mo	_GS(CBS5	5_26	5_2_	0ma.
Α	B	С	D	Angle/°	Α	В	С	D	Angle/°
C4	C5	C6	C1	2(2)	C27	C32	C31	C30	-4(3)
C2	C1	C6	C5	-4(2)	C27	C28	C29	C30	-4(4)
C2	C3	C4	C5	-1(2)	C32	C27	C28	C29	3(3)
C2	C7	C8	C9	- 117.5(17)	C32	C27	C28	C33	178.9(16)
C23	C18	8C19	C20	6(2)	C28	C27	C32	C31	1(3)
C23	C18	8C19	C24	_ 177.4(14)	C28	C29	C30	C31	1(4)
C23	8 C 2 2	2C21	C20	2(2)	C11	C10	C15	C14	2(3)
C6	C1	C2	C3	4.0(19)	C11	C12	C13	C14	-1(4)
C6	C1	C2	C7	177.6(13)	C15	C10	C11	C12	1(3)
C19	C18	3C23	3 C 2 2	-5(2)	C15	C10	C11	C16	- 179.3(19)
C19	C20)C21	C22	-2(2)	C12	C13	C14	C15	4(4)
C19	C24	C25	5C26	- 114.9(16)	C29	C30	C31	C32	2(4)
C26	5C27	'C32	2C31	_ 176.7(19)	C33	C28	C29	C30	179(2)
C26	5C27	C28	8C29	_ 178.9(19)	C16	C11	C12	C13	179(2)

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for mo_GSCBS5_265_2_0ma.

Atom	x	у	z.	U(eq)
H2	582.98	7616.77	5037.94	115
H1	5648.58	7330.38	4979.73	107
H20	1771.94	7672.02	7274.15	90
H3	6715.27	7303.44	2706.47	80
H4	3497.16	6012.01	2937.32	81
H23	-1577.68	8999.75	5249.04	81
H6	3362.77	5988.87	4776.88	74
H24A	5963.71	6987.77	6551.41	77
H24B	4063.2	6351.43	6232.82	77
H7A	8984.89	8653.86	3767.29	83
H7B	10928.03	8019.75	3455.3	83
H26	7003.54	6186.66	7628.9	85
H9	12009.39	8904.89	2380.89	100
H25	2127.12	5503.47	7290.71	98

Atom	x	у	z	U(eq)
H21	-1494.14	8948.08	7089.52	100
H8	7027.72	9428.45	2734.3	99
H17A	-846.93	5278.95	4068.37	114
H17B	1462.94	4556.98	4466.61	114
H17C	1025.6	4652.31	3733.64	114
H34A	-3835.55	10379.84	5527.6	135
H34B	-3624.9	10427.76	6240.17	135
H34C	-5846.06	9725.6	6059.5	135
H32	2606.69	4058.82	8008.49	128
H15	7530.62	10897.42	2021.91	143
H12	12020.91	10724.18	175.98	153
H29	7164.89	4383.24	9781.07	182
H30	4224.86	3005.61	9873.43	184
H13	9083.69	12031.62	180.87	179
H14	6606.85	12099.85	1062.65	176
H31	1757.8	2877.56	8960.1	185
H33A	9126.93	6194.08	8425.9	206
H33B	9751.49	5674.73	9159.91	206
H33C	7255.89	6434.78	8955.74	206
H16A	14908.92	9082.76	1443.94	190
H16B	14027.71	9175.64	731.58	190
H16C	12339.03	8471.8	1311.45	190

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for mo_GSCBS5_265_2_0ma.

Experimental

Single crystals of $C_{34}H_{36}O_2$ [mo_GSCBS5_265_2_0ma] were [DCM +Hexane]. A suitable crystal was selected and [IN ACRYOLOOP WITH MINERAL OIL] on a Bruker APEX-II CCD diffractometer. The crystal was kept at 273.15 K during data collection. Using Olex2 [1], the structure was solved with the SHELXT [2] structure solution program using Intrinsic Phasing and refined with the SHELXL [3] refinement package using Least Squares minimisation.

