A Brønsted acid catalyzed tandem reaction for the diastereoselective synthesis of cyclobuta-fused tetrahydroquinoline carboxylic esters

Valentina Marras, ${ }^{a}$ Pierluigi Caboni, ${ }^{\text {b }}$ Francesco Secci, ${ }^{a}$ Régis Guillot, ${ }^{\text {c }}$ David J. Aitken ${ }^{c}$ and Angelo Frongia*a

${ }^{a}$ Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato, S.S. 554, Bivio per Sestu, I-09042, Monserrato, Cagliari, Italy, Fax: (+39)-070-675-4388; phone: (+39)-070-675-4406; afrongia@unica.it ${ }^{b}$ Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
${ }^{c}$ Université Paris Saclay, CNRS, ICMMO, CP3A Organic Synthesis Group \& Services Communs, 420 rue du Doyen Georges Poitou, 91405 Orsay cedex, France

Contents

General methods S2
Preparation and diastereoisomeric assignment of starting materials S1a-d S3
Procedure for the preparation of cyclobutanones 1 S5
Procedure for the preparation of cyclobuta-fused tetrahydroquinolines $\mathbf{3}$ (and/or
cyclobutanones 4)
Procedure for the preparation of tetrahydroquinoline carboxylic acid $5 \quad$ S20
Copies of NMR spectra of new compounds S21
X-Ray diffraction studies S75
Control reaction of (E)-1a with two different anilines \quad S78
References \quad S80

General Methods

${ }^{1} \mathrm{H}$ NMR spectra were recorded on a 600 MHz spectrometer at ambient temperature with CDCl_{3} as solvent. Data are reported as follows: chemical shifts (δ), multiplicity, coupling constants and integration. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on the same instrument at 151 MHz with CDCl_{3} as solvent. Infrared spectra were recorded on an FT-IR spectrophotometer in ATP mode. High resolution mass spectrometry (HRMS) was performed using an electrospray ionization (ESI) and Q-TOF mass analyzer. Analytical thin layer chromatography was performed using 0.25 mm silica gel $60-\mathrm{F}$ plates. Flash chromatography was performed using columns of 230-400 mesh silica gel 60 ($0.040-0.063 \mathrm{~mm}$).

Preparation and diastereoisomeric assignment of starting materials S1a-d.

The synthesis of the 2-(carboxymethylidene)cyclobutanones used in this work (1a-d) is described in the next section. We used as precursors of these compounds the corresponding alcohols, S1a-d, which were available from a recent literature procedure involving treatment of 2-hydroxycyclobutanone with an alkyl (triphenylphosphoranylidene)acetate. ${ }^{\text {S1 }}$ Two separable diastereoisomers were obtained using this procedure and the configuration of the major one was assigned as E on the following basis, illustrated for S1a. As previously described, ${ }^{\text {S1 }}$ each isomer was transformed into its tert-butyldimethylsilyl ether S2a and the NMR data were compared with those published for (Z)-S2a the Z and E isomers of a known silyl ether with a very similar structure S3a, these three compounds having been made by an alternative route. ${ }^{\mathrm{S} 2}$ Salient diagnostic observations are illustrated in the scheme below and are summarized as follows:
a) ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data for our minor $\mathbf{S 2}$ a isomer were identical with those previously described for (Z)-S2a;
b) ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data for our major and minor S2a isomers were very similar to those previously described for the E and Z isomers of S3a, respectively;
c) ${ }^{1} \mathrm{H}$ NOESY correlation was found between the alkene CH and the cyclobutane CH for the major isomer of $\mathbf{S} \mathbf{2 a}$, but not for the minor isomer, in complete analogy with the previously described behavior of the E and Z isomers of S3a, respectively.

It is also of note that reactions of alkyl (triphenylphosphoranylidene)acetates with other cyclic or acyclic α-hydroxyketones gave unsaturated esters predominantly with an E configuration. ${ }^{53}$

On the basis of the above observations, and given that the behavior of the other starting materials in the series was analogous, we are confident of the stereochemical assignments of the compounds S1a-d, as indicated previously. ${ }^{\text {S1 }}$ Since the synthesis of compounds 1a-d by Dess-Martin oxidation (described in the next section) is assumed to proceed without isomerization, we are equally confident regarding their stereochemical assignments.

In a previous work, the preparation of $(Z)-\mathbf{1 a}$ and $(Z) \mathbf{- 1 \mathbf { c }}$ was described via a ruthenium catalyzed ring expansion of alkynylcyclopropanols. ${ }^{54}$ The NMR spectral data presented for those compounds in that work were identical to our spectra for $(E) \mathbf{- 1 a}$ and $(E) \mathbf{- 1 c}$, leading us to suggest that revision of the structural assignment in that previous work may be appropriate.

Procedure for the preparation of cyclobutanones 1.

To a stirred solution of hydroxycyclobutylidene $\mathbf{S 1 a - d}(838 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4 mL) at $0{ }^{\circ} \mathrm{C}$ was added Dess-Martin periodinane ($838 \mu \mathrm{~mol}, 0.356 \mathrm{~g}$) and the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h . The precipitate was filtered then the mixture was quenched with sat. aq. NaHCO_{3} solution and extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude residue was purified by flash column chromatography (eluent: petroleum ether/ether $=5: 1 \rightarrow 1: 1$) to give compound 1 . Yields refer to chromatographically purified materials.

