Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Heterologous expression of a single HR-PKS leads to the formation of diverse 2-alkenyl-tetrahydropyrans in model fungi

Hai-Ning Lyu ^{a, b‡}, Jinyu Zhang ^{a, c‡}, Shuang Zhou ^a, Hong-Wei Liu ^a, Wen-Ying Zhuang ^a, Shu-Ming Li ^d, Wen-Bing Yin ^{a,c,*}

^a State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China

^b Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China

^c Savaid Medical School, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China

^d Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Marburg 35037, Germany

*Corresponding authors:

Wen-Bing Yin, E-mail: <u>yinwb@im.ac.cn</u>. Tel: 86-10-64806170.

[‡] These authors contributed equally to this work.

Content

1. Supplementary tables

Table S1. Fungal strains and plasmids used in this study

 Table S2. PCR primers used in this study

Table S3. HR-ESI-MS data for isolated compounds

2. Supplementary figures

Figure S1. The *app* biosynthetic gene cluster and its homologues in *Trichoderma* (A), and gene function predictions (B)

Figure S2. Transformant verification of App1 in A. nidulans by diagnostic PCR

Figure S3. ¹H NMR spectrum of 1 in CDCl₃ (500MHz)

Figure S4. ¹³C NMR spectrum of 1 in CDCl₃(125MHz)

Figure S5. ¹H-¹H COSY spectrum of 1 in CDCl₃

Figure S6. HSQC spectrum of 1 in CDCl₃

Figure S7. HMBC spectrum of 1 in CDCl₃

Figure S8. ¹H NMR spectrum of 2 in CDCl₃ (500MHz)

Figure S9. ¹³C NMR spectrum of 2 in CDCl₃(125MHz)

Figure S10. ¹H-¹H COSY spectrum of 2 in CDCl₃

Figure S11. HSQC spectrum of 2 in CDCl₃

Figure S12. HMBC spectrum of 2 in CDCl₃

Figure S13. ¹H NMR spectrum of 3 in CDCl₃ (500MHz)

Figure S14. ¹³C NMR spectrum of **3** in CDCl₃ (125MHz)

Figure S15. ¹H-¹H COSY spectrum of 3 in CDCl₃

Figure S16. HSQC spectrum of 3 in CDCl₃

Figure S17. HMBC spectrum of 3 in CDCl₃

Figure S18. ¹H NMR spectrum of 4 in CDCl₃ (500MHz)

Figure S19. ¹³C NMR spectrum of 4 in CDCl₃(125MHz)

Figure S20. ¹H-¹H COSY spectrum of 4 in CDCl₃

Figure S21. HSQC spectrum of 4 in CDCl₃

Figure S22. HMBC spectrum of 4 in CDCl₃

Figure S23. ROESY of 4 in CDCl₃ (500MHz)

Figure S24. ¹H NMR spectrum of 5 in CDCl₃ (500MHz)

Figure S25. ¹³C NMR spectrum of 5 in CDCl₃ (125MHz)

Figure S26. ¹H-¹H COSY spectrum of 5 in CDCl₃

Figure S27. HSQC spectrum of 5 in CDCl₃

Figure S28. HMBC spectrum of 5 in CDCl₃

Figure S29. ¹H NMR spectrum of 6 in CDCl₃ (500MHz)

Figure S30. ¹³C NMR spectrum of 6 in CDCl₃ (125MHz)

Figure S31. ¹H-¹H COSY spectrum of 6 in CDCl₃

Figure S32. HSQC spectrum of 6 in CDCl₃

Figure S33. HMBC spectrum of 6 in CDCl₃

Figure S34. ¹H NMR spectrum of 7 in CDCl₃ (500MHz)

Figure S35. ¹³C NMR spectrum of 7 in CDCl₃(125MHz)

Figure S36. ¹H-¹H COSY spectrum of 7 in CDCl₃

Figure S37. HSQC spectrum of 7 in CDCl₃

Figure S38. HMBC spectrum of 7 in CDCl₃

Figure S39. ¹H NMR spectrum of 8 in CDCl₃ (500MHz)

Figure S40. ¹³C NMR spectrum of 8 in CDCl₃ (125MHz)