- 1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
- 2. Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.
- 3. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Crystal structure determination of [mo_GSCBS5_265_2_0ma]

Crystal Data for C₃₄H₃₆O₂ (*M* =476.63 g/mol): triclinic, space group P-1 (no. 2), a = 4.787(7) Å, b = 13.87(2) Å, c = 21.66(2) Å, $\alpha = 72.77(5)^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$, V = 1373(3) Å³, Z = 2, T = 273.15 K, μ (MoK α) = 0.070 mm⁻¹, *Dcalc* = 1.153 g/cm³, 7877 reflections measured (3.938° $\leq 2\Theta \leq 53.72^{\circ}$), 5234 unique ($R_{int} = 0.2286$, $R_{sigma} = 0.8537$) which were used in all calculations. The final R_1 was 0.1342 (I > 2σ (I)) and wR_2 was 0.5038 (all data).

mo_C19H22O4_1_0m (1)

mo_C19H22O4_1_0m (1) C ₁₉ H ₂₂ O ₄ 314.36
C ₁₉ H ₂₂ O ₄ 314.36
314.36
2 22
298
triclinic
P-1
8.4709(3)
9.9830(3)
11.1522(4)
72.4800(10)
75.8640(10)
69.7340(10)
833.28(5)
2
1.253
0.087
336.0
$0.09 \times 0.08 \times 0.06$
MoKα (λ = 0.71073)
3.878 to 54.278
$-10 \le h \le 10, -12 \le k \le 12, -14 \le l \le 14$
19020
$3672 [R_{int} = 0.0474, R_{sigma} = 0.0344]$
3672/0/213
1.039
$R_1 = 0.0454, wR_2 = 0.1116$
$\begin{aligned} R_1 &= 0.0454, \ wR_2 = 0.1116 \\ R_1 &= 0.0734, \ wR_2 = 0.1253 \end{aligned}$

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for mo_C19H22O4_1_0m (1). U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	Z.	U(eq)
O001	41.4(15)	6822.6(12)	1330.4(10)	54.2(3)

O002	8813.6(14)	6225.8(13)	8386.9(12)	57.6(3)
O003	2585.9(15)	7892.9(13)	1110.4(10)	56.7(3)
O004	-2093.5(16)	6401.5(14)	3517.8(12)	64.1(4)
C005	1635(2)	7679.7(16)	2293.3(14)	43.2(4)
C006	1928(2)	7942.3(16)	3356.2(14)	43.2(4)
C007	873.5(19)	7674.0(16)	4520.1(14)	43.1(4)
C008	283(2)	7141.1(16)	2383.9(14)	44.2(4)
C009	4452(2)	6630.3(16)	8018.9(14)	43.5(4)
C00A	2069(2)	8648.5(17)	5813.4(15)	48.9(4)
C00B	6674(2)	8300.3(17)	7535.0(15)	50.1(4)
C00C	3916(2)	8140.7(16)	7451.3(13)	44.0(4)
C00D	7198(2)	6815.2(16)	8089.6(14)	43.6(4)
C00E	6086(2)	5996.6(16)	8328.9(14)	43.8(4)
C00F	1111(2)	7931.3(18)	5685.3(15)	49.1(4)
C00G	5055(2)	8942.4(17)	7226.3(15)	50.2(4)
C00H	-776(2)	6883.6(16)	3538.9(15)	45.8(4)
C00I	-465(2)	7128.9(17)	4602.1(14)	47.0(4)
C00J	2171(2)	8879.2(18)	7063.3(16)	53.6(4)
C00K	3291(2)	5688.8(19)	8308.8(18)	64.3(5)
C00L	3988(2)	8428(2)	944.0(18)	65.1(5)
C00M	-1066(3)	8020(2)	569.6(19)	76.6(6)
COON	-3274(2)	6202(2)	4657(2)	70.9(5)