(Z)-1a: Yield 79\% (102 mg); colorless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.21(\mathrm{t}, J=$ $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.16-3.12(\mathrm{~m}, 2 \mathrm{H}), 3.08-3.04(\mathrm{~m}, 2 \mathrm{H}), 1.32$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.9,165.4,162.1,114.6,61.2$, 46.1, 24.4, 14.3. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{3}$: 155.0703; found: 155.0710 .

(E)-1a: Yield $82 \%(106 \mathrm{mg})$; colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.70(\mathrm{t}, J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.06-3.03(\mathrm{~m}, 2 \mathrm{H}), 2.76-2.73(\mathrm{~m}, 2 \mathrm{H}), 1.31$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 194.0,163.2,160.4,118.7,61.2$, 44.6, 22.3, 14.1. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{3}$: 155.0703; found: 155.0710 .
(Z)-1b: Yield 75% (88 mg); colorless oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.22(\mathrm{t}, J=$ $3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.78 (s, 3H), $3.15-3.12(\mathrm{~m}, 2 \mathrm{H}), 3.07-3.03(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.8,165.8,162.3,114.1,52.1,46.1,24.4$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{O}_{3}$: 141.0546; found: 141.0550 .

(Z)-1c: Yield $85 \%(154 \mathrm{mg})$; colorless oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.34$ $(\mathrm{m}, 5 \mathrm{H}), 6.26(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 2 \mathrm{H}), 3.15-3.12(\mathrm{~m}, 2 \mathrm{H}), 3.08-3.04(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.7,165.2,162.6,135.5,128.8,128.6,128.4$, 114.2, 67.0, 46.1, 24.5. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{Na}$: 239.0679; found: 239.0680.

(Z)-1d: Yield 73% (124 mg); white semi-solid. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.10(\mathrm{t}$, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-3.07(\mathrm{~m}, 2 \mathrm{H}), 3.02-2.98(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.1,164.6,160.9,116.4,81.8,45.9,28.1,24.2$. HRMS (ESI): m / z $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na}$: 205.0835; found: 205.0830.

Procedure for the preparation of cyclobuta-fused tetrahydroquinolines 3 (and/or

 cyclobutanones 4).

A mixture of $\mathbf{1}(0.26 \mathrm{mmol}), \mathbf{2}(0.52 \mathrm{mmol})$ and PTSA $(0.026 \mathrm{mmol})$ in toluene $(0.5$ mL) was stirred in a sealed tube reactor for 16 h at room temperature (unless otherwise stated). The crude product mixture, without aqueous work-up, was purified directly by flash column chromatography (eluent: petroleum ether/ether $=10: 1 \rightarrow 1: 1$) to give the corresponding cyclobuta-fused tetrahydroquinoline $\mathbf{3}$ (or the cyclobutanone $\mathbf{4 p}$). Yields refer to chromatographically pure materials.

$\mathbf{3 a}$ (from (E)-1a and 2a): Yield $83 \%(70 \mathrm{mg})$; yellow oil. IR (ATR): 3396, 3383, 3084, 3053, 3014, 2980, 2944, 2872, 2849, 1729, 1600, 1500, 1484, 1371, 1298, 1249, 1213, $1159,1040 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.08(\mathrm{~m}$, $1 \mathrm{H}), 7.07-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.80-6.78(\mathrm{~m}, 1 \mathrm{H}), 6.77-6.74(\mathrm{~m}, 1 \mathrm{H}), 6.67-6.65(\mathrm{~m}$, $1 \mathrm{H}), 6.55-6.53$ (m, 2H), 4.53 (br s, 1H), 4.26 (dq, $J=10.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.19 (dq, J $=10.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{td}, J=8.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.28$ $(\mathrm{m}, 1 \mathrm{H}), 2.22-2.18(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}$), one NH signal is not visible in the ${ }^{1} \mathrm{H}$ NMR spectrum. ${ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.2,145.6,143.3,129.1,127.7,127.5,126.8,119.7,117.8,115.7,115.0$, 61.3, 56.0, 55.0, 45.0, 38.3, 14.3, 14.1. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}$: 323.1754; found: 323.1765.

3a' (minor diastereoisomer isolated from the above-described reaction between (E)-1a and 2a): yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.03$ (m, 3H), 6.76-6.74 (m, 2H), 6.66-6.63 (m, 1H), 6.49-6.47 (m, 2H), 4.37 (br s, 2H), $4.02(\mathrm{dq}, J=10.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dq}, J=10.8,7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.33-3.32(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.27(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.92(\mathrm{~m}$, $1 \mathrm{H}), 1.05(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.3,145.6,143.4,129.0$, $128.0,127.9,126.9,119.9,117.9,115.8,115.2,61.3,56.9,56.0,41.7,37.5,19.6,14.0$. HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}: 343.1573$; found: 343.1570.

$\mathbf{4 a} / \mathbf{4 a} \mathbf{a}^{\prime}$ (from (E)-1a and $\mathbf{2 a}$ in solvent-free, catalyst-free conditions; see Table 1, entry 2): Yield 64% (58 mg), d.r: 52:48; yellow oil. IR (ATR): 2981, 1785, 1735, 1720, 1685, $1647,1605,1558,1372,1188,754 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $87.20-7.17$ (m, 4H), 6.79-6.76 (m, 2H), 6.73-6.72 (m, 2H), 6.65-6.64 (m, 2H), $4.47(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 4.38 (d, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.31$ (d, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.22$ (m, 2H), 4.20 (q, $J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 3.90-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.11-3.05(\mathrm{~m}, 2 \mathrm{H}), 3.04-2.92$ (m, 2H), 2.20-2.14 (m, 2H), 2.08-2.01 (m, 2H), $1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, one NH signal is not visible in the ${ }^{1} \mathrm{H}$ NMR spectrum. ${ }^{13} \mathrm{C}$ NMR $(151$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.0,207.6,171.9,171.4,146.7,146.6,129.4,129.3,119.2,118.9$, $114.5,113.9,61.8,61.7,61.4,61.3,56.7,56.2,45.66,45.60,14.2,14.1,13.2$ (2 C). HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{3}: 348.1281$; found: 348.1282.

