Supporting Information

Photoredox-catalyzed Redox-Neutral Difluoroalkylation to Construct Perfluoroketone with Difluoroenoxysilanes

Jian-Yu Zou, Yu-Zhao Wang, Wen-Hui Sun, Wu-Jie Lin, Xue-Yuan Liu^{*} State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China E-mail: <u>liuxuey@lzu.edu.cn</u>

Table of Contents

1.	General information	S2
2.	General procedure for the synthesis of 1a – 1h	S2
3.	General procedure for the synthesis of 2a – 20	S2
4.	Typical procedure for the synthesis of 3aa – 3ja, 3ab – 3an	S2
5.	Typical procedure for the synthesis of 3ka – 3la	S3
6.	Typical procedure for gram-scale synthesis with 0.01 mol % catalyst loading	S3
7.	Condition Optimization for Difluoroalkylation	S3
8.	Typical reaction set up	S5
9.	Mechanism studies	S5
10.	Compounds characterization	S8
11.	Reference	. S15
12.	¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra of all new products ^a	. S16

1. General information

Analytical TLC was performed with silica gel GF254 plates. A 200-300 mesh silica gel was used for column chromatography. Solvents were distilled prior to use and were not deaerated before we used. All chemicals were used as received from commercial resources without further purification unless otherwise stated. ¹H NMR spectra were recorded on Bruker AVANCE III 400 and INOVA instruments with 400 and 600 MHz frequencies, and ¹³C NMR spectra were recorded on Bruker AVANCE III 400 and INOVA instruments with 400 and INOVA instruments with 400 and 600 MHz frequencies. ¹⁹F NMR spectra were recorded on a Bruker AVANCE III 400 spectrometer with a ¹⁹F operating frequency of 376 MHz. The chemical shifts in ¹H NMR spectra were determined with Si (CH₃)₄ as the internal standard ($\delta = 0.00$ ppm); the chemical shifts in ¹³C NMR spectra were determined based on the chemical shift of CDCl₃($\delta = 77.0$ ppm). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, dd = doublet of doublets, q = quartet, m = multiplet, dt = triplet of doublets. HR-MS was obtained using a Q-TOF instrument equipped with an ESI source.

2. General procedure for the synthesis of 1a – 1h

BrCF₂COOEt +
$$R_2 \sim N_H \sim R_1$$
 $\xrightarrow{La(OTf)_3 (5 \text{ mol }\%)}_{RT, \text{ solvent free}} Br \sim R_1 \sim R_1$

Compound 1 was prepared according to the literature.¹A 10 mL reaction tube equipped with a magnetic stir bar was added with catalyst La(OTf)₃ (0.5 mmol, 5 mol %). Then the tube was pump and refilled with the Ar three times. The BrCF₂COOEt (12 mmol, 1.2 equiv.) and amine (10 mmol, 1 equiv.) was added. The reaction was stirred at room temperature until the amine was exhausted. The reaction was purified by silica gel column chromatography to afford the products (1a-1h).

3. General procedure for the synthesis of 2a – 2o

$$Ar \xrightarrow{F}_{F} F + TMSCI \xrightarrow{Mg}_{THF, 0^{\circ}C, Ar} Ar \xrightarrow{OTMS}_{F}$$

Compound **2** was prepared according to the literature.² To a three-necked 50 mL roundbottomed flask equipped with a magnetic stir bar was added Mg (40 mmol, 4 equiv.). The flask was pump and refilled with Ar three times and TMSCl (40 mmol, 4 equiv.) and THF (25 mL) were added. Then the reaction was cooled to 0°C and trifluoroacetophenone (10 mmol, 1 equiv.) was added dropwise for almost 10 min. The reaction was stirred for 30 min at 0°C. After evaporation of solvent, the residue was added hexane (50 mL) and filtered. The filtrate was concentrated to afford the products without additional purification (**2a-20**).

4. Typical procedure for the synthesis of 3aa – 3ja, 3ab – 3an

An over-dried Schlenk tube equipped with a magnetic stir bar was added with fac-Ir(ppy)₃ (0.004 mmol, 2 mol %) and NaHSO₃ (0.2 mmol, 1 equiv.). The tube was evacuated and

backfilled with argon for three times. A solution of BrCF₂COOEt (0.6 mmol, 3 equiv.), H₂O (5 mmol, 25 equiv.) and difluoroenoxysilane (0.2 mmol, 1 equiv.) in anhydrous THF (2 mL) was added via syringe. The reaction was stirred at room temperature for 18 h under the blue LEDs irradiation ($\lambda = 450 \pm 15$ nm, 3 W electrical power, 3cm away). After the reaction, the residue was concentrated and purified by flash chromatography on silica gel to afford the corresponding product **3aa**.

5. Typical procedure for the synthesis of 3ka – 3la

An over-dried Schlenk tube equipped with a magnetic stir bar was added with *fac*-Ir(ppy)₃ (0.004 mmol, 2 mol %), 3 Å sieve (10 mg) and Cs₂CO₃ (0.2 mmol, 1 equiv.). The tube was evacuated and backfilled with argon for three times. A solution of C₄F₉I (0.6 mmol, 3 equiv.), and difluoroenoxysilane (0.2 mmol, 1 equiv.) in anhydrous CH₂Cl₂ (2 mL) was added via syringe. The reaction was stirred at room temperature for 18 h under the blue LEDs irradiation ($\lambda = 450 \pm 15$ nm, 3 W electrical power, 3cm away). After the reaction, the residue was concentrated and purified by flash chromatography on silica gel to afford the corresponding product **3aa**.