Table 3 Anisotropic Displacement Parameters (Å²×10³) for mo_C19H22O4_1_0m (1). The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U 11	U_{22}	U33	U23	U 13	U 12
O001	65.4(8)	54.7(6)	50.0(7)	-21.2(5)	-14.4(5)	-15.7(6)
O002	49.4(7)	55.4(7)	72.0(8)	-17.3(6)	-14.0(6)	-15.6(6)
O003	65.7(8)	69.1(8)	41.7(6)	-18.7(5)	4.3(5)	-31.5(6)
O004	62.4(8)	81.8(9)	63.3(8)	-23.4(6)	-3.0(6)	-39.0(7)
C005	49.0(9)	40.3(7)	37.8(8)	-10.2(6)	-3.2(6)	-11.7(7)
C006	45.3(9)	42.5(8)	43.6(8)	-10.8(6)	-7.7(7)	-14.2(7)
C007	45.0(9)	42.4(8)	39.5(8)	-9.5(6)	-9.9(6)	-7.9(7)
C008	51.0(9)	41.5(8)	42.9(8)	-14.8(6)	-11.3(7)	-10.4(7)
C009	50.8(9)	46.6(8)	37.5(8)	-11.9(6)	-9.4(7)	-16.3(7)
C00A	54.4(10)	47.1(8)	42.7(9)	-8.6(7)	-13.7(7)	-9.7(8)
C00B	56.4(10)	46.6(8)	51.5(9)	-16.7(7)	-1.1(8)	-21.4(8)
C00C	53.9(10)	44.6(8)	33.9(8)	-14.2(6)	-10.4(7)	-8.5(7)
C00D	45.9(9)	48.8(8)	38.8(8)	-15.8(7)	-5.4(6)	-13.3(7)
C00E	53.3(10)	39.7(7)	39.1(8)	-8.8(6)	-9.8(7)	-13.3(7)

C00F	47.5(9)	57.6(9)	38.8(8)	-10.5(7)	-6.8(7)	-11.9(8)
C00G	63.9(11)	39.1(8)	46.1(9)	-10.5(7)	-8.6(8)	-13.0(8)
C00H	45.5(9)	43.2(8)	50.4(9)	-12.5(7)	-6.8(7)	-14.2(7)
C00I	47.7(9)	51.4(9)	38.9(8)	-9.4(7)	-2.6(7)	-15.0(7)
COOJ	59.5(11)	51.0(9)	50.3(9)	-19.3(7)	-18.1(8)	-3.8(8)
C00K	68.8(12)	56.0(10)	72.7(12)	-1.7(9)	-26.5(10)	-25.3(9)
C00L	70.2(12)	74.1(12)	56.3(11)	-20.7(9)	11.9(9)	-38.0(10)
C00M	86.4(15)	82.1(13)	65.4(12)	-22.4(10)	-32.9(11)	-11.4(12)
C00N	57.2(12)	78.5(13)	79.6(14)	-16.7(11)	3.3(10)	-34.3(10)

Table 4 Bond Lengths for mo_C19H22O4_1_0m (1).

Atom Atom	Length/Å	Atom Atom	Length/Å
O001 C008 1	L.3823(17)	C008 C00H	1.388(2)
O001 C00M	1.425(2)	C009 C00C	1.404(2)
O002 C00D 1	L.3697(19)	C009 C00E	1.389(2)
O003 C005 1	L.3656(18)	C009 C00K	1.502(2)
O003 C00L	1.415(2)	C00AC00F	1.308(2)
O004 C00H 1	L.3669(19)	C00AC00J	1.506(2)
O004 C00N	1.421(2)	C00B C00D	1.380(2)
C005 C006	1.383(2)	C00B C00G	1.378(2)
C005 C008	1.396(2)	C00C C00G	1.389(2)
C006 C007	1.395(2)	COOC COOJ	1.510(2)
C007 C00F	1.470(2)	C00DC00E	1.380(2)
C007 C00I	1.391(2)	C00HC00I	1.381(2)

Table 5 Bond Angles for mo_C19H22O4_1_0m (1).

