Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information (ESI)

A modular strategy for the synthesis of marine originated meroterpenoid-type natural products

Hong-Shuang Wang,^{a,‡} Xiang Nan,^{a,‡} Hui-Jing Li,*a Zhong-Yan Cao*b and Yan-Chao Wu*a,c

^aWeihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, P. R. China ^bCollege of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China ^cWeihai Chuanghui Environmental Protection Technology Co., Ltd, Weihai 264200, P. R. China

Corresponding authors

Hui-Jing Li: lihuijing@iccas.ac.cn; Zhong-Yan Cao: zycao@henu.edu.cn; Yan-Chao Wu: ycwu@iccas.ac.cn

⁺ These authors contributed equally to this work.

1. Table of Contents

1. Table of Contents	S2
2. Supplementary Tables	S3
3. NMR Spectra of Compounds	S14

2. Supplementary Tables

Supplementary Table S1. Comparison table for compound 23 ^{1}H NMR in CDCl₃.¹

Compound 23,	Bisai's compound 23,	Err
400 MHz	400 MHz	Δδ _H (ppm)
677_671 (m 2H)	6.75 (s, 1H)	_
0.77 ⁻ 0.71 (m, 211)	6.74 (s, 1H)	_
3.87 (s, 3H)	3.87 (s, 3H)	0
3.84 (s, 3H)	3.84 (s, 3H)	0
2.93 (dd, <i>J</i> = 15.6, 8.0 Hz, 1H)	2.93 (dd, <i>J</i> = 15.8, 8.0 Hz, 1H)	0
2.81 (dd, J = 15.7, 11.9 Hz, 1H)	2.81 (dd, <i>J</i> = 15.6, 11.7 Hz, 1H)	0
1.84 (dd, <i>J</i> = 10.8, 8.7 Hz, 1H)	1.84 (dd, <i>J</i> = 12.0, 8.1 Hz, 1H)	0
1.75–1.57 (m, 3H)	1.77–1.67 (m, 4H)	_
-	1.63–1.57 (m, 4H)	-
1.47 (s, 3H)	1.47 (s, 3H)	0
1.46–1.40 (m, 4H)	1.46–1.43 (m, 2H)	-
1.36-1.25 (m, 3H)	-	-
1.21 (s, 3H)	1.21 (s, 3H)	0
0.90 (s, 3H)	0.90 (s, 3H)	0
0.88 (s, 3H)	0.88 (s, 3H)	0

Supplementary Table S2. Comparison table for compound 23 ¹³C NMR in CDCl₃.¹

Compound 23,	Bisai's compound 23,	Err
100 MHz	150 MHz	Δδ _C (ppm)
18.3	18.4	-0.1
18.7	18.9	-0.2
21.9	22.0	-0.1
23.7	23.8	-0.1
25.7	25.8	-0.1
29.7	29.8	-0.1
32.9	33.0	-0.1
33.4	33.5	-0.1
36.3	36.5	-0.2
38.4	38.5	-0.1
39.1	39.3	-0.2
42.4	42.5	-0.1
45.0	45.1	-0.1
47.7	47.8	-0.1
56.0	56.1	-0.1
60.2	60.3	-0.1
62.8	62.9	-0.1
110.7	110.8	-0.1
116.1	116.2	-0.1
133.4	133.5	-0.1
145.2	145.3	-0.1
148.4	148.5	-0.1
150.6	150.7	-0.1

Supplementary Table S3. Comparison table for compound 31 ¹H NMR in CDCl₃.²

compound 31,	Andersen's compound 31,	Err
400 MHz	400 MHz	Δδ _H (ppm)
7.02 (s, 1H)	7.00 (s, 1H)	0.02
3.88 (s, 3H)	3.86 (s, 3H)	0.02
3.86 (s, 3H)	3.84 (s, 3H)	0.02
3.84 (s, 3H)	3.82 (s, 3H)	0.02
2.71 (dd, J = 5.8, 14.5 Hz, 1H)	2.69 (dd, <i>J</i> = 14.3, 6.3Hz, 1H)	0.02
2.56 (t, J = 13.7 Hz, 1H)	2.54 (dd, <i>J</i> = 14.3, 12.9Hz, 1H)	0.02
2.46 (d, <i>J</i> = 12.1 Hz, 1H)	2.44 (dt, <i>J</i> = 12.3, 3.4Hz, 1H)	0.02
1.72–1.52 (m, 5H)	_	-
1.25 (s, 3H)	1.22 (s, 3H)	-0.03
1.19–1.12 (m, 1H)	_	_
1.06 (s, 3H)	1.04 (s, 3H)	0.02
1.00-0.90 (m, 2H)	_	_
0.86(s, 3H)	0.84 (s, 3H)	0.02
0.85 (s, 3H)	0.83 (s, 3H)	0.02