6. Typical procedure for gram-scale synthesis with 0.01 mol % catalyst loading

A 100 mL round bottom flask equipped with a magnetic stir bar was added with NaHSO₃ (5 mmol, 1 equiv.). The round bottom flask was evacuated and backfilled with argon for three times. A solution of BrCF₂COOEt (15 mmol, 3 equiv.), H₂O (125 mmol, 25 equiv.) difluoroenoxysilane (5 mmol, 1 equiv.) and *fac*-Ir(ppy)₃ (0.0005 mmol, 0.01 mol %) in anhydrous THF (50 mL) was added via syringe. The reaction was stirred at room temperature for 18 h under the blue LEDs irradiation ($\lambda = 450 \pm 15$ nm, 3 W electrical power, 3cm away). After the reaction, the residue was concentrated and purified by flash chromatography on silica gel to afford the corresponding product **3aa**.

7. Condition Optimization for Difluoroalkylation

2

Table S1. Screen of ratio for difluoroalkylation

BrCF	$F_2COOEt + F + Ph - hlue$	c-Ir(ppy) ₃ (2 mol %), H ₂ O (25 equiv.)	$EtO \xrightarrow{F}_{F} \xrightarrow{F}_{O} Ph$
1a	x equiv.) 2a (0.2 mmol)	THF, 25°C, 18 h	3aa
entry	1a (x equiv	v.)	3aa (%) ^a
1	1		50

67

1.5

3	2	75
4	2.5	80
5	3	85

^{*a*}Reaction conditions: **1a** (x equiv.), **2a** (0.2 mmol), *fac*-Ir(ppy)₃ (2 mol %), NaHSO₃ (1 equiv.), H₂O (25 equiv.) THF (2 mL), irradiation with visible light under an Ar atmosphere at room temperature, 18 h. Yields determined by ¹⁹F NMR using Benzotrifluoride as an internal standard.

Table S2. Screen of additive for difluoroalkylation

BrCF; 1a (:	$fac-Ir(ppy)_3 (2 mol \%),$ $H_2O (25 equiv.)$	$EtO \xrightarrow{Ph}_{F} \xrightarrow{F}_{O} \xrightarrow{Ph}_{O}$
entry	additive	3aa (%) ^a
1	NaHSO ₃	83
2	K ₂ CO ₃	45
3	Cs ₂ CO ₃	50
4	NaHCO ₃	51
5	КОАс	49

^{*a*}Reaction conditions: **1a** (3 equiv.), **2a** (0.2 mmol), *fac*-Ir(ppy)₃ (2 mol %), additive (1 equiv.), H₂O (25 equiv.) THF (2 mL), irradiation with visible light under an Ar atmosphere at room temperature, 18 h. Yields determined by ¹⁹F NMR using Benzotrifluoride as an internal standard.

Table S3. Screen of reaction time for difluoroalkylation

BrCF ₂ CC 1a (x eq	poet + F Ph $fac-Ir(ppy)_3 (2 mol %),$ H ₂ O (25 equiv.) blue LEDs, NaHSO ₃ (1 equiv.) THF, 25°C, x h	$EtO \xrightarrow{O}_{F} \xrightarrow{F}_{F} \xrightarrow{F}_{O} Ph$ $3aa$
entry	Time (x h)	3aa (%) ^a
1	12	70
2	18	85
3	24	81
4	36	83

^{*a*}Reaction conditions: **1a** (3 equiv.), **2a** (0.2 mmol), *fac*-Ir(ppy)₃ (2 mol %), NaHSO₃ (1 equiv.), H₂O (25 equiv.) THF (2 mL), irradiation with visible light under an Ar atmosphere at room temperature, x h. Yields determined by ¹⁹F NMR using Benzotrifluoride as an internal standard.

fac-Ir(ppy)3 (2 mol %), отмѕ 3Å sieves (10 mg) C₄F₉l blue LEDs, additive (1 equiv.) CH₂Cl₂ 25°C,18 h 1k (3 equiv.) 2a (0.2 mmol) 3ka 3ka (%)^{*a*} Additive entry Cs₂CO₃ 75 1 2 44 Na₂CO₃ 3 24 NaHCO₃

55

Table S4. Screen of reaction time for perfluoroalkylation

aReaction conditions: **1k** (3 equiv.), **2a** (0.2 mmol), *fac*-Ir(ppy)₃ (2 mol %), additive (1 equiv.), 3 Å sieve (10 mg), CH₂Cl₂ (2 mL), irradiation with visible light under an Ar atmosphere at room temperature, 18 h. Yields determined by ¹⁹F NMR using Benzotrifluoride as an internal standard.

