Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Copper-Catalyzed Three-Component Formal [3 +1+2] Annulations for the Synthesis of 2-Aminopyrimidines from *O*-Acyl Ketoximes

Zhenhua Xu, Hongbiao Chen, Guo-Jun Deng, and Huawen Huang*

Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China

E-mail: hwhuang@xtu.edu.cn

Table of Contents

General information	S2
General procedure for the synthesis of 2-aminopyrimidines	S 3
Effect the molecular ratio of substrates on the yield	S 3
Gram scale and further transformation experiments.	S4
Characterization data of products	S6
References	S19
Copies of ¹ H and ¹³ C NMR spectra of all products	S20

General information

All reactions were carried out under air atmosphere unless otherwise noted. Column chromatography was performed using silica gel (200-300 mesh). ¹H NMR and ¹³C NMR spectra were recorded on Bruker-AV (400 and 100 MHz, respectively) instrument internally referenced to tetramethylsilane (TMS) or chloroform signals. Mass spectra were measured on Agilent 5975 GC-MS instrument (EI). High-resolution mass spectra were recorded at the Institute of Chemistry, Chinese Academy of Sciences. The structures of known compounds were further corroborated by comparing their ¹H NMR, ¹³C NMR data and MS data with those of literature. Ketoxime acetates were synthesized according to the literature^[1], and data of known compounds were compared with the reported data. All other reagents were obtained from commercial suppliers and used without further purification.

General procedure for the synthesis of 2-aminopyrimidines

General procedure A: Oxime acetate 1 (0.3 mmol), aldehyde 2 (0.2 mmol), CuBr (6.0 mg, 0.04 mmol, 20 mol %), cyanamide (84.0 mg, 2.0 mmol, 10.0 equiv), pyridine (48 μ L, 0.6 mmol, 3.0 equiv), and DMSO (1.0 mL) were added successfully to a 10 mL oven-dried reaction vessel. The sealed reaction vessel was stirred at 130 °C for 12 h. After cooling to room temperature, the reaction was diluted with ethyl acetate (10 mL) and water (10 mL). The organic layer was separated, and the aqueous layer was extracted with ethyl acetate (10 mL) for three times. The combined organic layer was brine and dried over magnesium sulfate and the volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether (PE)/ethyl acetate (EA)) to yield the desired product **3**.

Effect the molecular ratio of substrates on the yield

Table S1

NOAC + 1a	O H 2a	C P: NH₂CN — D	uBr (20 mmol%) yridine (3.0 equiv.) MSO,130 °C, 12 h	NH ₂ N N 3a
entry	1a (x mmol)	2a (y mmol)	NH ₂ CN (z equiv.)	GC yield (%)
1	0.2	0.2	10.0	45
2	0.3	0.2	10.0	64
3	0.4	0.2	10.0	67
4	0.2	0.3	10.0	56
5	0.2	0.4	10.0	63
6	0.3	0.2	9.0	58 ı
7	0.3	0.2	11.0	65

Gram scale and further transformation experiments.

Gram-scale experiment for the synthesis of **3a**: (*E*)-3,4-dihydronaphthalen-1-(2*H*)-one *O*-acetyl oxime (**1a**, 3.05 g, 15 mmol), benzaldehyde (**2a**, 1.03 mL, 10 mmol), CuBr (0.29 g, 2.0 mmol, 20 mol %), cyanamide (4.2 g, 100 mmol, 10.0 equiv), pyridine (2.5 mL, 30.0 mmol, 3.0 equiv), and DMSO (30 mL) were added successfully to a 75 mL ovendried reaction pressure tube. The sealed reaction tube was stirred at 130 °C for 30 h. After cooling to room temperature, the reaction was diluted with ethyl acetate (100 mL) and water (100 mL). The organic layer was separated, and the aqueous layer was extracted with ethyl acetate (60 mL) for three times. The combined organic layer was brine and dried over magnesium sulfate and the volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel (PE/EA: 5/1) to yield the desired product **3a** (1.50 g, 55%) as a yellow solid.

further transformation experiments of 3a: (a) To a 10 mL vial equipped with a Teflon septum and a magnetic stir bar was charged 3a (27.3 mg, 0.1 mmol), DDQ (45.4 mg, 2.0 equiv) and toluene (1.0 mL). Thereafter, the reaction mixture was allowed to stir at 120 °C (oil bath) for 12 h. After cooling to room temperature, the reaction was diluted with ethyl acetate (20 mL) and the volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel (PE/EA: 5/1) to yield the desired product **6a** (10.0 mg, 37%).

(b) To a 10 mL vial equipped with a Teflon septum and a magnetic stir bar was charged **3a** (27.3 mg, 0.1 mmol), iodobenzene (17 μ L, 1.5 equiv), CuI (1.0 mg, 5 mol%), KO^tBu (28 mg, 2.5 equiv), and dioxane (0.6 mL). Thereafter, the reaction mixture was allowed to stir at 130 °C (oil bath) for 12 h under Ar. The reaction was diluted with ethyl acetate (20 mL) and the volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel (PE/EA: 10/1) to yield the desired product **6b** (24.4 mg, 70%).

Characterization data of products

4-Phenyl-5,6-dihydrobenzo[*h*]quinazolin-2-amine (3a)

Following the general procedure A, **3a** was obtained as a yellow solid (32.7 mg, 60% yield), mp 173-175 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.39–8.18 (m, 1H), 7.56–7.48 (m, 2H), 7.46–7.37 (m, 3H), 7.35–7.28 (m, 2H), 7.20–7.12 (m, 1H), 5.66 (brs, 2H), 2.83–2.67 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 161.7, 160.9, 139.4, 138.1, 133.0, 130.3, 128.7, 128.4, 128.0, 127.5, 126.8, 125.4, 115.6, 28.1, 23.9. HRMS (ESI) m/z calcd for C₁₈H₁₆N₃⁺ (M+H)⁺ 274.1339, found 274.1341.