Figure S41. HSQC spectrum of 8 in CDCl₃

Figure S42. HMBC spectrum of 8 in CDCl₃

Figure S43. ¹H NMR spectrum of 9 in CDCl₃ (500MHz)

Figure S44. ¹³C NMR spectrum of 9 in CDCl₃ (125MHz)

Figure S45. ¹H-¹H COSY spectrum of 9 in CDCl₃

Figure S46. HSQC spectrum of 9 in CDCl₃

Figure S47. HMBC spectrum of 9 in CDCl₃

Figure S48. ROESY of 9 in CDCl₃ (500MHz)

3. Supplementary nucleotide sequence data

4. References

1. Supplementary tables

Strain/plasmid	Description	Reference
Aspergillus nidulans	pyroA4, riboB2, pyrG89, nkuA::argB, sterigmatocystin cluster	1
LO8030	(AN7804-AN7825)A, emericellamide cluster (AN2545-	
	$AN2549)\Delta$, asperfuranone cluster (AN1039-AN1029) Δ ,	
	monodictyphenone cluster (AN10023-AN10021) Δ ,	
	terrequinone cluster (AN8512-8520) Δ , austinol cluster part 1	
	$(AN8379-AN8384)\Delta$, austinol cluster part 2 $(AN9246-9259)\Delta$,	
	F9775 cluster (AN7906-7915) Δ , asperthecin cluster (AN6000-	
	AN6002)A	
TYZS7	pYZS4 in A. nidulans LO8030	This study
Saccharomyces	$MAT\alpha$ ura3-52 his3- $\Delta 200$ leu2- $\Delta 1$ trp1 pep4::HIS3 prb1 $\Delta 1.6R$	2
cerevisiae BJ5464-	can1 GAL	
NpgA		
pXW55	2μ , URA3, ADH $2p$::ACPC, Amp	3
pRGAMA1	pyrG, AMA1	4
pYZS4	AMA1::T7792 04478::pyr4	This study
pYLV2	<i>URA3::ADH2p::T7792_04478</i> ORF	This study
TXX = original transfo	ormant	-

Table S1. Fungal strains and plasmids used in this study

TXX = original transformant

pXX = plasmid

Name	Oligonucleotide sequence (5'-3')	Use
XmaI-7792-C40	ccccccgggcaagccgtgtgtaagaagtgg	Construction of pYZS4
for pRG-AMAI-F		
NotI-7792-C40 for	gaatgcggccgcctcctgacattatgcattcggc	
pRG-AMAI-R		
detect_F	ctgccatgaagagtgaccgc	Confirmation of TYZS7
detect_R	gactcgaggataacgtgtccg	
_4478_1_F	ggctagcgattataaggatgatgatgataagactagtatgttcactcttgagcctgc	Construction of pYLV2
_4478_1_R	ggtatettgetegatgagetee	
_4478_2_F	gtcagagaatgctgactctcaacc	
4478_2_R	gtgagtgaattcggacctcctc	
4478_3_F	cgatgcctgcttccaagca	
4478_3_R	ccggtagcagccatgatatcc	
4478_4_F	ccatcctgatccactctggc	
4478_4_R	gtcatttaaattagtgatggtgatggtgatgcacgtggctagcccagctggcaacaag	

Table S2. PCR primers used in this study

Compound	Formula	Calculated	Ion	Observed
1	C ₁₈ H ₃₀ O ₄	311.2222	$[M+H]^{+}$	311.2225
2	C ₁₈ H ₃₀ O ₅	327.2171	$[M+H]^{+}$	327.2170
3	C ₁₈ H ₃₀ O ₅	327.2171	$[M+H]^+$	327.2169
4	C ₁₆ H ₂₆ O ₅	299.1858	$[M+H]^{+}$	299.1856
5	C ₂₀ H ₃₄ O ₄	339.2535	$[M+H]^{+}$	339.2533
6	C ₂₀ H ₃₄ O ₄	339.2535	$[M+H]^{+}$	339.2532
7	C ₁₈ H ₂₈ O ₅	325.2015	$[M+H]^{+}$	325.2017
8	C ₁₈ H ₃₀ O ₃	295.2273	[M+H] ⁺	295.2269
9	C ₁₈ H ₃₀ O ₃	295.2273	[M+H] ⁺	295.2276