K₃PO₄

8. Typical reaction set up

4

9. Mechanism studies

9.1 TEMPO Trapping Experiment

An over-dried Schlenk tube equipped with a magnetic stir bar was added with *fac*-Ir(ppy)₃ (0.004 mmol, 2 mol %), TEMPO (0.6 mmol, 3 equiv.) and NaHSO₃ (0.2 mmol, 1 equiv.). The tube was evacuated and backfilled with argon for three times. A solution of BrCF₂COOEt (0.6 mmol, 3 equiv.), H₂O (5 mmol, 25 equiv.) and difluoroenoxysilane (0.2 mmol, 1 equiv.) in anhydrous THF (2 mL) was added via syringe. The reaction was stirred at room temperature for 18 h under the blue LEDs irradiation ($\lambda = 450 \pm 15$ nm, 3 W electrical power, 3cm away). After the reaction, the residue was concentrated and purified by flash chromatography on silica gel to afford the corresponding trapping product **4** with 47% yield and **3aa** with trace yield.

9.2 1,1-diphenylethyene Trapping Experiment

An over-dried Schlenk tube equipped with a magnetic stir bar was added with *fac*-Ir(ppy)₃ (0.004 mmol, 2 mol %), 1,1-diphenylethyene (0.6 mmol, 3 equiv.) and NaHSO₃ (0.2 mmol, 1 equiv.). The tube was evacuated and backfilled with argon for three times. A solution of BrCF₂COOEt (0.6 mmol, 3 equiv.), H₂O (5 mmol, 25 equiv.) and difluoroenoxysilane (0.2 mmol, 1 equiv.) in anhydrous THF (2 mL) was added via syringe. The reaction was stirred at room temperature for 18 h under the blue LEDs irradiation ($\lambda = 450 \pm 15$ nm, 3 W electrical power, 3cm away). After the reaction, the residue was concentrated and filtered. The corresponding trapping product **5** was detected by GC-MS.

9.3 CV experiments for reagents and product 3aa

Cyclic voltammogram $BrCF_2COOEt$, difluoroenoxysilane and **3aa** in 0.1 M TBAP/MeCN at a glassy carbon working electrode with a Pt counter electrode and saturated calomel electrode (SCE). Potential sweep rate was 50 mV/s.

10. Compounds characterization

Ethyl 2,2,3,3-tetrafluoro-4-oxo-4-phenylbutanoate (3aa)³: colorless oil (45.6 mg, 82% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 6.4 Hz, 2H), 7.73 – 7.69 (m, 1H), 7.57 – 7.53 (m, 2H), 4.42 (q, J = 7.2 Hz, 2H), 1.37 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 185.4 (t, J = 27.0 Hz), 159.8 (t, J = 29.0 Hz), 135.5, 130.9, 130.2 (t, J = 3.0 Hz), 129.0, 113.7 (t, J = 28.0 Hz), 111.3 – 110.4(m), 108.6 – 107.8 (m), 105.4 (t, J = 28.0 Hz), 63.9, 13.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -113.13 (t, J = 4.4 Hz), -120.48 (t, J = 5.1 Hz); HRMS (ESI) *m/z*: [M + Na]⁺ Calcd. for C₁₂H₁₀F₄O₃Na, 301.0458; Found, 301.0459.

2,2,3,3-tetrafluoro-1-morpholino-4-phenylbutane-1,4-dione (3ba): colorless oil (33.5 mg, 49% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.06 (d, J = 7.7 Hz, 2H), 7.66 – 7.63 (m, 1H), 7.52 – 7.50 (m, 2H), 3.77 (s, 4H), 3.75 – 3.73 (m, 2H), 3.63 – 3.62 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 186.1 (t, J = 26.8 Hz), 158.5 (t, J = 25.6 Hz), 134.4, 132.3, 129.9 (t, J = 3.3 Hz), 128.7, 113.7 (t, J = 26.7 Hz), 112.7 – 111.7 (m), 110.9 – 109.9 (m), 109.0 (t, J = 24.6 Hz), 66.5 (d, J = 13.7 Hz), 46.1 (t, J = 5.5 Hz), 43.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -111.65 – -111.67 (m, 2F), -114.88 – -114.90 (m, 2F); HRMS (ESI) *m/z*: [M+Na]⁺ Calcd. for C₁₄H₁₃F₄NO₃Na, 342.0724; Found, 342.0722.

2,2,3,3-tetrafluoro-1-phenyl-4-thiomorpholinobutane-1,4-dione (3ca): colorless oil (30.6 mg, 47% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 7.1 Hz, 2H), 7.62 (t, J = 7.5 Hz, 1H), 7.49 (t, J = 7.8 Hz, 2H), 4.01 – 3.95 (m, 2H), 3.87 – 3.81 (m, 2H), 2.76 – 2.71 (m, 2H), 2.68 – 2.62 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 186.2 (t, J = 26.7 Hz), 158.6 (t, J = 25.6 Hz), 134.3, 132.3, 129.9 (t, J = 4.4 Hz), 128.6, 113.8 (t, J = 26.4 Hz), 112.2 (dt, J = 67.6, 25.3 Hz), 110.5 (dt, J = 74.1, 25.6 Hz), 108.9 (t, J = 24.5 Hz), 48.3 (t, J = 5.4 Hz), 45.8, 28.0, 27.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -111.64 – -111.67 (m, 2F), -114.84 – -114.86 (m, 2F); HRMS (ESI) *m/z*: [M + Na]⁺ Calcd. for C₁₄H₁₃F₄NO₂SNa, 358.0495; Found, 358.0494.

