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Experimental details

Reagents

The reactions were carried out under an Argon atmosphere, employing oven-dried glassware.
Deuterated acetic acid (AcOH-ds) was purchased from Aldrich Chemical Co. (St. Louis, USA).
13CH,0 and *NH.4CI were purchased from Santa Cruz Biotechnology (Dallas, USA) and used as

received.

Equipment

The *H and *C NMR spectra were acquired with a Bruker Avance 300 spectrometer (Bruker
BioSpin GmbH - Rheinstetten, Germany), operating at 300.13 and 75.48 MHz respectively, and a
Bruker Avance 111 400 MHz spectrometer (400.13 MHz for H, 100.61 MHz for 3C). The resonance
of CH3CO2H in AcOH-ds (6 = 2.07 ppm) was used as an internal standard. The chemical shifts are
reported in parts per million in the J scale and the magnitudes of the coupling constants (J) are given
in Hertz. D1 used was 1 s (5 T1), which is the standard to the Bruker NMR apparatus.

The N-'H HMBC experiments were carried out in a Bruker 700 MHz NMR spectrometer
equipped with an Avance 111 console and a TXI probe (700.2 MHz for *H, 176.07 MHz for *3C and
70.95 MHz for ©°N).

Chemometrics and graphics software

The NMR spectra were acquired and analyzed with the Topspin v.4.0.6 (Bruker) software.
Spectra were exported in ASCII format, for editing and chemometric analysis. The computer routines
involving spectral data manipulation were run in Matlab R2015a (Mathworks, Natick, USA). The
chemometric analyses were performed with the aid of the MCR-ALS GUI 2.0 (available at
https://mcrals.wordpress.com/download/) executed in the Matlab environment. Data analyses and
graphics were performed employing MCR-ALS results in .txt format, using Origin 8.5 (OriginLab
Co., Northampton, USA).

Synthesis of 1*C1°N-hexamethylenetetramine (**CeH12'°N4)
15N-Ammonia obtained by heating °®NH4CI (258.3 mg, 4.83 mmol) with CaCl, was bubbled into a
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beaker containing a solution of **CH,0 (750 pL of a solution of 20% wt. in water, 4.83 mmol). The
temperature of the solution was kept below 20°C with an ice-bath. When the bubbling stopped, the
solution was maintained for 20 min at this temperature. Then, the beaker was heated on a hot plate,
removing the water until constant weight. With this procedure, 84.6 mg (0.60 mmol, 75%) of 13C*°N-
hexamethylenetetramine was obtained, as a white solid. *H NMR (AcOH-ds): 6 = 4.92 ppm (s); *C
NMR: 6 = 71.6 ppm; **N NMR: 6 = 39.5 ppm.

Temperature ramp, 90 min and 6 h experiments

Temperature ramp experiment: In an NMR tube, HMTA (50 mg, 0.357 mmol) were dissolved in
AcOH-ds (0.5 mL). The tube was introduced in the NMR apparatus and *H NMR spectra were
acquired every 10 K from 298 K to 363 K (8 spectra) in a ramp of 5 K/min. When signal changes
were evident, tH-¥C-HSQC, H-*C-HMBC, 'H-'H-COSY, and NOESY spectra were acquired.

90 Min experiment: Once at 363 K, *H NMR spectra were acquired every 3 minutes for 90 min.
At the end, 2D NMR spectra were acquired, and the probe was left to cool to room temperature. At
this point, additional *H NMR, 3C NMR, and 2D spectra were acquired.

6 Hours experiment: HMTA (50 mg, 0.357 mmol) was transferred to a Hach tube equipped with
a magnetic stir bar, and dissolved in AcOH-ds. The tube was heated to 363 K and aliquots (50 pL)
were taken every hour, transferred to NMR tubes and diluted with AcOH-da to a total volume of 0.5
mL. NMR spectra were acquired. The procedure was repeated six times. Additional *H NMR, *C

NMR and 2D spectra were acquired for the last sample.