3b (from (E)-1a and 2b): Yield 81% (82 mg); orange oil. IR (ATR): 3400, 3387, 3018, 2980, 2939, 2915, 2866, 1731, 1615, 1587, 1517, 1466, 1450, 1391, 1311, 1288, 1213, $1032 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.19(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.89(\mathrm{~m}$, $1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.47-6.45(\mathrm{~m}, 2 \mathrm{H}), 4.39(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 4.25(\mathrm{dq}, J=10.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dq}, J=10.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=3.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.25(\mathrm{td}, J=8.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 6 \mathrm{H}), 2.19-2.15$ $(\mathrm{m}, 1 \mathrm{H}), 1.94-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, one $\mathrm{N} H$ signal is not visible in the ${ }^{1} \mathrm{H}$ NMR spectrum. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.3$, 143.3, 140.9, 129.6, 128.9, 128.4, 127.7, 127.1, 127.0, 115.7, 115.5, 61.2, 56.2, 55.1, 44.8, 38.4, 20.8, 20.4, 14.3, 14.0. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}$: 351.2067; found: 351.2085 .

$\mathbf{3 c}$ (from (E)-1a and 2c): Yield 90% (88 mg); orange oil. IR (ATR): 3398, 3388, 3040, 3024, 2980, 2960, 2929, 2869, 1732, 1616, 1587, 1512, 1466, 1451, 1391, 1371, 1316, $1288,1110,1030 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.95-6.93$ $(\mathrm{m}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $4.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.25(\mathrm{dq}, J=10.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dq}, J=10.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.97$ (d, $J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{td}, J=8.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{q}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.32-2.27$ $(\mathrm{m}, 1 \mathrm{H}), 2.19-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1$
$\mathrm{Hz}, 3 \mathrm{H}), 1.17-1.14(\mathrm{~m}, 3 \mathrm{H}), 1.13-1.12(\mathrm{~m}, 3 \mathrm{H})$, one NH signal is not visible in the ${ }^{1} \mathrm{H}$ NMR spectrum. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.4,143.6,141.1,135.5,133.7$, $128.4,127.7,127.1,126.0,115.7,115.5,61.2,56.4,55.1,44.8,38.4,28.3,27.9,15.9$, 15.8, 14.4, 14.0. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{2}: 379.2380$; found: 379.2388 .

3d (from (E) - $\mathbf{1 a}$ and 2d): Yield 66\% (75 mg); orange oil.IR (ATR): 3396, 3377, 3041, 3013, 2956, 2929, 2871, 2852, 1730, 1615, 1582, 1514, 1506, 1465, 1402, 1369, 1315, 1293, 1249, 1213, 1178, 1115, $1033 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.17(\mathrm{~d}, J=$ $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=8.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.47-6.45(\mathrm{~m}, 2 \mathrm{H}), 4.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.25(\mathrm{dq}, J=10.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dq}$, $J=10.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{td}, J=8.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-$ $2.43(\mathrm{~m}, 4 \mathrm{H}), 2.32-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.78-$ $1.73(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.44(\mathrm{~m}, 4 \mathrm{H}), 1.33-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.24$ $-1.20(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, one $\mathrm{N} H$ signal is not visible in the ${ }^{1} \mathrm{H}$ NMR spectrum. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.4,143.5,141.1$, $134.1,132.4,128.9,127.6,126.6,115.6,115.5$ (2 C), 61.2, 56.4, 55.1, 44.8, 38.3, 35.1, 34.8, 33.9 (2 C), 22.4, 22.3, 14.4, 14.1, 14.0 (2 C). HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{2}: 435.3006$; found: 435.3008 .

$\mathbf{3 e}$ (from (E)-1a and 2e): Yield 89% (94 mg); yellow oil. IR (ATR): 3398, 3383, 3099, 3040, 3014, 2965, 2926, 2867, 1727, 1611, 1518, 1500, 1463, 1402, 1371, 1314, 1283, $1249,1211,1048 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-$ $6.95(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.50-6.47(\mathrm{~m}, 2 \mathrm{H})$, $4.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.25(\mathrm{dq}, J=10.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dq}, J=10.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.95$ (d, $J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{td}, J=8.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.77-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.30(\mathrm{~m}$, $1 \mathrm{H}), 2.19-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.16(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.14(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 3 \mathrm{H})$, one $\mathrm{N} H$ signal is not visible in the ${ }^{1} \mathrm{H}$ NMR spectrum. ${ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.4$, 143.7, 141.1, 140.2, 138.4, 127.6, 126.9, 125.4, 125.0, 115.6, 61.3, 56.6, 54.9, 44.8, 38.2, 33.5, 33.2, 24.4, 24.3, 24.24, 24.20, 14.4, 14.0. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{2}$: 407.2693; found: 407.2684.