2,2,3,3-tetrafluoro-1-(indolin-1-yl)-4-phenylbutane-1,4-dione (3da): white solid, m.p. = 62° C – 64° C (48.8 mg, 70% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 7.2 Hz, 3H), 7.67 – 7.63 (m, 1H), 7.53 – 7.50 (m, 2H), 7.25 – 7.09 (m, 3H), 4.40 (dd, *J* = 8.0, 8.8 Hz, 2H), 3.24

(dd, J = 8.4, 8.0 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 186.0 (t, J = 27.0 Hz), 157.4 (t, J = 25.9 Hz), 141.0, 134.5, 132.2, 131.6, 130.0 (t, J = 3.3 Hz), 128.7, 127.6, 125.7,124.7, 118.0, 114.5 – 113.5 (m), 111.8 – 110.8 (m), 109.1 – 108.1 (m), 47.3 (t, J = 6.9 Hz), 28.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -114.24 – -114.26 (m, 2F), -115.05 – -115.07 (m, 2F); HRMS (ESI) *m/z*: [M + Na]⁺ Calcd. for C₁₈H₁₃F₄NO₂Na, 374.0775; Found, 374.0774.

N, *N*-dibutyl-2,2,3,3-tetrafluoro-4-oxo-4-phenylbutanamide (3ea): pale yellow oil (38.7 mg, 53% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 8.0 Hz, 2H), 7.64 – 7.60 (m, 1H), 7.51 – 7.47 (m, 2H), 3.47 (t, *J* = 8.4 Hz, 2H), 3.31 (t, *J* = 7.6 Hz, 2H), 1.69 – 1.62 (m, 2H), 1.57 – 1.49 (m, 2H), 1.41 – 1.24 (m, 4H), 0.97 (t, *J* = 7.6 Hz, 3H), 0.91 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 186.3 (t, *J* = 27.0 Hz), 159.6 (t, *J* = 25.3 Hz), 134.1, 132.6, 129.9, 128.6, 114.0 (t, *J* = 25.6 Hz), 112.8 – 111.8 (m), 110.6 (dt, *J* = 88.3, 25.3 Hz), 109.2 (t, *J* = 24.8 Hz), 47.0 (t, *J* = 5.2 Hz), 46.6, 30.9, 28.9, 20.0, 19.9, 13.8, 13.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -111.58 – 111.61 (m, 2F), -114.80 – -114.83 (m, 2F); HRMS (ESI) *m/z*: [M + Na]⁺ Calcd. for C₁₈H₂₄F₄NO₂Na, 384.1557; Found, 384.1556.

2,2,3,3-tetrafluoro-1-phenyl-4-(pyrrolidin-1-yl) butane-1,4-dione (3fa): pale yellow oil (30.7 mg, 50% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 7.9 Hz, 2H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.48 (t, *J* = 7.8 Hz, 2H), 3.76 (t, *J* = 6.8 Hz, 2H), 3.50 (t, *J* = 7.0 Hz, 2H), 1.99 (p, *J* = 6.8 Hz, 2H), 1.87 (t, *J* = 7.0 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 186.2 (t, *J* = 26.7 Hz), 158.4 (t, *J* = 26.2 Hz), 134.3, 132.4, 130.0 (t, *J* = 4.4 Hz), 128.6, 113.2 – 112.6 (m), 111.4 – 110.9 (m), 109.6 – 109.1 (m), 47.4, 46.2 (t, *J* = 5.4 Hz), 26.3, 23.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -114.86 – -114.89 (m, 2F), -115.42 – -115.45 (m, 2F); HRMS (ESI) *m/z*: [M + Na]⁺ Calcd. for C₁₄H₁₃F₄NO₂Na, 326.0775; Found, 326.0774.

2,2,3,3-tetrafluoro-1-phenyl-4-(piperidin-1-yl) butane-1,4-dione (3ga): pale yellow oil (49.4 mg, 78% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 7.9 Hz, 2H), 7.63 (t, J = 7.5 Hz, 1H), 7.50 (t, J = 7.6 Hz, 2H), 3.67 (s, 2H), 3.55 – 3.51 (m, 2H), 1.69 (p, J = 3.1 Hz, 4H), 1.63 – 1.58 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 186.5 (t, J = 27.0 Hz), 158.2 (t, J = 25.3 Hz), 134.0, 132.7, 129.9 (t, J = 4.4 Hz), 128.6, 114.1 (t, J = 26.2 Hz), 112.7 – 112.2 (m), 111.0 – 110.3 (m), 109.0 (t, J = 24.5 Hz), 46.4 (t, J = 5.7 Hz), 44.3, 26.3, 25.4, 24.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -111.41 – -111.43 (m, 2F), -115.30 – -115.32 (m, 2F); HRMS (ESI) *m/z*: [M + Na]⁺ Calcd. for C₁₅H₁₅F₄NO₂Na, 340.0931; Found, 340.0930.