NMR spectra acquisition for 3C-1>N-HMTA

In an NMR tube, *C->N-HMTA (50 mg, 0.357 mmol) was dissolved in AcOH-d4 (0.5 mL). *H
NMR, *H-*C-HSQC, and *H->N-HMBC spectra were acquired at 298 K; then, the temperature was
raised to 348 K in 10 K intervals. An *H NMR spectrum was acquired for each interval. At 348 K,
'H NMR, H-3C-HSQC, and *H-*N-HMBC spectra were also obtained.
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Representative NMR spectra
Key signals and crosspeaks observed

Figure S1. *H NMR spectrum of HMTA at 298 K in AcOH-da. Key signal observed: & 4.97 ppm.
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Figure S2. *H-13C-HSQC spectrum of HMTA at T = 298 K in AcOH-ds. Key correlation observed:
5 4.97 ppm (*H) and & 71.6 ppm (*3C).
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Figure S3. 'H-N-HMBC spectrum of 33C-5N-HMTA at 298 K in AcOH-ds. Key correlation
observed: & 4.97 ppm (*H) and & 38.7 ppm (*N).
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Figure S4. *H spectrum of the decomposition of HMTA at 343 K in AcOH-d4. Key signals observed:
§4.71 and & 4.60 ppm (dq), & 4.97 ppm (s); and & 5.12 ppm (s).
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Figure S5. 'H-C-HSQC spectrum of the decomposition of HMTA at 343 K in AcOH-ds. Key
correlations observed: § 4.97 ppm (*H) with § 71.6 ppm (*3C); 8 4.71 and § 4.60 ppm (*H) with & 70.1
ppm (*3C) and & 5.12 ppm (*H) with & 80.7 ppm (*3C).
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Figure S6. *H->N-HMBC spectrum of the decomposition of HMTA at 343 K in AcOH-ds. Key
correlations observed: § 4.97 ppm (*H) with & 38.97 ppm (**N) and & 4.71, § 4.60 and & 5.12 ppm

(*H) with § 48.1 ppm (**N).
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Figure S7. *H spectrum of the decomposition of HMTA at 353 K in AcOH-ds. Key signals observed:
6 4.71, 6 4.60 ppm (dd), 6 5.08 ppm (s), 6 5.16 ppm (s), 6 8.14 ppm (d) and 6 8.37 ppm (d).
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Figure S8. *H-'H-NOESY spectrum of the decomposition of HMTA at 348 K in AcOH-da. Inset:
Zoom of the region & 8.00-8.6 ppm. Correlation observed between & 8.14 ppm (d) and 6 8.37 ppm
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Figure S9. *H®*C-HSQC spectrum of the decomposition of HMTA at 363 K in AcOH-ds. Key
correlations: & 2.70 ppm (s, H) with § 42.6 ppm (33C) and & 8.16 ppm (s, tH) with § 164.9 ppm (*3C).
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Figure S10. 'H**C-HMBC of the decomposition of HMTA at 363 K in AcOH-da. Key correlations
observed: § 5.12 ppm (*H) with & 41.2 ppm (*3C).
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Representative spectra at different temperatures and times

Figure S11. Decomposition of HMTA in AcOH-ds. 'H NMR spectral comparison at different
temperatures. Ramp range: 298-363 K.
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Figure S12. Representative spectra of the H NMR monitoring of the time-dependent evolution of the
decomposition of HMTA at 363 K (90 min experiment) in AcCOH-da.
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Figure S13. *H NMR monitoring of the time-dependent evolution of the decomposition of HMTA at
363 K (6 h experiment) in AcCOH-da.
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Representative NMR spectra of *C->N-HMTA in AcOH-d.

Figure S14. *H®®N-HMBC spectrum of *C®N-HMTA at 348 K at t = 0 min in AcCOH-d..
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Figure S15. H®N-HMBC spectrum of *C->N-HMTA and its decomposition products at 348 K

(t =30 min) in AcOH-d..
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Figure S16. *H®N-HMBC spectrum of *C-®*N-HMTA and its decomposition products in AcOH-
dsat 348 K (t = 90 min).
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Figure S17. *H'H-NOESY spectrum of **C->N-HMTA and its decomposition products in AcOH-
dsat 348 K. Inset: Zoom of the region 8.00-8.6 ppm.
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Figure S18. *H-'H-NOESY spectrum of **C->N-HMTA and its decomposition products in AcOH-
dsat 348 K. Inset: Zoom of the region 4.50-5.00 ppm.
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'H and *C NMR of key signals of the main product N-Me in AcOH-ds4 at 363 K

Figure S19. 'H NMR spectrum of the decomposition of HMTA and detail of key signals.
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Figure S20. 3C NMR spectrum of the decomposition of HMTA and detail of key signals.

