Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

The synthesis of chiral branched allylamines through dual

photoredox/nickel catalysis

Mateusz Garbacz, and Sebastian Stecko*

Institute of Organic Chemistry, Polish Academy of Sciences

Kasprzaka 44/52, 01-224 Warsaw, Poland

e-mail: sebastian.stecko@icho.edu.pl

Electronic supplementary information

Table of content

1. General info	1
2. Synthesis of enantioenriched propargylamines	2
3. Synthesis of vinyl bromides	12
4. Synthesis of alkyl bromides	22
5. Photochemical and Ni-catalyzed coupling of vinyl bromides	25
6. Functionalization of selected products	45
7. Synthesis of 4CzIPN photocatalyst	47
8. References	48
9. ¹ H, ¹¹ B, ¹³ C, ³¹ P NMR spectra and HPLC chromatograms	49

1. General info

NMR Spectra (¹H, ¹³C, ¹⁹F, ³¹P) were performed at 298 K. ¹H NMR spectra were referenced to residual chloroform (δ 7.26 ppm) in CDCI₃ and residual DMSO- d_5 (δ 2.50 ppm) in DMSO- d_6 . ¹³C NMR spectra were referenced to CDCI₃ (δ 77.2 ppm) and DMSO- d_6 (δ 39.5 ppm). Data is presented as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant *J* (Hz) and integration.

Reactions were monitored by TLC on silica gel plates (TLC Silica gel 60 F254, Aluminium sheets), HPLC and ¹H NMR spectra. TLC analysis was performed using hexanes/EtOAc as the eluent and visualized using UV light, and KMnO₄ or cerium/molybdenium stains. Column

chromatography was performed by using silica gel from Merck (Silica gel 60, 40–63 μ m). Flash chromatography was accomplished using an automated Reveleris X2 chromatograph, equipped with ELSD and UV (254 nm) detection, with silica cartridges (Merck, Silica gel 60, 40–63 μ m). Solvents were purified by use of drying cartridges through a solvent delivery system. Melting points (°C) are uncorrected. Optical rotation was recorded on Jasco P-2000 polarimeter.

2. Synthesis of enantioenriched propargylamines

N-Cbz (S)-but-3-yn-2-amine (SI-2a):

Step 1: *N*-Methoxy-*N*-methyl hydroxylamine hydrochloride (4.59 g, 47.0 mmol) was suspended in anhydr. toluene and the solvent was evaporated. This procedure was repeated three times to obtain white dry powder. Next, under argon the flask was charged with *N*-Cbz L-alanine (10.0 g, 44.8 mmol), anhydr. CH₂Cl₂ (200 mL) and *i*-Pr₂NEt (7.8 mL, 5.8 g, 44.8 mmol). The mixture was cooled to 0 °C, and a soln. of EDCI hydrochloride (7.3 g, 44.8 mmol) in anhydr. CH₂Cl₂ (50 mL) was added. The cooling bath was removed and the reaction mixture was stirred overnight at rt. Sat. NH₄Cl was added and layers were separated. Aqueous layer was washed three times with CH₂Cl₂. The combined organic layers were dried over Na₂SO₄, filtered and evaporated. The crude product was purified by silica gel column chromatography (40 to 70% AcOEt in hexanes) to give 11.0 g (41.1 mmol, 92% yield) of **SI-1a** as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.25 (m, 5H), 5.55 (s, 1H), 5.14 – 5.04 (m, 2H), 4.78 – 4.71 (m, 1H), 3.76 (s, 3H), 3.20 (s, 3H), 1.34 (d, *J* = 6.7 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.3, 155.7, 136.4, 128.4, 128.04, 127.97, 66.7, 61.6, 47.1, 32.2, 18.6.

Step 2: The Weinreb amide SI-1a (11.0 g, 41.1 mmol) was dissolved in anhydr. CH_2CI_2 (200 mL) under argon and cooled down to -78 °C, followed by a dropwise addition of DIBAL-H

(1 M soln. in hexanes, 82.4 mL, 82.2 mmol) and stirred for 1 h. Next, MeOH (20 mL) was added dropwise, a cooling bath was removed and the resulting mixture was stirred vigorously. After reaching rt, the precipitate was filtered off through Celite pad and the filtrate was evaporated to dryness to give the crude amino aldehyde that was directly used in the next step without further purification.

Step 3: Anhydr. K₂CO₃ (17.3 g, 123.3 mmol) and 4-acetamidobenzenesulfonyl azide (14.8 g, 61.7 mmol) were suspended in anhydr. MeCN (400 mL) under argon. Dimethyl (2-oxopropyl)phosphonate (8.46 mL, 10.24 g, 61.7 mmol) was added dropwise and the resulting mixture was stirred for 3h at rt. Next, a solution of crude amino aldehyde from previous step in anhydr. MeOH (130mL) was added dropwise. The resulting suspension was stirred overnight at rt. Next, Et₂O and H₂O were added and the layers were separated, Aqueous one was washed twice with Et₂O, and combined organic layers were dried over Na₂SO₄, filtered and evaporated. The residue was purified by silica gel column chromatography (10% AcOEt in hexanes) to provide 4.85 g (23.8 mmol, 58%) of amine **SI-2a** as a white solid, m.p. 64.1 – 65.6 °C; [α]_D²⁵ – 58.9 (*c* 1.14, CHCl₃)[Lit.¹ – 59.1 (*c* 0.23, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.29 (m, 5H), 5.12 (s, 2H), 5.02 – 4.93 (m, 1H), 4.62 – 4.50 (m, 1H), 2.28 (d, *J* = 2.3 Hz, 1H), 1.42 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.2, 136.3, 128.5, 128.2, 128.1, 84.1, 70.6, 67.0, 38.9, 22.5; HRMS (ESI-TOF) *m/z* calcd for C₁₂H₁₃NO₂Na [(M+Na)⁺] 226.0844; found: 226.0839; FTIR (film) v: 3289, 3005, 2966, 2935, 1684, 1531, 1455, 1330, 1310, 1262, 1054, 651 cm⁻¹.

N-Boc (S)-but-3-yn-2-amine (SI-2b):

Step 1: Weinreb amide **SI-1b** was prepared following procedure for a preparation of amide **SI-1a** staring from 15.0 g (79.3 mmol) *N*-Boc L-alanine. Purification: column chromatography on silica gel (30 to 50% AcOEt in hexanes). Yield: 17.3 g (74.5 mmol, 94% yield) of **SI-1b**. White

solid; ¹H NMR (400 MHz, CDCl₃) δ 5.24 (s, 1H), 4.67 (s, 1H), 3.75 (s, 3H), 3.19 (s, 3H), 1.42 (s, 9H), 1.30 (d, *J* = 6.7 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.7, 155.2, 79.4, 61.5, 46.5, 32.2, 28.3, 18.6.

Step 2: The Weinreb amide **SI-1b** (10.0 g, 43.1 mmol) was reduced with DIBAL-H (86.1 mmol), as described above, to provide the corresponding amino aldehyde, which was used without further purification.

Step 3: Alkyne **SI-2b** was prepared following procedure of a preparation of alkyne **SI-2a**. Purification: column chromatography on silica gel (5-10% AcOEt in hexanes). Yield: 3.80 g (22.5 mmol, 52%) White solid, m.p. 91.5 – 92.5 °C; $[\alpha]_D^{25}$ –36.2 (*c* 1.12 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 4.71 (s, 1H), 4.46 (s, 1H), 2.23 (d, *J* = 2.3 Hz, 1H), 1.43 (s, 9H), 1.38 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 154.6, 84.6, 79.9, 70.1, 38.3, 28.3, 22.5; HRMS (ESI-TOF) *m/z* calcd for C₉H₁₅NO₂Na [(M+Na)⁺] 192.1000; found: 192.1001; FTIR (film) v: 3328, 2977, 2932, 1680, 1525, 1448, 1253, 1165, 1026 cm⁻¹.

Step 1: Weinreb amide **SI-1c** was prepared following the procedure for a preparation of amide **SI-1a** staring from 1.9 g (7.94 mmol) *N*-Cbz L-serine. Purification: column chromatography on silica gel (50 to 80% AcOEt in hexanes). Yield: 2.1 g (7.44 mmol, 94% yield) of **SI-1c** as a white solid.

Step 2: The Weinreb amide **SI-1c** (2.1 g, 7.44 mmol), imidazole (1.01 g, 14.88 mmol) and DMAP (91 mg, 0.74 mmol) were dissolved in anhydr. CH₂Cl₂ (40 mL) under Ar atmosphere. After cooling to 0 °C, a solution of TBSCI (1.23 g, 8.18 mmol) in anhydr. CH₂Cl₂ (10 mL) was added dropwise. The cooling bath was removed and the resulting mixture was stirred for 2 h. Next, sat. NH₄Cl was added and the aqueous layer was washed with CH₂Cl₂ three times. The combined organic layers were dried over anhydr. Na₂SO₄, filtered and evaporated. The crude product was purified by a column chromatography (SiO₂, 25% AcOEt in hexanes) to provide 2.52 g (6.34 mmol, 85 %) of **SI-1d** as a colourless oil.

Step 3: The Weinreb amide **SI-1d** (1 g, 2.79 mmol) was reduced with DIBAL-H (5.58 mmol), as described above, to provide the corresponding amino aldehyde, which was used without further purification.

Step 4: Alkyne **SI-2c** was prepared following procedure of a preparation of alkyne **SI-2a**. Purification: column chromatography on silica gel (5% AcOEt in hexanes). Yield 427.0 mg (1.28 mmol, 46% yield after 2 steps). Colourless oil; $[\alpha]_D^{25}$ –14.4 (*c* 1.44, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.29 (m, 5H), 5.21 – 5.02 (m, 3H), 4.54 (s, 1H), 3.80 – 3.72 (m, 2H), 2.25 (d, *J* = 2.3 Hz, 1H), 0.90 (s, 9H), 0.08 (s, 3H), 0.07 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.5, 136.3, 128.5, 128.2(×2) 81.5, 71.4, 67.0, 65.3, 45.3, 25.8, 18.3, -5.37, -5.40; HRMS (ESI-TOF) *m/z* calcd for C₁₈H₂₇NO₃NaSi [(M+Na)⁺] 356.1658; found: 356.1652; FTIR (film) v: 3309, 3034, 2930, 2857, 1709, 1502, 1468, 1255, 1121, 1041, 839, 779 cm⁻¹.

N-Cbz (S)-4-methylpent-1-yn-3-amine (SI-2d):

Step 1: Weinreb amide **SI-1e** was prepared following procedure for a preparation of amide **SI-1a** staring from 750 mg (2.98 mmol) *N*-Boc L-valine. Purification: column chromatography on silica gel (20 to 40% AcOEt in hexanes). Yield: 834 mg (2.83 mmol, 95%) of **SI-1e** as a white waxy solid.

Step 2: The Weinreb amide **SI-1e** (540 mg, 2.07 mmol) was reduced with DIBAL-H (4.14mmol), as described above, to provide the corresponding amino aldehyde, which was used without further purification.

Step 3: Alkyne **SI-2d** was prepared following procedure of a preparation of alkyne **SI-2a**. Purification: column chromatography on silica gel (5% AcOEt in hexanes). Yield 200 mg (1.01 mmol, 50%). White waxy solid; $[\alpha]_D^{25}$ -32.6 (*c* 0.45, CHCl₃)[Lit.² -2.7 (*c* 0.25, CH₂Cl₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.40 - 7.28 (m, 5H), 5.12 (s, 2H), 4.99 (s, 1H), 4.45 - 4.32 (m, 1H), 2.27 (d, *J* = 2.4 Hz, 1H), 1.94 (hept, *J* = 6.8 Hz, 1H), 0.99 (d, *J* = 6.8 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 155.56, 136.3, 128.5, 128.2 (2×), 81.7, 72.1, 67.0, 49.2, 32.9, 18.6, 17.5; HRMS (ESI-TOF) *m/z* calcd for $C_{14}H_{17}NO_2Na$ [(M+Na)⁺] 254.1157; found: 254.1158; FTIR (film) v: 3321, 3034, 2954, 1712, 1502, 1468, 1255, 1041 cm⁻¹.

N-Boc (S)-4,4-dimethylpent-1-yn-3-amine (SI-2e):

Step 1: Weinreb amide **SI-1f** was prepared following procedure for a preparation of amide **SI-1a** staring from 750 mg (3.24 mmol) *N*-Boc *L*-tert-leucine. Purification: column chromatography on silica gel (20 to 30% AcOEt in hexanes). Yield: 700 mg (2.55 mmol, 79% yield) of **SI-1f** as a white solid.

Step 2: The Weinreb amide **SI-1f** (274 mg, 1.00 mmol) was reduced with DIBAL-H (2 mmol), as described above, to provide the corresponding amino aldehyde, which was used without further purification.

Step 3: Alkyne **SI-2e** was prepared following the procedure of a preparation of alkyne **SI-2a**. Purification: column chromatography on silica gel (5% AcOEt in hexanes). Yield 98.4 mg (0.47 mmol, 47%). White solid, m.p. 72–73 °C; $[\alpha]_{D^{25}}$ –68.0 (*c* 1.57, CHCI₃); ¹H NMR (400 MHz, CDCI₃) δ 4.67 (s, 1H), 4.25 – 4.18 (m, 1H), 2.23 (d, *J* = 2.4 Hz, 1H), 1.44 (s, 9H), 0.97 (s, 9H); ¹³C NMR (101 MHz, CDCI₃) δ 155.2, 82.5, 79.7, 71.7, 52.1, 35.4, 28.3, 25.7; HRMS (ESI-TOF) *m/z* calcd for C₁₂H₂₁NO₂Na [(M+Na)⁺] 234.1470; found: 234.1461; FTIR (film) v: 3320, 2973, 2930, 1691, 1512, 1448, 1250, 1166, 1026 cm⁻¹.

N-Cbz (S)-2-ethynylpyrrolidine (SI-2f):

Step 1: Weinreb amide **SI-1g** was prepared following procedure for a preparation of amide **SI-1a** staring from 750 mg (3.01 mmol) *N*-Cbz *L*-proline. Purification: column chromatography on silica gel (30 to 60% AcOEt in hexanes). Yield: 809 mg (2.77 mmol, 92% yield) of **SI-1g** as a colourless oil.

Step 2: The Weinreb amide **SI-1g** (646 mg, 2.21 mmol) was reduced with DIBAL-H (4.42 mmol), as described above, to provide the corresponding amino aldehyde, which was used without further purification.

Step 3: Alkyne **SI-2f** was prepared following the procedure of a preparation of alkyne **SI-2a**. Purification: column chromatography on silica gel (10-15% AcOEt in hexanes). Yield 275.3 mg (1.20 mmol, 54% yield). Colourless oil; $[\alpha]_D^{25}$ –108.1 (*c* 2.33, CHCl₃); ¹H NMR (400 MHz, CDCl₃, mixture of rotamers) δ 7.47 – 7.27 (m, 5H), 5.24 – 5.08 (m, 2H), 4.64 – 4.48 (m, 1H), 3.61 – 3.47 (m, 1H), 3.44 – 3.33 (m, 1H), 2.29 – 2.23 (m, 1H), 2.17 – 2.00 (m, 3H), 1.98 – 1.87 (m, 1H); ¹³C NMR (101 MHz, CDCl₃, mixture of rotamers) δ 154.4, 136.8, 128.4, 127.9, 127.7, 83.7, 70.3, 66.9, 48.4 and 48.0, 46.1 and 45.8, 33.8 and 32.9, 24.4 and 23.5; HRMS (ESI-TOF) *m/z* calcd for C₁₄H₁₅NO₂Na [(M+Na)⁺] 252.1000; found: 252.0988; FTIR (film) v: 3033, 2953, 1704, 1447, 1413, 1358, 1184. 1117, 1092 cm⁻¹.

N-Boc (R)-1-phenylprop-2-yn-1-amine (SI-2g):

Step 1: (*R*)-*t*-Butyl sulfinamide (255 mg, 2.10 mmol) was dissolved in anhydr. THF (20 mL), followed by addition of benzaldehyde (212 mg, 204 μ L, 2.00 mmol) and Ti(OEt)₄ (1.37 g, 1.26 mL, 6.00 mmol). The resulting mixture was stirred at rt overnight. Next sat. NaCl (20 mL) was added with vigorous stirring. The resulting precipitation was filtered off through Celite^{*} pad and washed with Et₂O. Water was added to filtrate and layers were separated. Aqueous layer was washed with Et₂O twice. The combined organic layers were dried over anhydr. Na₂SO₄, filtered and evaporated. The residue was purified by a silica gel chromatography (25% AcOEt in hexanes) to afford 356 mg (1.70 mmol, 85% yield) of **SI-3a** as a colourless oil; $[\alpha]_{p}^{25}$ –113.1 (*c* 1.55, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.57 (s, 1H), 7.89 – 7.79 (m, 2H), 7.51 – 7.39 (m, 3H), 1.24 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 162.7, 134.1, 132.4, 129.4, 128.9, 57.7, 22.6.

Step 2: Trimethylsilylacetylene (418 mg, 589 μL, 4.25 mmol) was added dropwise to a cooled (0 °C) solution of *i*PrMgCl (2M in THF, 1.7 mL, 3.4 mmol). The resulting mixture was stirred 30 min at the same temperature and 15 min at rt. In a separate flask compound **SI-3a** (356 mg,

1.70 mmol) was dissolved in anhydr. CH₂Cl₂ (8.5 mL) and cooled down to -78 °C, followed by dropwise addition of prepared Grignard reagent. The resulting mixture was stirred at -78 °C for 2h, warmed to rt and stirred for additional 4h. Next, sat. NH₄Cl and Et₂O were added and layers were separated. Aqueous layer was washed with Et₂O twice. The combined organic layers were dried over anhydr. Na₂SO₄, filtered and evaporated. The crude residue was purified by a silica gel chromatography (30% AcOEt in hexanes) to provide 411 mg (1.34 mmol, 79% yield) of **SI-4a** as a white solid; $[\alpha]_D^{25}$ –22.9 (*c* 0.62, CHCl₃)[Lit.³ –18.4 (*c* 0.54, CHCl₃)]; ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.47 (m, 2H), 7.38 – 7.29 (m, 3H), 5.23 (d, *J* = 5.4 Hz, 1H), 3.63 (d, *J* = 5.4 Hz, 1H), 1.20 (s, 9H), 0.19 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 139.0, 128.6, 128.3, 127.9, 103.9, 92.2, 56.3, 51.0, 22.5, –0.2.

Step 3:⁴ Compound **SI-4a** (355 mg, 1.15 mmol) was dissolved in 24 mL of mixture of CH_2Cl_2 , MeOH and H_2O (7:4:1 v/v), followed by an addition of AgNO₃ (39.2 mg, 0.23 mmol). The reaction mixture was covered with a tinfoil and stirred overnight at rt. Next, sat. NH₄Cl and CH_2Cl_2 were added and layers were separated. Aqueous layer was washed with CH_2Cl_2 twice. The combined organic layers were dried over Na₂SO₄, filtered and evaporated. The residue was used in the next step without further purification.