2,2,3,3-tetrafluoro-1-(4-methylpiperidin-1-yl)-4-phenylbutane-1,4-dione (3ha): colorless oil (52.3 mg, 79% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 8.0 Hz, 2H), 4.39 – 4.34 (m, 1H), 4.24 – 4.20 (m, 1H), 3.16 – 3.08 (m, 1H), 2.73 – 2.66 (m, 1H), 1.80 – 1.63 (m, 3H), 1.31 – 1.12 (m, 2H), 0.97 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 186.4 (t, *J* = 26.9 Hz), 158.2 (t, *J* = 25.5 Hz), 134.0, 132.7, 129.8 (t, *J* = 3.3 Hz), 128.5, 115.0 (t, *J* = 26.6 Hz), 113.4 (t, *J* = 24.3 Hz), 112.3 (t, *J* = 26.5 Hz), 110.8 (t, *J* = 24.2 Hz), 109.6 (t, *J* = 26.6 Hz), 108.1 (t, *J* = 24.2 Hz), 45.6 (t, *J* = 5.9 Hz), 43.6, 34.4, 33.4, 30.8, 21.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -111.34 – -111.37 (m, 2F), -115.25 – -115.28 (m, 2F),; HRMS (ESI) *m/z*: [M + Na]⁺ Calcd. for C₁₆H₁₇F₄NO₂Na, 354.1088; Found, 354.1086.

Ethyl 2,3,3-trifluoro-4-oxo-4-phenylbutanoate (3ia): colorless oil (36.2 mg, 70% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 7.2 Hz, 2H), 7.68 (t, *J* = 7.5 Hz, 1H), 7.53 (dd, *J* = 8.7, 7.1 Hz, 2H), 5.53 (t, *J* = 10.6 Hz, 1H), 4.33 (qd, *J* = 7.2, 1.8 Hz, 2H), 1.30 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 186.9 (t, *J* = 28.1 Hz), 163.8 – 163.4 (m), 134.9, 130.0 (t, *J* = 3.7 Hz), 128.8, 116.8 – 111.1 (m), 86.7 – 83.9 (m), 62.7, 13.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -107.95 – -110.78 (m), -206.55 (t, *J* = 12.3 Hz); HRMS (ESI) *m/z*: [M + Na]⁺ Calcd. for C₁₂H₁₁F₃O₃Na, 283.0553; Found, 283.0551.

Ethyl 3,3-difluoro-2-methyl-4-oxo-4-phenylbutanoate (**3ja**)⁴: colorless oil (33.3 mg, 65% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 7.2 Hz, 2H), 7.63 (t, J = 7.4 Hz, 1H), 7.50 (dd, J = 8.4, 7.1 Hz, 2H), 4.14 (q, J = 7.2 Hz, 2H), 3.62 – 3.49 (m, 1H), 1.46 (d, J = 7.3 Hz, 3H), 1.20 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 189.6 – 188.8 (m), 170.1 (d, J = 11.0 Hz), 134.1, 132.3, 130.3 – 129.7 (m), 128.6, 117.8 (dd, J = 262.8, 253.6 Hz), 61.3, 44.2 – 43.5 (m), 13.9, 9.8 (t, J = 4.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -100.80 – -110.09 (m, 2F); HRMS (ESI) *m/z*: [M + Na]⁺ Calcd. for C₁₃H₁₄F₂O₃Na, 279.0803; Found, 279.0801.

2,2,3,3,4,4,5,5,6,6,6-undecafluoro-1-phenylhexan-1-one (3ka)⁵: colorless oil (51.7 mg, 69% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 7.6 Hz, 2H), 7.72 (t, *J* = 7.5 Hz, 1H), 7.55 (t, *J* = 7.9 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 183.3 (t, *J* = 25.9 Hz), 135.4, 131.6, 130.2 (t, *J* = 4.0 Hz), 129.0, 121.5 - 105.6 (m); ¹⁹F NMR (376 MHz, CDCl₃) δ -80.89 (t, *J* = 12.3 Hz, 3F), -112.83 (t, *J* = 14.3 Hz, 2F), -121.12 - -121.26 (m, 2F), -121.86 - -122.06 (m, 2F), -126.26

- -126.37 (m, 2F); HRMS (ESI) m/z: $[M + K]^+$ Calcd. for C₁₂H₅F₁₁OK, 412.9796; Found, 412.9796.

2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-nonadecafluoro-1-phenyldecan-1-one (3la): colorless oil (85.1 mg, 74% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.10 – 8.05 (m, 2H), 7.70 (t, J = 7.5 Hz, 1H), 7.57 – 7.50 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 183.3 (t, J = 26.0 Hz), 135.3, 131.7, 130.2 (t, J = 3.9 Hz), 129.0, 121.5 (t, J = 33.2 Hz), 118.6 (t, J = 33.0 Hz), 115.7 (t, J = 33.0 Hz), 114.2 – 112.5 (m), 111.7 – 110.3 (m), 109.0 – 107.2 (m), 106.3 – 105.2 (m); ¹⁹F NMR (376 MHz, CDCl₃) δ -81.24 – -81.33 (m, 3F), -112.91 – -113.00 (m, 2F), -121.06 – -123.07 (m, 12F), -123.01 – -123.07 (m, 2F); HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd. for C₁₆H₆F₁₉O, 575.0110; Found, 575.0111.

Ethyl 2,2,3,3-tetrafluoro-4-oxo-4-(p-tolyl) butanoate (3ab): colorless oil (40.9 mg, 70% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 7.8 Hz, 2H), 7.33 (d, J = 8.3 Hz, 2H), 4.40 (q, J = 7.1 Hz, 2H), 2.44 (s, 3H), 1.36 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 185.0 (t, J = 27.3 Hz), 159.8 (t, J = 29.5 Hz), 147.0, 130.3 (t, J = 3.5 Hz), 129.7, 129.5, 128.5, 113.9 (t, J = 28.6 Hz), 111.5 – 110.5 (m), 108.8 – 107.9 (m), 105.5 (t, J = 28.1 Hz), 63.8, 21.9, 13.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -112.99 (t, J = 4.8 Hz, 2F), -120.62 (t, J = 4.8 Hz, 2F); HRMS (ESI) *m/z*: [M + Na]⁺ Calcd. for C₁₃H₁₂F₄O₃Na, 315.0615; Found, 315.0614.