4-(p-Tolyl)-5,6-dihydrobenzo[h]quinazolin-2-amine (3b)

Following the general procedure A, **3b** was obtained as a yellow solid (33.3 mg, 58% yield), mp: 210-212 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.37–8.15 (m, 1H), 7.45 (d, *J* = 7.8 Hz, 2H), 7.36 (dd, *J* = 5.6, 3.0 Hz, 2H), 7.27 (d, *J* = 7.8 Hz, 2H), 7.24–7.18 (m, 1H), 5.34 (brs, 2H), 2.89–2.76 (m, 4H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 161.7, 160.9, 139.5, 138.9, 135.4, 133.2, 130.4, 128.9, 128.5, 127.6, 127.0, 125.5, 115.9, 28.3, 24.1, 21.3. HRMS (ESI) m/z calcd for C₁₉H₁₈N₃⁺ (M+H)⁺ 288.1495, found 288.1499.

4-(4-(*tert*-Butyl)phenyl)-5,6-dihydrobenzo[*h*]quinazolin-2-amine (3c)

Following the general procedure A, **3c** was obtained as a yellow solid (34.8 mg, 53% yield), mp: 237-239 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.33–8.22 (m, 1H), 7.56–7.44 (m, 4H), 7.39–7.31 (m, 2H), 7.23–7.16 (m, 1H), 5.33 (brs, 2H), 2.92–2.75 (m, 4H), 1.35 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 161.7, 160.9, 152.0, 139.4, 135.3, 133.2, 130.4, 128.3, 127.6, 126.9, 125.5, 125.1, 115.9, 34.7, 31.2, 28.3, 24.1. HRMS (ESI) m/z calcd for C₂₂H₂₄N₃⁺ (M+H)⁺ 330.1965, found 330.1968.

4-(4-Fluorophenyl)-5,6-dihydrobenzo[*h*]quinazolin-2-amine (3d)

Following the general procedure A, **3d** was obtained as a yellow solid (38.4mg, 66% yield), mp: 226-228 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.33–8.23 (m, 1H), 7.55 (dd, *J* = 8.6, 5.5 Hz, 2H), 7.38 (td, *J* = 6.7, 5.9, 3.8 Hz, 2H), 7.23 (dd, *J* = 6.3, 2.4 Hz, 1H), 7.16 (t, *J* = 8.6 Hz, 2H), 5.26 (s, 2H), 2.83 (s, 4H).¹³C NMR (100 MHz, CDCl₃) δ 164.3, 163.1 (d, *J* = 247.6 Hz), 161.6, 161.2, 139.4, 134.3 (d, *J* = 3.5 Hz), 133.0, 130.6 (d, *J* = 8.4 Hz), 130.6, 127.7, 127.0, 125.6, 115.9, 115.3 (d, *J* = 21.5 Hz), 28.2, 24.1. HRMS (ESI) m/z calcd for C₁₈H₁₅FN₃⁺ (M+H)⁺ 292.1245, found 292.1248.

4-(4-Chlorophenyl)-5,6-dihydrobenzo[*h*]quinazolin-2-amine (3e)

Following the general procedure A, **3e** was obtained as a yellow solid (46.1 mg, 75% yield), mp:237-239 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 8.17 (dd, J = 7.3, 1.9 Hz, 1H), 7.60 (d, J = 8.5 Hz, 2H), 7.54 (d, J = 8.4 Hz, 2H), 7.39 (td, J = 7.2, 1.7 Hz, 2H), 7.28 (dd, J = 7.2, 1.8 Hz, 1H), 6.58 (brs, 2H), 2.75 (s, 4H). ¹³C NMR (100 MHz, DMSO- d_6) δ 164.0, 162.6, 160.5, 139.8, 137.5, 134.1, 133.4, 131.1, 130.9, 128.6, 128.3, 127.2, 125.5, 114.6, 28.0, 23.9. HRMS (ESI) m/z calcd for C₁₈H₁₅ClN₃⁺ (M+H)⁺ 308.0949, found 308.0953.

4-(4-Bromophenyl)-5,6-dihydrobenzo[h]quinazolin-2-amine (3f)

Following the general procedure A, **3f** was obtained as a yellow solid (56.2 mg, 80% yield), mp: 250-252 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 8.16 (dd, J = 7.3, 1.8 Hz, 1H), 7.69–7.63 (m, 2H), 7.56–7.48 (m, 2H), 7.36 (td, J = 7.3, 1.7 Hz, 2H), 7.26 (dd, J = 7.0, 1.8 Hz, 1H), 6.54 (brs, 2H), 2.74 (s, 4H). ¹³C NMR (101 MHz, DMSO- d_6) δ 164.1, 162.6, 160.5, 139.9, 137.9, 133.4, 131.5, 131.3, 130.9, 128.3, 127.2, 125.5, 122.8, 114.5, 28.0, 23.9. HRMS (ESI) m/z calcd for C₁₈H₁₅BrN₃⁺ (M+H)⁺ 352.0444, found 352.0448.

4-(2-Amino-5,6-dihydrobenzo[h]quinazolin-4-yl)benzonitrile (3g)

Following the general procedure A, **3g** was obtained as a yellow solid (38.7 mg, 65% yield), mp: 249-251 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.18 (d, *J* = 7.3 Hz, 1H), 7.96 (d, *J* = 7.8 Hz, 2H), 7.76 (d, *J* = 7.9 Hz, 2H), 7.45–7.33 (m, 2H), 7.28 (d, *J* = 7.1 Hz, 1H), 6.69 (brs, 2H), 2.92–2.63 (m, 4H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 163.5, 162.7, 160.7, 143.3, 139.9, 133.2, 132.6, 131.1, 130.1, 128.4, 127.3, 125.5, 119.2, 114.7, 111.9, 27.9, 23.8. HRMS (ESI) m/z calcd for C₁₉H₁₄N₄Na⁺ (M+Na)⁺ 321.1111, found 321.1117.