Atom Atom Atom	Angle/°	Atom Atom Atom	Angle/°
C008 O001 C00M	113.89(12)	COOF COOA COOJ	124.27(16)
C005 O003 C00L	118.04(12)	C00G C00B C00D	119.65(15)
C00H O004 C00N	117.69(13)	C009 C00C C00J	121.52(14)
O003 C005 C006	125.31(14)	C00G C00C C009	118.05(14)
O003 C005 C008	114.67(13)	COOG COOC COOJ	120.42(14)
C006 C005 C008	120.01(14)	O002 C00D C00B	117.64(14)
C005 C006 C007	120.18(14)	O002 C00D C00E	123.05(14)
C006 C007 C00F	122.98(14)	C00B C00D C00E	119.31(15)
C00I C007 C006	119.36(13)	C00D C00E C009	121.59(14)
C00I C007 C00F	117.66(13)	C00A C00F C007	129.03(15)
O001 C008 C005	119.66(13)	C00B C00G C00C	122.13(14)

O001 C008 C00H	120.39(14)	O004 C00H C008	115.37(13)
C00HC008 C005	119.92(13)	O004 C00H C00I	124.78(14)
C00C C009 C00K	121.38(14)	C00I C00H C008	119.85(14)
C00E C009 C00C	119.28(14)	C00HC00I C007	120.66(14)
C00E C009 C00K	119.34(14)	COOACOOJ COOC	113.03(13)

Table 6 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for mo_C19H22O4_1_0m (1).

Atom	x	у	z	U(eq)
H002	9061.78	5326.08	8569.36	86
H006	2831.42	8298.76	3294.79	52
H00A	2729.43	9041.62	5085.33	59
H00B	7409.43	8864.92	7370.49	60
H00E	6438.96	4996.7	8706.74	53
H00F	495.33	7528.01	6436.26	59
H00G	4713.58	9944.85	6855.29	60
H00I	-1155.96	6927.68	5380.37	56
H00C	1342.42	8498.03	7721.33	64
H00D	1871.92	9925.53	6998.8	64
HOOH	2219.25	6140.37	8771.28	96
H00J	3803.17	4735.14	8813.24	96
H00K	3109.85	5589.48	7527.09	96
HOOL	4583.23	8468.92	88.84	98
H00M	4745	7783.62	1532.2	98
H00N	3585.28	9395.75	1097.95	98
H00O	-1228.69	7706.87	-113.74	115
HOOP	-569.86	8814.01	225.09	115
H00Q	-2145.47	8344.73	1084.66	115
HOOR	-4158.27	5904.99	4506.97	106
H00S	-3766.75	7109.5	4922.55	106
H00T	-2695.83	5456.87	5311.69	106

mo_C19H22O4_1_0m (1)

Table 1 Crystal data and structure refinement for mo_C19H22O4_1_0m (1).

Identification code	mo_C19H22O4_1_0m (1)
Empirical formula	$C_{19}H_{22}O_4$
Formula weight	314.36
Temperature/K	298