S05613t6 2 1 ChBrukerTopSpind.0.6\data e
e
o
(v} - m (=]
w0 o iyl o
b o w0 o
P o = r
w0 — — o
- © k- -+
o -2
— o
{ ,} J . ‘ o
‘ . ; . . T . . . . T ; . ‘ . ; T
200 150 100 50 [ppm]

S15



MCR-ALS chemometric analysis of the relevant *H NMR spectral peaks

Method development!

For further processing and analysis, the set of spectra collected during the heating process of
each sample was arranged matrix-wise (points x ppm). Different matrices were prepared by editing
the main matrix, removing non-informative regions, and leaving the zones containing the relevant
signals. The experiments were subsequently processed by Principal Component Analysis (PCA) in
order to determine their chemical rank, i.e., the number of different species responsible for the signal
changes observed during the heating process (Table S1).

Then, the Multivariate Curve Resolution algorithm (MCR-ALS) was run in order to obtain the
concentration (abundance) profiles of the different species throughout the process, along with the
NMR spectra of the corresponding “pure” species involved.? In order to confer physical sense to the
results, restrictions such as non-negativity in the concentrations and spectral intensities were applied
to the MCR-ALS system. The closure restriction was also added to the concentration values, in order
to keep the sum of the relative abundances of the analytes invariable, because the NMR tube was not
opened during the experiment. The so obtained “pure” spectra were used to establish the identity of

the species involved in the process.

The relative abundance of each signal was calculated using, as reference, the signal of the
CH3CO2H-ds (6 = 2.00 ppm; edited matrix between 1.90 and 2.10 ppm), the peak area of which is

constant.
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Table S1. MCR-ALS analysis of different signals in the *H NMR spectra. Number of components
and variance explained.

Minimum number of

Signal of interest Condition companents which Variance
o (ppm) (Experiment) explain > 95% variance Explained (%)
2.57-2.75 Temperature ramp 1 99.29
4.50-4.77 Temperature ramp 3 98.49
4.85-5.00 Temperature ramp 1 97.52
5.09-5.15 Temperature ramp 3 99.97
8.00-8.50 Temperature ramp 2 99.82
2.57-2.75 Time (90 min expt.) 1 99.65
4.50-4.77 Time (90 min expt.) 2 99.93
4.85-5.00 Time (90 min expt.) 1 99.19
5.09-5.15 Time (90 min expt.) 2 99.99
8.00-8.50 Time (90 min expt.) 2 99.99
2.57-2.75 Time (6 h expt.) 1 98.53
4.50-4.77 Time (6 h expt.) 1 99.88
4.85-5.00 Time (6 h expt.) 1 98.41
5.09-5.15 Time (6 h expt.) 1 99.41
8.00-8.50 Time (6 h expt.) 1 98.23
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Decomposition of HMTA. Temperatura ramp experiment (303-363 K)

Figure S21. Left: *H NMR spectrum of HMTA and its decomposition products in the region on =
2.60-2.80 ppm. Right: Signal overlap with the “pure” spectrum provided by MCR-ALS analysis.
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Figure S22. Temperature-dependent evolution of the abundance of N-Me according to the MCR-

ALS analysis for one component of the *H NMR spectra of HMTA and its decomposition products
in the region Jn = 2.60-2.80 ppm.
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Figure S23. Left: *H NMR spectrum of HMTA and its decomposition products in the region on =
4.50-4.77 ppm. Right: Signal overlap with the “pure” spectrum provided by MCR-ALS analysis.
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Figure S24. Temperature-dependent evolution of the abundance of HMTAD™ (top), Iminium
(middle) and N-Me (right) according to the MCR-ALS analysis with three components of the 'H
NMR spectrum of HMTA and its decomposition products in the region on = 4.50-4.77 ppm.
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Figure S25. Left: *H NMR spectrum of HMTA and its decomposition products in the region on =
4.80-5.00 ppm. Right: Signal overlap with the “pure” spectrum provided by MCR-ALS analysis.