Step 4: The residue from previous step was dissolved in anhydr. MeOH (3 mL), followed by addition of 4M HCl in dioxane (577 μL, 2.31 mmol). The resulting mixture was stirred at rt for 2h, then the volatiles were evaporated. The residue was used in the next step without further purification.

Step 5: The residue from previous step was dissolved in anhydr. CH_2CI_2 (6 mL) and Et_3N (257 mg, 354 µL, 2.54 mmol) and cooled down to 0 °C, followed by addition of solution of Boc₂O (277 mg, 1.27 mmol) in anhydr. CH_2CI_2 (1 mL). The resulting mixture was stirred at rt overnight. Next, 1 M HCI and CH_2CI_2 were added and layers were separated. The aqueous layer was washed with CH_2CI_2 twice. The combined organic layers were dried over anhydr. Na_2SO_4 , filtered and evaporated. The residue was purified by column chromatography (SiO₂, 5 – 10% AcOEt in hexanes) to give 212 mg (80% yield) of **SI-2g** as a white solid, m.p. 90.8 – 92.1 °C; $[\alpha]_p^{25}$ –18.4 (*c* 0.73, CHCI₃); ¹H NMR (400 MHz, CDCI₃) δ 7.50 (d, *J* = 7.3 Hz, 2H), 7.40 – 7.27 (m, 3H), 5.66 (s, 1H), 5.08 (s, 1H), 2.49 (d, *J* = 2.4 Hz, 1H), 1.46 (s, 9H); ¹³C NMR (101 MHz, CDCI₃) δ 154.7, 138.8, 128.7, 128.1, 126.8, 82.2, 80.3, 72.9, 46.2, 28.34; HRMS (ESI-TOF) *m/z* calcd for C₁₄H₁₇NO₂Na

[(M+Nα)⁺] 254.1157; found: 254.1160; FTIR (film) ν: 3349, 3031, 2979, 1688, 1499, 1454, 13067, 1311, 1243, 1165, 1020 cm⁻¹.

Step 1: Weinreb amide **SI-1h** was prepared following procedure for a preparation of amide **SI-1a** staring from 823 mg (2.70 mmol) *N*-Boc *L*-tryptophan. Purification: column chromatography on silica gel (30 to 70% AcOEt in hexanes). Yield: 888 mg (2.56 mmol, 95% yield) of **SI-1h** as a white solid.

Step 2: The Weinreb amide **SI-1h** (630 mg, 1.81 mmol), NaOH (218 mg, 5.44 mmol) and tetrabutylammonium hydrogensulphate (30.7, 90 μ mol) were suspended in anhydr. CH₂Cl₂ (11 mL), followed by an addition of *p*-TsCl (415 mg, 2.18 mmol) portionwise. The resulting reaction mixture was stirred at rt for 3 h. Next, w after was added and layers were separated. The aqueous layer was washed with CH₂Cl₂ twice. The combined organic layers were dried over anhydr. Na₂SO₄, filtered and evaporated. The residue was purified by column chromatography (SiO₂, 40% AcOEt in hexanes) to provide 673 mg (1.34 mmol, 74% yield) of **SI-1i** as a white solid.

Step 3: The Weinreb amide **SI-1i** (650 mg, 1.30 mmol) was reduced with DIBAL-H (2.6 mmol), as described above, to provide the corresponding amino aldehyde, which was used without further purification.

Step 3: Alkyne **SI-2h** was prepared following the procedure of a preparation of alkyne **SI-2a**. Purification: column chromatography on silica gel (10% AcOEt in hexanes). Yield 290.1 mg (0.66 mmol, 51%). White solid, m.p. 116–117 °C; $[\alpha]_D^{25}$ –2.9 (*c* 0.92, CHCI₃); ¹H NMR (400 MHz, CDCI₃) δ 7.96 (d, *J* = 8.2 Hz, 1H), 7.74 (d, *J* = 8.4 Hz, 2H), 7.56 (d, *J* = 7.8 Hz, 1H), 7.50 (s, 1H), 7.33 – 7.16 (m, 4H), 4.80 – 4.62 (m, 2H), 3.11 – 3.00 (m, 2H), 2.32 (s, 3H), 2.25 (s, 1H), 1.43 (s, 9H); ¹³C NMR (101 MHz, CDCI₃) δ 154.5, 144.8, 135.3, 135.1, 131.1, 129.8, 126.8, 124.9, 124.7, 123.2, 119.7, 117.5, 113.7, 82.7, 80.2, 72.2, 53.4, 31.4, 28.3, 21.5; HRMS (ESI-TOF) *m/z* calcd for C₂₄H₂₆N₂O₄NaS [(M+Na)⁺] 461.1511; found: 461.1523; FTIR (film) ν: 3402, 3053, 2978, 1707, 1598, 1496, 1449, 1367, 1247, 1173, 1122 cm⁻¹.

(R)-N-phenethylbut-3-yn-2-amine (SI-2i)

To a solution of (S)-3-butyn-2-ol (Acros Organics, 98% *ee*) (200 mg, 224 µL, 2.85 mmol) and Et₃N (722 mg, 1 mL, 7.13 mmol) in anhydr. THF (15 mL) was added MsCI (392 mg, 265 µL, 3.42 mmol) at 0 °C. After stirring for 1 h at rt, 2-phenylethylamine (865 mg, 899 µL, 7.13 mmol) was added in a one portion and the reaction mixture was stirred at reflux overnight. After cooling down to rt the reaction mixture was filtered through Celite® and washed with Et₂O. The solvent was evaporated and the crude residue was purified by column chromatography (SiO₂, 50% AcOEt in hexanes + 1% Et₃N) to give 224 mg (1.29 mmol, 45%) of **SI-2i** as a colourless oil. $[\alpha]_{p}^{25}$ +5.3 (*c* 0.58, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.26 (m, 2H), 7.23 – 7.16 (m, 3H), 3.52 (qd, *J* = 6.8, 2.1 Hz, 1H), 3.19 – 3.07 (m, 1H), 2.93 – 2.73 (m, 3H), 2.24 (d, *J* = 2.1 Hz, 1H), 1.35 (d, *J* = 6.8 Hz, 3H) [N-H proton signal is not visible]; ¹³C NMR (101 MHz, CDCl₃) δ 139.9, 128.7, 128.5, 126.2, 86.3, 70.5, 48.5, 45.0, 36.3, 22.3; HRMS (ESI-TOF) *m/z* calcd for C₁₂H₁₆N [(M+H)⁺] 174.1283; found: 174.1284; FTIR (film) v: 3297, 3027, 2931, 2099, 1603, 1453, 1139, 1122, 699 cm⁻¹.

(R)-4-(but-3-yn-2-yl)morpholine (SI-2j)

To a solution of (S)-3-butyn-2-ol (Acros Organics, 98% *ee*) (200 mg, 224 μ L, 2.85 mmol) and Et₃N (1.43 g, 2 mL, 14.3 mmol) in anhydr. THF (15 mL) was added MsCl (654 mg, 442 μ L, 5.71 mmol) at 0 °C. After stirring for 1 h at rt, morpholine (746 mg, 746 μ L, 8.56 mmol) was added in one portion and the reaction mixture was stirred at reflux overnight. After cooling down to rt the reaction mixture was filtered through Celite® and washed with Et₂O. The solvent was evaporated and the crude residue was purified by column chromatography (SiO₂, 20%

AcOEt in hexanes + 1% Et₃N) to give 189 mg (1.36 mmol, 48% yield) of **SI-2j** as a colourless oil. $[\alpha]_{D^{25}}$ +40.4 (*c* 0.53, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 3.81 – 3.66 (m, 4H), 3.44 (qd, *J* = 7.0, 2.2 Hz, 1H), 2.70 – 2.61 (m, 2H), 2.53 – 2.43 (m, 2H), 2.29 (d, *J* = 2.2 Hz, 1H), 1.34 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 82.0, 72.9, 67.0, 51.9, 49.3, 18.9; HRMS (ESI-TOF) *m/z* calcd for C₈H₁₄NO [(M+H)⁺] 140.1075; found: 140.1072; FTIR (film) v: 2958, 2096, 1140, 1118 cm⁻¹.

To a solution of (S)-3-but-yn-2-ol (Acros Organics, 98% *ee*) (200 mg, 224 µL, 2.85 mmol) and Et₃N (1.43 g, 2 mL, 14.3 mmol) in anhydr. THF (15 mL) was added MsCl (654 mg, 442 µL, 5.71 mmol) at 0 °C. After stirring for 1 h at rt, *N*-Boc piperazine (1.59 g, 8.56 mmol) was added in one portion and the reaction mixture was stirred at reflux overnight. After cooling down to rt the reaction mixture was filtered through Celite® and washed with Et₂O. The solvent was evaporated and the crude residue was purified by column chromatography (SiO₂, 10 – 15% AcOEt in hexanes + 1% Et₃N) to give 302 mg (1.27 mmol, 44% yield) of **SI-2k** as a colourless oil. $[\alpha]_{D^{25}} + 28.9$ (*c* 0.74, CHCl₃);¹H NMR (400 MHz, CDCl₃) δ 3.55 – 3.37 (m, 5H), 2.64 – 2.55 (m, 2H), 2.46 – 2.36 (m, 2H), 2.27 (d, *J* = 2.2 Hz, 1H), 1.45 (s, 9H), 1.35 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 154.7, 81.9, 79.6, 72.9, 51.7, 48.7, 28.4, 24.9, 19.1; HRMS (ESI-TOF) *m/z* calcd for C₁₃H₂₂N₂O₂Na [(M+Na)⁺] 261.1579; found: 261.1571; FTIR (film) v: 2979, 2097, 1695, 1456, 1422, 1249, 1171, 1126, 1034 cm⁻¹.

(R)-1-(but-3-yn-2-yl)-1H-imidazole (SI-2l)

Step 1: To a solution of (S)-but-3-yn-2-ol (Acros Organics, 98% ee) (1 g, 1.12 mL, 14.3 mmol) and Et₃N (3.61 g, 5 mL, 35.7 mmol) in anhydr. THF (75 mL) was added MsCl (1.96 g, 1.33 mL, 17.1 mmol) at 0 °C. After stirring for 1 h at rt, sat. aqueous NaHCO₃ was added. Layers were

separated and aqueous layer was washed with Et₂O twice. Combined organic layers were dried over Na₂SO₄, filtered and evaporated to give crude (S)-but-3-yn-2-yl methanesulfonate which was used directly in the next step without further purification. ¹H NMR (400 MHz, CDCl₃) δ 5.29 (qd, J = 6.7, 2.1 Hz, 1H), 3.11 (s, 3H), 2.69 (d, J = 2.1 Hz, 1H), 1.66 (d, J = 6.7 Hz, 3H).

Step 2: The crude (S)-but-3-yn-2-yl methanesulfonate from previous step (300 mg, 2.03 mmol), DIPEA (314 mg, 423 μL, 2.43 mmol) and imidazole (152 mg, 2.23 mmol) were dissolved in anhydr. MeCN (7 mL). The resulting mixture was stirred under microwave irradiation (200 MW, 130 °C, 1h). Solvent was removed and the crude residue was purified using column chromatography (10% *i*PrOH in hexanes) to to give 119 mg (0.99 mmol, 49% yield) of **SI-2I** as a colourless oil. [α]_D²⁵ – 1.3 (*c* 0.60, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.63 (s, 1H), 7.05 (s, 2H), 4.99 (qd, *J* = 7.0, 2.4 Hz, 1H), 2.53 (d, *J* = 2.4 Hz, 1H), 1.71 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 135.6, 129.6, 117.2, 81.0, 73.8, 44.4, 24.0; HRMS (EI) *m/z* calcd for C₇H₈N₂ [M] 120.0687; found: 120.0691; FTIR (film) v: 3289, 2989, 2116, 1615, 1496, 1449, 1227, 1110, 1074, 693 cm⁻¹.

3. Synthesis of vinyl bromides

N-Cbz (S,E)-4-bromobut-3-en-2-amine (1a):

Step 1: A round-bottom flask was charged with CuCN (1.76 g, 19.7 mmol) and evacuated, then backfilled with argon three times. Next, anhydr. THF (130 mL) was added and the resulting suspension was cooled down to -78 °C. Next, *n*-BuLi (2.5 M soln. in hexanes, 16.5 mL, 41.3 mmol) was added over 10 min and the resulting mixture was stirred for additional 30 min. Next, *n*-Bu₃SnH (11.1 mL, 12.03 g, 41.3 mmol) was added dropwise over 15 min. After an additional 30 min, a solution of propargylic amine **SI-2a** (2 g, 9.84 mmol) in anhydr. THF (15 mL) was added dropwise over 15 min and the resulting mixture was stirred for 60 min. Next, sat. NH₄Cl was added and the cooling bath was removed. Once reaction mixture reached rt, AcOEt was added. An aqueous layer was washed twice with AcOEt. The combined organic layers were washed with water and brine, dried over Na₂SO₄, filtered and evaporated. The

crude product was purified by silica gel column chromatography (1 to 3% AcOEt in hexanes) to provide vinyl stannane **SI-5a** in 95% yield (4.63 g).

Step 2: Vinyl stannane **SI–5a** (4.62 g, 9.37 mmol) was dissolved in anhydr. CH₂Cl₂ (40 mL). After cooling to 0 °C, NBS (1.67 g, 9.37 mmol) was added in a one portion. The reaction mixture was stirred for 3 h at rt. Next, sat. NaHCO₃ was added and layers were separated. Aquoeus layer was washed twice with CH₂Cl₂. The combined organic layers were dried over Na₂SO₄, filtered and evaporated. The residue was purified by silca gel column chromatography (5% to 10% AcOEt in hexanes) to provide 2.46 g (8.67 mmol, 93% yield (88% after two steps)) of vinyl bromide **1a** as a white solid. M.p. 48.5–49.5 °C; $[\alpha]_D^{25}$ –36.2 (*c* 1.04, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.25 (m, 5H), 6.26 (d, *J* = 13.7 Hz, 1H), 6.14 (dd, *J* = 13.7, 6.2 Hz, 1H), 5.15 – 4.99 (m, 3H), 4.37 – 4.25 (m, 1H), 1.22 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.5, 138.9, 136.4, 128.6, 128.21, 128.15, 107.0, 66.8, 48.8, 20.4; HRMS (ESI-TOF) *m/z* calcd for C₁₂H₁₄NO₂NaBr [(M+Na)⁺] 306.0106; found: 306.0097; FTIR (film) v: 3319, 3033, 2975, 1696, 1622, 1528, 1453, 1247, 1049, 936, 697 cm⁻¹.

N-Boc (S,E)-4-bromobut-3-en-2-amine (1b):

Step 1: The vinyl stannane SI-5b was prepared following procedure for the synthesis of SI-3a. Yield: 1.60 g (85%, 3.48 mmol) starting from propargylic amine SI-2b (695 mg, 4.11 mmol).
Purification: column chromatography on silica gel (1–2% AcOEt in hexanes).

Step 2: The vinyl bromide **1b** was prepared following procedure for synthesis of **1a**. Yield: 788 mg (3.15 mmol, 92% (78% after two steps)). Purification: column chromatography on silica gel (5–10% AcOEt in hexanes; white solid, m.p. 41.7 – 42.8; $[\alpha]_D^{25}$ –50.0 (*c* 1.05 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.23 (d, *J* = 13.6 Hz, 1H), 6.13 (dd, *J* = 13.6, 6.0 Hz, 1H), 4.58 – 4.46 (m, 1H), 4.27 – 4.13 (m, 1H), 1.42 (s, 9H), 1.20 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 154.8, 139.4, 106.5, 79.7, 48.2, 28.4, 20.5; HRMS (ESI-TOF) *m/z* calcd for C₉H₁₆NO₂BrNa [(M+Na)⁺] 272.0262; found: 272.0262; FTIR (film) v: 3331, 2977, 1690, 1622, 1520, 1367, 1248, 1170, 1049 cm⁻¹.

N-Cbz (S,E)-4-bromo-N-methylbut-3-en-2-amine (1c):

A solution of **1a** (142 mg, 0.50 mmol) in anhydr. THF (3 mL) was cooled to 0 °C and 1M soln. of LiHMDS in THF (0.53 mL, 0.53 mmol) was added dropwise over 10 min. Next, Mel (37 µL, 85 mg, 0.60 mmol) was added and the resulting mixture was stirred overnight at rt. Next, sat. NH₄Cl and Et₂O was added. Aqueous layer was washed twice with Et₂O, the combined organic layers were dried over Na₂SO₄, filtered and evaporated. The residue was purified by column chromatography (SiO₂, 5% AcOEt in hexanes) to provide 93.5 mg (0.31 mmol, 63%) of **1c** as a colorless oil. $[\alpha]_D^{25}$ –64.3 (*c* 0.72 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.26 (m, 5H), 6.27 – 6.14 (m, 2H), 5.14 (s, 2H), 4.97 – 4.69 (m, 1H), 2.78 (s, 3H), 1.24 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.9, 137.5, 136.7, 128.5, 128.0, 127.9, 107.7, 67.3, 52.5, 28.4, 16.6; HRMS (ESI-TOF) *m/z* calcd for C₁₃H₁₆NO₂NaBr [(M+Na)⁺] 320.0262; found: 320.0254; FTIR (film) v: 3032, 2975, 1698, 1618, 1453, 1399, 1314, 1150, 698 cm⁻¹.

(S,E)-N-(4-Bromobut-3-en-2-yl)benzamide (1d):

Step 1: A solution of **1b** (107 mg, 0.43 mmol) in anhydr. THF (2.5 mL) was cooled to 0 °C, and 1M soln. of LiHMDS in THF (0.45 mL, 0.45 mmol) was added. After 10 min., benzoyl chloride (59 μ L, 72 mg, 0.51 mmol) was added and mixture was stirred overnight at rt. Next, sat. NH₄Cl and Et₂O was added. An aqueous layer was washed twice with Et₂O, and the combined organic layers were dried over Na₂SO₄, filtered and evaporated. The crude residue was used directly in the next step.

Step 2:⁵ The residue from the previous step was dissolved in CH₂Cl₂ (2 mL), FeCl₃ (35 mg, 0.21 mmol) and TMSCI (54 μ L, 46 mg, 0.43 mmol) were added and the reaction mixture was stirred for 1 h. Water was added and aqueous layer was washed with CH₂Cl₂. The combined organic layers were dried over Na₂SO₄, filtered and evaporated. The residue was purified by a column chromatography (SiO₂, 15% AcOEt in hexanes) to provide 63.8 mg (0.25 mmol, 58% yield) of **1d** as a white solid, m.p. 73.1 – 74.0 °C; [α]_D²⁵ –10.7 (*c* 1.02 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.78 – 7.73 (m, 2H), 7.51 – 7.45 (m, 1H), 7.39 (dd, *J* = 8.2, 6.7 Hz, 2H), 6.38 (d, *J* = 7.6 Hz,

1H), 6.31 (dd, J = 13.7, 1.1 Hz, 1H), 6.23 (dd, J = 13.7, 5.9 Hz, 1H), 4.81 – 4.69 (m, 1H), 1.34 (d, J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.7, 138.6, 134.2, 131.6, 128.6, 127.0, 107.4, 47.3, 20.1; HRMS (ESI-TOF) m/z calcd for C₁₁H₁₂NONaBr [(M+Na)⁺] 276.0000; found: 275.9993; FTIR (film) v: 3322, 3036, 2972, 1702, 1618, 1452, 1085 cm⁻¹.