4-(4-Nitrophenyl)-5,6-dihydrobenzo[*h*]quinazolin-2-amine (3h)

Following the general procedure A, **3h** was obtained as a yellow solid (45.8 mg, 72% yield), mp: 228-230 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 8.36 – 8.27 (m, 2H), 8.17 (dd, J = 7.3, 1.9 Hz, 1H), 7.90–7.78 (m, 2H), 7.41–7.32 (m, 2H), 7.25 (dd, J = 7.1, 1.8 Hz, 1H), 6.69 (brs, 2H), 2.72 (d, J = 5.1 Hz, 4H). ¹³C NMR (100 MHz, DMSO- d_6) δ 163.1, 162.7, 160.8, 147.9, 145.1, 139.9, 133.2, 131.1, 130.6, 128.4, 127.2, 125.5, 123.7, 114.8, 27.9, 23.8. HRMS (ESI) m/z calcd for C₁₈H₁₄N₄NaO₂⁺ (M+Na)⁺ 341.1009, found 341.1015.

4-(4-(Trifluoromethyl)phenyl)-5,6-dihydrobenzo[h]quinazolin-2-amine (3i)

Following the general procedure A, **3i** was obtained as a yellow solid (49.1 mg, 72% yield), mp: 216-218 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.35–8.19 (m, 1H), 7.72 (d, *J* = 8.2 Hz, 2H), 7.66 (d, *J* = 8.1 Hz, 2H), 7.41–7.30 (m, 2H), 7.22 (dd, *J* = 6.9, 1.9 Hz, 1H), 5.46 (brs, 2H), 2.80 (s, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 163.9, 161.7, 161.5, 141.8, 139.4, 132.9, 130.9 (q, *J* = 32.4 Hz), 130.8, 129.0, 127.7, 127.1, 125.6, 125.2 (q, *J* = 3.7 Hz), 123.9 (q, *J* = 270.6 Hz), 116.0, 28.1, 23.9. HRMS (ESI) m/z calcd for C₁₉H₁₅F₃N₃⁺ (M+H)⁺ 342.1213, found 342.1214.

4-(4-(Trifluoromethoxy)phenyl)-5,6-dihydrobenzo[h]quinazolin-2-amine (3j)

Following the general procedure A, **3j** was obtained as a yellow solid (49.3 mg, 69% yield), mp: 170-172 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.29–8.25 (m, 1H), 7.61–7.57 (m, 2H), 7.40–7.34 (m, 2H), 7.31 (d, *J* = 7.8 Hz, 2H), 7.22 (dd, *J* = 6.8, 2.0 Hz, 1H), 5.40 (brs, 2H), 2.82 (s, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 163.9, 161.7, 161.4, 149.6 (d, *J* = 2.0 Hz), 139.4, 136.9, 132.9, 130.7, 130.2, 127.7, 127.0, 125.6, 120.6, 120.4 (q, *J* = 256.0 Hz), 115.9, 28.1, 24.0. HRMS (ESI) m/z calcd for C₁₉H₁₅F₃N₃O⁺ (M+H)⁺ 358.1162, found 358.1164.

Methyl 4-(2-amino-5,6-dihydrobenzo[h]quinazolin-4-yl)benzoate (3k)

Following the general procedure A, **3k** was obtained as a yellow solid (45.0 mg, 68% yield), mp: 218-220 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.30–8.24 (m, 1H), 8.19–8.10 (m, 2H), 7.62 (d, *J* = 8.4 Hz, 2H), 7.42–7.32 (m, 2H), 7.25–7.17 (m, 1H), 5.45 (brs, 2H), 3.95 (s, 3H), 2.81 (s, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 164.2, 161.7, 161.3, 142.6, 139.4, 132.9, 130.7, 130.3, 129.5, 128.7, 127.7, 127.0, 125.6, 115.9, 52.2, 28.1, 23.9. HRMS (ESI) m/z calcd for C₂₀H₁₇N₃NaO₂⁺ (M+Na)⁺ 354.1213, found 354.1216.

4-(4-Methoxyphenyl)-5,6-dihydrobenzo[h]quinazolin-2-amine (3l)

Following the general procedure A, **31** was obtained as a yellow solid (26.1 mg, 43% yield), mp: 190-192 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.31–8.22 (m, 1H), 7.58–7.50 (m, 2H), 7.40–7.32 (m, 2H), 7.24–7.17 (m, 1H), 7.03–6.93 (m, 2H), 5.25 (brs, 2H), 3.86 (s, 3H), 2.93–2.76 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 165.0, 161.6, 160.9, 160.2, 139.4, 133.3, 130.6, 130.4, 130.1, 127.6, 127.0, 125.5, 115.9, 113.6, 55.3, 28.3, 24.3. HRMS (ESI) m/z calcd for C₁₉H₁₈N₃NaO⁺ (M+Na)⁺ 326.1264, found 326.1269.

4-(o-Tolyl)-5,6-dihydrobenzo[h]quinazolin-2-amine (3m)

Following the general procedure A, **3m** was obtained as a brown solid (25.3 mg, 44% yield), mp: 85-87 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.38–8.24 (m, 1H), 7.40–7.35 (m, 2H), 7.33–7.25 (m, 3H), 7.24–7.18 (m, 2H), 5.23 (brs, 2H), 2.81 (t, *J* = 7.3 Hz, 2H), 2.61–2.47 (m, 2H), 2.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 161.6, 160.6, 139.7, 137.9, 135.2, 133.0, 130.6, 130.3, 128.5, 127.9, 127.8, 127.0, 125.8, 125.5, 116.8, 28.1, 23.1, 19.4. HRMS (ESI) m/z calcd for C₁₉H₁₇N₃Na⁺ (M+Na)⁺ 310.1315, found 310.1317.