Table S3. HR-ESI-MS data for isolated compounds

2. Supplementary figures

Α

	in fut	Iction	iunction t-chain	dehydrogen	ase Efflux P	ump	ain dehydro	genase gase	inked oxidor	eductase ain dehydrr	oked oxid	oreducta	chain dehvdrog	enase thain dehydrogenase
T. applanatum 044XX		64	app14 app	13 app12	2 apt	ort-	app10	app9	app8 app	7 app6	app5	short-	app3 app2	HR-PKS app1 (04478)
T. harzianum XP_0247729_XX		24	25	26	27	-	29	30	31 32	33	34	35	36	37
<i>T. virens</i> XP_0139526_XX	23	24		26	27	28	29	30	31 32	33	34	35	36 37	38
T. citrinoviride XP_0247463_XX		85	86 87	88	89	-5%	> > 91	92	93 94	95		96	97	98
T. longibrachiatum PTB751XX			72 71	70 69	68	67	66 65	64	63 62	61	60	59	58	57
T. reesei XP_00696XXXX	\prec		6935 7116	7020	7115	7114	6932	7019	7113 6938	7112	7018	7111	7017	7110
T. parareesei OTA082XX	70	69	68	67	66	€ 65	64	63	62	61	60	59	58	57
<i>T. arundinaceum</i> TARUN_58XX		18		17	16 15		14	13	12 11		09	08	07 06	05
T. asperellum XP_0247568XX		.9	78 77	76	-<	74	73	72	71 70		68	67	66	65
<i>T. atroviride</i> XP_013945XXX	275	274	273 02		272	066	271	270	269	268	267	266	265 264	032
<i>T. gamsii</i> TGAM01_v2044XX		8	79	80 8			84	85			87	88	89 90	91