Ethyl 2,2,3,3-tetrafluoro-4-oxo-4-(m-tolyl) butanoate (3ac): colorless oil (43.8 mg, 75% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.92 – 7.89 (m, 2H), 7.52 (d, *J* = 7.7 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 1H), 4.41 (q, *J* = 7.1 Hz, 2H), 2.44 (s, 3H), 1.37 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 185.6 (t, *J* = 27.7 Hz), 159.8 (t, *J* = 29.5 Hz), 139.0, 136.3, 131.0, 130.5, 128.8, 127.5 (t, *J* = 3.9 Hz), 113.8, 111.4 – 110.7 (m), 108.4 – 107.8 (m), 105.5, 63.8, 21.3, 13.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -112.98 (t, *J* = 6.5 Hz, 2F), -120.53 (t, *J* = 6.5 Hz, 2F); HRMS (ESI) *m/z*: [M + Na]⁺ Calcd. for C₁₃H₁₂F₄O₃Na, 315.0615; Found, 315.0614.

Ethyl 2,2,3,3-tetrafluoro-4-oxo-4-(o-tolyl) butanoate (3ad): colorless oil (45.4 mg, 78% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.91 (m, 1H), 7.51 (t, *J* = 7.6 Hz, 1H), 7.34 (t, *J* = 7.0 Hz, 2H), 4.42 (q, *J* = 7.1 Hz, 2H), 2.49 (s, 3H), 1.38 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101

MHz, CDCl₃) δ 188.2 (t, *J* = 26.6 Hz), 159.9 (t, *J* = 29.7 Hz), 141.4, 133.7, 132.4, 130.7, 130.1 (t, *J* = 5.9 Hz), 125.8, 113.3 (t, *J* = 28.1 Hz), 111.3 – 110.4 (m), 108.6 – 107.7 (m), 105.7 (t, *J* = 28.3 Hz), 63.8, 21.3, 13.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -112.9 (t, *J* = 5.1 Hz, 2F), -120.2 (t, *J* = 5.1 Hz, 2F); HRMS (ESI) *m*/*z*: [M + Na]⁺ Calcd. for C₁₃H₁₃F₄O₃Na, 315.0615; Found, 315.0614.

Ethyl 2,2,3,3-tetrafluoro-4-(4-methoxyphenyl)-4-oxobutanoate (3ae): colorless oil (27.5 mg, 45% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 8.7 Hz, 2H), 7.01 – 6.98 (m, 2H), 4.41 (q, J = 7.2 Hz, 2H), 3.91 (s, 3H), 1.36 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 183.7 (t, J = 27.0 Hz), 165.4, 159.9 (t, J = 29.7 Hz), 132.8 (t, J = 3.9 Hz), 123.8, 114.3 – 113.8 (m), 111.6 – 110.5 (m), 108.7 – 107.9 (m), 105.5 (t, J = 27.2 Hz), 63.7, 55.7, 13.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -112.59 (t, J = 6.5 Hz, 2F), -120.78 (t, J = 6.8 Hz, 2F); HRMS (ESI) *m/z*: [M + Na]⁺ Calcd. for C₁₃H₁₂F₄O₄Na, 331.0564; Found, 331.0563.

Ethyl 4-(4-(tert-butyl) phenyl)-2,2,3,3-tetrafluoro-4-oxobutanoate (3af): colorless oil (53.5 mg, 80% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 8.6 Hz, 2H), 7.55 (d, J = 8.6 Hz, 2H), 4.41 (q, J = 7.1 Hz, 2H), 1.38 – 1.34 (m, 12H); ¹³C NMR (101 MHz, CDCl₃) δ 185.0 (t, J = 27.1 Hz), 160.1 – 159.5 (m), 130.2 (t, J = 3.5 Hz), 128.4 (d, J = 3.3 Hz), 126.0, 113.9 (t, J = 28.4 Hz), 111.5 – 110.8 (m), 108.5 – 107.9 (m), 105.5 (t, J = 28.1 Hz), 63.8, 35.4, 30.9, 13.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -112.99 (t, J = 5.8 Hz, 2F), -120.60 (t, J = 6.1 Hz, 2F); HRMS (ESI) m/z: [M + Na]⁺ Calcd. for C₁₆H₁₈F₄O₃Na, 357.1084; Found, 357.1083.

Ethyl 4-(4-chlorophenyl)-2,2,3,3-tetrafluoro-4-oxobutanoate (3ag): colorless oil (43.1 mg, 69% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 8.3 Hz, 2H), 7.54 – 7.50 (m, 2H), 4.42 (q, J = 7.2 Hz, 2H), 1.37 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 184.3 (t, J = 27.7 Hz), 159.6 (t, J = 29.5 Hz), 142.4, 131.5 (t, J = 3.7 Hz), 129.4, 129.4 – 129.3 (m), 131.5 (t, J = 3.7 Hz), 111.3 – 110.4 (m), 108.6 – 107.8 (m), 105.4 (t, J = 28.1 Hz), 63.9, 13.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -113.37 (t, J = 6.1 Hz, 2F), -120.31 (t, J = 6.1 Hz, 2F); HRMS (ESI) *m/z*: [M + Na]⁺ Calcd. for C₁₂H₉ClF₄O₃Na, 335.0069; Found, 335.0068.