4-(2-Chlorophenyl)-5,6-dihydrobenzo[h]quinazolin-2-amine (3n)

Following the general procedure A, **3n** was obtained as a yellow solid (41.8 mg, 68% yield), mp: 143-145 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.40–8.20 (m, 1H), 7.48–7.43 (m, 1H), 7.42–7.29 (m, 5H), 7.25–7.17 (m, 1H), 5.41 (brs, 2H), 2.91–2.75 (m, 2H), 2.75–2.63 (m, 1H), 2.53–2.39 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 163.8, 161.6, 160.7, 139.8, 137.3, 132.8, 132.2, 130.7, 129.9, 129.8, 129.5, 127.8, 127.0, 125.5, 117.1, 27.9, 23.0. HRMS (ESI) m/z calcd for C₁₈H₁₄ClN₃Na⁺ (M+Na)⁺ 330.0768, found 330.0769.

4-(3-Fluorophenyl)-5,6-dihydrobenzo[h]quinazolin-2-amine (30)

Following the general procedure A, **30** was obtained as a yellow solid (40.7 mg, 70% yield), mp: 157-159 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.40–8.21 (m, 1H), 7.47–7.34 (m, 3H), 7.33 (d, *J* = 7.7 Hz, 1H), 7.28 (d, *J* = 9.8 Hz, 1H), 7.25–7.19 (m, 1H), 7.16–7.12 (m, 1H), 5.32 (brs, 2H), 2.83 (s, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 164.0, 162.5 (d, *J* = 245.2 Hz), 161.5 (d, *J* = 24.1 Hz), 140.4 (d, *J* = 7.4 Hz), 139.4, 132.9, 130.7, 129.9 (d, *J* = 8.1 Hz), 127.7, 127.1, 125.6, 124.3 (d, *J* = 2.2 Hz), 116.0, 115.9, 115.8 (d, *J* = 6.4 Hz), 115.6, 28.2, 23.9. HRMS (ESI) m/z calcd for C₁₈H₁₄FN₃Na⁺ (M+Na)⁺ 314.1064, found 314.1065.

4-(3-Chlorophenyl)-5,6-dihydrobenzo[*h*]quinazolin-2-amine (3p)

Following the general procedure A, **3p** was obtained as a yellow solid (40.5 mg, 66% yield), mp: 180-182 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.40–8.19 (m, 1H), 7.55 (s, 1H), 7.45–7.30 (m, 5H), 7.21 (d, *J* = 8.6 Hz, 1H), 5.46 (brs, 2H), 2.80 (s, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 163.8, 161.7, 161.3, 139.9, 139.4, 134.2, 132.9, 130.7, 129.5, 129.0, 128.7, 127.7, 127.0, 126.7, 125.5, 115.8, 28.1, 23.9. HRMS (ESI) m/z calcd for C₁₈H₁₄ClN₃Na⁺ (M+Na)⁺ 330.0768, found 330.0771.

4-(*m*-Tolyl)-5,6-dihydrobenzo[*h*]quinazolin-2-amine (3q)

Following the general procedure A, **3q** was obtained as a yellow solid (31.0 mg, 54% yield), mp: 165-167 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.32–8.22 (m, 1H), 7.40–7.29 (m, 5H), 7.27–7.18 (m, 2H), 5.31 (brs, 2H), 2.88–2.76 (m, 4H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 161.6, 160.9, 139.5, 138.2, 138.0, 133.1, 130.5, 129.6, 129.1, 128.0, 127.6, 127.0, 125.6, 125.5, 116.0, 28.2, 24.0, 21.4. HRMS (ESI) m/z calcd for C₁₉H₁₇N₃Na⁺ (M+Na)⁺ 310.1315, found 310.1316.

4-(3,4-Dimethylphenyl)-5,6-dihydrobenzo[*h*]quinazolin-2-amine (3r)

Following the general procedure A, **3r** was obtained as a yellow solid (30.1 mg, 50% yield), mp: 180-182 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.37–8.19 (m, 1H), 7.42–7.31 (m, 3H), 7.29–7.17 (m, 3H), 5.39 (brs, 2H), 2.93–2.71 (m, 4H), 2.32 (d, *J* = 2.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 161.6, 160.8, 139.5, 137.6, 136.5, 135.7, 133.2, 130.4, 129.6, 129.3, 127.6, 126.9, 126.0, 125.5, 115.9, 28.2, 24.1, 19.8, 19.6. HRMS (ESI) m/z calcd for C₂₀H₁₉N₃Na⁺ (M+Na)⁺ 324.1471, found 324.1473.

4-(2,4-Dichlorophenyl)-5,6-dihydrobenzo[*h*]quinazolin-2-amine (3s)

Following the general procedure A, **3s** was obtained as a yellow solid (52.5 mg, 77% yield), mp: 180-182 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.40–8.20 (m, 1H), 7.48 (d, *J* = 2.0 Hz, 1H), 7.38–7.31 (m, 3H), 7.29 (d, *J* = 8.2 Hz, 1H), 7.22–7.14 (m, 1H), 5.56 (brs, 2H), 2.90–2.73 (m, 2H), 2.71–2.59 (m, 1H), 2.51–2.35 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 162.6, 161.7, 160.9, 139.6, 135.8, 135.0, 133.1, 132.6, 130.8, 130.7, 129.3, 127.8, 127.3, 127.0, 125.5, 116.9, 27.8, 22.9. HRMS (ESI) m/z calcd for C₁₈H₁₃Cl₂N₃Na⁺ (M+Na)⁺ 364.0379, found 364.0378.