$\mathbf{3 f}$ (from (E)-1a and 2f): Yield 61\% (69 mg); yellow oil. IR (ATR): 3395, 3377, 3055, 3016, 2957, 2902, 2864, 1729, 1613, 1517, 1463, 1393, 1362, 1313, 1275, 1251, 1218, $1117,1030 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=$ 8.3, 2.3 Hz, 1H), $7.09-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.51-6.49(\mathrm{~m}, 2 \mathrm{H})$, $4.25(\mathrm{dq}, J=10.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dq}, J=10.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=3.7 \mathrm{~Hz}$,
$1 \mathrm{H}), 3.32(\mathrm{td}, J=8.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.92-$ $1.87(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H})$, one NH signal is not visible in the ${ }^{1} \mathrm{H}$ NMR spectrum. ${ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $171.5,143.3,142.3,140.8,140.7,127.0,125.7,124.5,123.9,115.3,115.2,61.2,56.7$, 54.7, 44.8, 38.0, 34.2, 33.9, 31.6 (2 C), 14.4, 13.9. HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{2}$: 435.3006; found: 435.3000.

$\mathbf{3 g}$ (from $(E) \mathbf{- 1 a}$ and $\mathbf{2 g}$): Yield $84 \% ~(109 \mathrm{mg})$; orange oil. IR (ATR): 3408, 3382, 3080, $3060,3026,2980,2840,1731,1615,1517,1504,1450,1318,1290,1215,1179,1073$, $1030 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.20-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.12(\mathrm{~m}, 1 \mathrm{H})$, $7.11-7.06(\mathrm{~m}, 5 \mathrm{H}), 7.04-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.96-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.80-6.77(\mathrm{~m}, 3 \mathrm{H})$, $6.61-6.60(\mathrm{~m}, 1 \mathrm{H}), 6.37-6.36(\mathrm{~m}, 2 \mathrm{H}), 4.33(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.17-4.15(\mathrm{~m}, 1 \mathrm{H}), 4.10-$ $4.07(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}), 3.18(\mathrm{td}, J=8.6,3.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.22-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.65$ $(\mathrm{m}, 1 \mathrm{H}), 1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, one $\mathrm{N} H$ signal is not visible in the ${ }^{1} \mathrm{H}$ NMR spectrum. ${ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.2,143.8,142.0,141.9,141.5,132.1,130.5,129.4$, $129.0,128.8,128.4,128.36,128.35,127.5,127.3,125.9,125.8,116.0,115.4,61.3$, 56.2, 55.0, 45.0, 41.3, 41.1, 38.3, 14.4, 14.0. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{2}$: 503.2693; found: 503.2690.

3h (from (E)-1a and 2h): Yield $90 \%(82 \mathrm{mg})$; orange oil. IR (ATR): 3410, 3374, 3049, $2972,2956,2918,2866,1727,1653,1615,1593,1517,1470,1445,1366,1312,1219$, $1118,1030 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~s}$, $1 \mathrm{H}), 6.31-6.29(\mathrm{~m}, 1 \mathrm{H}), 4.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.26-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.16(\mathrm{~m}, 1 \mathrm{H})$, $4.02(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{td}, J=8.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{~s}$, $3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.19-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.26$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, one NH signal is not visible in the ${ }^{1} \mathrm{H}$ NMR spectrum. ${ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.3,145.7,143.1,138.9,137.4,128.9,126.7,124.8,120.9$, 118.7, 116.2, 116.1, 111.8, 61.3, 55.9, 55.0, 45.0, 38.4, 21.7, 21.3, 14.4, 14.0. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}: 351.2067$; found: 351.2045.

$\mathbf{3 i}$ (from $(E) \mathbf{- 1 a}$ and 2i): Yield $88 \%(80 \mathrm{mg})$; yellow oil.IR (ATR): 3437, 3418, 3041, $2981,2948,2915,2858,2732,1732,1601,1511,1500,1470,1446,1369,1309,1252$, $1213,1170,1091,1033 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.19(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.09(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.86(\mathrm{~m}, 1 \mathrm{H}), 6.67(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.61(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.39-6.38(\mathrm{~m}, 1 \mathrm{H}), 4.53(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.30-4.27(\mathrm{~m}$, $1 \mathrm{H}), 4.25-4.19(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.34-3.30(\mathrm{~m}, 1 \mathrm{H})$, $2.36-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.25-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.02-2.00(\mathrm{~m}$, $1 \mathrm{H}), 1.99-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, one $\mathrm{N} H$ signal is not visible in the ${ }^{1} \mathrm{H}$ NMR spectrum. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.4,143.4,141.6,130.5,128.8$, $127.5,126.6,124.1,122.7,122.5,118.9,117.1,112.9,61.4,56.1,55.2,45.0,38.4$, 18.0, 17.5, 14.3 (2 C). HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}: 351.2067$; found: 351.2057 .

$\mathbf{3 j}$ (from (E)-1a and $\mathbf{2 j}$): Yield 75\% (92 mg); yellow oil.IR (ATR): 3407, 3382, 3057, 3035, 2978, 2934, 2869, 2844, 1740, 1648, 1612, 1587, 1514, 1489, 1462, 1410, 1372, $1320,1262,1164,1071 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.41-7.38$ (m, 4H), 7.30 (dd, $J=8.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.29-7.23$ (m, 6H), $7.16-7.12$ (m, 2H), 6.78 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.57(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.18(\mathrm{dq}, J$ $=10.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dq}, J=10.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{td}$, $J=8.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.86(\mathrm{~m}, 1 \mathrm{H})$, $1.75-1.72(\mathrm{dq}, J=11.8,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, one $\mathrm{N} H$ signal is not visible in the ${ }^{1} \mathrm{H}$ NMR spectrum. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.0,145.0,142.7$, 141.2, 141.1, 132.6, 130.8, 128.73, 128.70, 127.80, 127.5, 126.6, 126.5, 126.36, 126.35, 126.2, 125.5, 116.1, 115.4, 61.4, 56.2, 54.9, 45.0, 38.5, 14.4, 14.0. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}: 497.2199$; found: 497.2200.