Ethyl 2,2,3,3-tetrafluoro-4-(4-fluorophenyl)-4-oxobutanoate (3ah): pale yellow oil (47.4 mg, 80% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.17 – 8.14 (m, 2H), 7.25 – 7.19 (m, 2H), 4.42

(q, J = 7.1 Hz, 2H), 1.37 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 183.9 (t, J = 27.5 Hz), 168.4, 165.8, 159.7 (t, J = 29.3 Hz), 133.2 (dt, J = 9.9, 3.3 Hz), 127.4 (d, J = 3.7 Hz), 116.5, 116.3, 113.7 (t, 28.0 Hz), 111.3 – 110.4 (m), 108.7 – 107.8 (m), 105.4 (t, J = 27.8 Hz), 63.9, 13.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -99.81 (s, 1F), -113.16 (t, J = 6.8 Hz, 2F), -120.44 (t, J = 6.5 Hz, 2F); HRMS (ESI) m/z: [M + Na]⁺ Calcd. for C₁₂H₉F₅O₃Na, 319.0364; Found, 319.0362.

Ethyl 2,2,3,3-tetrafluoro-4-oxo-4-(3-(trifluoromethyl) phenyl) butanoate (3ai): colorless oil (44.1 mg, 64% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.34 (s, 1H), 8.29 (d, *J* = 8.1 Hz, 1H), 7.97 (d, *J* = 7.9 Hz, 1H), 7.72 (t, *J* = 7.9 Hz, 1H), 4.43 (q, *J* = 7.2 Hz, 2H), 1.38 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 184.4 (t, *J* = 27.9 Hz), 159.6 (t, *J* = 29.3 Hz), 133.2 (d, *J* = 4.4 Hz), 132.4 – 131.4 (m), 129.8, 127.3 – 119.2 (m), 113.6 (t, *J* = 28.9 Hz), 111.2 – 110.4 (m), 108.5 – 107.7 (m), 105.4 (t, *J* = 28.3 Hz), 64.1, 13.7; ¹⁹F NMR (376 MHz, CDCl₃) δ - 63.28(s, 3F), -113.77 (t, *J* = 5.6 Hz, 2F), -120.16 (t, *J* = 5.3 Hz, 2F); HRMS (ESI) *m/z*: [M + Na]⁺ Calcd. for C₁₃H₉F₇O₃Na, 369.0332; Found, 369.0332.

Ethyl 2,2,3,3-tetrafluoro-4-(naphthalen-2-yl)-4-oxobutanoate (3aj): colorless oil (39.0 mg, 59% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.70 (s, 1H), 8.07 – 8.01 (m, 2H), 7.96 – 7.90 (m, 2H), 7.71 – 7.67 (m, 1H), 7.63 – 7.59 (m, 1H), 4.43 (q, J = 7.2 Hz, 2H), 1.38 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 184.9 (t, J = 27.3 Hz), 159.8 (t, J = 29.5 Hz), 148.1, 139.1, 130.8 (t, J = 3.5 Hz), 129.6, 129.1, 128.8, 127.5, 127.3, 113.9, 111.0 (dt, J = 40.0, 28.5 Hz), 108.5 – 107.9 (m), 105.5, 63.8, 13.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -112.38 (t, J = 6.5 Hz, 2F); HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₁₆H₁₃F₄O₃, 329.0795; Found, 329.0794.

Ethyl 4-([1,1'-biphenyl]-4-yl)-2,2,3,3-tetrafluoro-4-oxobutanoate (3ak): colorless oil (48.6 mg, 69% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 8.3 Hz, 2H), 7.74 (d, J = 8.6 Hz, 2H), 7.63 (d, J = 7.6 Hz, 2H), 7.50 – 7.41 (m, 3H), 4.42 (q, J = 7.1 Hz, 2H), 1.37 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 184.9 (t, J = 27.3 Hz), 159.8 (t, J = 29.5 Hz), 148.1, 139.1, 130.8 (t, J = 3.5 Hz), 129.6 (d, J = 3.3 Hz), 129.1, 128.8, 127.5, 127.3, 113.9, 111.5 – 110.5 (m), 108.7 – 107.2 (m), 105.5, 63.8, 13.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -112.99 (t, J = 5.2 Hz, 2F), -120.39 (t, J = 5.3 Hz, 2F); HRMS (ESI) *m*/*z*: [M + Na]⁺ Calcd. for C₁₈H₁₄F₄O₃Na, 377.0771; Found, 377.0771

Ethyl 2,2,3,3-tetrafluoro-4-(furan-2-yl)-4-oxobutanoate (3al): colorless oil (9.3 mg, 17% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.82 (dd, J = 1.7, 0.7 Hz, 1H), 7.59 – 7.54 (m, 1H), 6.68 (dd, J = 3.8, 1.7 Hz, 1H), 4.41 (q, J = 7.2 Hz, 2H), 1.37 (t, J = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 172.5 (t, J = 27.8 Hz), 159.4 (t, J = 29.4 Hz), 150.1, 147.8, 124.7, 113.2, 112.1 (t, J = 30.0 Hz), 110.1 (dt, J = 69.8, 29.4 Hz), 108.4 (dt, J = 66.3, 30.5 Hz), 106.4 (t, J = 30.0 Hz), 64.1, 13.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -116.99 (t, J = 5.8 Hz, 2F), -120.05 (t, J = 5.8 Hz, 2F); HRMS (ESI) m/z: [M + Na]⁺ Calcd. for C₁₀H₈F₄O₄Na, 291.0251; Found, 291.0249.