4-(Naphthalen-1-yl)-5,6-dihydrobenzo[h]quinazolin-2-amine (3t)

Following the general procedure A, **3t** was obtained as a yellow solid (34.9 mg, 54% yield), mp: 125-127 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.43–8.27 (m, 1H), 8.00–7.84 (m, 2H), 7.65 (d, *J* = 8.4 Hz, 1H), 7.59–7.53 (m, 1H), 7.51–7.41 (m, 3H), 7.40–7.34 (m, 2H), 7.22–7.14 (m, 1H), 5.36 (brs, 2H), 2.74 (t, *J* = 7.3 Hz, 2H), 2.51–2.41 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 161.7, 160.7, 139.7, 135.9, 133.5, 133.0, 130.7, 130.6, 128.9, 128.4, 127.8, 127.0, 126.5, 126.1, 125.9, 125.6, 125.2, 117.6, 28.1, 23.4. HRMS (ESI) m/z calcd for C₂₂H₁₇N₃Na⁺ (M+Na)⁺ 346.1315, found 346.1319.

4-(Naphthalen-2-yl)-5,6-dihydrobenzo[*h*]quinazolin-2-amine (3u)

Following the general procedure A, **3u** was obtained as a yellow solid (41.3 mg, 64% yield), mp: 190-192 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.38–8.23 (m, 1H), 8.00 (d, J = 1.7 Hz, 1H), 7.95–7.84 (m, 3H), 7.66 (dd, J = 8.4, 1.7 Hz, 1H), 7.55–7.47 (m, 2H), 7.39–7.32 (m, 2H), 7.23–7.15 (m, 1H), 5.47 (brs, 2H), 2.88 (dd, J = 8.1, 5.1 Hz, 2H), 2.78 (dd, J = 8.7, 5.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.3, 161.8, 161.1, 139.5, 135.6, 133.3, 133.1, 132.8, 130.5, 128.4, 128.2, 127.9, 127.6, 127.0, 126.7, 126.3, 126.1, 125.5, 116.1, 28.2, 24.1. HRMS (ESI) m/z calcd for C₂₂H₁₇N₃Na⁺ (M+Na)⁺ 346.1315, found 346.1318.

Phenyl(5-(thiophen-2-yl)-1*H*-pyrrol-2-yl)methanone (3v)

Following the general procedure A, **3v** was obtained as a yellow solid (21.0 mg, 40% yield), mp: 262-264 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 8.13 (dd, J = 7.6, 1.6 Hz, 1H), 7.89 (d, J = 1.7 Hz,

1H), 7.41–7.30 (m, 2H), 7.28 (dd, J = 7.3, 1.6 Hz, 1H), 7.08 (d, J = 3.4 Hz, 1H), 6.67 (dd, J = 3.4, 1.8 Hz, 1H), 6.50 (brs, 2H), 3.04 (dd, J = 8.5, 6.1 Hz, 2H), 2.84 (dd, J = 8.5, 6.1 Hz, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 162.4, 160.9, 153.7, 152.6, 145.2, 139.7, 133.3, 130.9, 128.2, 127.1, 125.4, 114.0, 113.1, 112.3, 27.7, 23.2. HRMS (ESI) m/z calcd for C₁₆H₁₃N₃NaO⁺ (M+Na)⁺ 286.0951, found 286.0952.

4-(Thiophen-2-yl)-5,6-dihydrobenzo[*h*]quinazolin-2-amine (3w)

Following the general procedure A, **3w** was obtained as a yellow solid (30.7 mg, 55% yield), mp: 236-238 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 8.14 (dd, J = 7.5, 1.7 Hz, 1H), 7.74 (d, J = 5.1 Hz, 1H), 7.55 (d, J = 3.7 Hz, 1H), 7.44–7.32 (m, 2H), 7.30 (d, J = 7.0 Hz, 1H), 7.23–7.16 (m, 1H), 6.56 (brs, 2H), 3.10–2.93 (m, 2H), 2.93–2.77 (m, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 162.2, 160.8, 157.6, 142.9, 139.5, 133.4, 130.9, 129.9, 129.7, 128.5, 128.2, 127.2, 125.5, 113.4, 27.8, 24.2. HRMS (ESI) m/z calcd for C₁₆H₁₃N₃NaS⁺ (M+Na)⁺ 302.0722, found 302.0725.

4-(Pyridin-4-yl)-5,6-dihydrobenzo[*h*]quinazolin-2-amine (3x)

Following the general procedure A, **3x** was obtained as a yellow solid (20.3 mg, 37% yield), mp: 212-214 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.71 (d, *J* = 5.0 Hz, 2H), 8.18 (dd, *J* = 7.4, 1.8 Hz, 1H), 7.61–7.51 (m, 2H), 7.45–7.34 (m, 2H), 7.29 (d, *J* = 7.1 Hz, 1H), 6.70 (brs, 2H), 2.84–2.67 (m, 4H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 162.9, 162.7, 160.7, 150.1, 146.1, 139.9, 133.2, 131.1, 128.4, 127.3, 125.5, 123.7, 114.7, 27.9, 23.6. HRMS (ESI) m/z calcd for C₁₇H₁₄N₄Na⁺ (M+Na)⁺ 297.1111, found 297.1111.