Crystal system	triclinic
Space group	P-1
a/Å	8.4709(3)
b/Å	9.9830(3)
c/Å	11.1522(4)
α/\circ	72.4800(10)
β/°	75.8640(10)
$\gamma/^{o}$	69.7340(10)
Volume/Å ³	833.28(5)
Z	2
$\rho_{calc}g/cm^3$	1.253
μ/mm^{-1}	0.087
F(000)	336.0
Crystal size/mm ³	$0.09 \times 0.08 \times 0.06$
Radiation	$MoK\alpha (\lambda = 0.71073)$
2Θ range for data collection/°	3.878 to 54.278
Index ranges	$-10 \le h \le 10, -12 \le k \le 12, -14 \le l \le 14$
Reflections collected	19020
Independent reflections	$3672 [R_{int} = 0.0474, R_{sigma} = 0.0344]$
Data/restraints/parameters	3672/0/213
Goodness-of-fit on F ²	1.039
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0454, wR_2 = 0.1116$
Final R indexes [all data]	$R_1 = 0.0734, wR_2 = 0.1253$
Largest diff. peak/hole / e Å ⁻³	0.19/-0.17

exp_9978

Table 1 Crystal data and structure refinement for exp_9978.

Identification code	exp_9978
Empirical formula	C ₁₇ H ₁₇ BrO
Formula weight	317.21
Temperature/K	293(2)
Crystal system	monoclinic
Space group	P21
a/Å	8.2775(7)
b/Å	5.2464(5)
c/Å	17.4065(11)
$\alpha/^{\circ}$	90
β/°	92.906(7)
$\gamma/^{\circ}$	90
Volume/Å ³	754.94(11)
Z	2
$\rho_{calc}g/cm^3$	1.395
μ/mm^{-1}	2.712
F(000)	324.0
Crystal size/mm ³	0.3 imes 0.2 imes 0.1
Radiation	MoKα ($\lambda = 0.71073$)
20 range for data collection/	° 4.686 to 57.918
Index ranges	$-11 \le h \le 7, -6 \le k \le 3, -18 \le l \le 23$
Reflections collected	3212
Independent reflections	2481 [R _{int} = 0.0217, R _{sigma} = 0.0619]
Data/restraints/parameters	2481/1/174
Goodness-of-fit on F ²	1.055
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0543, wR_2 = 0.1280$
Final R indexes [all data]	$R_1 = 0.1214, wR_2 = 0.1726$
Largest diff. peak/hole / e Å-	³ 0.29/-0.23
Flack parameter	0.14(2)

Table 2 Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic Displacement
Parameters ($Å^2 \times 10^3$) for exp_9978. U _{eq} is defined as 1/3 of of the trace of the
orthogonalised U _{IJ} tensor.

x	У	z	U(eq)
3094.8(17)	10319(4)	6271.3(7)	163.0(8)
436(6)	2671(12)	324(3)	81.4(16)
2413(9)	3738(14)	1314(4)	61.0(19)
1961(9)	2312(17)	664(4)	64(2)
3010(9)	580(20)	377(4)	80(2)
1261(9)	5600(20)	1635(4)	79(2)
2136(11)	8360(20)	3699(5)	87(3)
1453(11)	6135(19)	2486(6)	89(3)
2682(11)	9480(20)	5227(5)	84(3)
1752(12)	7450(20)	5018(6)	96(3)
1481(12)	6910(20)	4238(7)	102(3)
3075(12)	10390(20)	3923(6)	102(3)
3332(12)	10950(20)	4694(6)	101(3)
1938(12)	7980(20)	2850(7)	107(3)
4525(10)	220(20)	729(5)	93(3)
3942(9)	3361(18)	1656(5)	80(2)
6759(16)	1590(40)	1743(9)	171(7)
5009(10)	1630(20)	1366(6)	106(4)
7220(30)	-440(50)	1966(15)	271(13)
	x 3094.8(17) 436(6) 2413(9) 1961(9) 3010(9) 1261(9) 2136(11) 1453(11) 2682(11) 1752(12) 1481(12) 3075(12) 3322(12) 1938(12) 4525(10) 3942(9) 6759(16) 5009(10) 7220(30)	x y $3094.8(17)$ $10319(4)$ $436(6)$ $2671(12)$ $2413(9)$ $3738(14)$ $1961(9)$ $2312(17)$ $3010(9)$ $580(20)$ $1261(9)$ $5600(20)$ $2136(11)$ $8360(20)$ $1453(11)$ $6135(19)$ $2682(11)$ $9480(20)$ $1752(12)$ $7450(20)$ $1481(12)$ $6910(20)$ $3075(12)$ $10390(20)$ $332(12)$ $10950(20)$ $1938(12)$ $7980(20)$ $4525(10)$ $220(20)$ $3942(9)$ $3361(18)$ $6759(16)$ $1590(40)$ $5009(10)$ $1630(20)$ $7220(30)$ $-440(50)$	x y z $3094.8(17)$ $10319(4)$ $6271.3(7)$ $436(6)$ $2671(12)$ $324(3)$ $2413(9)$ $3738(14)$ $1314(4)$ $1961(9)$ $2312(17)$ $664(4)$ $3010(9)$ $580(20)$ $377(4)$ $1261(9)$ $5600(20)$ $1635(4)$ $2136(11)$ $8360(20)$ $3699(5)$ $1453(11)$ $6135(19)$ $2486(6)$ $2682(11)$ $9480(20)$ $5227(5)$ $1752(12)$ $7450(20)$ $5018(6)$ $1481(12)$ $6910(20)$ $4238(7)$ $3075(12)$ $10390(20)$ $3923(6)$ $3332(12)$ $10950(20)$ $2850(7)$ $4525(10)$ $220(20)$ $729(5)$ $3942(9)$ $3361(18)$ $1656(5)$ $6759(16)$ $1590(40)$ $1743(9)$ $5009(10)$ $1630(20)$ $1366(6)$ $7220(30)$ $-440(50)$ $1966(15)$