3k (from (E)-1a and 2k): Yield 85% (94 mg); violet oil. IR (ATR): 3437, 3418, 3060, 2983, 2937, 2869, 1738, 1659, 1623, 1585, 1574, 1530, 1514, 1476, 1462, 1407, 1369, $1320,1290,1246,1162,1130,1033 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.89$ (d, J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.68$ (m, 2H), $7.47-7.42$ (m, 3H), $7.41-$ $7.37(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.47(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dq}, J=10.8$,
$7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dq}, J=10.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{td}, J=8.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.45$ $(\mathrm{m}, 1 \mathrm{H}), 2.25-2.21(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H})$, one NH signal is not visible in the ${ }^{1} \mathrm{H}$ NMR spectrum. ${ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.3,140.4,137.8,134.6,133.6,129.0,128.7,126.2,125.85,125.82,125.3$, $125.0,124.7,124.2,123.6,121.0,120.4,119.9,119.6,117.8,108.3,61.5,56.4,55.0$, 45.6, 38.6, 14.4, 13.8. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}: 423.2067$; found: 423.2054 .

31 (from (E)-1a and 2l): Yield $76 \%(75 \mathrm{mg})$; orange oil.IR (ATR): 3393, 3380, 3052, $2985,2941,2830,1739,1610,1597,1515,1496,1468,1440,1404,1367,1277,1238$, $1174,1153,1040 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.99(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.73-$ $6.70(\mathrm{~m}, 2 \mathrm{H}), 6.67-6.64(\mathrm{~m}, 2 \mathrm{H}), 6.51-6.48(\mathrm{~m}, 2 \mathrm{H}), 4.27-4.13(\mathrm{~m}, 3 \mathrm{H}), 3.85(\mathrm{~d}$, $J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.694(\mathrm{~s}, 3 \mathrm{H}), 3.694(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{td}, J=8.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.22$ $(\mathrm{m}, 1 \mathrm{H}), 2.19-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H})$, one NH signal is not visible in the ${ }^{1} \mathrm{H}$ NMR spectrum. ${ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.3,153.7,152.8,139.4,137.3,129.1,117.4,116.8,114.6,114.3,111.4$, $61.3,57.0,55.8,55.7,55.2,44.5,38.3,14.4,14.0 . \mathrm{HRMS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}$: 383.1965 ; found: 383.1988 .

$\mathbf{3 m}$ (from $(E) \mathbf{- 1 a}$ and $\mathbf{2 m}$): Yield $62 \%(82 \mathrm{mg})$; orange oil.IR (ATR): 3418, 3382, 3057, 3027, 2983, 2934, 2871, 2852, 1727, 1648, 1612, 1525, 1496, 1465, 1399, 1372, 1323, 1271, 1221, 1156, 1074, $1028 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27-7.25(\mathrm{~m}, 2 \mathrm{H})$, $7.22-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.90(\mathrm{~m}, 2 \mathrm{H})$, $6.83-6.80(\mathrm{~m}, 3 \mathrm{H}), 6.77-6.76(\mathrm{~m}, 3 \mathrm{H}), 6.47-6.46(\mathrm{~m}, 2 \mathrm{H}), 4.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.28$ $(\mathrm{dq}, J=10.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dq}, J=10.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.27 (td, $J=8.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.21(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.79$ $(\mathrm{m}, 1 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, one $\mathrm{N} H$ signal is not visible in the ${ }^{1} \mathrm{H}$ NMR spectrum. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.0,158.9,158.8,149.2,148.4,141.7,140.0,129.64$, $129.61,128.8,122.2,122.0,120.7,120.0,118.5,117.5,117.1,116.9,116.4,61.4,56.4$, 55.2, 44.9, 38.2, 14.4, 14.1. HRMS (ESI): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4}$: 507.2278; found: 507.2275.

3n (from (E)-1a and 2n): Yield 75\% (76 mg); orange oil. IR (ATR): 3408, 3031, 2988, 2954, 2926, 2866, 1731, 1602, 1509, 1489, 1453, 1401, 1370, 1316, 1280, 1251, 1177, $1086 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=8.5$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.44-6.40(\mathrm{~m}, 2 \mathrm{H}), 4.56$ (br s, 1H), $4.33-4.23(\mathrm{~m}, 2 \mathrm{H}), 4.21-4.16(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{td}$, $J=8.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.93(\mathrm{~m}, 1 \mathrm{H})$, $1.77-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.6$, $143.8,141.9,129.1,128.7,128.0,126.4,124.4,123.0,117.0,116.2,61.6,56.0,55.0$, 44.7, 38.3, 14.4, 14.0. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$: 391.0974; found: 391.0970 .