4-(Pyrimidin-5-yl)-5,6-dihydrobenzo[*h*]quinazolin-2-amine (3y)

Following the general procedure A, **3y** was obtained as a yellow solid (36.9 mg, 67% yield), mp: 195-197 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 9.30 (s, 1H), 9.06 (s, 2H), 8.18 (d, J = 7.3 Hz, 1H), 7.44–7.35 (m, 2H), 7.30 (d, J = 6.5 Hz, 1H), 6.76 (brs, 2H), 2.81 (s, 4H). ¹³C NMR (100 MHz, DMSO- d_6) δ 162.8, 160.8, 159.6, 158.8, 157.0, 139.9, 133.1, 132.4, 131.2, 128.4, 127.3, 125.5, 115.3, 27.9, 23.5. HRMS (ESI) m/z calcd for C₁₆H₁₃N₅Na⁺ (M+Na)⁺ 298.1063, found 298.1065.

4-Cyclopropyl-5,6-dihydrobenzo[*h*]quinazolin-2-amine (3z)

Following the general procedure A, **3z** was obtained as a yellow solid (19.0 mg, 40% yield), mp: 240-242 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.11 (d, *J* = 7.4 Hz, 1H), 7.41–7.25 (m, 3H), 6.22 (brs, 2H), 2.86 (s, 4H), 2.22–2.05 (m, 1H), 1.05–0.96 (m, 2H), 0.96–0.86 (m, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.8, 162.6, 157.9, 139.6, 133.5, 130.5, 128.3, 127.1, 125.4, 114.8, 27.9, 21.7, 12.8, 10.2. HRMS (ESI) m/z calcd for C₁₅H₁₆N₃⁺ (M+H)⁺ 238.1339, found 238.1342.

ÓMe

7-Methoxy-4-phenyl-5,6-dihydrobenzo[h]quinazolin-2-amine (4a)

Following the general procedure A, **4a** was obtained as a yellow solid (38.8 mg, 64% yield), mp: 198-200 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (dd, J = 7.9, 1.1 Hz, 1H), 7.59–7.51 (m, 2H), 7.50–7.38 (m, 3H), 7.31 (t, J = 8.0 Hz, 1H), 6.95 (d, J = 8.2 Hz, 1H), 5.47 (s, 2H), 3.83 (s, 3H), 2.79 (s, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 165.3, 161.6, 161.0, 155.9, 138.2, 134.2, 128.8, 128.5, 128.1, 128.0, 127.1, 117.7, 115.8, 112.2, 55.5, 23.4, 20.2. HRMS (ESI) m/z calcd for C₁₉H₁₇N₃NaO⁺ (M+Na)⁺ 326.1264, found 326.1269.

8-Methoxy-4-phenyl-5,6-dihydrobenzo[*h*]quinazolin-2-amine (4b)

Following the general procedure A, **4b** was obtained as a yellow solid (38.8 mg, 64% yield), mp: 169-171 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, *J* = 8.6 Hz, 1H), 7.52 (dd, *J* = 7.7, 1.9 Hz, 2H), 7.49–7.36 (m, 3H), 6.86 (dd, *J* = 8.6, 2.6 Hz, 1H), 6.71 (d, *J* = 2.6 Hz, 1H), 5.52 (brs, 2H), 3.81 (s, 3H), 2.83–2.77 (m, 2H), 2.77–2.70 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 164.8, 161.6, 161.3, 160.9, 141.5, 138.3, 128.7, 128.4, 128.1, 127.3, 125.9, 114.8, 112.7, 112.3, 55.1, 28.5, 23.9. HRMS (ESI) m/z calcd for C₁₉H₁₇N₃NaO⁺ (M+Na)⁺ 326.1264, found 326.1268.

9-Methoxy-4-phenyl-5,6-dihydrobenzo[h]quinazolin-2-amine (4c)

Following the general procedure A, **4c** was obtained as a yellow solid (34.5 mg, 57% yield), mp: 180-182 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 2.8 Hz, 1H), 7.59–7.52 (m, 2H), 7.51–7.37 (m, 3H), 7.12 (d, *J* = 8.3 Hz, 1H), 6.94 (dd, *J* = 8.3, 2.8 Hz, 1H), 5.38 (brs, 2H), 3.89 (s, 3H), 2.85–2.78 (m, 2H), 2.76–2.68 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 161.6, 160.9, 158.7, 138.2, 134.0, 131.8, 128.9, 128.7, 128.5, 128.2, 117.5, 116.1, 109.3, 55.4, 27.3, 24.3. HRMS (ESI) m/z calcd for C₁₉H₁₇N₃NaO⁺ (M+Na)⁺ 326.1264, found 326.1270.

9-Bromo-4-phenyl-5,6-dihydrobenzo[h]quinazolin-2-amine (4d)

Following the general procedure A, **4d** was obtained as a yellow solid (33.7 mg, 48% yield), mp: 234-236 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 8.30 (d, J = 2.2 Hz, 1H), 7.57–7.52 (m, 3H), 7.49–7.45 (m, 3H), 7.24 (d, J = 8.1 Hz, 1H), 6.67 (brs, 2H), 2.73 (s, 4H). ¹³C NMR (100 MHz, DMSO- d_6) δ 165.8, 162.6, 158.8, 139.0, 138.5, 135.6, 133.2, 130.6, 129.4, 129.1, 128.5, 127.8, 120.2, 114.4, 27.4, 23.7. HRMS (ESI) m/z calcd for C₁₈H₁₄BrN₃Na⁺ (M+Na)⁺ 374.0263, found 374.0268.

6-Methyl-4-phenyl-5,6-dihydrobenzo[h]quinazolin-2-amine (4e)

Following the general procedure A, **4e** was obtained as a yellow solid (37.3 mg, 65% yield), mp: 166-168 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.29 (dd, J = 7.6, 1.6 Hz, 1H), 7.58–7.51 (m, 2H), 7.51–7.32 (m, 5H), 7.29–7.25 (m, 1H), 5.33 (brs, 2H), 3.07–2.87 (m, 2H), 2.76–2.62 (m, 1H), 1.19 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.9, 161.6, 160.8, 144.3, 138.2, 132.2, 130.8, 128.9, 128.5, 128.2, 126.8, 126.1, 125.7, 114.7, 32.2, 31.5, 19.9. HRMS (ESI) m/z calcd for C₁₉H₁₇N₃Na⁺ (M+Na)⁺ 310.1315, found 310.1318.