Supplementary Table S4. Comparison table for compound 31 ¹³C NMR in CDCl₃.²

compound 31,	Andersen's compound 31,	Err
100 MHz	150 MHz	Δδ _C (ppm)
16.2	16.3	-0.1
18.3	18.3	0
19.4	19.5	-0.1
19.9	19.9	0
21.0	21.1	-0.1
25.2	25.2	0
33.0	33.1	-0.1
33.3	33.3	0
36.4	36.5	-0.1
37.1	37.1	0
40.1	40.2	-0.1
42.4	42.5	-0.1
48.0	48.1	-0.1
51.7	51.7	0
56.0	56.1	-0.1
57.0	57.1	-0.1
60.3	60.4	-0.1
64.8	64.8	0
111.5	111.6	-0.1
121.1	121.2	-0.1
137.0	137.0	0
148.3	148.3	0
148.6	148.7	-0.1
149.7	149.8	-0.1
168.2	168.3	-0.1

Supplementary Table S5. Comparison table for compound 34 ¹H NMR in CDCl₃.²

Compound 34,	Andersen's compound 34,	Err
400 MHz	400 MHz	Δδ _H (ppm)
6.52 (s, 1H)	6.49 (s, 1H)	0.03
3.84 (s, 3H)	3.81 (s, 3H)	0.03
3.83 (s, 3H)	3.80 (s, 3H)	0.03
2.75-2.68 (m, 2H)	2.69 (m, 2H)	-
2.64-2.58 (m, 1H)	2.56 (dd, J = 14.5, 7.5 Hz, 1H)	-
2.52 (t, <i>J</i> = 13.7 Hz, 1H)	2.49 (dd, J = 14.5, 13.0 Hz, 1H)	0.03
2.39 (d, <i>J</i> = 12.1 Hz, 1H)	2.36 (dt, J = 12.0, 3.4 Hz, 1H)	0.03
1.83–1.64 (m, 4H)	-	-
1.60 (d, J = 13.5 Hz, 2H)	_	_
1.46-1.40 (m, 2H)	_	-
1.25 (t, <i>J</i> = 7.6 Hz, 3H)	1.22 (t, J = 7.6 Hz, 3H)	0.03
1.18 (dd, <i>J</i> = 13.4, 3.8 Hz, 1H)	_	_
1.12 (s, 3H)	1.08 (s, 3H)	0.04
1.05 (s, 3H)	1.02 (s, 3H)	0.03
1.00 (d, <i>J</i> = 3.8 Hz, 2H)	_	_
0.89 (s, 6H)	0.85 (s, 6H)	0.04

Supplementary Table S6. Comparison table for compound 34 ¹³C NMR in CDCl₃.²

Compound 34,	Andersen's compound 34,	Err
100 MHz	150 MHz	Δδ _C (ppm)
15.9	16.0	-0.1
16.0	16.1	-0.1
18.2	18.3	-0.1
19.6	19.7	-0.1
21.0	21.1	-0.1
21.2	21.3	-0.1
24.6	24.7	-0.1
25.1	25.2	-0.1
33.0	33.1	-0.1
33.3	33.4	-0.1
37.0	37.1	-0.1
39.2	39.3	-0.1
40.0	40.2	-0.2
42.4	42.5	-0.1
47.7	47.9	-0.2
55.8	55.9	-0.1
57.0	57.1	-0.1
60.2	60.4	-0.2
64.2	64.3	-0.1
110.9	111.1	-0.2
133.6	133.7	-0.1
135.7	135.8	-0.1
143.4	143.6	-0.1
144.7	144.8	-0.1
150.2	150.3	-0.1