Table 3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for exp_9978. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U 11	U_{22}	U33	U 23	U 13	U12
Br1	158.5(12)	232.7(18)	93.5(8)	-54.5(10)	-36.4(7)	46.1(12)
01	67(3)	105(5)	69(3)	-2(3)	-23(3)	6(3)
C6	68(5)	60(5)	55(4)	11(4)	4(4)	4(4)
C1	58(4)	80(5)	54(4)	15(4)	-4(3)	-6(4)
C2	65(5)	101(6)	72(5)	-9(6)	-8(4)	-3(5)
C9	79(5)	87(6)	69(4)	1(5)	-12(4)	4(5)
C12	77(6)	110(8)	74(6)	-12(6)	-1(5)	20(6)
C10	96(6)	70(6)	99(6)	-8(6)	-20(5)	16(5)
C15	79(6)	88(8)	81(6)	-21(6)	-16(5)	14(5)
C16	109(7)	93(7)	87(7)	7(6)	12(6)	-1(7)
C17	95(7)	94(8)	117(9)	-23(7)	-4(7)	-11(6)
C13	106(7)	98(7)	102(7)	2(8)	1(6)	-3(7)
C14	99(7)	93(8)	111(8)	-23(7)	-9(6)	1(6)

C11	99(7)	92(8)	128(9)	-17(7)	-21(7)	14(6)
C3	77(6)	107(7)	94(6)	-14(7)	8(5)	9(6)
C5	59(5)	102(7)	75(5)	-10(5)	-22(4)	7(5)
C7	143(11)	187(16)	176(14)	-41(12)	-68(10)	89(11)
C4	67(6)	130(9)	118(8)	-14(7)	-32(5)	31(6)
C8	260(20)	163(19)	370(30)	3(19)	-190(20)	42(16)

Table 4 Bond Lengths for exp_9978.

Lan		1 Denguis IVI	UAP_	//0.	
Aton	n Atom	Length/Å	Aton	n Atom	Length/Å
Br1	C15	1.884(8)	C12	C11	1.493(14)
01	C1	1.380(8)	C10	C11	1.214(12)
C6	C1	1.391(10)	C15	C16	1.353(14)
C6	C9	1.495(11)	C15	C14	1.340(13)
C6	C5	1.386(10)	C16	C17	1.395(13)
C1	C2	1.368(12)	C13	C14	1.379(12)
C2	C3	1.380(10)	C3	C4	1.377(13)
C9	C10	1.509(11)	C5	C4	1.379(12)
C12	C17	1.343(14)	C7	C4	1.560(14)
C12	C13	1.365(15)	C7	C8	1.19(2)

Table 5 Bond Angles for exp_9978.