В

			-			-					
T. applanatum	T. harzianum	T. virens	T. citrinoviride	T. longibrachiat um	T. reesei	T. parareesei	T. arundinaceu m	T. asperellum	T. atroviride	T. gamsii	Probable function
App14 (04465)	XP_024772924 98/89	XP_013952623 98/90	XP_024746386 99/84	PTB75171 98/84	XP_006966935 86/82	OTA08269 99/82	TARUN_5818 98/92	÷	÷	8	Short-chain dehydrogenase
App13 (04466)	XP_024772925 99/89	XP_013952624 99/86	XP_024746387 99/78	PTB75169 99/76	XP_006967116 99/76	OTA08268 99/76		XP_024756879 99/86	XP_013945275 99/82		No function
App12 (04467)	XP_024772926 80/83	XP_013952626 80/90	XP_024746388 84/88	PTB75168 80/88	XP_006967020 84/88	OTA08267 99/81	TARUN_5817 99/83	XP_024756878 79/57	XP_013945273 79/61	TGAM01_v2044 80 83/59	MFS, Efflux pump
App11 (04468)	XP_024772927 55/81	XP_013952627 55/84	XP_024746389 55/75	PTB75167 55/72	XP_006967115 55/76	OTA08266 49/77	TARUN_5816 49/80	XP_024756873 42/75		*	Short-chain dehydrogenase
App10 (04469)	XP_024772929 99/92	XP_013952629 99/89	XP_024746391 99/90	PTB75165 99/90	XP_006966932 99/90	OTA08264 99/90	TARUN_5814 99/93	XP_024756872 99/91	XP_013945271 99/91	TGAM01_v2044 85 99/91	tRNA ligase
App9 (04470)	XP_024772933 99/77	XP_013952633 90/83	XP_024746395 99/80	PTB75161 99/80	XP_006967112 99/80	OTA08261 99/79	TARUN_5811 99/82	XP_024756874 99/59	XP_013945066 99/59	TGAM01_v2044 84 99/60	FAD-linked oxidoreductase
App8 (04471)	XP_024772932 99/74	XP_013952632 99/75	XP_024746394 95/76	PTB75162 99/76	XP_006966938 94/76	OTA08262 99/76	TARUN_5812 99/82	XP_024756877 98/58	XP_013945020 99/57	TGAM01_v2044 81 99/56	Short-chain dehydrogenase
App7 (04472)	XP_024772931 98/75	XP_013952631 98/76	XP_024746393 98/74	PTB75163 98/73	XP_006967113 98/77	-	-	XP_024756871 98/75	XP_013945269 98/75	•	Cupin
App6 (04473)	XP_024772930 96/80	XP_013952630 99/83	XP_024746392 99/79	PTB75164 96/84	XP_006967019 99/83	OTA08263 95/83	TARUN_5813 99/83		XP_013945270 98/72	-	FAD-linked oxidoreductase
App5 (04474)	XP_024772934 98/79	XP_013952634 98/78	XP_024746396 97/77	PTB75160 97/77	XP_006967018 97/79	OTA08260 89/87	TARUN_5809 89/83	XP_024756868 88/76	XP_013945267 88/74	TGAM01_v2044 87 99/72	P450
App4 (04475)	XP_024772935 99/79	XP_013952635 99/79		PTB75159 99/77	XP_006967111 99/77	OTA08259 99/77	TARUN_5808 80/78	XP_024756867 98/80	XP_013945266 99/80	TGAM01_v2044 88 99/80	Short-chain dehydrogenase
App3 (04476)	XP_024772936 91/94	XP_013952636 93/94	XP_024746397 85/96	PTB75158 85/97	XP_006967017 85/98	OTA08258 85/98	TARUN_5807 99/95	XP_024756866 94/89	XP_013945265 93/88	TGAM01_v2044 89 99/82	Cupin
App2 (04477)	92/78	XP_013952637 99/74	/9/83	92/97	92/76	92/76	TARUN_5806 99/81	95/77	XP_013945264 99/71	TGAM01_v2044 90 99/77	Short-chain dehydrogenase
App1 (04478)	XP_024772937 97/89	XP_013952638 97/90	XP_024746398 99/87	PTB75157 99/86	XP_006967110 99/86	OTA08257 99/86	TARUN_5805 99/90	XP_024756865 98/86	XP_013945032 98/86	TGAM01_v2044 91 99/86	HRPKS

Figure S1. The a	pp biosynthetic	gene cluste	r and its	homologues	in Trichoderma	(A), and	gene
function prediction	ns (B)						

Figure S2. Transformant verification of App1 in *A. nidulans* by diagnostic PCR

Figure S3. ¹H NMR spectrum of 1 in CDCl₃ (500MHz)

Figure S4. ¹³C NMR spectrum of 1 in CDCl₃ (125MHz)

Figure S5. ¹H-¹H COSY spectrum of 1 in CDCl₃

Figure S6. HSQC spectrum of 1 in CDCl₃

Figure S7. HMBC spectrum of 1 in CDCl₃

Figure S8. ¹H NMR spectrum of 2 in CDCl₃ (500MHz)

-5.0 -5.5 -6.0 -6.5

Figure S10. ¹H-¹H COSY spectrum of 2 in CDCl₃

6.5

6.0

5.5

5.0

4.5

4.0 3.5 f2 (ppm) 3.0

2.5

2.0

1.5

1. 0

0.5

7. 0

Figure S11. HSQC spectrum of 2 in CDCl₃

Figure S12. HMBC spectrum of 2 in CDCl₃

Figure S13. ¹H NMR spectrum of 3 in CDCl₃ (500MHz)

Figure S14. ¹³C NMR spectrum of 3 in CDCl₃ (125MHz)

Figure S15. ¹H-¹H COSY spectrum of 3 in CDCl₃

Figure S16. HSQC spectrum of 3 in CDCl₃

Figure S17. HMBC spectrum of 3 in CDCl₃

Figure S18. ¹H NMR spectrum of 4 in CDCl₃ (500MHz)

Figure S19. ¹³C NMR spectrum of 4 in CDCl₃ (125MHz)