$\mathbf{3 o}$ (from (E)-1a and 20): Yield 67% (83 mg); orange oil. IR (ATR): 3404, 3390, 3087, 3054, 2980, 2948, 2907, 2871, 2852, 1732, 1650, 1596, 1511, 1497, 1481, 1437, 1394, $1369,1314,1252,1183,1115,1077 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41(\mathrm{~d}, J=$ $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.17$ (dd, $J=8.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.39-6.36(\mathrm{~m}, 2 \mathrm{H}), 4.58(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.34-4.23(\mathrm{~m}, 2 \mathrm{H}), 4.20-4.16(\mathrm{~m}, 1 \mathrm{H})$, 3.97 (d, $J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{td}, J=8.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.15$ $(\mathrm{m}, 1 \mathrm{H}), 1.97-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.6,144.2,142.3,131.9,130.8,129.3,129.0,117.4,116.6$, 111.6, 110.0, 61.6, 55.9, 54.9, 44.7, 38.3, 14.3, 14.0. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$: 478.9964; found: 478.9917.

4p/4p' (from (E) - $\mathbf{1 a}$ and $\mathbf{2 p}$): Yield $23 \% ~(16 \mathrm{mg}$), d.r. 55:45; orange oil. IR (ATR): 3368,3082 , 2983, 2929, 2871, 2855, 2213, 1779, 1732, 1628, 1607, 1516, 1465, 1391, $1372,1336,1260,1208,1172,1085,1019 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45-$ $7.43(\mathrm{~m}, 4 \mathrm{H}), 6.70-6.69(\mathrm{~m}, 2 \mathrm{H}), 6.62-6.60(\mathrm{~m}, 2 \mathrm{H}), 5.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.92$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{dd}, J=8.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{dd}, J=7.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.31$ $-4.25(\mathrm{~m}, 2 \mathrm{H}), 4.24-4.21(\mathrm{~m}, 2 \mathrm{H}), 3.89-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.14-$ $3.09(\mathrm{~m}, 2 \mathrm{H}), 2.99-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.97-$ $1.92(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 207.4,206.6,170.8,170.4,149.85,149.80,133.8(2 \mathrm{C}), 120.0(2 \mathrm{C}), 113.7$,
113.2, 101.1, 100.9, 62.4, 62.3, 60.8, 60.7, 55.4, 55.1, 45.8, 45.7, 14.3, 14.2, 13.2 (2 C). HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}$: 273.1234; found: 273.1238.

$\mathbf{3 r}$ (from (E)-1b and 2a): Yield 91% (83 mg); orange oil.IR (ATR): 3410, 3393, 3082, 3052, 3019, 2989, 2953, 2852, 1730, 1601, 1566, 1500, 1435, 1366, 1317, 1298, 1249, $1222,1162,1110,1030 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.79-6.74(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.53-6.51(\mathrm{~m}, 2 \mathrm{H}), 4.51(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.30$ $(\mathrm{td}, J=8.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.94(\mathrm{~m}, 1 \mathrm{H})$, $1.80-1.76(\mathrm{~m}, 1 \mathrm{H})$, one NH signal is not visible in the ${ }^{1} \mathrm{H}$ NMR spectrum. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.6,145.6,143.2,129.1,127.74,127.71,126.8,119.9,117.9$, 115.7, 115.1, 56.1, 55.0, 52.3, 45.0, 38.3, 14.1. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}$: 309.1598; found: 309.1582.

3s (from (E)-1c and 2a, reaction carried out at $70^{\circ} \mathrm{C}$): Yield $50 \% ~(50 \mathrm{mg}$); orange oil. IR (ATR): 3398, 3390, 3084, 3054, 3021, 2980, 2956, 2929, 2852, 1738, 1612, 1596, 1511, 1500, 1484, 1462, 1432, 1380, 1298, 1175, $1082 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.36-7.33(\mathrm{~m}, 6 \mathrm{H}), 7.10-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.05-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.78-6.74$ (m, 2H), $6.66-6.63(\mathrm{~m}, 1 \mathrm{H}), 6.51-6.49(\mathrm{~m}, 2 \mathrm{H}), 5.27(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}$, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{td}, J=8.6,3.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.29-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.72(\mathrm{~m}$,

1 H), one NH signal is not visible in the ${ }^{1} \mathrm{H}$ NMR spectrum. ${ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.1,145.4,143.2,135.5,129.1,128.7,128.6,128.5,127.7,126.8,119.8$, $117.9,115.7,115.0,67.1,56.0,55.0,45.0,38.3,14.2$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}$: 385.1911; found: 385.1944.

3t (from (E)-1d and 2a, reaction carried out at $70^{\circ} \mathrm{C}$): Yield $48 \% ~(44 \mathrm{mg})$; white solid; m.p. $=150-153^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{ATR}): 3404,3379,3046,3003,2953,2923,2855,1716,1604$, $1584,1495,1458,1372,1312,1252,1175,1162,1053 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.34-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 3 \mathrm{H}), 6.78-6.77(\mathrm{~m}, 1 \mathrm{H}), 6.76-6.73$ $(\mathrm{m}, 1 \mathrm{H}), 6.68-6.65(\mathrm{~m}, 1 \mathrm{H}), 6.54-6.52(\mathrm{~m}, 2 \mathrm{H}), 4.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=3.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.26(\mathrm{td}, J=8.6,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.18(\mathrm{~m}, 1 \mathrm{H}), 1.99-$ $1.96(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H})$, one NH signal is not visible in the ${ }^{1} \mathrm{H}$ NMR spectrum. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 170.4, 145.6, 143.5, 129.1, 127.6, $127.2,126.7,119.5,117.6,115.6,114.8,82.0,55.9,55.2,45.2,38.2,28.2,14.1$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}: 351,2067$; found: 351,2076.

Procedure for the preparation of tetrahydroquinoline carboxylic acid 5.