N-Ts (S,E)-4-bromobut-3-en-2-amine (1e):

Step 1: A solution of **1b** (107 mg, 0.43 mmol) in anhydr. THF (2.5 mL) was cooled to 0 °C, and 1M soln. of LiHMDS in THF (0.45 mL, 0.45 mmol) was added. After 10 min., p-TsCl (97 mg, 0.51 mmol) was added and mixture was stirred overnight at rt. Next, sat. NH₄Cl and Et₂O was added. An aqueous layer was washed twice with Et₂O, and the combined organic layers were dried over Na₂SO₄, filtered and evaporated. The crude residue was used directly in the next step.

Step 2:⁵ The residue from the previous step was dissolved in CH₂Cl₂ (2 mL), FeCl₃ (35 mg, 0.21 mmol) and TMSCI (54 μ L, 46 mg, 0.43 mmol) were added and the reaction mixture was stirred for 1 h. Water was added and aqueous layer was washed with CH₂Cl₂. The combined organic layers were dried over Na₂SO₄, filtered and evaporated. The residue was purified by a column chromatography (SiO₂, 15% AcOEt in hexanes) to provide 97.2 mg (0.33 mmol, 75% yield) of **1e** as a white solid, m.p. 73.1 – 74.0 °C; $[\alpha]_{D}^{25}$ –14.8 (*c* 0.84 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 8.3 Hz, 2H), 7.30 (d, *J* = 8.3 Hz, 2H), 6.12 (dd, *J* = 13.7, 1.2 Hz, 1H), 5.90 (dd, *J* = 13.7, 6.9 Hz, 1H), 4.80 (d, *J* = 7.7 Hz, 1H), 3.91 (m, 1H), 2.42 (s, 3H), 1.18 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.6, 138.0, 137.7, 129.7, 127.2, 107.7, 51.6, 21.5, 21.3; HRMS (ESI-TOF) *m/z* calcd for C₁₁H₁₄NO₂NaSBr [(M+Na)⁺] 325.9826; found: 325.9820; FTIR (film) v: 3298, 2972, 1619, 1430, 1094 cm⁻¹.

(S,E)-3-(4-Bromobut-3-en-2-yl)-1,1-diethylurea (lf):

Step 1: A solution of **1b** (80 mg, 0.48 mmol) in anhydr. THF (2 mL) was cooled to 0 °C, and 1M soln. of LiHMDS in THF (0.32 mL, 0.32 mmol) was added. After 10 min., *N*,*N*-diethylcarbamoyl chloride (52 mg, 49 μ L, 0.38 mmol) was added and mixture was stirred overnight at rt. Next, sat. NH₄Cl and Et₂O was added. An aqueous layer was washed twice with Et₂O, and the combined organic layers were dried over Na₂SO₄, filtered and evaporated. The crude residue was used directly in the next step.

Step 2: The residue from the previous step was dissolved in CH₂Cl₂ (1.8 mL), cooled down to 0 °C, followed by addition of TFA (0.2 mL). The cooling bath was removed and the resulting mixture was stirred for 2 h. Next, sat. Na₂CO₃ was added and aqueous layer was washed with CH₂Cl₂ twice. The combined organic layers were dried over Na₂SO₄, filtered and evaporated. The residue was purified by a column chromatography (SiO₂, 25% AcOEt in hexanes) to provide 46.0 mg (0.18 mmol, 58%) of **1f** as a colourless oil; $[\alpha]_{D}^{25}$ -12.9 (*c* 2.14 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.28 - 6.15 (m, 2H), 4.54 - 4.44 (m, 1H), 4.18 (d, *J* = 8.0 Hz, 1H), 3.24 (q, *J* = 7.2 Hz, 4H), 1.24 (d, *J* = 6.8 Hz, 3H), 1.13 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 156.1, 140.2, 106.3, 47.9, 41.2, 20.8, 13.9; HRMS (ESI-TOF) *m/z* calcd for C₉H₁₇N₂ONaBr [(M+Na)⁺] 248.0524; found: 248.0528; FTIR (film) v: 3336, 2974, 1690, 1618, 1451, 1150 cm⁻¹.

Step 1: The vinyl stannane **SI-5c** was prepared following the procedure for the synthesis of **SI-5a**. Yield: 298.2 mg (56% yield, 0.56 mmol) starting from propargylic amine **SI-2k** (238.3 mg, 1.00 mmol). Purification: column chromatography on silica gel (1-2% AcOEt in hexanes).

Step 2: The vinyl bromide **1g** was prepared following the procedure for the synthesis of **1a**. Yield: 161.4 mg (0.51 mmol, 92% (51% after two steps)). Purification: column chromatography on silica gel (15% AcOEt in hexanes); colourless oil; $[\alpha]_D^{25}$ +21.0 (*c* 0.66 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.19 – 6.07 (m, 2H), 3.39 (t, *J* = 4.9 Hz, 4H), 3.07 – 2.95 (m, 1H), 2.50 – 2.33 (m, 4H), 1.43 (s, 9H), 1.15 (d, *J* = 6.7 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 154.6, 139.2, 106.4, 79.6, 62.1, 49.2, 28.4, 16.9; HRMS (ESI-TOF) m/z calcd for $C_{13}H_{23}N_2O_2NaBr$ [(M+Na)⁺] 341.0841; found: 341.0825; FTIR (film) v: 2926, 1706, 1619, 1449, 1141, 1119 cm⁻¹.

(R,E)-4-(4-bromobut-3-en-2-yl)morpholine (1h):

Step 1: The vinyl stannane **SI-5d** was prepared following the procedure for the synthesis of **SI-5a**. Yield: 160.0 mg (49%, 0.37 mmol) starting from propargylic amine **SI-2j** (105.0 mg, 0.75 mmol). Purification: column chromatography on silica gel (3% AcOEt in hexanes).

Step 2: The vinyl bromide **1h** was prepared following the procedure for the synthesis of **1a**. Yield: 61.5 mg (0.28 mmol, 75% (37% after two steps)). Purification: column chromatography on silica gel (25% AcOEt in hexanes); colourless oil; $[\alpha]_D^{25}$ +41.5 (*c* 0.39 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.20 – 6.09 (m, 2H), 3.69 (t, *J* = 4.6 Hz, 4H), 2.94 (p, *J* = 6.5 Hz, 1H), 2.48 (m, 4H), 1.16 (d, *J* = 6.5 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 139.5, 106.4, 67.1, 62.5, 50.1, 17.0; HRMS (ESI-TOF) *m/z* calcd for C₈H₁₅NOBr [(M+H)⁺] 220.0337; found: 220.0342; FTIR (film) v: 2959, 2854, 1610, 1451, 1265, 1119 cm⁻¹.

(R,E)-4-bromo-N-phenethylbut-3-en-2-amine (1i):

Step 1: The vinyl stannane **SI-5e** was prepared following the procedure for the synthesis of **SI-5a**. Yield: 245.0 mg (70% yield, 0.53 mmol) starting from propargylic amine **SI-2i** (129.9 mg, 0.75 mmol). Purification: column chromatography on silica gel (5% AcOEt in hexanes).

Step 2: The vinyl bromide **1i** was prepared following the procedure for the synthesis of **1a**. Yield: 78.2 mg (0.31 mmol, 59% yield (41% after two steps)). Purification: column chromatography on silica gel (50% AcOEt in hexanes); colourless oil; $[\alpha]_D^{25}$ +7.0 (*c* 0.46 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.16 (m, 5H), 6.15 (d, *J* = 13.6 Hz, 1H), 6.02 (dd, *J* = 13.6, 8.0 Hz, 1H), 3.21 (m, 1H), 2.92 – 2.73 (m, 4H), 1.14 (d, J = 6.5 Hz, 3H) [N–**H** proton signal not visible]; ¹³C NMR (101 MHz, CDCl₃) δ 141.8, 139.8, 128.7, 128.5, 126.2, 105.5, 56.1, 48.6, 36.5, 21.4; HRMS (ESI– TOF) m/z calcd for C₁₂H₁₇NBr [(M+H)⁺] 254.0544; found: 254.0539; FTIR (film) v: 3311, 3026, 2926, 1619, 1453, 1196, 1119, 939, 699 cm⁻¹.

(R,E)-1-(4-bromobut-3-en-2-yl)-1H-imidazole (1j):

Step 1: The vinyl stannane **SI-5f** was prepared following the procedure for the synthesis of **SI-5a**. Yield: 302.0 mg (86%, 0.73 mmol) starting from propargylic amine **SI-2I** (103.0 mg, 0.86 mmol). Purification: column chromatography on silica gel (50% AcOEt in hexanes).

Step 2: The vinyl bromide **1j** was prepared following the procedure for the synthesis of **1a**. Yield: 120.3 mg (0.60 mmol, 82% (71% after two steps)). Purification: column chromatography on silica gel (AcOEt); colourless oil; $[\alpha]_D^{25}$ -6.2 (*c* 0.89 CHCl₃); ¹H NMR (500 MHz, DMSO-*d*₆, 90 °C) δ 7.64 (s, 1H), 7.17 (s, 1H), 6.92 (s, 1H), 6.49 (m, 2H), 4.99 - 4.90 (m, 1H), 1.53 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (126 MHz, DMSO-*d*₆, 90 °C) δ 138.1, 135.4, 128.2, 117.0, 108.1, 53.3, 20.0; HRMS (ESI-TOF) *m/z* calcd for C₇H₁₀N₂Br [(M+H)⁺] 201.0027; found: 201.0037; FTIR (film) v: 3372, 2980, 1622, 1495, 1227, 1079, 939, 664 cm⁻¹.

N-Boc (E)-3-Bromo-1-phenylprop-2-en-1-amine (1k):

Step 1: The vinyl stannane **SI-5g** was prepared following the procedure for the synthesis of **SI-3a**. Yield: 241.1 mg (85%, 0.46 mmol) starting from propargylic amine **SI-2g** (125.0 mg, 0.54 mmol). Purification: column chromatography on silica gel (1–2% AcOEt in hexanes).

Step 2: The vinyl bromide **1k** was prepared following procedure for synthesis of **1a**. Yield: 121.4 mg (0.39 mmol, 84% (71% after two steps)). Purification: column chromatography on silica gel (5% AcOEt in hexanes); white solid, m.p. 90.8 – 92.1 °C; $[\alpha]_D^{25}$ –4.3 (*c* 0.83 CHCl₃) ¹H NMR

(400 MHz, CDCl₃) δ 7.38 – 7.22 (m, 5H), 6.35 (dd, *J* = 13.6, 6.1 Hz, 1H), 6.26 (d, *J* = 13.6 Hz, 1H), 5.26 (s, 1H), 4.89 (s, 1H), 1.43 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 154.7, 139.7, 137.4, 128.9, 127.9, 126.8, 108.3, 80.1, 56.6, 28.3; HRMS (ESI-TOF) *m/z* calcd for C₁₄H₁₇NO₂Na [(M+Na)⁺] 254.1157; found: 254.1160; FTIR (film) v: 3349, 3031, 2978, 1668, 1499, 1454, 1367, 1311, 1243, 1165 cm⁻¹.

N-Cbz (S,*E*)-2-(2-Bromovinyl)pyrrolidine (11):

Step 1: The vinyl stannane **SI-5h** was prepared following the procedure for the synthesis of **SI-3a**. Yield: 52.8 mg (89%, 1.02 mmol) starting from propargylic amine **SI-2f** (264.1 mg, 1.15 mmol). Purification: column chromatography on silica gel (2–5% AcOEt in hexanes).

Step 2: The vinyl bromide **1I** was prepared following the procedure for the synthesis of **1a**. Yield: 303.5 mg (0.98 mmol, 96% (85% after two steps)). Purification: column chromatography on silica gel (10–15% AcOEt in hexanes); colourless oil; $[\alpha]_{D}^{25}$ –64.5 (*c* 2.21 CHCl₃); ¹H NMR (400 MHz, CDCl₃, mixture of rotamers) δ 7.40 – 7.23 (m, 5H), 6.29 – 6.02 (m, 2H), 5.22 – 4.99 (m, 2H), 4.45 – 4.29 (m, 1H), 3.54 – 3.36 (m, 2H), 2.05 – 1.95 (m, 1H), 1.94 – 1.83 (m, 2H), 1.81 – 1.70 (m, 1H); ¹³C NMR (101 MHz, CDCl₃, mixture of 2 rotamers) δ 154.7, 137.7 and 137.1, 136.7, 128.5, 128.0 (×2), 107.1 and 106.9, 67.0, 59.0 and 58.8, 46.6 and 46.2, 31.9 and 30.9, 23.6 and 22.8; HRMS (ESI-TOF) *m/z* calcd for C₁₄H₁₆NO₂BrNa [(M+Na)⁺] 332.0262; found: 332.0260; FTIR (film) v: 3033, 2953, 1702, 1621, 1448, 1410, 1363, 1179, 1099 cm⁻¹.

Step 1: The vinyl stannane **SI-5i** was prepared following the procedure for the synthesis of **SI-5a**. Yield: 715 mg (83%, 1.14 mmol) starting from propargylic amine **SI-2c** (458 mg, 1.37 mmol). Purification: column chromatography on silica gel (1–2% AcOEt in hexanes). Colourless oil.

Step 2: The vinyl bromide **Im** was prepared following the procedure for the synthesis of **Ia**. Yield: 466 mg (1.12 mmol, 98% (81% after two steps)). Purification: column chromatography on silica gel (5% AcOEt in hexanes); colourless oil; $[\alpha]_{D}^{25}$ –13.6 (*c* 2.21 CHCl₃); ¹H NMR (400 MHz, CDCl₃) & 7.40 – 7.28 (m, 5H), 6.34 (d, *J* = 13.8 Hz, 1H), 6.21 (dd, *J* = 13.8, 6.7 Hz, 1H), 5.20 – 5.05 (m, 3H), 4.24 (s, 1H), 3.70 (dd, *J* = 10.1, 4.2 Hz, 1H), 3.64 (dd, *J* = 10.1, 3.6 Hz, 1H), 0.89 (s, 9H), 0.05 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) & 155.6, 136.3, 135.4, 128.6, 128.21, 128.17, 108.4, 67.0, 64.7, 54.6, 25.8, 18.3, –5.46, –5.48; HRMS (ESI-TOF) *m/z* calcd for C₁₈H₂₈NO₃BrNaSi [(M+Na)⁺] 436.0920; found: 436.0908; FTIR (film) v: 3325, 3033, 2954, 2857, 1704, 1623, 1500, 1464, 1254, 1115, 837, 777 cm⁻¹.

Step 1: The vinyl stannane **SI-5j** was prepared following the procedure for the synthesis of **SI-5a**. Yield: 397.5 mg (88% yield, 0.54 mmol) starting from propargylic amine **SI-2h** (270.0 mg, 0.62 mmol). Purification: column chromatography on silica gel (1–4% AcOEt in hexanes).

Step 2: The vinyl bromide **In** was prepared following the procedure for the synthesis of **Ia**. Yield: 163.7 mg (0.32 mmol, 58% (51% after two steps)). Purification: column chromatography on silica gel (5-10% AcOEt in hexanes); white waxy solid; $[\alpha]_D^{25}$ -3.2 (*c* 0.72 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 8.3 Hz, 1H), 7.73 (d, *J* = 8.1 Hz, 2H), 7.50 (d, *J* = 7.8 Hz, 1H), 7.38 (s, 1H), 7.31 (t, *J* = 7.7 Hz, 1H), 7.26 - 7.19 (m, 3H), 6.16 - 6.02 (m, 2H), 4.60 - 4.40 (m, 2H), 2.96 (dd, *J* = 14.6, 5.6 Hz, 1H), 2.87 (dd, *J* = 14.6, 7.2 Hz, 1H), 2.33 (s, 3H), 1.42 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 154.8, 144.9, 137.0, 135.2, 135.1, 130.8, 129.9, 126.8, 124.9, 124.5, 123.3, 119.6, 117.7, 113.8, 107.8, 80.0, 59.1, 30.7, 28.3, 21.6; HRMS (ESI-TOF) *m/z* calcd for C₂₄H₂₇N₂O₄BrNas [(M+Na)⁺] 541.0773; found: 541.0767; FTIR (film) v: 3400, 3062, 2977, 1701, 1622, 1598, 1504, 1448, 1227, 1173, 1122, 1092 cm⁻¹.

N-Cbz Methyl (R,E)-2-amino-4-bromobut-3-enoate (10):

Step 1: Vinyl bromide **Im** (268.0 mg, 0.65 mmol) was dissolved in anhydr. THF (4 mL) and the solution was cooled down to 0 °C, followed by a dropwise addition of TBAF (1M solution in THF, 0.71 mL, 0.71 mmol). After 1h, sat. NH₄CI was added and layers were separated. An aqueous layer was washed with three times with AcOEt. The combined organic layers were dried over anhydr. Na₂SO₄, filtered and evaporated. The crude residue was purified by column chromatography (SiO₂, 40% AcOEt in hexanes) to provide 190.6 mg (0.64 mmol, 98%) of intermediate amino alcohol.

Step 2: The amino alcohol from previous step (100 mg, 0.33 mmol) was dissolved in MeCN (1 mL) and phosphate buffer pH 6.8 (1 mL) and cooled down to 0 °C, followed by an addition of TEMPO (10.4 mg, 0.067 mmol), bis(acetoxy)iodobenzene (10.7 mg, 0.033 mmol) and NaClO₂ (80% purity, 113 mg, 1.00 mmol). The reaction mixture was stirred vigorously at rt overnight. Next, water and AcOEt were added and layers were separated. An aqueous layer was washed with AcOEt (×6). The combined organic layers were dried over Na₂SO₄, filtered and evaporated to dryness to give the crude residue that was used directly in the next step without further purification.

Step 3: The crude aminoacid from previous step was dissolved in anhydr. MeOH (2 mL), followed by a dropwise addition of (trimethylsilyl)diazomethane (2M solution in Et₂O, 0.5 mL, 1.0 mmol). After 30 min the reaction mixture was evaporated and the residue was purified by a column chromatography (SiO₂, 10% AcOEt in hexanes) to provide 63.9 mg (0.19 mmol, 58%) of vinyl bromide **1o** as white waxy solid; $[\alpha]_{D^{25}}$ -46.8 (*c* 0.64 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.43 - 7.28 (m, 5H), 6.47 (d, *J* = 13.7 Hz, 1H), 6.22 (dd, *J* = 13.7, 6.5 Hz, 1H), 5.61 - 5.54 (m, 1H), 5.12 (s, 2H), 4.94 - 4.85 (m, 1H), 3.77 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.6, 155.4, 135.9, 131.6, 128.6, 128.3, 128.2, 110.7, 67.4, 55.9, 53.1; HRMS (ESI-TOF) *m/z* calcd for C₁₃H₁₄NO₄BrNa [(M+Na)⁺] 350.0004; found: 349.9998; FTIR (film) v: 3330, 3033, 2963, 1747, 1721, 1623, 1521, 1454, 1331, 1283, 1212, 1054 cm⁻¹.