505582 16 1 C:BrukenTopSpind.0.§data

Figure S26. Temperature-dependent evolution of the abundance of HMTA according to the MCR-
ALS analysis with one component of the *H NMR spectrum of HMTA and its decomposition products
in the region Jx = 4.80-5.00 ppm.
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Figure S27. Left: *H NMR spectrum of HMTA and its decomposition products in the region on =
5.09-5.14 ppm. Right: Signal overlap with the “pure” spectrum provided by MCR-ALS analysis.
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Figure S28. Temperature-dependent evolution of the abundance of HMTAD™ (top) and Iminium
(middle) and N-Me (bottom) according to the MCR-ALS analysis with three components of the *H
NMR spectrum of HMTA and its decomposition products in the region on = 5.10-5.16 ppm.
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Figure S29. Left: *H NMR spectrum of HMTA and its decomposition products in the region on =
8.00-8.50 ppm. Right: Signal overlap with the “pure” spectrum provided by MCR-ALS analysis.
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Figure S30. Temperature-dependent evolution of the abundance of Iminium (left) and N-Me (right)
according to the MCR-ALS analysis with two components of the 'H NMR spectra of HMTA and its
decomposition products in the region én = 8.00-8.50 ppm.
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Decomposition of HMTA. 90 min experiment (Temperature = 363 K)

Figure S31. Left: *H NMR spectrum of HMTA and its decomposition products in the region on =

2.60-2.80 ppm, at time = 90 min. Right: Signal overlap with the “pure” spectrum provided by MCR-
ALS analysis.
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Figure S32. Time-dependent evolution of the abundance of N-Me according to the MCR-ALS
analysis with one component of the *H NMR spectra of HMTA and its decomposition products in the
region on = 2.60-2.80 ppm.
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Figure S33. Left: Zoom of the *H NMR spectrum of HMTA and its decomposition products in the
region on = 4.50-4.77 ppm, at time = 90 min. Right: Signal overlap with the “Pure” spectra of HMTA-
H* Imine and NMe provided by MCR-ALS”.
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Figure S34. Time-dependent evolution of the abundance of Iminium (top) and N-Me (bottom)
according to the MCR-ALS analysis with two components of the *H NMR spectrum of HMTA and
its decomposition products in the region on = 4.50-4.77 ppm.
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Figure S35. Left: *H NMR spectrum of HMTA and its decomposition products in the region on =

4.90-5.00 ppm, at time = 90 min. Right: Signal overlap with the “Pure” spectrum provided by MCR-
ALS.
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Figure S36. Time-dependent evolution of the abundance of HMTA according to the MCR-ALS
analysis with one component of the *H NMR spectrum of HMTA and its decomposition products in
the region on = 4.80-5.00 ppm.
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Figure S37. *H NMR spectrum of HMTA and its decomposition products in the region dn = 5.10-
5.16 ppm. Right: Signal overlap with the “Pure” spectrum provided by MCR-ALS.
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Figure S38. Time-dependent evolution of the abundance of N-Me according to the MCR-ALS
analysis with one component of the *H NMR spectrum of HMTA and its decomposition products in
the region on = 5.10-5.16 ppm.
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Figure S39. Time-dependent evolution of the abundance of Iminium (top) and N-Me (bottom)
according to the MCR-ALS analysis with two components of the *H NMR spectrum of HMTA and
its decomposition products in the region on = 8.00-8.50 ppm.
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Decomposition of HMTA. 6 hours experiment (Temperature = 363 K)