Aton	n Aton	n Atom	Angle/°	Aton	1 Aton	1 Atom	Angle/°
C1	C6	C9	120.4(7)	C14	C15	Br1	118.4(8)
C5	C6	C1	118.3(7)	C14	C15	C16	120.6(9)
C5	C6	C9	121.3(7)	C15	C16	C17	118.9(9)
01	C1	C6	118.5(7)	C12	C17	C16	120.9(10)
C2	C1	01	121.2(7)	C12	C13	C14	120.1(10)
C2	C1	C6	120.3(7)	C15	C14	C13	120.3(10)
C1	C2	C3	120.6(8)	C10	C11	C12	129.8(12)
C6	C9	C10	116.8(7)	C4	C3	C2	120.2(9)
C17	C12	C13	119.1(9)	C4	C5	C6	121.6(8)
C17	C12	C11	126.0(11)	C8	C7	C4	115.4(18)
C13	C12	C11	114.8(10)	C3	C4	C5	118.9(8)
C11	C10	C9	132.5(11)	C3	C4	C7	123.8(10)
C16	C15	Br1	121.0(9)	C5	C4	C7	117.0(10)

Atom	x	у	z	U(eq)
H1	347.97	4142.87	169.05	122
H2	2698.95	-360.63	-58.14	95
H9A	169.7	4987.06	1522.15	95
H9B	1366.5	7206.59	1363.44	95
H10	1140.23	4785.66	2791.76	107
H16	1300.9	6437.49	5389.17	115
H17	836.75	5527.42	4089.13	123
H13	3542.02	11402.93	3555.34	122
H14	3959.79	12353.08	4843.65	122
H11	2229.43	9367.01	2554.52	129
H3	5220.84	-988.09	534.52	111
H5	4257.97	4298.64	2091.15	95
H7A	7496.26	2208.44	1369.66	205
H7B	6807.22	2762.01	2173.21	205
H8A	7203.29	-1617.18	1543.55	407
H8B	6529.88	-1049.87	2351.69	407
H8C	8307.62	-284.4	2182.28	407

Table 6 Hydrogen Atom	Coordinates (Å×10 ⁴) and	Isotropic Displacement	Parameters
(Å ² ×10 ³) for exp_9978.			

exp_9978

Table 1 Crystal data and structure refinement for exp_9978.

Identification code	exp_9978
Empirical formula	$C_{17}H_{17}BrO$
Formula weight	317.21
Temperature/K	293(2)
Crystal system	monoclinic
Space group	P2 ₁
a/Å	8.2775(7)
b/Å	5.2464(5)
c/Å	17.4065(11)
α/°	90
β/°	92.906(7)
γ/°	90
Volume/Å ³	754.94(11)
Z	2
$\rho_{calc}g/cm^3$	1.395
µ/mm ⁻¹	2.712
F(000)	324.0

Crystal size/mm ³	0.3 imes 0.2 imes 0.1
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	4.686 to 57.918
Index ranges	$-11 \le h \le 7, -6 \le k \le 3, -18 \le l \le 23$
Reflections collected	3212
Independent reflections	2481 [$R_{int} = 0.0217$, $R_{sigma} = 0.0619$]
Data/restraints/parameters	2481/1/174
Goodness-of-fit on F ²	1.055
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0543, wR_2 = 0.1280$
Final R indexes [all data]	$R_1 = 0.1214, wR_2 = 0.1726$
Largest diff. peak/hole / e Å-3	0.29/-0.23
Flack parameter	0.14(2)