N-Cbz (S,E)-1-Bromo-4-methylpent-1-en-3-amine (1p):

Step 1: The vinyl stannane SI-5k was prepared following the procedure for synthesis of SI-5a. Yield: 183.6 mg (88% yield, 0.35 mmol) starting from propargylic amine SI-2d (92 mg, 0.40 mmol). Purification: column chromatography on silica gel (1–2% AcOEt in hexanes).

Step 2: The vinyl bromide **1p** was prepared following the procedure for synthesis of **1a**. Yield: 98.5 mg (0.32 mmol, 90% (79% after two steps)). Purification: column chromatography on silica gel (5% AcOEt in hexanes); white waxy solid; $[\alpha]_D^{25}$ –15.8 (*c* 1.39 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, *J* = 5.2 Hz, 5H), 6.27 (d, *J* = 13.6 Hz, 1H), 6.08 (dd, *J* = 13.6, 7.2 Hz, 1H), 5.10 (s, 2H), 4.77 (s, 1H), 4.02 (s, 1H), 1.79 (hept, *J* = 6.8 Hz, 1H), 0.92 (d, *J* = 6.8 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 155.8, 136.3 (×2), 128.6, 128.22, 128.15, 107.7, 67.0, 58.7, 32.2, 18.6, 18.3; HRMS (ESI-TOF) *m/z* calcd for C₁₄H₁₈NO₂BrNa [(M+Na)⁺] 334.0419; found: 334.0413; FTIR (film) v: 3321, 2973, 1690, 1622, 1511, 1363, 1247, 1170, 1050 cm⁻¹.

N-Boc (S,E)-1-Bromo-4,4-dimethylpent-1-en-3-amine (1q):

Step 1: The vinyl stannane SI-5I was prepared following the procedure for the synthesis of SI-5a. Yield: 149.4 mg (77%, 0.30 mmol) starting from propargylic amine SI-2e (81.5 mg, 0.39 mmol). Purification: column chromatography on silica gel (1–2% AcOEt in hexanes).

Step 2: The vinyl bromide **1q** was prepared following the procedure for the synthesis of **1a**. Yield: 76.4 mg (0.26 mmol, 88% (68% after two steps)). Purification: column chromatography on silica gel (5% AcOEt in hexanes); white solid, m.p. 69.2 – 71.1; $[\alpha]_D^{25}$ –34.7 (*c* 1.31 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.23 (d, *J* = 13.5 Hz, 1H), 6.12 (dd, *J* = 13.5, 7.5 Hz, 1H), 4.58 – 4.49 (m, 1H), 3.89 (s, 1H), 1.43 (s, 9H), 0.90 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 155.3, 135.5, 107.7, 79.6, 61.3, 34.3, 28.4, 26.2; HRMS (ESI-TOF) *m/z* calcd for C₁₂H₂₂NO₂BrNa [(M+Na)⁺] 314.0732; found: 314.0729; FTIR (film) v: 3298, 2965, 1676, 1622, 1534, 1476, 1454, 1366, 1311, 1251, 1173, 1062 cm⁻¹.

4. Synthesis of alkyl bromides

t-Butyl (S)-(1-bromo-3-phenylpropan-2-yl)carbamate (SI-7):

A soln. of Boc₂O (7.6 g, 34.7 mmol) in 20 mL of anhydr. CH₂Cl₂ was added to the cooled (0 °C) solution of L-phenylalaninol (5 g, 33.0 mmol) and Et₃N (5.1 mL, 3.7 g, 36.3 mmol) in anhydr. CH₂Cl₂ (60 mL) under Ar. The mixture was adjusted to rt and stirred overnight. Next, water was added and organic layer was separated and washed with sat. NaHCO₃ twice, dried over Na₂SO₄, filtered and evaporated. The residue was dissolved in anhydr. THF (150 mL) under argon followed by addition of PPh₃ (13.0 g, 49.6 mmol). After cooling to 0 °C, CBr₄ (16.5 g, 49.6 mmol) was added in one portion and the mixture was adjusted to rt and stirred for 2 h. The resulting suspension was filtered through short Celite pad and washed with cold THF. The filtrate was concentrated and the residue was purified by a column chromatography on silica gel (5% AcOEt in hexanes). Yield 6.3 g (61%); ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.20 (m, 5H), 4.79 (s, 1H), 4.08 – 4.00 (m, 1H), 3.52 (dd, *J* = 10.5, 4.2 Hz, 1H), 3.36 (dd, *J* = 10.5, 3.4 Hz, 1H), 2.94 (dd, *J* = 13.6, 6.0 Hz, 1H), 2.86 (dd, *J* = 13.6, 8.3 Hz, 1H), 1.43 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 154.9, 137.1, 129.3, 128.7, 126.8, 79.8, 51.5, 38.9, 37.3, 28.3.

2-(3-Bromopropyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (SI-8):

Young's flask was charged with LiAlH₄ (78 mg, 2.07 mmol), allyl bromide (1.79 mL, 2.5 g, 20.7 mmol) and HBpin (4.5 mL, 3.9 mg, 31.0 mmol) under Ar (**Caution:** gas evolution may occur during reaction set-up). The mixture was stirred at 110 °C for 3h. After cooling to rt, CH_2CI_2 was added and the mixture was filtered through short pad of silica gel. After concentration, the residue was purified by a column chromatography on silica gel (10% AcOEt in hexanes). Yield 2.9 g (56 %); ¹H NMR (400 MHz, CDCI₃) δ 3.43 (t, *J*= 7.7Hz, 2H), 2.02 –1.95 (m, 2H), 1.26 (s, 12H), 0.93 (t, *J*= 7.7 Hz, 2H); ¹³C NMR (101 MHz, CDCI₃) δ 83.2, 36.2, 27.5, 24.8 (carbon α to boron not visible); ¹¹B NMR (128 MHz, CDCI₃) δ 33.6.

Dimethyl (3-bromopropyl)phosphonate (SI-9):

A mixture of P(OMe)₃ (2.6 mL, 2.77 g, 22.2 mmol) and 1,3-dibromopropane (7.6 mL, 15.0 g, 74.3 mmol) was stirred at 150 °C for 30 min. After cooling to rt, the impurities were removed under reduced pressure. Yield 4.8 g (93%); ¹H NMR (400 MHz, CDCl₃) δ 3.73 (d, J_{H-P} = 10.8 Hz, 6H), 3.45 (td, J = 6.5, 1.1 Hz, 2H), 2.20 – 2.07 (m, 2H), 1.97 – 1.83 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 52.42 and 52.35 (d, J_{C-P} 6.3 Hz), 33.5 and 33.3 (d, J_{C-P} 18.9 Hz), 25.83 and 25.78 (d, J_{C-P} 4.4 Hz), 24.1 and 22.7 (d, J_{C-P} 142.5 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 33.1.

2-(2-Bromoethyl)oxirane (SI-10):

Homoallyl bromide (2.0 mL, 2.66 g, 19.7 mmol) was dissolved in anhydr. CH_2CI_2 (40 mL) and m-CPBA (77% purity, 6.6 g, 29.6 mmol) was added. After stirring at rt overnight, sat. NaHCO₃ was added. An organic layer was washed twice with sat. NaHCO₃, dried over Na₂SO₄, filtered and concentrated. Yield 2.8 g (94%); ¹H NMR (400 MHz, CDCI₃) δ 3.50 (t, J = 6.7 Hz, 2H), 3.11 – 3.04 (m, 1H), 2.82 (t, J = 4.4 Hz, 1H), 2.56 (dd, J = 4.4, 2.7 Hz, 1H), 2.20 – 1.98 (m, 2H); ¹³C NMR (101 MHz, CDCI₃) δ 50.7, 47.0, 35.7, 28.9.

5-Bromo-N-methoxy-N-methylpentanamide (SI-11):

5-Bromovaleric acid (800 mg, 4.42 mmol) and N,O-dimethylhydroxylamine hydrochloride (474 mg, 4.86 mmol) was dissolved in anhydr. DCM (20 mL), followed by addition of DIPEA (628 mg, 847 µL, 4.86 mmol). The mixture was cooled down to 0 °C, followed by addition of solution of EDCI (932 mg, 4.86 mmol) in anhydr. DCM (10 mL). The resulting mixture was stirred at rt overnight. Next, sat. aqueous NH₄Cl was added and layers were separated. Aqueous layer was washed with DCM twice. The combined organic layers were dried with anhydr. Na₂SO₄, filtered and evaporated. The crude residue was purified using a silica gel column chromatography (40% AcOEt in hexanes) to give 812 mg (82% yield) of **SI-11** as a

colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 3.64 (s, 3H), 3.38 (t, *J* = 6.7 Hz, 2H), 3.13 (s, 3H), 2.41 (t, *J* = 7.2 Hz, 2H), 1.92 - 1.69 (m, 4H).

5-Bromo-1-phenylpentan-1-one (SI-12):

5-Bromo-*N*-methoxy-*N*-methylpentanamide **SI-11** (300 mg, 1.34 mmol) was dissolved in anhydr. Et₂O (5 mL) and cooled down to 0 °C, followed by dropwise addition of phenylmagnesium bromide (3 M solution in Et₂O, 0.58 mL, 1.74 mmol). The resulting mixture was stirred at rt for 2 h, followed by addition of sat. aqueous NH₄Cl and layers were separated. The aqueous layer was washed with Et₂O twice. The combined organic layers were dried with anhydr. Na₂SO₄, filtered and evaporated. The crude residue was purified using a silica gel column chromatography (20% AcOEt in hexanes) to give 303.4 mg (94%) of **SI-12** as a white waxy solid. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 7.3 Hz, 2H), 7.55 (t, *J* = 7.3 Hz, 1H), 7.45 (t, *J* = 7.3 Hz, 2H), 3.43 (t, *J* = 6.0 Hz, 2H), 3.00 (t, *J* = 6.2 Hz, 2H), 2.01 – 1.84 (m, 4H).

5-Bromo-1-phenylpentan-1-one (SI-13):

Ethyl 5-bromovaleriate (1.32 g, 1.0 mL, 6.3 mmol) was dissolved in anhydr. DCM (40 mL) and cooled down to -78 °C, followed by dropwise addition of DIBAL-H (1 M solution in hexane, 6.3 mL, 6.3 mmol). After 1 h, 10% aqueous HCI was added and the mixture was warmed to rt. Layers were separated and aqueous layer was washed with DCM twice. The combined organic layers were dried over anhydr. Na₂SO₄, filtered and evaporated. The resulting mixture was distilled (4.5 torr, 82 °C) to give 920 mg (88%) of **SI-13** as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.77 (t, *J* = 1.5 Hz, 1H), 3.43 – 3.36 (m, 2H), 2.48 (td, *J* = 7.1, 1.5 Hz, 2H), 1.93 – 1.85 (m, 2H), 1.82 – 1.74 (m, 2H).

5. Photochemical and Ni-catalyzed coupling of vinyl bromides

5.1. Photoredox/Ni-catalyzed coupling of vinyl bromides with alkyl bromides (Method

A):

General procedure: A 8 mL reaction vial was charged with NiCl₂-glyme (0.55 mg, 1 mol%)

and dtbbpy (0.74 mg, 1.1 mol%). Next, anhydr. DME (0.5 mL) is added under an argon atmosphere and the solution in stirred for 10 min. To a second vial, 4CzIPN photocatalyst (3.9 mg, 2 mol%), vinyl bromide **4** (71 mg, 0.25 mmol), Na₂CO₃ (54 mg, 2 eq.), and alkyl bromide (if solid, 2 eq.) were added. Next, anhydr. DME (2 mL), alkyl bromide (if liquid and not volatile, 2 eq.) and TTMS (68 mg, 85 μ L) were added sequentially under an argon atmosphere. Finally, the nickel complex from the first vial was

Figure 1. Photoredox reaction set-up.

transferred into second one and the reaction mixture was flushed with argon for 10 min. In case of volatile alkyl bromides, it was added after the argon flush. Next, the resulting mixture was stirred vigorously and irradiated with two Higrow 36W LED bulb overnight ($18 \times 2W$ LEDs in each lamp, 450-460 nm) (vial was placed ca. 7 cm away from each lamp) (Figure 1). The vial was cooled with a cooling fan to avoid overheating (ca. 25 °C). When vinyl bromide was consumed according to TLC analysis (KMnO₄ stain) reaction mixture concentrated in vacuo and the residue was purified by column chromatography.

5.2. Decarboxylative photoredox/Ni-catalyzed coupling of vinyl bromides with alkyl carboxylic acids (Method B):

RCOOH (1.5 eq.) NiCl₂-glyme (10 mol%), $R^{2} R^{3} R^{5} R^{4} R^{4} R^{4} R^{4} R^{4} R^{4} R^{4} R^{6} R^{6$ 2,2'-bpy (15 mol%).

General procedure: A vial was charged with $NiCl_2$ -glyme (5.49 mg, 10 mol%) and bpy (5.86 mg, 15 mol%), 4CzIPN photocatalyst (4.9 mg, 3 mol%), vinyl bromide **4** (71 mg, 0.25 mmol),

 Cs_2CO_3 (164 mg, 1.5 eq.), and carboxylic acid (1.5 eq.). Vial was purged with argon and anhydr. DMF (2 mL) was added. The resulting mixture was stirred vigorously and irradiated with two Higrow 36W LED bulb overnight (18x2W LEDs, 450–460 nm) (vial was placed ca. 7 cm away from each lamp) (Figure 1). The vial was cooled with a cooling fan to avoid overheating (ca. 25 °C). When vinyl bromide was consumed (TLC analysis, KMnO₄ stain) Et₂O and brine were added to reaction mixture. The organic phase was washed twice with brine and dried over Na₂SO₄. After removal of solvents, the residue was purified by a column chromatography.

(S,E)-Ethyl 7-((benzyloxycarbonyl)amino)oct-5-enoate (2a):

NHCbz

Method A: Yield: 79.0 mg (82%) starting from 85.8 mg (0.30 mmol) of vinyl bromide **1a**; purification: flash column chromatography on silica gel (12 g column cartridge, 0–30% AcOEt in hexanes, flow 15 mL/min, 30 min); colourless oil; $[\alpha]_{D^{25}}$ –11.4 (*c* 1.09, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.26 (m, 5H), 5.54 (dt, *J* = 15.5, 6.6 Hz, 1H), 5.42 (dd, *J* = 15.5, 5.5 Hz, 1H), 5.08 (s, 2H), 4.76 – 4.64 (m, 1H), 4.27 – 4.18 (m, 1H), 4.11 (q, *J* = 7.1 Hz, 2H), 2.26 (t, *J* = 7.5 Hz, 2H), 2.03 (m, 2H), 1.68 (p, *J* = 7.5 Hz, 2H), 1.27 – 1.18 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 173.5, 155.5, 136.7, 132.5, 129.4, 128.5, 128.0 (2x), 66.6, 60.2, 48.2, 33.6, 31.5, 24.3, 21.2, 14.2; HRMS (ESI-TOF) *m/z* calcd for C₁₈H₂₅NO₄Na [(M+Na)⁺] 342.1681; found: 342.1673; FTIR (film) v: 3330, 3033, 2938, 1725, 1525, 1454, 1233, 1059, 1028, 966 cm⁻¹.

Vinyl bromide 1a	NiCl₂-glyme (1 mol%)	dtbbpy (1.1 mol%)	4CzIPN (2 mol%)	DME	Time	Yield of 2a
0.25 mmol (71 mg)ª	0.55 mg	0.74 mg	3.9 mg	2.5 mL	12 h	82%
1 mmol (285 mg) ^b	2.2 mg	3 mg	15.5 mg	10 mL	14 h	80%
2.5 mmol (700 mg)°	5.5 mg	7.5 mg	40 mg	25 mL	16 h	81%
5 mmol (1.4 g) ^a	11 mg	15 mg	80 mg ^e	50 mL	22 h	80%

Large-scale synthesis of product 2a:

^a 8 mL vial (Ø 1 cm, h 12 cm); ^b 30 mL vial (Ø 2.1 cm, h 9 cm); ^c 40 mL test tube (Ø 2.1 cm, h 12 cm); ^d 60 mL test tube (Ø 2.3 cm, h 15 cm); ^e To compare 5 mmol scale cross-coupling reaction of **1a** with ethyl 4-bromobutyrate catalyzed by $(Ir[dF(CF_3)ppy]_2(dtbby))PF_6$ complex (MW 1121.91 g/mol) would require 112 mg of this catalyst.

(S,E)-Ethyl 7-((tert-butoxycarbonyl)amino)oct-5-enoate (3):

Method A: Yield: 48.8 mg (71%) starting from 60 mg (0.24 mmol) of vinyl bromide **1b**; purification: flash column chromatography on silica gel (12 g column cartridge, 0–25% AcOEt in hexanes, flow 15 mL/min, 30 min); colourless oil; $[\alpha]_{D}^{25}$ –15.1 (*c* 1.60, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.55 – 5.46 (m, 1H), 5.39 (dd, *J* = 15.5, 5.5 Hz, 1H), 4.41 (s, 1H), 4.10 (m, 3H), 2.26 (t, *J* = 7.5 Hz, 2H), 2.03 (m, 2H), 1.67 (p, *J* = 7.5 Hz, 2H), 1.42 (s, 9H), 1.23 (t, *J* = 7.1 Hz, 3H), 1.16 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.5, 155.1, 133.0, 128.9, 79.1, 60.2, 47.6, 33.6, 31.5, 28.4, 24.4, 21.2, 14.2; HRMS (ESI-TOF) *m/z* calcd for C₁₅H₂₇NO₄Na [(M+Na)⁺] 308.1838; found: 308.1841; FTIR (film) v: 3330, 2978, 1721, 1454, 1236, 1059, 1031 cm⁻¹.

(S,E)-Ethyl 7-(((benzyloxy)carbonyl)(methyl)amino)oct-5-enoate (4):

Method A: Yield: 60.5 mg (65%) starting from 83.0 mg (0.28 mmol) vinyl bromide **1c**; purification: flash column chromatography on silica gel (12 g column cartridge, 0-25% AcOEt in hexanes, flow 15 mL/min, 30 min); colourless oil; $[\alpha]_D^{25}$ –38.2 (*c* 0.89, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.27 (m, 5H), 5.55 – 5.39 (m, 2H), 5.14 (s, 2H), 4.90 – 4.70 (m, 1H), 4.12 (q, J

= 7.1 Hz, 2H), 2.73 (s, 3H), 2.27 (t, J = 7.5 Hz, 2H), 2.06 (m, 2H), 1.69 (p, J = 7.5 Hz, 2H), 1.24 (t, J = 7.1 Hz, 3H), 1.19 (d, J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.5, 156.1, 137.1, 130.8, 130.8, 128.4, 127.84, 127.75, 67.0, 60.2, 56.5, 51.67 33.6, 31.7, 24.4, 21.5, 14.2; HRMS (ESI-TOF) m/z calcd for C₁₉H₂₇NO₄Na [(M+Na)⁺] 356.1836; found: 356.1838; FTIR (film) v: 3031, 2977, 1734, 1699, 1452, 1400, 1316, 1146, 1028, 698 cm⁻¹.