Ethyl 2,2,3,3-tetrafluoro-4-oxo-4-(thiophen-2-yl) butanoate (3am): pale yellow oil (17.5 mg, 31% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.07 – 8.05 (m, 1H), 7.90 (d, J = 4.9 Hz, 1H), 7.27 – 7.24 (m, 1H), 4.41 (q, J = 7.1 Hz, 2H), 1.37 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 177.97 (t, J = 27.9 Hz), 159.50 (t, J = 29.5 Hz), 138.03, 137.48, 136.81 (t, J = 5.1 Hz), 129.18, 113.30, 110.70 (td, J = 29.8, 14.9 Hz), 108.05 (td, J = 30.0, 29.5, 19.6 Hz), 105.52 (t, J = 29.5 Hz), 64.03, 13.73; ¹⁹F NMR (376 MHz, CDCl₃) δ -114.78 (t, J = 5.8 Hz, 2F), -120.11 (t, J = 6.1 Hz, 2F); HRMS (ESI) m/z: [M + Na]⁺ Calcd. for C₁₀H₈F₄O₃SNa, 307.0022; Found, 307.0020.

Ethyl 4-(benzo[*d*] [1,3] dioxol-5-yl)-2,2,3,3-tetrafluoro-4-oxobutanoate (3an): colorless oil (33.4 mg, 52% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.78 (dd, J = 8.4, 1.7 Hz, 1H), 7.50 (s, 1H), 6.92 (d, J = 8.3 Hz, 1H), 6.10 (s, 2H), 4.41 (q, J = 7.1 Hz, 2H), 1.36 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 183.3 (t, J = 27.3 Hz), 159.8 (t, J = 29.7 Hz), 154.0, 148.5, 127.9 (t, J = 4.4 Hz), 125.3, 113.9 (t, J = 28.1 Hz), 111.5 – 110.4 (m), 109.3, 108.5 – 107.8 (m), 105.5 (t, J = 27.8 Hz), 102.4, 63.7, 13.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -112.26 (t, J = 6.5 Hz, 2F), -120.69 (t, J = 6.8 Hz, 2F); HRMS (ESI) m/z: [M + Na]⁺ Calcd. for C₁₃H₁₀F₄O₅Na, 345.0357; Found, 345.0355.

Ethyl 2,2-difluoro-2-((2,2,6,6-tetramethylpiperidin-1-yl) oxy) acetate (4)⁶: colorless oil (35.6 mg, 47% yield). ¹H NMR (400 MHz, CDCl₃) δ 4.35 (q, *J* = 7.1 Hz, 2H), 1.60 – 1.55 (m, 5H), 1.37 (t, *J* = 7.2 Hz, 4H), 1.20 – 1.17 (m, 12H); ¹³C NMR (101 MHz, CDCl₃) δ 159.7 (t, *J*

= 42.6 Hz), 114.5 (t, J = 271.5 Hz), 62.0, 60.4, 39.2, 32.4, 29.9, 19.7, 15.9, 12.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -73.5(s, 2F); HRMS (ESI) m/z: [M + H]⁺ Calcd. for C₁₃H₂₄F₂NO₃, 280.1719; Found, 280.1718.

11. Reference

C. P. Chen, R. S. Zeng, J. Y. Zhang, Y. S. Zhao. *Eur. J. Org. Chem.* 2017, 2017, 6947-6950.
 Y. b. Wu, G. p. Lu, B. j. Zhou, M. j. Bu, L. Wan, C. Cai. *Chem. Commun.* 2016, 52, 5965-5968.

3. T. Fukuhara, S. Hara, J. Org. Chem. , 2010, 75, 7393-7399;

4. J. H. Simons, W. T. Black, R. F. Clark, J. Am. Chem. Soc. , 1953, 75, 5621-5622.

5. C. L. Bumgardner, J. P. Burgess, Tetrahedron Lett., 1992, 33, 1683-1686.

6. Z. Zhang, X. Li, D. Shi, Adv. Synth. Catal. , 2021, 363, 3348-3353.

12. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra of all new products^a

^a ¹H NMR was conducted in 400MHz, ¹⁹F NMR was conducted in 376 MHz and ¹³C NMR was conducted in 101MHz unless noted.

151 MHz	$\epsilon_{186, 37}^{186, 37}$	$\epsilon_{158,73}^{158,73}$		77, 21 CK13 76, 79 CK13	48 33 48 29 45 82	
		I	i uu			

3ea

 $\bigwedge_{R}^{R} \begin{smallmatrix} 0.00\\ 0.00$

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

A 10 65 A 10 10 A 1

----0, 023

2 029 2 012 1 945 1 946 1 946 1 946 1 946 1 946 1 946 1 888 1 868

3ga

064	644 625 607 514 514 495 475
τά τά	
Y	hi in

3ha

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

3la

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 -10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

---73.475

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)