Figure S40. Left: *H NMR spectrum of HMTA and its decomposition products in the region on =
2.60-2.70 ppm. Right: Signal overlap with the corresponding “pure” NMR spectrum provided by
MCR-ALS analysis.
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Figure S41. Time-dependent evolution of the abundance of N-Me according to the MCR-ALS
analysis with one component of the *H NMR spectrum of HMTA and its decomposition products in
the region on = 2.60-2.70 ppm.
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Figure S42. Left: *H NMR spectrum of HMTA and its decomposition products in the region on =
4.50-4.77 ppm. Right: Signal overlap with the “Pure” spectrum provided by MCR-ALS.
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Figure S43. Time-dependent evolution of the abundance of N-Me according to the MCR-ALS
analysis with one component of the *H NMR spectrum of HMTA and its decomposition products in
the region Jn = 4.50-4.77 ppm.
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Figure S44. Left: *H NMR spectrum of HMTA and its decomposition products in the region on =
4.90-5.01 ppm. Right: Signal overlap with the “Pure” spectrum provided by MCR-ALS.
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Figure S45. Time-dependent evolution of the abundance of HMTA according to the MCR-ALS
analysis with one component of the *H NMR spectrum of HMTA and its decomposition products in
the region on = 4.90-5.08 ppm.
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Figure S46. Left: *H NMR spectrum of HMTA and its decomposition products in the region on =
5.10-5.16 ppm. Right: Signal overlap with the “Pure” spectrum provided by MCR-ALS.
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Figure S47. Time-dependent evolution of the abundance of N-Me according to the MCR-ALS
analysis with one component of the *H NMR spectrum of HMTA and its decomposition products in
the region on=5.10-5.16 ppm.
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Figure S48. Time-dependent evolution of the abundance of N-Me according to the MCR-ALS
analysis with one component of the *H NMR spectrum of HMTA and its decomposition products in
the region on = 8.00-8.50 ppm.
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Kinetic study of the descomposition of HMTA at 363 K

Experimental Procedure

Three solutions of HMTA in AcOH-d4 were prepared at three different concentrations (0.36 M,
0.54 M and 0.72 M), and transferred-the corresponding NMR tubes. In the NMR spectrometer, the
probe were set-363 K-carry out the experiment, the tubes were sequentially placed in the probe and

'H NMR spectra were acquired every 3 minutes during 120 minutes.

The spectra were normalized considering the area under the residual methyl signal of AcOH-da4
as the reference standard, and the concentrations (relative abundances) of the species were calculated
using the MatLab routines. The concentrations of the species were plotted vs. time and their half-life

times were calculated at the three concentrations.

To calculate reaction order and kinetic constant of HMTA at 363 K, the initial rates method
was employed.-this end, spectra were acquired every 3 minutes, until the concentration of HMTA
suffered a 20% reduction. The initial rates vs. time were plotted and the graph was fit with polinomia
of different degrees. The first term of the polinomial that offered the best fit was taken as the initial
rate for each concentration (In our case, the polynomial of third order gave the best fit, with r? =
0.991).

To calculate the kinetic constant, Concentration vs. time were plotted and the graph was fit with
the equation: C = (Co-Cs).e™ +Ct. The fit of this equation gave a r>= 0.999

The equation log Vo = log k + nelog Co was applied-calculate the reaction constant and the
reaction order. With both methods (half-life time and initial rates), the reaction afforded the following

parameters.
Reaction order: 1 (calculated value: 1.05)
Half-life time: 54 min

Kinetic constant at 363 K: 0.0186 min!
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Decomposition rate of HMTA

Figure S49. Left: Time-dependent decomposition of HMTA at 363 K in AcOH-ds solutions of
different concentrations [0.36 M (top), 0.54 M (middle) and 0.72 M (bottom)] in the 90 min
experiment. Right: Exponential fits of the concentration vs. time plots (calculation of the kinetic

constant).
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Decomposition rate of HMTA

Figure S50. Polynomial fits of the decomposition rate vs. time for HTMA solutions of different
concentrations (0.36 M, 0.54 M and 0.72 M).
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Figure S51. Calculation of reaction order by the initial rates method.
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Computational methods

General information

Conformational searches for the reactants, transition structures (TS) and the products were run
using the conformational search module of Hyperchem with the MM+ method.® Selected structures
were then successively optimized at the B3LYP/6-31G* and M062X/6-311+G** level of theory
including the solvent (AcOH, € = 6.15) via the Solvation Model based on Density (SMD).* This level
has been shown as a perfect level of theory for this type of structures.®