(S,E)-Ethyl 7-benzamidooct-5-enoate (5):

Method A: Yield: 52.4 mg (73%) starting from 63.0 mg (0.25 mmol) of vinyl bromide **1d**; purification: flash column chromatography on silica gel (12 g column cartridge, 0–30% AcOEt in hexanes, flow 15 mL/min, 30 min); colourless oil; $[\alpha]_{D^{25}}$ –9.6 (*c* 0.70, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.73 (m, 2H), 7.50 – 7.43 (m, 1H), 7.42 – 7.37 (m, 2H), 6.13 (d, *J* = 8.2 Hz, 1H), 5.67 – 5.47 (m, 2H), 4.78 – 4.64 (m, 1H), 4.09 (q, *J* = 7.1 Hz, 2H), 2.27 (t, *J* = 7.5 Hz, 2H), 2.10 – 2.02 (m, 2H), 1.69 (p, *J* = 7.5 Hz, 2H), 1.30 (d, *J* = 6.8 Hz, 3H), 1.22 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.6, 166.5, 134.8, 132.2, 131.3, 129.8, 128.5, 126.9, 60.2, 46.7, 33.7, 31.6, 24.3, 20.8, 14.2; HRMS (ESI-TOF) *m/z* calcd for C₁₇H₂₃NO₃Na [(M+Na)⁺] 312.1576; found: 312.1575; FTIR (film) v: 3312, 3060, 2978, 1733, 1637, 1533, 1490, 1333, 1247, 1179, 1159, 1030, 970, 713, 696 cm⁻¹.

(S,E)-Ethyl 7-(4-methylphenylsulfonamido)oct-5-enoate (6):

Method A: yield: 55.0 mg (77%) starting from 64.0 mg (0.21 mmol) of vinyl bromide **1e**; purification: flash column chromatography on silica gel (12 g column cartridge, 0–35% AcOEt in hexanes, flow 15 mL/min, 30 min); colourless oil; $[\alpha]_{D}^{25}$ –16.5 (*c* 0.41, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.70 (d, *J* = 8.1 Hz, 2H), 7.27 (d, *J* = 8.1 Hz, 2H), 5.38 (dtd, *J* = 15.4, 6.7, 1.2 Hz, 1H), 5.21 (ddt, *J* = 15.4, 6.4, 1.4 Hz, 1H), 4.50 (d, *J* = 7.5 Hz, 1H), 4.11 (q, *J* = 7.1 Hz, 2H), 3.85 (m, 1H), 2.41 (s, 3H), 2.19 (t, *J* = 7.5 Hz, 2H), 1.89 (m, 2H), 1.55 (p, *J* = 7.5 Hz, 2H), 1.24 (t, *J* = 7.1 Hz, 3H), 1.15 (d, *J* = 6.7 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.4, 143.2, 138.2, 131.7, 130.5, 129.5, 127.2, 60.2, 51.3, 33.6, 31.3, 24.1, 22.1, 21.5, 14.2; HRMS (ESI-TOF) *m/z* calcd for C₁₇H₂₅NO₄NaS [(M+Na)⁺] 362.1402; found: 362.1408; FTIR (film) v: 3277, 2979, 1732, 1599, 1452, 1428, 1329, 1160, 1094, 664, 552 cm⁻¹. **Ethyl (S,***E***)-7-(3,3-diethylureido)oct-5-enoate (7):**

Method A: Yield: 33.8 mg (73%) starting from 40.6 mg (0.16 mmol) of vinyl bromide **1f**; purification: flash column chromatography on silica gel (12 g column cartridge, 10–45% AcOEt in hexanes, flow 15 mL/min, 30 min); colourless oil; $[\alpha]_{D}^{25}$ –2.1 (*c* 1.30, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.58 – 5.42 (m, 2H), 4.49 – 4.36 (m, 1H), 4.11 (q, *J* = 7.2 Hz, 3H), 3.24 (q, *J* = 7.1 Hz, 4H), 2.27 (t, *J* = 7.5 Hz, 2H), 2.09 – 2.00 (m, 2H), 1.69 (p, *J* = 7.5 Hz, 2H), 1.24 (t, *J* = 7.1 Hz, 3H), 1.20 (d, *J* = 6.7 Hz, 3H), 1.12 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 173.6, 156.5, 133.9, 128.5, 60.2, 47.2, 41.1, 33.7, 31.6, 24.4, 21.5, 14.2, 13.9; HRMS (ESI-TOF) *m/z* calcd for C₁₅H₂₈N₂O₃Na [(M+Na)⁺] 307.1998; found: 307.1993; FTIR (film) v: 3342, 2974, 1734, 1624, 1525, 1452, 1375, 1267, 1189, 969 cm⁻¹.

Tert-butyl (R,E)-4-(8-ethoxy-8-oxooct-3-en-2-yl)piperazine-1-carboxylate (8):

Method A: Yield: 32.8 mg (49%) starting from 60.6 mg (0.19 mmol) of vinyl bromide **1g**; purification: flash column chromatography on silica gel (12 g column cartridge, 5–20% AcOEt in hexanes, flow 15 mL/min, 30 min); colourless oil; $[\alpha]_{D}^{25}$ +7.7 (*c* 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ ¹H NMR (400 MHz, CDCl₃) δ 5.47 (dt, *J* = 15.4, 6.4 Hz, 1H), 5.37 (dd, *J* = 15.4, 6.6 Hz, 1H), 4.11 (q, *J* = 7.1 Hz, 2H), 3.40 (t, *J* = 5.0 Hz, 4H), 2.88 (p, *J* = 6.6 Hz, 1H), 2.49 – 2.31 (m, 4H), 2.27 (t, *J* = 7.5 Hz, 2H), 2.05 (m, 2H), 1.69 (p, *J* = 7.5 Hz, 2H), 1.44 (s, 9H), 1.24 (t, *J* = 7.1 Hz, 3H), 1.12 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.5, 154.7, 132.4, 131.0, 79.5, 62.2, 60.2, 49.5, 33.7, 31.7, 30.9, 28.4, 24.5, 17.7, 14.2; HRMS (ESI-TOF) *m/z* calcd for C₁₉H₃₅N₂O₄ [(M+H)⁺] 355.2591; found: 355.2588; FTIR (film) v: 2958, 1715, 1451, 1145, 1119 cm⁻¹.

Ethyl (*R*,*E*)-7-morpholinooct-5-enoate (9):

Method A: Yield: 26.5 mg (49%) starting from 46.3 mg (0.21 mmol) of vinyl bromide **1h**; purification: flash column chromatography on silica gel (12 g column cartridge, 10-40% AcOEt in hexanes, flow 15 mL/min, 30 min); colourless oil; $[\alpha]_D^{25}$ +16.6 (*c* 0.63, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.48 (dt, *J* = 15.3, 6.5 Hz, 1H), 5.37 (dd, *J* = 15.3, 6.6 Hz, 1H), 4.12 (q, *J* = 7.1 Hz, 2H), 3.70 (t, *J* = 4.7 Hz, 4H), 2.81 (p, *J* = 6.6 Hz, 1H), 2.47 (m, 4H), 2.28 (t, *J* = 7.5 Hz, 2H), 2.06 (m, 2H), 1.70 (p, *J* = 7.5 Hz, 2H), 1.24 (t, *J* = 7.1 Hz, 3H), 1.13 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃)

δ 173.5, 132.9, 131.1, 67.2, 62.7, 60.2, 50.5, 33.7, 31.7, 24.6, 17.8, 14.2; HRMS (ESI-TOF) m/z calcd for $C_{14}H_{26}NO_3$ [(M+H)⁺] 256.1913; found: 256.1913; FTIR (film) v: 2958, 1736, 1451, 1373, 1119 cm⁻¹.

Ethyl (*R*,*E*)-7-(phenethylamino)oct-5-enoate (10):

Method A: Yield: 15.6 mg (42%) starting from 32.8 mg (0.13 mmol) of vinyl bromide **1i**; purification: flash column chromatography on silica gel (12 g column cartridge, 20-80% AcOEt in hexanes, flow 15 mL/min, 30 min); colourless oil; $[\alpha]_{D}^{25}$ +3.9 (*c* 0.71, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.24 (m, 2H), 7.23 – 7.15 (m, 3H), 5.51 – 5.40 (dt, *J* = 15.3, 6.8 Hz, 1H), 5.27 (dd, *J* = 15.3, 6.6 Hz, 1H), 4.12 (q, *J* = 7.1 Hz, 2H), 3.14 (p, *J* = 6.6 Hz, 1H), 2.88 – 2.75 (m, 4H), 2.28 (t, *J* = 7.6 Hz, 2H), 2.07 – 2.00 (m, 2H), 1.69 (p, *J* = 7.5 Hz, 2H), 1.25 (t, *J* = 7.1 Hz, 3H), 1.10 (d, *J* = 6.4 Hz, 3H) [N-**H** proton signal not visible]; ¹³C NMR (101 MHz, CDCl₃) δ 173.6, 135.3, 129.7, 128.7, 128.4, 126.1, 60.2, 55.7, 48.7, 36.5, 33.7, 31.6, 24.6, 22.0, 14.2 [one signal in aromatic region is missing, propably due to overlapping]; HRMS (ESI-TOF) *m/z* calcd for C₁₈H₂₈NO₂ [(M+H)⁺] 290.2120; found: 290.2124; FTIR (film) v: 3327, 3026, 2928, 1735, 1603, 1453, 1371, 1162, 1031, 700 cm⁻¹.

Ethyl (*R*,*E*)-7-(1*H*-imidazol-1-yl)oct-5-enoate (11):

Method A: Yield: 34.3 mg (72%) starting from 40.3 mg (0.20 mmol) of vinyl bromide **1***j*; purification: flash column chromatography on silica gel (12 g column cartridge, 20–100% AcOEt in hexanes, flow 15 mL/min, 30 min); colourless oil; $[\alpha]_{D}^{25}$ –9.1 (*c* 0.83, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ ¹H NMR (400 MHz, CDCl₃) 7.49 (s, 1H), 7.03 (s, 1H), 6.90 (s, 1H), 5.63 – 5.47 (m, 2H), 4.67 (p, *J* = 6.7 Hz, 1H), 4.10 (q, *J* = 7.1 Hz, 2H), 2.26 (t, *J* = 7.5 Hz, 2H), 2.11 – 2.02 (m, 2H), 1.69 (p, *J* = 7.5 Hz, 2H), 1.54 (d, *J* = 6.7 Hz, 3H), 1.23 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.3, 135.6, 131.8, 131.2, 129.2, 117.2, 60.3, 54.5, 33.5, 31.3, 24.1, 21.3, 14.2; HRMS (ESI-TOF) *m/z* calcd for C₁₃H₂₀N₂O₂Na [(M+Na)⁺] 259.1422; found: 259.1430; FTIR (film) v: 3377, 3110, 2979, 1731, 1601, 1495, 1452, 1375, 1225, 1164 cm⁻¹.

Benzyl (S,E)-pent-3-en-2-yl carbamate (2b):

NHCbz

Method A: Yield: 34.8 mg (63%) starting from 71.0 mg (0.25 mmol) of vinyl bromide **1a**; purification: flash column chromatography on silica gel (12 g column cartridge, 0–20% AcOEt in hexanes, flow 15 mL/min, 30 min); white solid, m.p. 77.9–79.3 °C; $[\alpha]_D^{25}$ –14.5 (*c* 0.77, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.28 (m, 5H), 5.60 (dq, *J* = 15.0, 6.3 Hz, 1H), 5.46 – 5.38 (dd, *J* = 15.0 Hz, 6.4 Hz 1H), 5.14 – 5.06 (m, 2H), 4.69 (s, 1H), 4.27 – 4.19 (m, 1H), 1.67 (d, *J* = 6.4 Hz, 3H), 1.21 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.6, 136.7, 132.7, 128.5, 128.07, 128.03, 125.4, 66.5, 48.3, 21.2, 17.6; HRMS (ESI-TOF) *m/z* calcd for C₁₃H₁₇NO₂Na [(M+Na)⁺] 242.1157; found: 242.1150; FTIR (film) v: 3316, 3033, 2975, 1683, 1540, 1453, 1271, 1050, 967, 697 cm⁻¹.

(S,E)-Benzyl hex-3-en-2-ylcarbamate (2c)

Method A: Yield: 46.9 mg (78%) starting from 72.8 mg (0.26 mmol) of vinyl bromide **1a**; purification: flash column chromatography on silica gel (12 g column cartridge, 0–15% AcOEt in hexanes, flow 15 mL/min, 30 min); white solid, m.p. $53.9-54.7 \,^{\circ}$ C; $[\alpha]_{D^{25}}-11.4$ (*c* 0.52, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.27 (m, 5H), 5.63 (dt, *J* = 15.4, 7.0 Hz, 1H), 5.40 (dd, *J* = 15.4, 5.7 Hz, 1H), 5.10 (s, 2H), 4.67 (s, 1H), 4.29 – 4.19 (m, 1H), 2.02 (p, *J* = 7.0 Hz, 2H), 1.22 (d, *J* = 6.8 Hz, 3H), 0.97 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.6, 136.7, 132.3, 130.4, 128.5, 128.07, 128.05, 66.5, 48.3, 25.2, 21.3, 13.4; HRMS (ESI-TOF) *m/z* calcd for C₁₄H₁₉NO₂Na [(M+Na)⁺] 256.1313; found: 256.1307; FTIR (film) v: 3319, 3033, 2961, 1683, 1542, 1455, 966 cm⁻¹.

(S,E)-Benzyl (6-(1,3-dioxolan-2-yl)hex-3-en-2-yl)carbamate (2d):

Method A: yield: 83.4 mg (87%) starting from 89.3 mg (0.31 mmol) of vinyl bromide **1a**; purification: flash column chromatography on silica gel (12 g column cartridge, 0-30% AcOEt in hexanes, flow 15 mL/min, 30 min); colourless oil; $[\alpha]_{D}^{25}$ –13.0 (*c* 0.88, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.25 (m, 5H), 5.60 (dt, *J* = 15.7, 6.7 Hz, 1H), 5.44 (dd, *J* = 15.7, 5.4 Hz, 1H), 5.09 (s, 2H), 4.84 (s, 1H), 4.73 (s, 1H), 4.29 – 4.20 (m, 1H), 3.94 (s, 2H), 3.82 (s, 2H), 2.16 – 2.11 (m, 2H), 1.79 – 1.64 (m, 2H), 1.20 (d, *J* = 6.7 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.5, 136.7, 132.0, 129.6, 128.5, 128.0 (x2), 104.0, 66.6, 64.9, 48.2, 33.4, 26.6, 21.2; HRMS (ESI-TOF) *m/z* calcd for C₁₇H₂₃NO₄Na [(M+Na)⁺] 328.1525; found: 328.1516; FTIR (film) v: 3354, 3031, 2920, 1699, 1606, 1496, 1453, 1208, 1020, 736, 698 cm⁻¹.

Benzyl (S,E)-(7-((t-butyldimethylsilyl)oxy)hept-3-en-2-yl)carbamate (2e):

Method A: Yield: 71.4 mg (76%) starting from 71.0 mg (0.25 mmol) of vinyl bromide **1a**; purification: flash column chromatography on silica gel (12 g column cartridge, 0–15% AcOEt in hexanes, flow 15 mL/min, 30 min); colourless oil; $[\alpha]_D^{25}$ –9.7 (*c* 0.67, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.28 (m, 5H), 5.59 (dt, *J* = 15.5, 6.6 Hz, 1H), 5.42 (dd, *J* = 15.5, 5.8 Hz, 1H), 5.10 (s, 2H), 4.66 (s, 1H), 4.29 – 4.20 (m, 1H), 3.59 (t, *J* = 6.4 Hz, 2H), 2.11 – 2.05 (m, 2H), 1.64 – 1.53 (m, 2H), 1.21 (d, *J* = 6.8 Hz, 3H), 0.90 (s, 9H), 0.04 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 155.5, 136.7, 131.7, 130.3, 128.5, 128.0 (×2), 66.6, 62.4, 48.3, 32.3, 28.4, 26.0, 21.2, 18.3, -5.3; HRMS (ESI-TOF) *m/z* calcd for C₂₁H₃₅NO₃NaSi [(M+Na)⁺] 400.2284; found: 400.2293; FTIR (film) v: 3327, 3033, 2930, 2857, 1701, 1527, 1453, 1330, 1250, 1101, 1049, 837, 776 cm⁻¹.

(2S,E)-Benzyl (5-(3,4-dimethoxyphenyl)pent-3-en-2-yl)carbamate (2f):

Method A: Yield: 43.5 mg (63%) starting from 71.0 mg (0.25 mmol) of vinyl bromide **1a**; purification: flash column chromatography on silica gel (12 g column cartridge, 0-25% AcOEt in hexanes, flow 15 mL/min, 30 min); colourless oil ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.25 (m, 5H), 5.60 (dt, *J* = 15.5, 6.7 Hz, 1H), 5.45 (dd, *J* = 15.5, 5.7 Hz, 1H), 5.09 (s, 2H), 4.69 (s, 1H), 4.28 – 4.19 (m, 1H), 2.89 (tt, *J* = 6.1, 2.6 Hz, 1H), 2.72 (td, *J* = 4.4, 2.1 Hz, 1H), 2.45 (dd, *J* = 5.0, 2.6 Hz, 1H), 2.25 – 2.09 (m, 2H), 1.66 – 1.51 (m, 2H), 1.21 (d, *J* = 6.7 Hz, 3H) ¹³C NMR (101 MHz, CDCl₃) δ 155.6, 136.6, 132.4, 129.3, 128.5, 128.1 (2x), 66.6, 51.7, 48.1, 47.1, 32.1, 28.6, 21.2; HRMS (ESI-TOF) *m/z* calcd for C₁₆H₂₁NO₃Na [(M+Na)⁺] 298.1419; found: 298.1414; FTIR (film) v: 3325, 3033, 2939, 1703, 1527, 1451, 1238, 1042, 967 cm⁻¹.