Supplementary Table S7. Comparison table for yahazunone (4) ¹H NMR in CDCl₃.³

Yahazunone (4),	Baran's yahazunone (4),	Err
400 MHz	600 MHz	$\Delta \delta_{ m C}$ (ppm)
6.74 (d, <i>J</i> = 9.9 Hz, 1H)	6.73 (d, J = 10.1 Hz, 1H)	0.1
6.67 (dd, <i>J</i> = 10.0, 2.4 Hz, 1H)	6.67 (dd, <i>J</i> = 10.1, 2.6 Hz, 1H)	0
6.64 (s, 1H),	6.61 (d, <i>J</i> = 1.7 Hz, 1H)	0.3
2.62 (dd, <i>J</i> = 15.1, 6.0 Hz, 1H)	2.62 (ddd, <i>J</i> = 15.1, 6.1, 1.5 Hz, 1H)	0
2.47 (dd, <i>J</i> = 15.2, 5.1 Hz, 1H)	2.47 (ddd, <i>J</i> = 15.1, 5.0, 1.2 Hz, 1H)	0
1.87 (dt, <i>J</i> = 12.2, 3.0 Hz, 1H)	1.87 (dt, <i>J</i> = 12.5, 3.3 Hz, 1H)	0
1.68–1.62 (m, 2H)	1.72–1.62 (m, 2H)	_
1.60–1.24 (m, 7H)	1.67–1.31 (m, 7H)	_
1.16–1.13 (m, 1H)	1.26 (qd, <i>J</i> = 13.7, 3.3 Hz, 1H)	-
1.20 (s, 3H)	1.20 (s, 3H)	0
1.11 (dt, <i>J</i> = 13.7, 4.1 Hz, 1H)	1.11 (td, <i>J</i> = 13.4, 4.1 Hz, 1H)	0
0.92 (dd, <i>J</i> = 11.9, 1.7 Hz, 1H)	0.92 (dd, <i>J</i> = 12.7, 2.7 Hz, 1H)	0
0.87 (s, 3H)	0.87 (s, 3H)	0
0.86 (s, 3H)	0.86 (s, 3H)	0
0.79 (s, 3H)	0.79 (s, 3H)	0

Supplementary Table S8. Comparison tables for yahazunone (4) ¹³C NMR in CDCl₃.³

Yahazunone (4),	Baran's yahazunone (4),	Err
400 MHz	100 MHz	Δδ _C (ppm)
15.2	15.5	-0.3
18.5	18.7	-0.2
20.4	20.5	-0.1
21.4	21.6	-0.2
23.7	23.9	-0.2
24.6	24.8	-0.2
33.2	33.4	-0.2
33.4	33.6	-0.2
39.4	39.6	-0.2
40.4	40.6	-0.2
41.6	41.8	-0.2
44.8	45.0	-0.2
56.1	56.3	-0.2
61.6	61.8	-0.2
73.9	74.0	-0.1
132.8	133.0	-0.2
136.1	136.3	-0.2
137.0	137.2	-0.2
152.6	152.8	-0.2
187.7	188.0	-0.3
188.0	188.2	-0.2

Supplementary Table S9. Comparison table for (+)-yahazunol (5) ¹H NMR in Acetone- d_{6} .^{3,4}

(+)-Yahazunol (5), 400 MHz	Baran's (+)-yahazunol (5), 400 MHz	Seifert's (+)-yahazunol (5), 360 MHz
8.75 (d, <i>J</i> = 3.7 Hz, 1H)	8.75 (d, <i>J</i> = 3.9 Hz, 1H)	6.64 (d, <i>J</i> = 2.7 Hz, 1H)
7.43 (s, 1H)	7.43 (d, <i>J</i> = 1.3 Hz, 1H)	6.53 (d, <i>J</i> = 8.5 Hz, 1H)
6.65 (d, <i>J</i> = 2.7 Hz, 1H)	6.64 (d, <i>J</i> = 2.8 Hz, 1H)	6.49 (dd, <i>J</i> = 8.5, 2.7 Hz, 1H)
6.53 (d, <i>J</i> = 8.5 Hz, 1H)	6.53 (d, <i>J</i> = 8.5 Hz, 1H)	2.85 (dd, J = 20.7, 2.7 Hz, 1H)
6.48 (dd, <i>J</i> = 8.6, 2.8 Hz, 1H)	6.49 (dd, <i>J</i> = 8.6, 2.8 Hz, 1H)	2.40 (dd, <i>J</i> = 20.7, 8.5 Hz, 1H)
4.86 (d, <i>J</i> = 10.5 Hz, 1H)	4.86 (d, <i>J</i> = 10.5 Hz, 1H)	1.92 (dd, J = 16.9, 4.0 Hz, 1H)
2.87–2.82 (m, 1H)	2.88–2.82 (m, 1H)	_
2.39 (dd, <i>J</i> = 14.9, 6.1 Hz, 1H)	2.39 (dd, <i>J</i> = 15.0, 6.1 Hz, 1H)	_
1.92 (td, <i>J</i> = 12.4, 3.2 Hz, 1H)	1.92 (dt, <i>J</i> = 12.4, 3.2 Hz, 1H)	_
1.86-1.81 (m, 1H)	1.88–1.79 (m, 1H)	1.84 (m, 1H)
1.70–1.64 (m, 2H)	171 152 (m. 411)	1.66–1.62 (m, 2H)
1.61–1.54 (m, 3H)	1.71–1.55 (III, 4H)	1.57, 1.22 (m. 511)
1.38–1.31 (m, 2H)	1.42, 1.20 (m. 6H)	1.37=1.35 (III, 5H)
1.30 (s, 3H)	1.42–1.30 (III, 0H)	1.30 (s, 3H)
1.10 (td, <i>J</i> = 13.7, 4.4 Hz, 1H)	1.10 (td, <i>J</i> = 13.6, 13.1, 4.3 Hz, 1H)	1.11 (m, 1H)
0.97 (s, 3H)	0.97 (d, <i>J</i> = 0.9 Hz, 3H)	0.97 (s, 3H)
0.93 (dd, <i>J</i> = 11.5, 2.4 Hz, 1H)	0.94 (d, <i>J</i> = 2.4 Hz, 1H)	0.94 (d, <i>J</i> = 3.1 Hz, 1H)
0.86 (s, 3H)	0.86 (s, 3H)	0.86 (s, 3H)
0.82 (s, 3H)	0.82 (s, 3H)	0.83 (s, 3H)
0.72 (dt, <i>J</i> = 13.1, 3.5 Hz, 1H)	0.72 (td, <i>J</i> = 13.2, 3.7 Hz, 1H)	0.72 (dd, <i>J</i> = 17.9, 4.4 Hz, 1H)