Figure S20. ¹H-¹H COSY spectrum of 4 in CDCl₃

Figure S21. HSQC spectrum of 4 in CDCl₃

Figure S22. HMBC spectrum of 4 in CDCl₃

Figure S23. ROESY of 4 in CDCl₃ (500MHz)

Figure S24. ¹H NMR spectrum of 5 in CDCl₃ (500MHz)

Figure S26. ¹H-¹H COSY spectrum of 5 in CDCl₃

Figure S27. HSQC spectrum of 5 in CDCl₃

Figure S28. HMBC spectrum of 5 in CDCl₃

Figure S30. ¹³C NMR spectrum of 6 in CDCl₃ (125MHz)

Figure S31. ¹H-¹H COSY spectrum of 6 in CDCl₃

Figure S32. HSQC spectrum of 6 in CDCl₃

Figure S33. HMBC spectrum of 6 in CDCl₃

Figure S34. ¹H NMR spectrum of 7 in CDCl₃ (500MHz)

Figure S35. ¹³C NMR spectrum of 7 in CDCl₃ (125MHz)

Figure S36. ¹H-¹H COSY spectrum of 7 in CDCl₃

Figure S37. HSQC spectrum of 7 in CDCl₃

Figure S38. HMBC spectrum of 7 in CDCl₃

Figure S39. ¹H NMR spectrum of 8 in CDCl₃ (500MHz)

Figure S40. ¹³C NMR spectrum of 8 in CDCl₃ (125MHz)

Figure S41. HSQC spectrum of 8 in CDCl₃

Figure S42. HMBC spectrum of 8 in CDCl₃

Figure S43. ¹H NMR spectrum of 9 in CDCl₃ (500MHz)

Figure S45. ¹H-¹H COSY spectrum of 9 in CDCl₃

Figure S46. HSQC spectrum of 9 in CDCl₃

Figure S47. HMBC spectrum of 9 in CDCl₃

Figure S48. ROESY of 9 in CDCl₃ (500MHz)

3. Supplementary nucleotide sequence data

Genomic sequence: app1

Size: 7634 bp

mRNA sequence: *app1*

Size: 7305 bp

ACIOE ITGENERACIAGEAAAGGATGCTICTETECAACCTCGCCTIGCCATACATTGGACACGTCAGCAGATGGTTACCCTGGCGAGAGGCTCTTACCGCTCCAGA ATCACGCGATTGTGGTCGCCTGCCATGAAGAGTGACCGCAGAGTCCATGCGAGTCATCGGGAACGGCCATCAACGCCATGGCAAAACTCCTGGCATACCGCTCTCAC ACGAGGCGGCTGCTGCCATGAAAAGCATGACCAGAATGCCGGCCTTCAATTGCCGATACCGACTATGTTGAGTGCCACGGCACGGTGACACCAGTGGTGGTGGTCGCCGAT AGAGGTGGATGGATGCCGCCCTGTTTGCCAGGTCGTGAGGGAGAGCCCTCTGAGAATTGGATCAGTGAAAACGAACATGGGTCACGTGCACGGCACGGTCACCGCGCTGGT Text baran for an exact and a second contract of the second secon GTTCAAGATTGATGTACCTTTCCTCGATATTGTCAGCCCACAAAAGTCTCTGCACACGCTGGCAGAATTTGTTGAGGAGAAGCTTGTTGCCAGCTGGGCTAGC

4. References

- Chiang, Y. M.; Ahuja, M.; Oakley, C. E.; Entwistle, R.; Asokan, A.; Zutz, C.; Wang, C. C.; Oakley, B. R. Angew. Chem. Int. Edit. 2016, 55, 1662-1665.
- (2) Yin, W. B.; Chooi, Y. H.; Smith, A. R.; Cacho, R. A.; Hu, Y.; White, T. C.; Tang, Y. *ACS Synth. Biol.* **2013**, *2*, 629-634.
- (3) Yu, D.; Xu, F.; Zi, J.; Wang, S.; Gage, D.; Zeng, J.; Zhan, J. *Metab. Eng.* **2013**, *18*, 60-68.
- (4) Aleksenko, A.; Clutterbuck, A. J. Fungal Genet. Biol. 1997, 21, 373-387.