N²-Cbz N⁶-Boc (2S,6S,E)-7-phenylhept-3-en-2,6-diamine (2g):

Method A: Yield: 82.1 mg (74%) starting from 72.3 mg (0.25 mmol) of vinyl bromide **1a**; purification: flash column chromatography on silica gel (12 g column cartridge, 0-30% AcOEt in hexanes, flow 15 mL/min, 30 min); white solid, m.p. 130.0–131.7 °C; $[\alpha]_D^{25}$ –23.3 (*c* 0.60, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.13 (m, 10H), 5.57 (dt, *J* = 15.5, 6.2 Hz, 1H), 5.45 (dd, *J* = 15.5, 5.8 Hz, 1H), 5.09 (d, *J* = 5.7 Hz, 2H), 4.71 (s, 1H), 4.45 (s, 1H), 4.24 (q, *J* = 6.9 Hz, 1H), 3.96 – 3.78 (m, 1H), 2.83 – 2.63 (m, 2H), 2.21 (dt, *J* = 14.1, 6.2 Hz, 1H), 2.07 (dt, *J* = 14.1, 6.9 Hz, 1H), 1.40 (s, 9H), 1.21 (d, *J* = 6.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.5, 155.4, 138.1, 136.1, 134.9, 129.4, 128.5, 128.4, 128.1

(2x), 126.4, 126.3, 79.1, 66.6, 51.2, 48.4, 40.1, 36.5, 28.4, 21.1; HRMS (ESI-TOF) m/z calcd for $C_{26}H_{34}N_2O_4Na$ [(M+Na)⁺] 461.2416; found: 461.2409; FTIR (film) v: 3350, 3062, 3032, 2936, 1686, 1531, 1445, 1307, 1238, 1173, 1053, 985 cm⁻¹.

(S,E)-Benzyl octa-3,7-dien-2-ylcarbamate (2h)

Method A: Yield: 55.4 mg (84%) starting from 72.2 mg (0.25 mmol) of vinyl bromide **1a**; purification: flash column chromatography on silica gel (12 g column cartridge, 0–15% AcOEt in hexanes, flow 15 mL/min, 30 min); white solid, m.p. 40.2–41.3 °C; $[\alpha]_{D}^{25}$ –13.8 (*c* 0.77, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.27 (m, 5H), 5.79 (tdd, *J* = 16.0, 7.8, 4.9 Hz, 1H), 5.63 – 5.54 (m, 1H), 5.43 (dd, *J* = 15.4, 5.7 Hz, 1H), 5.10 (s, 2H), 5.04 – 4.93 (m, 2H), 4.67 (s, 1H), 4.25 (q, *J* = 7.1 Hz, 1H), 2.14 – 2.07 (m, 4H), 1.21 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.5, 138.0, 136.7, 132.0, 129.9, 128.5, 128.0 (x2), 114.8, 66.6, 48.2, 33.3, 31.5, 21.2; HRMS (ESI-TOF) *m/z* calcd for C₁₆H₂₁NO₂Na [(M+Na)⁺] 282.1470; found: 282.1461; FTIR (film) v: 3322, 3033, 2939, 1686, 1643, 1535, 1452, 1240, 1028, 966 cm⁻¹.

(S,E)-Benzyl (8-(trimethylsilyl)oct-3-en-7-yn-2-yl)carbamate (2i):

Method A: yield: 57.2 mg (63%) starting from 77.8 mg (0.27 mmol) of vinyl bromide **1a**; purification: flash column chromatography on silica gel (12 g column cartridge, 0–15% AcOEt in hexanes, flow 15 mL/min, 30 min); colorless oil; $[\alpha]_D^{25}$ –13.1 (*c* 0.95, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.25 (m, 5H), 5.61 (dt, *J* = 15.5, 6.2 Hz, 1H), 5.48 (dd, *J* = 15.5, 5.5 Hz, 1H), 5.10 (s, 2H), 4.66 (s, 1H), 4.33 – 4.21 (m, 1H), 2.29 – 2.17 (m, 4H), 1.23 (d, *J* = 6.7 Hz, 3H), 0.14 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 155.5, 136.6, 132.9, 128.49, 128.47, 128.1 (x2), 106.5, 85.0, 66.6, 48.2, 31.3, 21.2, 19.9, 0.1; HRMS (ESI-TOF) *m/z* calcd for C₁₉H₂₇NO₂NaSi [(M+Na)⁺] 352.1709; found: 352.1706; FTIR (film) v: 3324, 3033, 2958, 2174, 1699, 1529, 1454, 1249, 1052, 966, 843, 759, 697 cm⁻¹.

(S,E)-Benzyl (8-chlorooct-3-en-2-yl)carbamate (2j):

Method A: Yield: 66.2 mg (86%) starting from 73.6 mg (0.26 mmol) of vinyl bromide **1a**; purification: flash column chromatography on silica gel (12 g column cartdridge, 0–15% AcOEt in hexanes, flow 15 mL/min, 30 min); colorless oil; $[\alpha]_{D}^{25}$ –16.0 (*c* 0.49, CHCl₃); ¹H NMR

(400 MHz, CDCI₃) δ 7.37 – 7.28 (m, 5H), 5.56 (dt, *J* = 15.5, 7.1 Hz, 1H), 5.42 (dd, *J* = 15.5, 5.7 Hz, 1H), 5.10 (s, 2H), 4.68 (s, 1H), 4.29 – 4.18 (m, 1H), 3.51 (t, *J* = 7.1 Hz, 2H), 2.04 (q, *J* = 7.1 Hz, 2H), 1.75 (p, *J* = 7.1 Hz, 2H), 1.50 (p, *J* = 7.1 Hz, 2H), 1.21 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCI₃) δ 155.5, 136.7, 132.2, 129.9, 128.5, 128.1 (2×), 66.6, 48.2, 44.9, 32.0, 31.3, 26.3, 21.2; HRMS (ESI-TOF) *m/z* calcd for C₁₆H₂₃NO₂CI [(M+H)⁺] 296.1417; found: 296.1406; FTIR (film) v: 3335, 3034, 2945, 1726, 1516, 1454, 1282, 1197, 1167, 1028 cm⁻¹.

(S,E)-Benzyl (7-cyanohept-3-en-2-yl)carbamate (2k):

Method A: Yield: 66.1 mg (89%) starting from 76.7 mg (0.27 mmol) of vinyl bromide **1a**; purification: flash column chromatography on silica gel (12 g column cartridge, 0–30% AcOEt in hexanes, flow 15 mL/min, 30 min); colourless oil; $[\alpha]_D^{25}$ –10.6 (*c* 1.22, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.24 (m, 5H), 5.54 – 5.42 (m, 2H), 5.08 (s, 2H), 4.74 (s, 1H), 4.28 – 4.18 (m, 1H), 2.28 (t, *J* = 7.1 Hz, 2H), 2.19 – 2.11 (m, 2H), 1.70 (p, *J* = 7.1 Hz, 2H), 1.21 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.6, 136.6, 134.0, 128.5, 128.1 (2×), 127.7, 119.6, 66.6, 48.2, 30.8, 24.7, 21.1, 16.3; HRMS (ESI-TOF) *m/z* calcd for C₁₆H₂₀N₂O₂Na [(M+Na)⁺] 295.1422; found: 295.1416; FTIR (film) v: 3329, 3033, 2939, 2246, 1702, 1527, 1453, 1235, 1057, 968 cm⁻¹.

(S,E)-Benzyl (7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hept-3-en-2yl)carbamate (2l):

Method A: Yield: 70.7 mg (76%) starting from 71.1 mg (0.25 mmol) of vinyl bromide **1a**; purification: flash column chromatography on silica gel (12 g column cartridge, 0-25% AcOEt in hexanes, flow 15 mL/min, 30 min); colourless oil; $[\alpha]_D^{25}$ –10.0 (*c* 0.98, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.25 (m, 5H), 5.56 (dt, *J* = 15.4, 6.7 Hz, 1H), 5.39 (dd, *J* = 15.4, 5.7 Hz, 1H), 5.09 (s, 2H), 4.67 (s, 1H), 4.29 – 4.16 (m, 1H), 2.05 – 1.97 (m, 2H), 1.46 (p, *J* = 7.9 Hz, 2H), 1.23 (s, 15H), 0.75 (t, *J* = 7.9 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 155.5, 136.7, 131.6, 130.6, 128.5, 128.1, 128.0, 82.9, 66.5, 48.2, 34.7, 24.8, 23.6, 21.2 (carbon α to boron not visible); ¹¹B NMR (128 MHz, CDCl₃) δ 32.9; HRMS (ESI-TOF) *m/z* calcd for C₂₁H₃₂NO₄BNa [(M+Na)⁺] 396.2322; found: 396.2316; FTIR (film) v: 3334, 3033, 2978, 2934, 1705, 1525, 1454, 1377, 1319, 1233, 1145, 1027, 966 cm⁻¹.

(S,E)-Benzyl (7-(dimethoxyphosphoryl)hept-3-en-2-yl)carbamate (2m):

Method A: Yield: 75.3 mg (85%) starting from 71.2 mg (0.25 mmol) of vinyl bromide **1a**; purification: flash column chromatography on silica gel (12 g column cartridge, 0-3% MeOH in AcOEt, flow 15 mL/min, 30 min); colourless oil; $[\alpha]_{D}^{25}$ –8.3 (*c* 0.91, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.25 (m, 5H), 5.56 – 5.33 (m, 2H), 5.05 (s, 2H), 4.80 (s, 1H), 4.25 – 4.15 (m, 1H), 3.68 (d, *J*_{H-P} = 10.6 Hz, 6H), 2.09 – 2.02 (m, 2H), 1.74 – 1.58 (m, 4H), 1.18 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.5, 136.6, 133.0, 128.8, 128.5, 128.0 (2×), 66.5, 52.3 and 52.2 (d, *J*_{C-P} = 6.5 Hz), 48.2, 32.8 and 32.6 (d, *J*_{C-P} = 16.8 Hz), 24.6 and 23.2 (d, *J*_{C-P} = 141.3 Hz), 21.83 and 21.78 (d, *J*_{C-P} = 4.9 Hz), 21.1; ³¹P NMR (162 MHz, CDCl₃) δ 34.8; HRMS (ESI-TOF) *m/z* calcd for C₁₇H₂₆NO₅NaP [(M+Na)⁺] 378.1446; found: 378.1436; FTIR (film) v: 3275, 3033, 2953, 1715, 1535, 1455, 1237, 1334, 840 cm⁻¹.

Benzyl (S,E)-(9-(methoxy(methyl)amino)-9-oxonon-3-en-2-yl)carbamate (2n):

Method A: Yield: 60.7 mg (70%) starting from 71.0 mg (0.25 mmol) of vinyl bromide **1a**; purification: flash column chromatography on silica gel (12 g column cartridge, 10–40% AcOEt in hexanes, flow 15 mL/min, 30 min); colourless oil; $[\alpha]_D^{25}$ –10.6 (*c* 0.95, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.25 (m, 5H), 5.56 (dt, *J* = 15.4, 6.5 Hz, 1H), 5.40 (dd, *J* = 15.4, 5.6 Hz, 1H), 5.08 (s, 2H), 4.72 (s, 1H), 4.26 – 4.15 (m, 1H), 3.65 (s, 3H), 3.15 (s, 3H), 2.39 (t, *J* = 7.5 Hz, 2H), 2.05 – 1.99 (m, 2H), 1.61 (p, *J* = 7.5 Hz, 2H), 1.39 (p, *J* = 7.7 Hz, 2H), 1.19 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.5, 155.5, 136.7, 131.7, 130.3, 128.5, 128.04, 127.99, 66.5, 61.2, 48.2, 32.2, 31.9, 31.7, 28.9, 24.1, 21.2; HRMS (ESI-TOF) *m/z* calcd for C₁₉H₂₈N₂O₄Na [(M+Na)⁺] 371.1947; found: 371.1939; FTIR (film) v: 3320, 3033, 2934, 1717, 1658, 1527, 1454, 1239, 1110, 1049 cm⁻¹.

Benzyl (S,E)-(9-oxo-9-phenylnon-3-en-2-yl)carbamate (2o):

Method A: Yield: 54.8 mg (60%) starting from 71.0 mg (0.25 mmol) of vinyl bromide **1a**; purification: flash column chromatography on silica gel (12 g column cartridge, 0-25% AcOEt in hexanes, flow 15 mL/min, 30 min); white waxy solid; $[\alpha]_D^{25}$ –9.3 (*c* 0.55, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 7.3 Hz, 2H), 7.54 (t, *J* = 7.3 Hz, 1H), 7.45 (t, *J* = 7.3 Hz, 2H), 7.37 – 7.23 (m, 5H), 5.58 (dt, *J* = 15.5, 6.4 Hz, 1H), 5.42 (dd, *J* = 15.5, 5.5 Hz, 1H), 5.09 (s, 2H), 4.70 (s, 1H), 4.29
- 4.19 (m, 1H), 2.95 (t, J = 7.5 Hz, 2H), 2.09 – 2.02 (m, 2H), 1.73 (p, J = 7.5 Hz, 2H), 1.45 (p, J = 7.5 Hz, 2H), 1.21 (d, J = 6.7 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 200.3, 155.5, 137.1, 136.7, 132.9, 131.9, 130.2, 128.6, 128.5, 128.0 (×2), 66.5, 48.3, 38.4, 32.0, 28.8, 23.8, 21.2 [one of aromatic carbon signal is missing due to overlapping]; HRMS (ESI-TOF) m/z calcd for C₂₃H₂₇NO₃Na [(M+Na)⁺] 388.1889; found: 388.1881; FTIR (film) v: 3337, 3032, 2931, 1715, 1687, 1597, 1523, 1451, 1234, 1049 cm⁻¹.

Benzyl (S,E)-(9-oxonon-3-en-2-yl)carbamate (2p):

Method A: Yield: 37.8 mg (51%) starting from 71.0 mg (0.25 mmol) of vinyl bromide **1a**; purification: flash column chromatography on silica gel (12 g column cartridge, 5–30% AcOEt in hexanes, flow 15 mL/min, 30 min); colourless oil; $[\alpha]_{D^{25}}$ –7.9 (*c* 0.51, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.75 (t, *J* = 1.7 Hz, 1H), 7.38 – 7.26 (m, 5H), 5.56 (dt, *J* = 15.5, 6.1 Hz, 1H), 5.41 (dd, *J* = 15.5, 5.6 Hz, 1H), 5.09 (s, 2H), 4.61 (s, 1H), 4.28 – 4.20 (m, 1H), 2.41 (td, *J* = 7.5, 1.7 Hz, 2H), 2.08 – 2.01 (m, 2H), 1.62 (p, *J* = 7.5 Hz, 2H), 1.41 (p, *J* = 7.5 Hz, 2H), 1.21 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 202.5, 154.7, 136.6, 132.1, 129.9, 128.5, 128.1 (x2), 66.6, 48.2, 43.7, 31.8, 28.6, 21.5, 21.2; HRMS (ESI-TOF) *m/z* calcd for C₁₇H₂₃NO₃Na [(M+Na)⁺] 312.1576; found: 312.1572; FTIR (film) v: 3327, 3032, 2930, 2859, 2747, 1711, 1589, 1452, 1333, 1240, 1051 cm⁻¹.

(S,E)-Benzyl (6-phenylhex-3-en-2-yl)carbamate (2q)

Method A: Yield: 62.1 mg (76%) starting from 74.6 mg (0.26 mmol) of vinyl bromide **1a**; purification: flash column chromatography on silica gel (12 g column cartridge, 0–15% AcOEt in hexanes, flow 15 mL/min, 30 min); white solid, m.p. 75.5–76.5 °C; $[\alpha]_D^{25}$ –19.0 (*c* 1.10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.24 (m, 7H), 7.22 – 7.14 (m, 3H), 5.64 (dt, *J* = 15.5, 7.4 Hz, 1H), 5.42 (dd, *J* = 15.5, 5.8 Hz, 1H), 5.12 (s, 2H), 4.67 – 4.62 (m, 1H), 4.31 – 4.20 (m, 1H), 2.68 (t, *J* = 7.4 Hz, 2H), 2.34 (q, *J* = 7.4 Hz, 2H), 1.21 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.5, 141.7, 136.7, 132.2, 129.7, 128.51, 128.48, 128.3, 128.1(2×), 125.9, 66.6, 48.3, 35.6, 34.0, 21.2; HRMS (ESI-TOF) *m/z* calcd for C₂₀H₂₃NO₂Na [(M+Na)⁺] 332.1626; found: 332.1218; FTIR (film) v: 3323, 3029, 2939, 1698, 1528, 1453, 1239, 1043, 966, 698 cm⁻¹.

(S,E)-Benzyl (6-(3,4-dimethoxyphenyl)hex-3-en-2-yl)carbamate (2r):

Method A: yield: 86.1 mg (91%) starting from 73.0 mg (0.26 mmol) of vinyl bromide **1**a; purification: flash column chromatography on silica gel (12 g column cartridge, 0–30% AcOEt in hexanes, flow 15 mL/min, 30 min); white solid, m.p. 126.7–128.3 °C; $[\alpha]_D^{25}$ –13.2 (*c* 0.51, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.29 (m, 5H), 6.78 (d, *J* = 8.2 Hz, 1H), 6.72 – 6.66 (m, 2H), 5.62 (dt, *J* = 15.5, 6.5 Hz, 1H), 5.46 – 5.38 (m, 1H), 5.10 (s, 2H), 4.67 (s, 1H), 4.28 – 4.19 (m, 1H), 3.85 (s, 3H), 3.83 (s, 3H), 2.61 (t, 2H), 2.30 (q, *J* = 7.3 Hz, 2H), 1.20 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.5, 148.8, 147.3, 136.7, 134.4, 132.2, 129.8, 128.5, 128.1 (×2), 120.3, 111.9, 111.3, 66.6, 55.9, 55.8, 48.3, 35.2, 34.2, 21.2; HRMS (ESI-TOF) *m/z* calcd for C₂₂H₂₇NO₄Na [(M+Na)⁺] 392.1838; found: 392.1822; FTIR (film) v: 3339, 3032, 2936, 1704, 1607, 1516, 1454, 1261, 1230, 1156, 1142, 1029 cm⁻¹.

Methyl (S,E)-4-(5-(((benzyloxy)carbonyl)amino)hex-3-en-1-yl)benzoate (2s)

Method A: Yield: 76.6 mg (83%) starting from 71.0 mg (0.25 mmol) of vinyl bromide **1a**; purification: flash column chromatography on silica gel (12 g column cartridge, 0-30% AcOEt in hexanes, flow 15 mL/min, 30 min); white waxy solid; $[\alpha]_{D}^{25}$ –19.9 (*c* 0.64, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.1 Hz, 2H), 7.43 – 7.27 (m, 5H), 7.20 (d, *J* = 8.1 Hz, 2H), 5.59 (dt, *J* = 15.5, 6.7 Hz, 1H), 5.39 (dd, *J* = 15.5, 5.8 Hz, 1H), 5.09 (s, 2H), 4.69 (s, 1H), 4.28 – 4.19 (m, 1H), 3.88 (s, 3H), 2.71 (t, *J* = 7.7 Hz, 2H), 2.35 – 2.28 (m, 2H), 1.18 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.1, 155.5, 147.2, 136.7, 132.7, 129.7, 129.1, 128.52, 128.49, 128.1 (×2), 127.9, 66.6, 51.9, 48.2, 35.6, 33.5, 21.2; HRMS (ESI-TOF) *m/z* calcd for C₂₂H₂₅NO₄Na [(M+Na)⁺] 390.1681; found: 390.1673; FTIR (film) v: 3347, 3033, 2951, 1720, 1609, 1524, 1454, 1281, 1243, 1111, 1051 cm⁻¹.