6-(3,4-Dichlorophenyl)-4-phenyl-5,6-dihydrobenzo[h]quinazolin-2-amine (4f)

Following the general procedure A, **4f** was obtained as a yellow solid (46.7 mg, 56% yield), mp: 225-227 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.37 (dd, J = 7.6, 1.6 Hz, 1H), 7.48–7.32 (m, 7H), 7.28 (d, J = 8.3 Hz, 1H), 7.17 (d, J = 2.1 Hz, 1H), 7.00–6.82 (m, 2H), 5.46 (brs, 2H), 4.08 (t, J = 7.2 Hz, 1H), 3.10 (d, J = 7.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.9, 161.8, 160.6, 142.9, 140.4, 137.7, 133.0, 132.4, 131.0, 130.6, 130.3, 130.1, 129.0, 128.3, 128.3, 127.7, 127.7, 127.7, 125.9, 113.7, 43.2, 31.7. HRMS (ESI) m/z calcd for C₂₄H₁₇Cl₂N₃Na⁺ (M+Na)⁺ 440.0692, found 440.0697.

4-Phenyl-5,6-dihydrofuro[2,3-h]quinazolin-2-amine (4g)

Following the general procedure A, **4g** was obtained as a yellow solid (22.1 mg, 42% yield), mp: 180-182 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.53–7.40 (m, 5H), 7.37 (d, *J* = 2.0 Hz, 1H), 6.86 (d, *J* = 2.0 Hz, 1H), 5.51 (brs, 2H), 2.99 (t, *J* = 8.0 Hz, 2H), 2.83 (t, *J* = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 164.1, 161.6, 159.7, 159.2, 142.7, 138.6, 128.7, 128.3, 128.2, 119.0, 112.1, 106.8, 24.2, 22.0. HRMS (ESI) m/z calcd for C₁₆H₁₃N₃NaO⁺ (M+Na)⁺ 286.0951, found 286.0957.

4-Phenyl-5,6-dihydrothieno[2,3-*h*]quinazolin-2-amine (4h)

Following the general procedure A, **4h** was obtained as a yellow solid (40.7 mg, 73% yield), mp: 211-213 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 5.2 Hz, 1H), 7.54–7.49 (m, 2H), 7.48–7.39 (m, 3H), 7.14 (d, J = 5.2 Hz, 1H), 5.45 (brs, 2H), 2.99–2.88 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 164.8, 161.7, 159.0, 145.1, 138.5, 135.6, 128.8, 128.4, 128.2, 124.5, 123.1, 113.1, 24.8, 23.5. HRMS (ESI) m/z calcd for C₁₆H₁₃N₃NaS⁺ (M+Na)⁺ 302.0722, found 302.0729.

4-Phenyl-5*H*-chromeno[4,3-*d*]pyrimidin-2-amine (4i)

Following the general procedure A, **4i** was obtained as a yellow solid (27.5 mg, 50% yield), mp: 174-176 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.16 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.55–7.45 (m, 5H), 7.38 (t, *J* = 7.7 Hz, 1H), 7.10 (t, *J* = 7.5 Hz, 1H), 6.96 (d, *J* = 8.2 Hz, 1H), 5.36 (brs, 2H), 5.19 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.4, 162.4, 157.6, 157.6, 136.8, 132.9, 129.7, 128.6, 128.2, 125.3, 122.2, 121.8, 117.1, 111.1, 65.3. HRMS (ESI) m/z calcd for C₁₇H₁₃N₃NaO⁺ (M+Na)⁺ 298.0951, found 298.0958.

1-(2-Amino-4-phenyl-5,6-dihydro-7*H***-benzo[b]pyrimido[4,5-***d***]azepin-7-yl)ethan-1-one (4**j) Following the general procedure A, **4j** was obtained as a white solid (35.0 mg, 53% yield), mp: 132-134 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.95–7.76 (m, 1H), 7.60–7.52 (m, 4H), 7.51–7.42 (m, 3H), 7.32–7.26 (m, 1H), 5.69 (brs, 2H), 5.11–4.86 (m, 1H), 3.52 (dd, *J* = 12.7, 6.2 Hz, 1H), 2.75 (dd, *J* = 14.7, 5.2 Hz, 1H), 2.37 (td, *J* = 14.3, 6.4 Hz, 1H), 1.74 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 167.0, 165.9, 161.6, 139.7, 137.9, 137.3, 131.0, 129.6, 129.1, 129.0, 128.7, 128.4, 128.3, 117.5, 52.0, 25.6, 22.8. HRMS (ESI) m/z calcd for C₂₀H₁₈N₃NaO⁺ (M+Na)⁺ 353.1373, found 353.1380.

4-Phenyl-6,7-dihydro-5*H*-benzo[6,7]cyclohepta[1,2-*d*]pyrimidin-2-amine (4k)

Following the general procedure A, **4k** was obtained as a white solid (41.9 mg, 73% yield), mp: 190-192 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.75 (dd, J = 5.6, 3.4 Hz, 1H), 7.63–7.53 (m, 2H), 7.54–7.38 (m, 5H), 7.32–7.21 (m, 1H), 5.88 (brs, 2H), 2.72 (t, J = 6.9 Hz, 2H), 2.34 (t, J = 6.9 Hz, 2H), 2.29–2.12 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 166.5, 161.4, 139.9, 138.6, 138.5, 129.7, 128.7, 128.5, 128.4, 128.2, 128.1, 126.6, 118.7, 33.2, 31.2, 24.8. HRMS (ESI) m/z calcd for C₁₉H₁₇N₃Na⁺ (M+Na)⁺ 310.1315, found 310.1322.