Frequency calculations were made to confirm the nature of the stationary points and to evaluate
their thermochemical properties. The molecular orbitals of the reactants were calculated to analyze
the frontier orbital interactions at the M062X/6-311+G** level of theory. Intrinsic reaction coordinate
(IRCs) calculations were run to verify the connectivity between reactants, TSs and products. To
examine the more important interactions in the TSs, natural bond orbital calculations were performed

and Wiberg bond indexes (WBIs) analyzed.
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Cartesian Coordinates

(SMD-ACOH)-M062X/6-311+G** Free Energy = -454.625558
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HMTAH"

(SMD-ACcOH)-M062X/6-311+G** Free Energy = -455.055802
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TSHMTA-H*

(SMD-ACOH)-M062X/6-311+G** Free Energy =-455.02052

Number of Imaginary Frequencies: 1 (-263.43)
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Iminium

(SMD-ACOH)-M062X/6-311+G** Free Energy = -455.031843
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[1,5]-H-Shift

(SMD-ACOH)-M062X/6-311+G** Free Energy = -454.995075

Number of Imaginary Frequencies: 1 (-867.76)
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Imine-NMe

(SMD-ACOH)-M062X/6-311+G** Free Energy = -455.044033
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(SMD-ACOH)-M062X/6-311+G** Free Energy = -454.612962
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Iminium 2

(SMD-ACOH)-M062X/6-311+G** Free Energy = -455.050046
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0.318384
-1.018708
1.318369
1.271884
-0.127192
-1.268015
1.101870
-0.260574
0.450721
0.376006
1.780204
1.728819
-1.224581
-2.259672
1.772964
1.386215
-0.455267
-0.263901
0.222105
0.218970
-1.319952
-1.147195
-2.137962

-1.415641
-0.829379
-0.392673
-0.078790
0.006482
0.202829
0.717256
1.238430
-2.252941
-1.772359
-0.848218
0.891757
-0.327154
0.630827
1.535663
0.320415
1.888665
0.487417
1.459468
-0.222460
0.570733
-0.258332
0.037153

547



[1,3]-H-Shift

(SMD-AcOH)-M062X/6-311+G** Free Energy =
Number of Imaginary Frequencies: 1 (-431.3956)

C

r 6T T T O I ITTITITITIT IT IT T Z2 00202

-0.296986
-0.116363
-0.523083
0.671615
1.371241
-1.328560
-1.716940
-1.697320
0.585644
-1.159949
1.398855
0.441957
-2.135926
-1.174246
-1.844176
-2.568204
-1.076986
2.504852
3.234798
2.812333
1.917318
1.042812
1.066498

0.104641
-1.144439
1.220460
1.488839
0.280536
-1.383234
0.969453
-0.287671
0.295252
-0.022953
1.984551
2.138270
-1.559215
-2.289456
1.796411
0.952130
-0.229362
-0.081840
-0.695392
0.406976
-1.381075
-1.101636
-1.855684

-454.940472

1.452349
0.696673
0.547573
-0.198809
-0.810330
-0.138084
-0.272688
-1.006286
2.068248
2.104787
0.449002
-1.041394
0.575723
-0.722010
-0.969853
0.412176
-1.808774
-0.165724
-0.689782
0.761705
0.558442
-0.139102
-0.919333

548



Acetic Acid

(SMD-ACOH)-M062X/6-311+G** Free Energy = -229.031700

ITITITTOO0OOO

-0.85330600
-0.12128900
-0.69322900
1.36723100
-0.29241600
1.84821900
1.67040600
1.67041900

-0.99897200
0.12998500
1.19093500

-0.04146800

-1.78646200
0.93342900

-0.60690000

-0.60687300

549

0.00000100
-0.00000100
-0.00001600

0.00001100

0.00002100

0.00003300

0.88444800
-0.88443900



Acetate

(SMD-ACOH)-M062X/6-311+G** Free Energy = -228.571855

IITITOIOO0OONn

0.08620900
0.62081500
0.79125700
1.73771100
-1.38682000
-1.65515500
-1.65528400
-1.92018500

0.11984200
1.20315000
-1.02154800
-0.80883800
-0.12679800
-0.71167800
-0.71097500
0.82041600

S50

0.00005400
-0.00002100
-0.00001300
-0.00002200
-0.00000600
-0.88196600

0.88238500
-0.00040400
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