To a solution of $\mathbf{3 a}(0.311 \mathrm{mmol}, 100 \mathrm{mg})$ in a mixture of dioxane $(2.4 \mathrm{~mL})$ and water $(1.1 \mathrm{~mL})$ was added sodium hydroxide ($1.244 \mathrm{mmol}, 50 \mathrm{mg}$) and the mixture was stirred at reflux for 10 h . After the mixture was cooled to room temperature, water was added, and the mixture was washed with ethyl acetate. The aqueous phase was acidified with 1 M aqueous HCl to pH 1 . The aqueous layer was then extracted with ethyl acetate and the combined organic phases were washed with water, then brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (eluent: petroleum ether/ethyl acetate $1 / 1 \rightarrow$ ethyl acetate) gave the tetrahydroquinoline carboxylic acid 5: Yield 74\% (67 mg); orange solid; m.p. $=105-108^{\circ} \mathrm{C}$. IR (ATR): 3450, 2953, 2923, 2874, 1732, 1691, 1661, 1596, 1563, 1503, 1481, 1440, 1421, 1263, 1399, 1263, 1208, 1173, $1097 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-$ $7.03(\mathrm{~m}, 2 \mathrm{H}), 6.79-6.77(\mathrm{~m}, 2 \mathrm{H}), 6.67-6.65(\mathrm{~m}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.11$ (d, $J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{td}, J=8.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.17(\mathrm{~m}$, $1 \mathrm{H}), 2.02-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.80(\mathrm{~m}, 1 \mathrm{H})$, the COOH signal is not visible in the ${ }^{1} \mathrm{H}$ NMR spectrum. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.3,145.5,142.9,129.1,127.8$, 127.0, 120.1, 118.1, 115.8, 115.2, 56.1, 54.5, 44.8, 38.3, 14.1. HRMS (ESI): m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}$: 295.1441; found: 295.1434 .

Copies of NMR spectra of new compounds.

EtOOC
(E)-1a

$-\operatorname{cooEt}(Z)-\mathbf{1 a}$

MeOOC $(E)-1 b$

3nOOC (E)-1c

t-BuOOC (E)-1d

 3d

3g

3k

$\begin{aligned} & \text { 옹 } \\ & \stackrel{+}{+} \\ & \stackrel{1}{+} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { o } \\ & \text { + } \\ & \stackrel{+}{4} \end{aligned}$	$\begin{aligned} & \text { o } \\ & + \\ & + \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\circ}{+} \\ & \underset{\sim}{\sim} \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\circ}{+} \\ & \underset{\infty}{\infty} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\circ}{+} \\ & \stackrel{\sim}{\mu} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{+}{+} \\ & \underset{\sim}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & + \\ & + \\ & \text { + } \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{+}{+} \\ & \underset{\sim}{4} \end{aligned}$	$\begin{gathered} \infty \\ + \\ \underset{\sim}{\omega} \\ \hline \end{gathered}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{+} \\ & \stackrel{1}{+} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\circ}{4} \\ & \stackrel{\sim}{\sim} \\ & \hline \end{aligned}$	ㅇ	
													O
くで「													
$88^{\circ} \mathrm{T}$													
$82^{\prime} \mathrm{I}$ $62^{\circ} \mathrm{I}$													！
${ }_{0}^{62}$													¢
$26^{\circ} \mathrm{I}$													
${ }^{6} \cdot 1$													O．
${ }^{96} \cdot$												\｛	\bigcirc
＋0． 2													
－90＇2													！
－81＇2 ${ }^{81}$													\cdots
しでて													
1でて												，	\bigcirc
ででて													\cdots
とでて													
カでて													$\stackrel{\square}{\square}$
S2＇2－													－
S6．${ }^{5}$													
												－1－てع＇I	O
L6＇Z												－	$\stackrel{\sim}{\sim}$
$86^{\circ} \mathrm{Z}$												上－	
${ }^{86}$＇ 2													
${ }^{86} 6^{2}$													$\stackrel{\sim}{\sim}$
$66^{\circ} \mathrm{z}$													
$\begin{aligned} & 66 \cdot z \\ & 60 \cdot \varepsilon \end{aligned}$													0
												－ 0 －	\cdots
												E－s ε^{\prime} \％	
โT• ε－													ก
													\cdots
$\left.\begin{array}{l} \varepsilon ז \cdot \varepsilon \\ \square T \cdot \varepsilon \end{array}\right] F$			－										\bigcirc
LL＇ε													$\dot{*}$
												$\xrightarrow{\square}+9^{\circ}$	
			－									鳬6て＇I	ค 틍
												66°	$\dot{\sim}$
$98 \cdot \varepsilon$ $98 \cdot \varepsilon$													＋
98 98 98			\bigcirc									FOR＇I	0
			\checkmark									1－66\％	เก่
＜8．ε－													
													\bigcirc
でも													เก
とでャー													
ャでャー													－
Sで													
													Ω
くでも													$\stackrel{\circ}{\circ}$
$6 \chi^{\circ}+\quad$ F			－									－	
$6 z^{\prime}+$													ㅇ．
0 0 ＇t－													－
£ $\varepsilon^{\prime} \downarrow$													
$\downarrow \varepsilon^{\circ} \downarrow$												I－6s＇t	$\stackrel{\square}{\square}$
												，	－
Sc＇t－													
焐＇ャー													\bigcirc
で＇${ }^{\text {b }}$													
ع6 ${ }^{\circ} \mathrm{t}$													\cdots
$50 \cdot 5$													
$90 \cdot 5$													ㅇ．
09．9－9													0
29.9 69.9													
$0<0 \cdot$													$\stackrel{\square}{\square}$
9 9でく $^{\text {c }}$													σ
$\varepsilon t^{\circ} \mathrm{C}$													
$\stackrel{+}{\text { ¢ }}$													\bigcirc
													－
らちく													

X-Ray diffraction studies

Crystals of $\mathbf{3 s}$ and $\mathbf{5}$ suitable for X-ray diffraction were obtained by slow evaporation of ethyl acetate solutions at ambient temperature.

