Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Copper(I)-catalyzed selective oxidation of hydrazones through C(sp³)-H functionalization

Jiabin Shen,^{a,b} Xiaoying Jiang,^{b,c} Haifeng Wu,^{a,b} Jun Xu,^b Qing Zhu,^{*a} and Pengfei Zhang^{*b}

^a Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals,

Zhejiang University of Technology, Hangzhou 310014, China.

^b College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon

Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University,

Hangzhou, 311121, Zhejiang, People's Republic of China.

^c College of Chemistry and Chemical Engineering, Central south University, Changsha, 410083,

P.R. China

*Email for Qing Zhu: zhuq@zjut.edu.cn

*Email for Pengfei Zhang: pfzhang@hznu.edu.cn

Supporting Information

Table of contents

1. Experimental Section	2
2. Copies of NMR Spectra	5

1. Experimental Section

1.1 General procedure for the synthesis of 1

A mixture of ketone (5.0 mmol, 1.0 equiv.), 4-aminomorpholine (5.5 mmol, 1.1 equiv.), acetic acid (5.5 mmol, 1.1 equiv.), and EtOH (15.0 mL) in a 25 mL flask was stirred at room temperature for 1 h. After completion of the reaction as indicated by TLC, purified water was added to the mixture to form the precipitate. The precipitate was washed with water and dried *in vacuo* to afford ketone hydrazone.

1.2 General procedure for oxidation of hydrazones

A mixture of 1 (0.2 mmol), $K_2S_2O_8$ (2.0 equiv.), CuI (5 mol %), dry MeCN (2.0 mL) in a 25 mL tube was stirred at 70 °C for 1 h. Then, the mixture was diluted with EtOAc and filtered through a pad of Celite gradually. The solvent was removed under reduced pressure. The gathered residue was then purified by silica gel column chromatography (200–300 mesh silica gel, PE/EA = 3:1).

1.2.1 other protecting group screening

1.3 Gram-scale preparation

A mixture of 1 (10.0 mmol), K₂S₂O₈ (2.0 equiv.), CuI (5 mol %), dry MeCN (25

mL) in a 100 mL tube was stirred at 70 °C for 2 h. Then, the mixture was diluted with EtOAc and filtered through a pad of Celite gradually. The solvent was removed under reduced pressure. The gathered residue was then purified by silica gel column chromatography (200–300 mesh silica gel, PE/EA = 3:1)

1.4 General procedure for the synthesis of 3a

A mixture of **2a** (0.2 mmol), NH₂OH-HCl (2.0 equiv.), dry MeCN (2.0 mL) in a 25 mL tube was stirred at 70 °C for 2 h. After completion of the reaction as indicated by TLC, the mixture was diluted with EtOAc and filtered through a pad of Celite gradually. The solvent was removed under reduced pressure. The gathered residue was then purified by silica gel column chromatography (200–300 mesh silica gel, PE/EA = 4:1).

1.5 General procedure for the synthesis of 3b

A mixture of **2a** (0.2 mmol), K_2CO_3 (2.0 equiv.), MeCN/H₂O (1:1, 2.0 mL) in a 25 mL tube was stirred at room temperature for 2 h. After completion of the reaction as indicated by TLC, the mixture was diluted with EtOAc and filtered through a pad of Celite gradually. The solvent was removed under reduced pressure. The gathered residue was then purified by silica gel column chromatography (200–300 mesh silica gel, PE/EA = 2:1).

1.6 Control Experiments

(a) A mixture of acetophenone (0.2 mmol), $K_2S_2O_8$ (2.0 equiv.), CuI (5 mol %), dry MeCN (2.0 mL) in a 25 mL tube was stirred at 70 °C for 1 h. Only a trace amount of the product was detected.

(b) A mixture of 1 (0.2 mmol), $K_2S_2O_8$ (2.0 equiv.), CuI (5 mol %), TEMPO (1.0 or 2.0 equiv.) dry MeCN (2.0 mL) in a 25 mL tube was stirred at 70 °C for 1 h. Then, the mixture was diluted with EtOAc and filtered through a pad of Celite gradually. The solvent was removed under reduced pressure. The gathered residue was then purified by silica gel column chromatography (200–300 mesh silica gel, PE/EA = 3:1).

(c) A mixture of 1 (0.2 mmol), $K_2S_2O_8$ (2.0 equiv.), CuI (5 mol %), dry MeCN (2.0 mL) in a 25 mL tube was stirred at 70 °C for 1 h under ¹⁸O₂ atmosphere. Then, the mixture was diluted with EtOAc and filtered through a pad of Celite gradually. The solvent was removed under reduced pressure. The gathered residue was then purified by silica gel column chromatography (200–300 mesh silica gel, PE/EA = 3:1).

1. Copies of NMR Spectra

1	- 1001000	
4	44000000	
6		
1		

2a ¹H NMR (500 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 Chemical shift (ppm)

2b ¹H NMR (500 MHz, CDCl₃)

$$\begin{array}{c} -9.45 \\ -9.45 \\ 7.26 \\ 7.23 \\ 7.10 \\ 7.10 \\ 7.10 \\ 7.09 \\ 7.09 \\ 7.09 \\ 7.09 \\ 7.09 \\ 7.09 \\ 7.09 \\ 7.09 \\ 7.09 \\ 7.09 \\ 7.09 \\ 7.09 \\ 7.09 \\ 7.09 \\ 7.09 \\ 7.09 \\ 7.09 \\ 7.09 \\ 7.09 \\ 7.00 \\$$

2c¹H NMR (500 MHz, CDCl₃)

9.44 9.45

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 Chemical shift (ppm)

2l¹H NMR (500 MHz, CDCl₃)

2m ¹H NMR (500 MHz, CDCl₃)

9.48 7.28 7.28 7.27 7.26 7.22 7.22 7.22 7.22 7.20 7.08 7.08 3.67 3.65 3.27 3.27 3.27 3.27 3.27 3.26 3.27 3.26 3.27 3.26 3.27 3.26 13.25 3.26 13.25 15

20 ¹H NMR (500 MHz, CDCl₃)

-1 -1

HRMS (ESI): $[M+Na]^+$ Calculated for $C_{12}H_{14}N_2O^{18}ONa$: 243.0995, Found 243.1005.