Supplementary Table S10. Comparison tables for (+)-yahazunol (5) 13 C NMR in Acetone- d_6 .

(+)-Yahazunol (5),	Baran's (+)-yahazunol (5),	Seifert's (+)-yahazunol (5),
100 MHz	150 MHz	75 MHz
15.8	15.8	15.9
18.9	19.0	19.1
21.1	21.1	21.2
21.7	21.8	21.9
24.5	24.5	24.6
27.8	27.9	28
33.7	33.7	33.8
33.7	33.8	33.9
40.5	40.5	41.6
41.3	41.3	41.4
42.4	42.5	42.6
44.4	44.5	44.6
56.8	56.9	57
62.2	62.2	62.4
75	75.1	75.1
114.2	114.2	114.3
117.4	117.4	117.4
118.8	118.8	118.9
131	131.1	131.2
149.6	149.7	149.7
150.3	150.3	150.4

References

- 1. B. N. Kakde, N. Kumar, P. K. Mondal, A. Bisai, Org. Lett., 2016, 18, 1752–1755.
- L. Yang, D. E. Williams, A. Mui, C. Ong, G. Krystal, R. V. Soest, R. J. Andersen, *Org. Lett.*, 2005, 7, 1073–1076.
- 3. D. D. Dixon, J. W. Lockner, Q. Zhou, P. S. Baran, J. Am. Chem. Soc., 2012, 134, 8432-8435.
- 4. T. Laube, J. Schroeder, R. Stehle, K. Seifert, Tetrahedron, 2002, 58, 4299-4309.

3. NMR Spectra of Compounds

Compound 19a

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

ppm (t1)

Compound (E)-20a

¹H NMR (400 MHz, MeOD)

¹³C NMR (100 MHz, MeOD)

Compound (Z)-20a

¹³C NMR (100 MHz, MeOD)

S16

¹H NMR (400 MHz, CDCl₃)

ppm (t1)

¹H NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

and inclusion of the second state

ppm (t1)

¹H NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

S23

¹H NMR (400 MHz, CDCl₃)

S24

¹H NMR (400 MHz, CDCl₃)

S25

¹H NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

ppm (t1)

Compound 19b

¹H NMR (400 MHz, CDCl₃)

Compound (*E*)-20b

ppm (t1)

Compound (Z)-20b

11.00 10.50 10.00 9.50 9.00 8.50 8.00 7.50 7.00 6.50 6.00 5.50 5.00 4.50 4.00 3.50 3.00 2.50 2.00 1.50 1.00 0.50 0.00 -0.50 ppm (t1)

Compound (E)-20c

¹H NMR (400 MHz, CDCl₃)

Compound (Z)-20c

¹H NMR (400 MHz, MeOD)

¹³C NMR (100 MHz, MeOD)

¹H NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

Compound (+)-yahazunone (4)

¹H NMR (400 MHz, CDCl₃)

Compound (+)-yahazunol (5)

¹H NMR (400 MHz, Acetone- d_6)