X-ray diffraction data were collected using a VENTURE PHOTON100 CMOS Bruker diffractometer with Micro-focus IuS source $\mathrm{Cu} \mathrm{K} \alpha$ radiation. Crystals were mounted on a CryoLoop (Hampton Research) with Paratone-N (Hampton Research) as cryoprotectant and then flash frozen in a nitrogen gas stream at 100 K . The temperature of the crystals was maintained at the selected value by means of a 700 series Cryostream cooling device to within an accuracy of $\pm 1 \mathrm{~K}$. The data were corrected for Lorentz polarization and absorption effects.

The structures were solved by direct methods using SHELXS-97 ${ }^{55}$ and refined against $F 2$ by full matrix least-squares techniques using SHELXL-2018 ${ }^{\text {S6 }}$ with anisotropic displacement parameters for all non-hydrogen atoms. Hydrogen atoms were located on a difference Fourier map and introduced into the calculations as a riding model with isotropic thermal parameters. All calculations were performed by using the Crystal Structure crystallographic software package WINGX. ${ }^{57}$

The crystal data collection and refinement parameters are given in Table S1. ORTEP drawings of the molecules are shown in Figures S1 and S2. CCDC 2087041 \& 2087042 contain the crystallographic data for these compounds. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/Community/Requestastructure.

Table S1. Crystallographic data and structure refinement details.

Compound	3s	5
CCDC	2087042	2087041
Empirical Formula	$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}$	$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$
M_{r}	350.45	294.34
Crystal size, mm^{3}	$0.18 \times 0.16 \times 0.11$	$0.07 \times 0.05 \times 0.04$
Crystal system	monoclinic	monoclinic
Space group	$P 2_{1}$	P 21/c
a, \AA	11.1401(3)	6.56070(10)
b, \AA	28.7617(7)	7.5167(2)
c, \AA	11.7457(3)	28.7149(6)
$\alpha{ }^{\circ}$	90	90
$\beta{ }^{\circ}$	90.5210(10)	95.4260(10)
$\gamma{ }^{\circ}$	90	90
Cell volume, \AA^{3}	3763.26(17)	1409.72(5)
Z; Z'	8; 4	4;1
T, K	100 (1)	100 (1)
Radiation type ; wavelength A	$\mathrm{CuK} \alpha ; 1.54178$	$\mathrm{CuK} \alpha ; 1.54178$
F_{000}	1504	624
μ, mm^{-1}	0.627	0.733
range, ${ }^{\circ}$	3.073-65.200	3.092-66.758
Reflection collected	50526	25459
Reflections unique	12738	2486
$\mathrm{R}_{\text {int }}$	0.0348	0.0492
GOF	1.025	1.118
Refl. obs. (I>2(I))	12154	2237
Parameters	945	195
$w \mathrm{R}_{2}$ (all data)	0.0817	0.1019
R value ($\mathrm{I} \times 2(\mathrm{I})$)	0.0324	0.0457
Largest diff. peak and hole (e-. \AA^{-3})	0.220; -0.204	0.201; -0.245

Figure S1. An ORTEP drawing of compound 3s compound. Thermal ellipsoids are shown at the 30% level. For the sake of clarity, only one molecule of the asymmetric unit is shown.

Figure S2. An ORTEP drawing of compound $\mathbf{5}$ compound. Thermal ellipsoids are shown at the 30% level.

Control reaction of (E)-1a with two different anilines

A mixture of $(E) \mathbf{- 1 a}(0.26 \mathrm{mmol}), \mathbf{2 a}(0.26 \mathrm{mmol}), \mathbf{2 e}(0.26 \mathrm{mmol})$ and PTSA $(0.026$ $\mathrm{mmol})$ in toluene $(0.5 \mathrm{~mL})$ was stirred in a sealed tube reactor for 16 h at room temperature. The reaction mixture was passed through a short flash column column (eluent: petroleum ether/ether $=10: 1 \rightarrow 1: 1$) and evaporated to give a crude product mixture which was analyzed directly by ${ }^{1} \mathrm{H}$ NMR spectroscopy.
${ }^{1} \mathrm{H}$ NMR of the crude reaction mixture

References

S1. F. Cuccu, L. Serusi, A. Luridiana, F. Secci, P. Caboni, D. J. Aitken, A. Frongia, Org. Lett. 2019, 21, 7755-7758.

S2. S. Danappe, A. Pal, C. Alexandre, A.-M. Aubertin, N. Bourgougnon, F. Huet, Tetrahedron 2005, 63, 5782-5787.

S3. P. Garner, S. Ramakanth, J. Org. Chem. 1987, 52, 2631-2634.
S4. B. M. Trost, J. Xie, N. Maulide, J. Am. Chem. Soc. 2008, 130, 17258-17259.
S5. Sheldrick, G. M. SHELXS-97, Program for Crystal Structure Solution, University of Göttingen, Göttingen, Germany, 1997.

S6. G. M. Sheldrick, Acta Crystallogr., Sect. A 2008, 64, 112-122.
S7. Farrugia, L. J. J. Appl. Cryst. 1999, 32, 837.