Benzyl (S,E)-(6-(4-chlorophenyl)hex-3-en-2-yl)carbamate (2t):

Method A: Yield: 79.5 mg (92%) starting from 71.0 mg (0.25 mmol) of vinyl bromide **1a**; purification: flash column chromatography on silica gel (12 g column cartridge, 0–20% AcOEt in hexanes, flow 15 mL/min, 30 min); white solid, m.p. 94.1–96.4 °C; $[\alpha]_{D^{25}}$ –15.7 (*c* 0.77, CHCl₃);

¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.29 (m, 5H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.07 (d, *J* = 8.0 Hz, 2H), 5.59 (dt, *J* = 15.5, 6.7 Hz, 1H), 5.40 (dd, *J* = 15.5, 5.8 Hz, 1H), 5.11 (s, 2H), 4.70 – 4.61 (m, 1H), 4.29 – 4.21 (m, 1H), 2.63 (t, *J* = 7.6 Hz, 2H), 2.32 – 2.26 (m, 2H), 1.19 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.5, 140.1, 136.7, 132.6, 131.6, 129.8, 129.3, 128.5, 128.4, 128.1(×2), 66.6, 48.3, 34.9, 33.8, 21.2; HRMS (ESI-TOF) *m/z* calcd for C₂₀H₂₂NO₂NaCI [(M+Na)⁺] 366.1237; found: 366.1223; FTIR (film) v: 3321, 3033, 2977, 2931, 1685, 1540, 1492, 1454, 1256, 1051 cm⁻¹.

(S,E)-Benzyl (5-methylhex-3-en-2-yl)carbamate (2u):

Method A: Yield: 56.5 mg (88%) starting from 73.7 mg (0.26 mmol) of vinyl bromide **1a**; purification: flash column chromatography on silica gel (12 g column cartridge, 0–15% AcOEt in hexanes, flow 15 mL/min, 30 min); white solid, m.p. 70.8–72.1 °C; $[\alpha]_{D^{25}}$ –14.8 (*c* 0.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.27 (m, 5H), 5.55 (dd, *J* = 15.5, 6.5 Hz, 1H), 5.35 (dd, *J* = 15.5, 5.7 Hz, 1H), 5.10 (s, 2H), 4.67 (s, 1H), 4.31 – 4.19 (m, 1H), 2.33 – 2.19 (m, 1H), 1.21 (d, *J* = 6.8 Hz, 3H), 0.97 (d, *J* = 6.8 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 155.6, 137.7 (×2), 136.7, 128.5, 128.06, 128.03, 66.6, 48.2, 30.6, 22.31, 22.28, 21.3; HRMS (ESI-TOF) *m/z* calcd for C₁₅H₂₁NO₂Na [(M+Na)⁺] 270.1470; found: 270.1464; FTIR (film) v: 3319, 3030, 2956, 1683, 1542, 1465, 1294, 1024, 969 cm⁻¹.

(S,E)-Benzyl (5-methylhex-3-en-2-yl)carbamate (2v):

Method A: Yield: 68.8 mg (82%) starting from 83.0 mg (0.29 mmol) of vinyl bromide **1a**; Method B: Yield 67 mg (81%); Purification: flash column chromatography on silica gel (12 g column cartridge, 0–15% AcOEt in hexanes, flow 15 mL/min, 30 min); white solid, m.p. 70.1–71.8 $^{\circ}$ C; $[\alpha]_{D}^{25}$ –17.3 (*c* 0.98, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.28 (m, 5H), 5.52 (dd, *J* = 15.6, 6.6 Hz, 1H), 5.35 (dd, *J* = 15.6, 5.6 Hz, 1H), 5.10 (s, 2H), 4.66 (s, 1H), 4.31 – 4.19 (m, 1H), 1.92 (tdt, *J* = 10.7, 6.6, 3.3 Hz, 1H), 1.78 – 1.59 (m, 5H), 1.31 – 0.98 (m, 8H); ¹³C NMR (101 MHz, CDCl₃) δ 155.5, 136.7, 136.5, 128.9, 128.5, 128.06, 128.02, 66.5, 48.3, 40.2, 32.9, 32.8, 26.2, 26.0 (×2), 21.3; HRMS (ESI-TOF) *m/z* calcd for C₁₈H₂₅NO₂Na [(M+Na)⁺] 310.1783; found: 310.1779; FTIR (film) v: 3311, 3033, 2917, 2850, 1685, 1536, 1442, 1291, 1261, 1242, 1023 cm⁻¹.

Benzyl ((S,E)-4-(adamantan-2-yl)but-3-en-2-yl)carbamate (2w):

Method A: Yield: 33.2 mg (39%) starting from 71.0 mg (0.25 mmol) of vinyl bromide **1a**; purification: flash column chromatography on silica gel (12 g column cartridge, 0–15% AcOEt in hexanes, flow 15 mL/min, 30 min); white waxy solid; $[\alpha]_{D}^{25}$ –14.0 (*c* 0.62, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.27 (m, 5H), 5.44 (d, *J* = 15.9 Hz, 1H), 5.24 (dd, *J* = 15.9, 5.6 Hz, 1H), 5.10 (s, 2H), 4.63 (s, 1H), 4.31 – 4.19 (m, 1H), 1.97 (q, *J* = 3.4 Hz, 3H), 1.71 (d, *J* = 11.6 Hz, 3H), 1.63 (d, *J* = 12.2 Hz, 3H), 1.58 – 1.52 (m, 6H), 1.21 (d, *J* = 6.7 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.5, 141.9, 136.7, 128.5, 128.06, 128.03, 126.2, 66.5, 48.4, 42.22 (x3), 36.9 (x3), 34.5, 28.4 (x3), 21.4; HRMS (ESI-TOF) *m/z* calcd for C₂₁H₃₅NO₃NaSi [(M+Na)⁺] 400.2284; found: 400.2293; FTIR (film) v: 3327, 3033, 2930, 2857, 1701, 1527, 1453, 1330, 1250, 1101, 1049, 837, 776 cm⁻¹.

(S,E)-Benzyl (4-(tetrahydro-2H-pyran-4-yl)but-3-en-2-yl)carbamate (2x):

Method A: Yield: 58.9 mg (79%) starting from 73.4 mg (0.26 mmol) of vinyl bromide **1a**; Method B: 57 mg (78%); Purification: flash column chromatography on silica gel (12 g column cartridge, 0-30% AcOEt in hexanes, flow 15 mL/min, 30 min); white solid, m.p. 80.1–80.8 °C; $[\alpha]_{D}^{25}$ –14.7 (*c* 0.53, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.27 (m, 5H), 5.52 (dd, *J* = 15.7, 6.3 Hz, 1H), 5.40 (dd, *J* = 15.7, 5.5 Hz, 1H), 5.09 (s, 2H), 4.71 (s, 1H), 4.29 – 4.22 (m, 1H), 3.94 (ddd, *J* = 11.7, 4.4, 2.0 Hz, 2H), 3.38 (td, *J* = 11.7, 2.2 Hz, 2H), 2.21 – 2.10 (m, 1H), 1.60 – 1.53 (m, 2H), 1.47 – 1.35 (m, 2H), 1.21 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.5, 136.6, 134.5, 130.1, 128.5, 128.1 (2x), 67.7, 66.6, 48.1, 37.5, 32.5, 21.2; HRMS (ESI-TOF) *m/z* calcd for C₁₇H₂₃NO₃Na [(M+Na)⁺] 312.1566; found: 312.1566; FTIR (film) v: 3306, 3033, 2957, 2841, 1683, 1544, 1281, 1245, 1094, 1030 cm⁻¹.

(S,E)-t-Butyl 4-(3-(((benzyloxy)carbonyl)amino)but-1-en-1-yl)piperidine-1carboxylate (2y):

NHCbz

Method A: Yield: 76.8 mg (79%) starting from 71.0 mg (0.25 mmol) of vinyl bromide **1a**; Method B: 78 mg (81%); Purification: flash column chromatography on silica gel (12 g column cartridge, 0–30% AcOEt in hexanes, flow 15 mL/min, 30 min); colourless oil; $[\alpha]_D^{25}$ –14.0 (*c* 0.84, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.25 (m, 5H), 5.51 (dd, *J* = 15.7, 6.3 Hz, 1H), 5.39 (dd, *J*

= 15.7, 5.5 Hz, 1H), 5.08 (s, 2H), 4.69 (s, 1H), 4.29 – 4.19 (m, 1H), 4.05 (s, 2H), 2.70 (t, J = 12.8 Hz, 2H), 2.12 – 2.00 (m, 1H), 1.61 (d, J = 12.8 Hz, 2H), 1.44 (s, 9H), 1.29 – 1.15 (m, 5H); ¹³C NMR (101 MHz, CDCI₃) δ 155.5, 154.8, 136.6, 134.3, 130.3, 128.5, 128.06 (2x), 79.3, 66.6, 48.2, 43.9, 38.4, 31.2, 28.5, 21.2; HRMS (ESI-TOF) m/z calcd for C₂₂H₃₂N₂O₄Na [(M+Na)⁺] 411.2260; found: 411.2253; FTIR (film) v: 3322, 2937, 1694, 1531, 1425, 1366, 1238, 1171, 1022, 969 cm⁻¹.

(S,E)-Benzyl (5-(3,4-dimethoxyphenyl)pent-3-en-2-yl)carbamate (2aa):

Method B: Yield: 76.3 mg (86%) starting from 71.0 mg (0.25 mmol) of vinyl bromide **1a**; purification: flash column chromatography on silica gel (12 g column cartridge, 0-30% AcOEt in hexanes, flow 15 mL/min, 30 min); white solid, m.p. 68.5–69.9 °C; $[\alpha]_{D^{25}}$ –15.5 (*c* 0.77, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.25 (m, 5H), 6.79 (d, *J* = 8.1 Hz, 1H), 6.72 – 6.66 (m, 2H), 5.73 (dt, *J* = 15.4, 6.7 Hz, 1H), 5.48 (dd, *J* = 15.4, 5.6 Hz, 1H), 5.09 (s, 2H), 4.71 (s, 1H), 4.35 – 4.26 (m, 1H), 3.85 (s, 6H), 3.29 (d, *J* = 6.7 Hz, 2H), 1.23 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.5, 149.0, 147.5, 136.6, 132.8, 132.7, 129.5, 128.5, 128.1 (×2), 120.4, 112.0, 111.4, 66.6, 56.0, 55.8, 48.2, 38.1, 21.2; HRMS (ESI-TOF) *m/z* calcd for C₂₁H₂₅NO₄Na [(M+Na)⁺] 378.1681; found: 378.1675; FTIR (film) v: 3329, 3000, 2937, 1689, 1590, 1538, 1518, 1452, 1266, 1237, 1159, 1138, 1029 cm⁻¹.

Benzyl (S,E)-(5-phenoxypent-3-en-2-yl)carbamate (2ab):

NHCbz

Method B: yield: 76.3 mg (86%) starting from 71.0 mg (0.25 mmol) of vinyl bromide **1a**; purification: flash column chromatography on silica gel (12 g column cartridge, 0–30% AcOEt in hexanes, flow 15 mL/min, 30 min); white solid, m.p. 97.1–99.0 °C; $[\alpha]_D^{25}$ –13.1 (*c* 1.51, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.18 (m, 7H), 7.00 – 6.84 (m, 3H), 5.89 – 5.80 (m, 2H), 5.11 (s, 2H), 4.74 – 7.63 (m, 1H), 4.57 – 4.48 (m, 2H), 4.42 – 4.31 (m 1H), 1.27 (d, *J* = 7.0 Hz, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 158.5, 155.5, 136.5, 135.1, 129.5, 128.5, 128.1(x2), 125.1, 120.9, 114.7, 67.8, 66.7, 47.9, 20.8; HRMS (ESI-TOF) *m/z* calcd for C₁₉H₂₁NO₃Na [(M+Na)⁺] 334.1419; found: 334.1412; FTIR (film) v: 3379, 3034, 2977, 1700, 1599, 1532, 1496, 1445, 1244, 1046 cm⁻¹.

N⁴-Benzyl N¹-t-butyl pent-2-ene-1,4-diyl(S,E)-dicarbamate (2ac):

NHCbz NHBoc Method B: Yield: 83.6 mg (63%) starting from 113.7 mg (0.40 mmol) of vinyl bromide **4**; purification: flash column chromatography on silica gel (12 g column cartridge, 0–30% AcOEt in hexanes, flow 15 mL/min, 30 min); white solid, m.p. 119.5–121.2 °C; $[\alpha]_D^{25}$ –6.3 (*c* 0.78, CHCl₃); ¹H NMR (400 MHz, (400 MHz, CDCl₃) δ 7.38 – 7.28 (m, 5H), 5.60 – 5.52 (m, 2H), 5.08 (s, 2H), 4.74 (s, 1H), 4.57 (s, 1H), 4.27 (s, 1H), 3.69 (s, 2H), 1.43 (d, *J* = 1.8 Hz, 9H), 1.21 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 156.4, 155.7, 136.5, 133.4, 128.5, 128.08, 128.04, 126.7, 79.4, 66.6, 47.8, 40.8, 28.4, 20.9; HRMS (ESI-TOF) *m/z* calcd for C₁₈H₂₆N₂O₄Na [(M+Na)⁺] 357.1790; found: 357.1783; FTIR (film) v: 3337, 3032, 2971, 1689, 1520, 1449, 1352, 1169, 1019 cm⁻¹.

t-Butyl 2-((S,*E*)-3-(((benzyloxy)carbonyl)amino)but-1-en-1-yl)pyrrolidine-1carboxylate (2ad):

Method B: Yield: 78.5 mg (84%) starting from 70.9 mg (0.25 mmol) of vinyl bromide **1a**; purification: flash column chromatography on silica gel (12 g column cartridge, 0–30% AcOEt in hexanes, flow 15 mL/min, 30 min); colorless oil; Mixture of diastereoisomers in ratio 1:1; ¹H NMR (400 MHz, DMSO- d_6) δ 7.39 – 7.25 (m, 5H), 5.44 – 5.34 (m, 2H), 4.98 (s, 2H), 4.25 – 3.98 (m, 2H), 3.29 (s, 1H), 3.22 (t, *J* = 7.2 Hz, 2H), 2.02 – 1.82 (m, 1H), 1.71 (t, *J* = 7.0 Hz, 2H), 1.59 – 1.53 (m, 1H), 1.34 (s, 9H), 1.10 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, DMSO- d_6) δ 155.6, 153.9, 137.3, 132.4, 129.9, 128.8, 128.2 (2x), 78.5, 65.5, 58.3, 48.0, 46.4, 32.3, 28.6, 22.9, 21.5; HRMS (ESI-TOF) *m/z* calcd for C₂₁H₃₀N₂O₄Na [(M+Na)⁺] 397.2103; found: 397.2095; FTIR (film) v: 3330, 3032, 2973, 1723, 1694, 1517, 1453, 1338, 1232, 1169, 1096, 1024 cm⁻¹.

Ethyl (*R*,*E*)-7-(((*t*-butyloxy)carbonyl)amino)-7-phenylhept-5-enoate (2ae):

Method A: Yield: 77 mg (81%) starting from 78 mg (0.25 mmol) of vinyl bromide **1k**; purification: flash column chromatography on silica gel (12 g column cartridge, 0-25% AcOEt in hexanes, flow 15 mL/min, 30 min); colourless oil; $[\alpha]_D^{25}$ –10.4 (*c* 0.55, CHCl₃); HPLC (Chiralpak IB, hexanes : *i*-PrOH 99:1, 1 mL/min, det. 210 nm): racemic sample: R_t = 11.19 min (R), R_t = 12.93 min (S), enantioenriched sample: R_t = 11.17 min, *ee* >99%; ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.21 (m, 5H), 5.63 – 5.52 (m, 2H), 5.21 (s, 1H), 4.87 (s, 1H), 4.10 (q, *J* = 7.2 Hz, 2H), 2.28 (t, *J* = 7.5 Hz,

2H), 2.13 – 2.06 (m, 2H), 1.71 (p, J = 7.5 Hz, 2H), 1.42 (s, 9H), 1.23 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.5, 155.0, 141.8, 131.1, 131.0, 128.6, 127.3, 126.8, 79.6, 60.2, 56.1, 33.6, 31.5, 28.4, 24.3, 14.2; HRMS (ESI-TOF) m/z calcd for C₂₀H₂₉NO₄Na [(M+Na)⁺] 370.1994; found: 370.1998; FTIR (film) ν : 3361, 3030, 2978, 1713, 1513, 1453, 1367, 1247, 1171, 1019 cm⁻¹.

Benzyl (S,E)-2-(6-ethoxy-6-oxohex-1-en-1-yl)pyrrolidine-1-carboxylate (2af):

Method A: Yield: 63.0 mg (73%) starting from 77.5 mg (0.25 mmol) of vinyl bromide **1I**; purification: flash column chromatography on silica gel (12 g column cartridge, 10–40% AcOEt in hexanes, flow 15 mL/min, 30 min); colourless oil; $[\alpha]_D^{25}$ –32.1 (*c* 1.28, CHCl₃); ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.36 – 7.21 (m, 5H), 5.35 (s, 2H), 5.10 – 4.92 (m, 2H), 4.28 – 4.18 (m, 1H), 4.02 (q, *J* = 7.1 Hz, 2H), 3.39 – 3.26 (m, 2H), 2.27 – 2.13 (m, 2H), 1.99 – 1.86 (m, 3H), 1.81 – 1.73 (m, 2H), 1.66 – 1.43 (m, 3H), 1.15 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 173.2, 154.2, 137.7, 131.9, 129.3, 128.7, 128.1, 127.8, 66.0, 60.1, 58.6, 46.9, 33.2, 32.5, 31.1, 24.5, 22.8, 14.6; HRMS (ESI-TOF) *m/z* calcd for C₂₀H₂₇NO₄Na [(M+Na)⁺] 368.1838; found: 368.1837; FTIR (film) v: 3032, 2975, 1733, 1703, 1448, 1412, 1352, 1181, 1098 cm⁻¹.

Ethyl (*R*,*E*)-7-(((benzyloxy)carbonyl)amino)-8-((t-butyldimethylsilyl)oxy)oct-5enoate (2ag):

Method A: Yield: 35.8 mg (60%) starting from 55.3 mg (0.13 mmol) of vinyl bromide **1m**; purification: flash column chromatography on silica gel (12 g column cartridge, 0–20% AcOEt in hexanes, flow 15 mL/min, 30 min); colourless oil; $[\alpha]_{D}^{25}$ +4.8 (*c* 1.42, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.29 (m, 5H), 5.61 (dt, *J* = 15.5, 6.6 Hz, 1H), 5.45 (dd, *J* = 15.5, 6.6 Hz, 1H), 5.17 – 4.95 (m, 3H), 4.18 (s, 1H), 4.12 (q, *J* = 7.1 Hz, 2H), 3.68 (dd, *J* = 10.0, 4.3 Hz, 1H), 3.59 (dd, *J* = 10.0, 4.1 Hz, 1H), 2.27 (t, *J* = 7.5 Hz, 2H), 2.12 – 2.03 (m, 2H), 1.69 (p, *J* = 7.5 Hz, 2H), 1.24 (t, *J* = 7.1 Hz, 3H), 0.87 (s, 9H), 0.03 (s, 6H).; ¹³C NMR (101 MHz, CDCl₃) δ 173.5, 155.8, 136.6, 131.3, 128.8, 128.5, 128.09, 128.05, 66.7, 65.5, 60.2, 54.2, 33.6, 31.6, 25.8, 24.3, 18.3, 14.2, -5.5; HRMS (ESI-TOF) *m/z* calcd for C₂₄H₃₉NO₅NaSi [(M+Na)⁺] 472.2495; found: 472.2476; FTIR (film) v: 3347, 3033, 2952, 2857, 1731, 1502, 1465, 1252, 1110, 1055, 838 cm⁻¹.

