Supporting Information

Ligand-free copper-catalyzed borylative defluorination: Access to gem-difluoroallyl boronic acid derivatives

Ashley M. Gates, Swetha Jos, and Webster L. Santos*

Department of Chemistry, Virginia Tech, Blacksburg, VA 24060 Email: santosw@vt.edu

- I. Mechanistic Study
- II. NMR Spectra

I. Mechanistic Study

Procedure for the synthesis of borylated product 2b':

To a flame-dried 1 dram vial equipped with a stir bar was added copper iodide (0.1 equiv, 0.050 mmol), bis(pinacolato)diboron (1.5 equiv, 0.75 mmol), and sodium carbonate (1.3 equiv, 0.65 mmol). The vial was capped with a septa and purged with argon. Dry acetonitrile (2.0 mL) was added, followed by the ester **1b** (1.0 equiv, 0.50 mmol) and methanol (2.0 equiv, 1.0 mmol). The argon line was removed and the septum covered with parafilm. The reaction was stirred at room temperature for 16 h. Celite was added to the reaction mixture and the solvent removed *in vacuo*. The reaction mixture was purified via column chromatography (solid loading) to yield the corresponding borylated trifluoroalkene **2b'**.

methyl 2-((2,4-dimethylphenyl)(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-3,3,3-trifluoropropanoate (2b'). Colorless oil, 23% (44 mg). Purified on silica gel using DCM:Hexanes 1:4. ¹H NMR (400 MHz, CDCl₃) δ 7.07 (d, J = 7.8 Hz, 1H), 6.93 – 6.91 (m, 1H), 6.91 – 6.87 (m, 1H), 3.92 (dq, J = 12.3, 7.8 Hz, 1H), 3.40 (s, 3H), 3.20 (d, J = 12.4 Hz, 1H), 2.34 (s, 3H), 2.23 (s, 3H), 1.14 (s, 6H), 1.10 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ167.7 (q, J = 3.2 Hz), 136.8, 135.7, 132.1, 131.5, 127.6 (br. s), 126.7, 125.1 (q, J = 281.1 Hz), 84.0, 52.5 (q, J = 26.4 Hz), 52.3, 24.44, 24.43, 21.05, 20.18. ¹⁹F NMR (376 MHz, CDCl₃) δ -67.22 (d, J = 7.7 Hz). ¹¹B NMR (128 MHz, cdcl₃) δ 32.4. HRMS: (ESI) m/z: [M + H]⁺ calcd for C₁₉H₂₇BF₃O₄ 387.1952; Found 387.1953.

Procedure for the mechanistic study:

To a flame-dried 1 dram vial equipped with a stir bar was added copper iodide (0.1 equiv, 0.020 mmol), powdered 4 Å molecular sieves (0.050 g/0.20 mmol), bis(pinacolato)diboron (1.5 equiv, 0.30 mmol), and sodium *tert*-butoxide (1.3 equiv, 0.26 mmol). The vial was capped with a septa and purged with argon. Dry acetonitrile (0.80 mL) was added, followed by the ester **1b** (1.0 equiv, 0.20 mmol) and methanol (2.0 equiv, 0.40 mmol). The argon line was removed and the septum covered with parafilm. The reaction was stirred at room temperature for 16 h. The reaction was filtered through a small pad of celite, rinsing with EtOAc, and the solvent removed *in vacuo*. The crude reaction mixture was dissolved in CDCl₃ and evaluated by ¹⁹F NMR. Only starting material **1b** was observed.

1c –	^{1}H	NMR
------	---------	-----

$1c - {}^{13}C NMR$

1d – ¹³C NMR

1d – ¹⁹F NMR

 $1e^{-1}HNMR$

1h – ¹³C NMR

1i – ¹⁹F NMR

1k – ¹⁹F NMR

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 chemical shift

 $1m - {}^{1}H NMR$

1n – ¹⁹F NMR

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 chemical shift

1p – ¹⁹F NMR

1q – ¹³C NMR

$1s - {}^{13}C NMR$

1t - ¹³C NMR

 $1u - {}^{1}H NMR$

 $1t - {}^{19}F NMR$

2b – ¹⁹F NMR

 $2c - {}^{19}F NMR$

2d – ¹⁹F NMR

2e – ¹H NMR

2h – ¹⁹F NMR

2i – ¹⁹F NMR

2j – ¹⁹**F** NMR

 $2k - {}^{1}H NMR$

2k – ¹⁹**F** NMR

2I – ¹H NMR -1400 -1300 -3.77 -3.40 $\begin{pmatrix} 1.29\\ 1.25 \end{pmatrix}$ -1200 -1100 CH₃ H₃C H₃C CH3 -1000 ó, -900 -800 -700 -600 -500 -400 -300 -200 -100 -0 3.00 ⊭ 1.00 -6.04 €.28 €.28 --100 5.0 4.5 4.0 3.5 3.0 f1 (ppm)).0 9.5 9.0 8.5 8.0 7.5 7.0 6.0 5.5 2.5 . 2.0 1.5 . 1.0 6.5 0.5 0.0

2I – ¹⁹F NMR

2m – ¹⁹F NMR

$2n - {}^{1}H NMR$

2n – ¹⁹F NMR

20 – ¹⁹F NMR

2q – ¹¹B NMR

2r – ¹³C NMR

2r – ¹¹B NMR

2s – ¹³C NMR

2s – ¹¹B NMR

2t - 13C NMR

2t – ¹¹B NMR

2b' – ¹³C NMR

Mechanistic Study – Crude ¹⁹F NMR

$3 - {}^{1}H NMR$

$4 - {}^{1}H NMR$

$4 - {}^{11}B NMR$