4,6-Diphenylpyrimidin-2-amine (4l)

Following the general procedure A, **4I** was obtained as a yellow solid (25.7 mg, 52% yield), mp: 94-96 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.07–8.00 (m, 4H), 7.51–7.45 (m, 6H), 7.42 (s, 1H), 5.58 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 163.6, 137.7, 130.4, 128.7, 127.1, 104.2. HRMS (ESI) m/z calcd for C₁₆H₁₃N₃Na⁺ (M+Na)⁺ 270.1002, found 270.1004.

5-Methyl-4,6-diphenylpyrimidin-2-amine (4m)

Following the general procedure A, **4m** was obtained as a white solid (24.0 mg, 46% yield), mp: 181-183 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 7.8 Hz, 4H), 7.50–7.34 (m, 6H), 5.57 (brs, 2H), 2.10 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 160.8, 139.0, 128.7, 128.5, 128.2, 114.7, 16.3. HRMS (ESI) m/z calcd for C₁₇H₁₅N₃Na⁺ (M+Na)⁺ 284.1158, found 284.1165.

4,5,6-Triphenylpyrimidin-2-amine (4n)

Following the general procedure A, **4n** was obtained as a yellow solid (14.2 mg, 22% yield), mp: 233-235 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.29–7.17 (m, 10H), 7.12–7.02 (m, 3H), 6.96–6.76 (m, 2H), 5.64 (brs, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 161.7, 138.7, 136.7, 131.5, 129.2, 128.4, 127.9, 127.7, 126.5, 122.1. HRMS (ESI) m/z calcd for C₂₂H₁₇N₃Na⁺ (M+Na)⁺ 346.1315, found 346.1322.

4-phenylbenzo[*h*]quinazolin-2-amine (6a)

Yellow solid, 37% yield (10.0 mg), mp: 194-196 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.13 (d, J = 7.4 Hz, 1H), 7.81 (d, J = 1.4 Hz, 1H), 7.76–7.61 (m, 5H), 7.59–7.50 (m, 3H), 7.47 (d, J = 9.0 Hz, 1H), 5.52

(s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 160.0, 153.4, 137.6, 135.6, 129.8, 129.6, 129.6, 129.3, 128.5, 127.6, 126.6, 125.0, 123.5, 123.2, 115.1. HRMS (ESI) m/z calcd for C₁₈H₁₃N₃Na⁺ (M+Na)⁺ 294.1002, found 294.1007.

N,4-diphenyl-5,6-dihydrobenzo[*h*]quinazolin-2-amine (6b)

Yellow solid, 70% yield (24.4 mg), mp:185-187 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.36 (dd, J = 6.6, 2.7 Hz, 1H), 7.76 (d, J = 8.0 Hz, 2H), 7.62 (d, J = 7.2 Hz, 2H), 7.52–7.44 (m, 3H), 7.43–7.37 (m, 2H), 7.34 (t, J = 7.9 Hz, 2H), 7.29 (s, 1H), 7.23 (t, J = 4.3 Hz, 1H), 7.01 (t, J = 7.4 Hz, 1H), 2.95–2.88 (m, 2H), 2.87–2.78 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 160.8, 158.4, 140.2, 139.4, 138.2, 133.3, 130.6, 129.0, 128.8, 128.7, 128.2, 127.7, 127.1, 125.8, 121.6, 118.4, 117.0, 28.1, 24.2. HRMS (ESI) m/z calcd for C₂₄H₁₉N₃Na⁺ (M+Na)⁺ 372.1471, found 372.1480.

References

[1] Zhu, Z.; Tang, X.; Li, J.; Li, X.; Wu, W.; Deng, G.; Jiang, H. Org. Lett. 2017, 19, 1370.

Copies of ¹H and ¹³C NMR spectra of all products

¹H and ¹³C NMR spectra of **3a**

fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

fl (ppm)

40.552 40.344 40.354 740.135 39.927 39.719 39.509 39.509 39.301 - 27.917 - 27.917

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

¹H and ¹³C NMR spectra of **3**l

--0.000

 $\dot{20}$ fl (ppm)

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of $~3\mathrm{m}$

fl (ppm)

¹H and ¹³C NMR spectra of **3n**

110 100 fl (ppm)

 1 H and 13 C NMR spectra of **30**

¹H and ¹³C NMR spectra of **3u**

 1 H and 13 C NMR spectra of 3v

fl (ppm)

 1 H and 13 C NMR spectra of 3y

fl (ppm)

fl (ppm)

 1 H and 13 C NMR spectra of **4b**

 1 H and 13 C NMR spectra of **4c**

fl (ppm)

¹H and ¹³C NMR spectra of **4e**

 ^1H and ^{13}C NMR spectra of $\,4f$

fl (ppm)

7.501 7.496 7.496 7.487 7.487 7.487 7.457 7.457 7.457 7.457 7.420 7.427 7.420 7.7550 7.75500 7.75500 7.75500 7.75500 7.75500 7.75500 7.75500 7.75500 7.75500 7.755000 7.755000 7.755000 7.7550000000000	3.013 3.010 2.992 2.972 2.812 2.812 2.812

-0.000

90 8 fl (ppm)

 1 H and 13 C NMR spectra of **4**j

130 120 100 90 fl (ppm)

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of $\,4m$

f1 (ppm)

 1 H and 13 C NMR spectra of **4n**

fl (ppm)

 1 H and 13 C NMR spectra of **6a**

 1 H and 13 C NMR spectra of **6b**

 $\dot{20}$ fl (ppm)