Ethyl (S,E)-7-((t-butoxycarbonyl)amino)-8-(1-tosyl-1H-indol-3-yl)oct-5-enoate (2ah):

Method A: yield: 108.5 mg (78%) starting from 129.9 mg (0.25 mmol) of vinyl bromide **1n**; purification: flash column chromatography on silica gel (12 g column cartridge, 10–40% AcOEt in hexanes, flow 15 mL/min, 30 min); colourless oil; $[\alpha]_{D^{25}}$ +5.7 (*c* 0.82, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 7.8 Hz, 1H), 7.71 (d, *J* = 8.0 Hz, 2H), 7.51 (d, *J* = 7.8 Hz, 1H), 7.35 (s, 1H), 7.28 (t, *J* = 7.8 Hz, 1H), 7.23 – 7.16 (m, 3H), 5.45 (dt, *J* = 15.5, 6.4 Hz, 1H), 5.35 (dd, *J* = 15.5, 5.8 Hz, 1H), 4.53 (s, 1H), 4.39 (s, 1H), 4.10 (q, *J* = 7.2 Hz, 2H), 2.96 – 2.80 (m, 2H), 2.30 (s, 3H), 2.19 (t, *J* = 7.5 Hz, 2H), 2.02 – 1.91 (m, 2H), 1.59 (q, *J* = 7.5 Hz, 2H), 1.41 (s, 9H), 1.23 (t, *J* = 7.2 Hz, 3H).; ¹³C NMR (101 MHz, CDCl₃) δ 173.4, 155.1, 144.8, 135.3, 135.2, 131.2, 130.8, 130.5, 129.8, 126.7, 124.6, 124.2, 123.1, 119.8, 118.8, 113.7, 79.5, 60.2, 51.9, 33.5, 31.5, 31.1, 28.4, 24.2, 21.5, 14.2; HRMS (ESI-TOF) *m/z* calcd for C₃₀H₃₈N₂O₆NaS [(M+Na)⁺] 577.2348; found: 577.2346; FTIR (film) v: 3375, 2978, 1711, 1505, 1448, 1367, 1246, 1173, 1121, 1019 cm⁻¹.

8-Ethyl 1-methyl (R,E)-2-(((benzyloxy)carbonyl)amino)oct-3-enedioate (2ai):

Method A: yield: 41.1 mg (68%) starting from 54.6 mg (0.17 mmol) of vinyl bromide **10**; purification: flash column chromatography on silica gel (12 g column cartridge, 10–40% AcOEt in hexanes, flow 15 mL/min, 30 min); colourless oil; $[\alpha]_{D^{25}} -23.6$ (*c* 1.06, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.25 (m, 5H), 5.74 (dt, *J* = 15.6, 6.9 Hz, 1H), 5.49 (dd, *J* = 15.6, 6.2 Hz, 1H), 5.42 – 5.33 (m, 1H), 5.11 (s, 2H), 4.84 (s, 1H), 4.11 (q, *J* = 7.1 Hz, 2H), 3.75 (s, 3H), 2.26 (t, *J* = 7.5 Hz, 2H), 2.16 – 2.02 (m, 2H), 1.70 (p, *J* = 7.5 Hz, 2H), 1.24 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.3, 171.4, 155.5, 136.2, 133.8, 128.5, 128.2, 128.1, 125.0, 67.1, 60.3, 55.6, 52.6, 33.5, 31.4, 24.0, 14.2; HRMS (ESI-TOF) *m/z* calcd for C₁₉H₂₅NO₆Na [(M+Na)⁺] 386.1580; found: 386.1574; FTIR (film) v: 3351, 3033, 2953, 1729, 1519, 1453, 1328, 1212, 1046 cm⁻¹.

Ethyl (S,E)-7-(((benzyloxy)carbonyl)amino)-8-methylnon-5-enoate (2aj):

Method A: Yield: 32.1 mg (71%) starting from 40.7 mg (0.13 mmol) of vinyl bromide **1p**; purification: flash column chromatography on silica gel (12 g column cartridge, 0–25% AcOEt in hexanes, flow 15 mL/min, 30 min); colourless oil; $[\alpha]_D^{25}$ +1.4 (*c* 0.72, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.27 (m, 5H), 5.54 (dt, *J* = 15.4, 7.0 Hz, 1H), 5.34 (dd, *J* = 15.4, 6.6 Hz, 1H), 5.10 (s,

2H), 4.69 (s, 1H), 4.12 (q, J = 7.1 Hz, 2H), 3.98 (s, 1H), 2.27 (t, J = 7.5 Hz, 2H), 2.11 – 2.06 (m, 2H), 1.80 – 1.66 (m, 3H), 1.24 (t, J = 7.2 Hz, 3H), 0.88 (2×d, J = 6.8 Hz, 6H); ¹³C NMR (101 MHz, CDCI₃) δ 173.5, 155.9, 136.7, 131.0, 129.6, 128.5, 128.1 (x2), 66.7, 60.2, 58.2, 33.6, 32.5, 31.6, 24.4, 18.6, 18.2, 14.2; HRMS (ESI-TOF) m/z calcd for C₂₀H₂₉NO₄Na [(M+Na)⁺] 370.1994; found: 370.1985; FTIR (film) v: 3344, 3033, 2959, 1729, 1527, 1455, 1231, 1025 cm⁻¹.

Ethyl (R,E)-7-((tert-butoxycarbonyl)amino)-8,8-dimethylnon-5-enoate (2ak):

Method A: yield: 48.8 mg (60%) starting from 72.9 mg (0.25 mmol) of vinyl bromide **1q**; purification: flash column chromatography on silica gel (12 g column cartridge, 0–20% AcOEt in hexanes, flow 15 mL/min, 30 min); colourless oil; $[\alpha]_D^{25}$ –4.6 (*c* 1.36, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.51 (dt, *J* = 15.5, 6.6 Hz, 1H), 5.43 – 5.34 (dd, *J* = 15.5, 6.0 Hz, 1H), 4.47 (s, 1H), 4.10 (q, *J* = 7.1 Hz, 2H), 3.82 (s, 1H), 2.27 (t, *J* = 7.5 Hz, 2H), 2.10 – 2.04 (m, 2H), 1.69 (p, *J* = 7.5 Hz, 2H), 1.42 (s, 9H), 1.23 (t, *J* = 7.1 Hz, 3H), 0.86 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 173.5, 155.5, 131.2, 128.7, 79.0, 60.8, 60.2, 34.3, 33.6, 31.7, 28.4, 26.3, 24.5, 14.2; HRMS (ESI-TOF) *m/z* calcd for C₁₈H₃₃NO₄Na [(M+Na)⁺] 350.2307; found: 350.2312; FTIR (film) v: 3376, 2967, 1715, 1515, 1366, 1243, 1173 cm⁻¹.

6. Functionalization of selected products

6.1. Synthesis of *ent*-codonopsine (*ent*-22)

Step 1:⁶ Allylamine **2aa** (76.3 mg, 0.21 mmol) and *N*-methyl morpholine oxide (37.7 mg, 0.32 mmol) were dissolved in a mixture of acetone (1 mL) and water (0.25 mL). The mixture was cooled to 0 °C, followed by an addition of OsO_4 (4% soln. in water, 13.6 µL, 2.2 µmol) and the resulting mixture was stirred at rt overnight. Sat. aqueous $Na_2S_2O_3$ and CH_2Cl_2 were added. The aqueous layer was washed with CH_2Cl_2 three times. The combined organic layers were dried over Na_2SO_4 , filtered and evaporated. The residue was purified using silica gel flash column chromatography (24 g column cartridge, 20–60% ethyl acetate in hexanes, flow 20 mL/min, 60 min). The main diastereoisomer eluted first, providing 41.5 mg (0.11 mmol, 50% yield) of **26** as a white solid.¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.26 (m, 5H), 6.79 (d, *J* = 8.6 Hz,

1H), 6.77 – 6.72 (m, 2H), 5.11 (d, J = 12.2 Hz, 1H), 5.07 (d, J = 12.2 Hz, 1H), 4.96 (d, J = 8.7 Hz, 1H), 3.88 – 3.72 (m, 8H), 3.14 (m, 2H), 2.80 (m, 2H), 2.48 (s, 1H), 1.23 (d, J = 6.7 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 157.1, 149.0, 147.7, 136.2, 130.7, 128.6, 128.3, 128.1, 121.4, 112.8, 111.4, 75.5, 71.2, 67.1, 55.92, 55.89, 49.4, 39.0, 17.3; HRMS (ESI-TOF) m/z calcd for C₂₁H₂₇NO₆Na [(M+Na)⁺] 412.1736; found: 412.1724; FTIR (film) v: 3389, 3346, 3033, 2936, 1693, 1590, 1515, 1453, 1261, 1236, 1156, 1141, 1029 cm⁻¹.

Step 2: 26 (41.5 mg, 0.11 mmol) and DMAP (0.65 mg, 5.32 µmol) were dissolved in anhydr. CH_2CI_2 (1 mL), followed by addition of Et_3N (52 µL, 38 mg, 0.37 mmol). The resulting solution was cooled down to 0 °C before addition of Ac_2O (30 µL, 33 mg, 0.32 mmol). The resulting mixture was stirred at rt for 2 h, before addition of sat. NaHCO₃. Layers were separated and the aqueous layer was washed with CH_2CI_2 twice. Combined organic layers were dried over anhydr. Na_2SO_4 , filtered and evaporated. The crude residue was purified using silica gel flash column chromatography (4 g column cartridge, 10–30% ethyl acetate in hexanes, flow 8 mL/min, 30 min) to provide 43.2 mg (0.09 mmol, 86%) of **27** as a white solid. ¹H NMR (400 MHz, CDCI₃) δ 7.39 – 7.25 (m, 5H), 6.76 (d, *J* = 8.6 Hz, 1H), 6.71 – 6.66 (m, 2H), 5.23 (td, *J* = 6.9, 3.8 Hz, 1H), 5.06 (s, 2H), 4.90 (dd, *J* = 5.8, 3.8 Hz, 1H), 4.81 (d, *J* = 9.3 Hz, 1H), 4.13 – 4.02 (m, 1H), 3.84 (s, 3H), 3.83 (s, 3H), 2.83 (dd, *J* = 13.8, 6.9 Hz, 1H), 2.73 (dd, *J* = 13.8, 6.9 Hz, 1H), 2.13 (s, 3H), 2.02 (s, 3H), 1.10 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCI₃) δ 170.5, 170.1, 155.5, 148.9, 147.9, 136.4, 132.9, 128.5, 128.10, 128.06, 121.5, 112.6, 111.3, 74.7, 72.8, 66.8, 55.8 (×2), 46.9, 36.8, 21.0, 20.8, 16.7.

Step 3: 27 (43.2 mg, 0.09 mmol) and DDQ (22.8 mg, 0.10 mmol) were dissolved in 0.5 mL of anhydr. MeCN and heated in reflux overnight. Next, reaction mixture was quenched with Et₃N and evaporated. The crude residue was purified using silica gel flash column chromatography (4 g column cartridge, 10–30% ethyl acetate in hexanes, flow 8 mL/min, 30 min) to provide 38.6 mg (0.08 mmol, 90% yield) of **28** as a white solid. ¹H NMR (400 MHz, CDCl₃, mixture of rotamers) δ 7.39 – 7.07 (m, 4H), 6.91 – 6.64 (m, 4H), 5.20 – 4.74 (m, 5H), 4.37 – 4.21 (m, 1H), 3.90 – 3.72 (m, 6H), 2.14 (d, *J* = 3.0 Hz, 2.5H), 2.09 (s, 0.5H), 2.03 (s, 0.5H), 1.83 (s, 2.5H), 1.61 – 1.46 (m, 3H).

Step 4: 28 (38.6 mg, 0.08 mmol) was dissolved in anhydr. THF, followed by dropwise addition of $LiAIH_4$ (1M solution in THF, 0.41 mL, 0.41 mmol), The resulting solution was heated in reflux for 5 h. After cooling to rt, reaction was quenched with water. The resulting suspension was

filtered and the filtrate was dried over anhydr. Na₂SO₄, filtered and evaporated. The resulting crude residue was purified using silica gel flash chromatography (4 g column cartridge, 0– 5% MeOH in ethyl acetate) to give *ent*-codonopsine (12.3 mg, 56% yield) as a white solid, m.p. 148.2 – 149.8 °C (Lit.⁷ 149 – 150 °C); $[\alpha]_{D}^{25}$ +16.5 (*c* 0.92, MeOH)(Lit.⁷ –16.0, c=1.2, MeOH (for opposite enantiomer)); ¹H NMR (400 MHz, CD₃OD) δ 7.01 (s, 1H), 6.90 (s, 2H), 3.93 (dd, *J* = 6.3, 3.8 Hz, 1H), 3.83 (s, 3H), 3.81 (s, 3H), 3.68 (t, *J* = 3.8 Hz, 1H), 3.53 (d, *J* = 6.3 Hz, 1H), 3.15 (qd, *J* = 6.8, 3.8 Hz, 2H), 2.05 (s, 3H), 1.18 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 149.2, 148.7, 133.1, 121.1, 111.5, 111.4, 85.0, 83.5, 73.6, 64.3, 55.1, 55.0, 33.1, 12.0; HRMS (ESI-TOF) *m/z* calcd for C₁₄H₂₂NO₄ [(M+H)⁺] 268.1549; found: 268.1543; FTIR (film) v: 3376, 2965, 1592, 1261, 1234, 1142, 1027 cm⁻¹.

6.2. Synthesis of t-butyl (S)-(4-aminopentyl)carbamate (29)

Allylamine **2ac** (53.0 mg, 0.16 mmol) was dissolved in anhydr. MeOH (2 mL) in a Schlenk flask. The flask was gently evacuated and backfilled with hydrogen three times. Next, 5 mg of Pd/C (10%) was added and reaction mixture was stirred overnight. Next, the mixture was filtered through Celite[®] and the filtrate was evaporated. The residue was purified using silica gel column chromatography (30% MeOH in AcOEt with 1% of Et₃N) to give analytically pure diamine **29** (28.2 mg, 0.14 mmol, 88%) as a colourless oil. $[\alpha]_D^{25}$ +8.7 (*c* 2.82, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 4.81 (s, 1H), 4.20 (s, 2H), 3.09 (t, *J* = 6.4 Hz, 2H), 3.02 – 2.93 (m, 1H), 1.57 – 1.39 (m, 13H), 1.13 (d, *J* = 6.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 156.1, 79.0, 46.8, 40.4, 35.5, 28.4, 26.6, 22.4. Analytical data in agreement with reported one for racemic compound.⁸

7. Synthesis of 4CzIPN photocatalyst

A solution⁹ of carbazole (25 mmol, 4.18 g, 5 eq.) in 20 mL of anhydr. THF was added slowly to a stirred suspension of NaH (60% dispersion in mineral oil, 1.5 g, 37.5 mmol) in anhydr. THF (80 mL). After stirring for 30 min at rt. Next tetrafluoroisophtalonitrile (1g, 5 mmol) was added and mixture was stirred at rt overnight. Yellow precipitate was obtained. Water (5 mL) was cautiously added to destroy an excess of NaH. Solvent was evaporated and and the resulting solid was washed with water and EtOH. The crude product was dissolved in small amount of CH₂Cl₂ followed by an addition of pentane. The resulting precipitation was filtered off and dried under vacuum to give 4CzIPN (3.19 g, 81% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.35 (dt, J = 7.7, 1.0 Hz, 2H), 8.19 (d, J = 8.3 Hz, 2H), 7.87 –7.84 (m, 4H), 7.76 –7.72 (m, 6H), 7.55 –7.44 (m, 6H), 7.19 – 7.05 (m, 8H), 6.83 – 6.79 (m, 2H), 6.72 – 6.68 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 145.6, 144.8, 139.9, 138.5, 137.6, 136.4, 126.8, 125.4, 124.1, 123.6, 123.2, 122.8, 121.9, 121.3, 121.0, 120.5, 120.1, 119.4, 116.7, 112.2, 111.1, 110.9, 110.8.

8. References

- Krenk, O.; Kratochvíl, J.; Špulák, M.; Buchta, V.; Kuneš, J.; Nováková, L.; Ghavre, M.; Pour, M., Eur. J. Org. Chem. 2015, 2015, 5414–5423.
- 2. Aitken, R. A.; Karodia, N.; Massil, T.; Young, R. J., J. Chem. Soc., Perkin Trans. 1 2002, 533-541.
- 3. Chen, B.-L.; Wang, B.; Lin, G.-Q., J. Org. Chem. 2010, 75, 941-944.
- 4. Orsini, A.; Vitérisi, A.; Bodlenner, A.; Weibel, J.-M.; Pale, P., *Tetrahedron Lett.* **2005**, *46*, 2259–2262.
- 5. López-Soria, J. M.; Pérez, S. J.; Hernández, J. N.; Ramírez, M. A.; Martín, V. S.; Padrón, J. I., RSC Advances **2015**, *5*, 6647–6651.
- Lingamurthy, M.; Jagadeesh, Y.; Ramakrishna, K.; Rao, B. V., J. Org. Chem. 2016, 81, 1367– 1377.
- El-Nezhawy, A. O. H.; Alrobaian, M.; Khames, A.; El-Badawy, M. F.; Abdelwahab, S. F., *Bioorg.* Med. Chem. 2019, 27, 1263–1273.
- Terzić, N.; Konstantinović, J.; Tot, M.; Burojević, J.; Djurković-Djaković, O.; Srbljanović, J.;
 Štajner, T.; Verbić, T.; Zlatović, M.; Machado, M.; Albuquerque, I. S.; Prudêncio, M.; Sciotti, R.
 J.; Pecic, S.; D'Alessandro, S.; Taramelli, D.; Šolaja, B. A., *J. Med. Chem.* **2016**, *59*, 264–281.
- 9. (a) Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C., *Nature* 2012, 492, 234-238;
 (b) Lévêque, C.; Chenneberg, L.; Corcé, V.; Ollivier, C.; Fensterbank, L., *Chem. Commun.* 2016, 52, 9877-9880.

9. ¹H, ¹¹B, ¹³C, ³¹P NMR spectra and HPLC chromatograms

Propargylic amines

Compound 1I in CDCI₃

Compound 1m in CDCl₃

Vinyl bromides

Vinyl bromides

Vinyl bromides

Allylamine 2a in CDCl₃

allylamines

NHBoc ,CO₂Et

Allylamine 3 in CDCl₃

<u>]</u>]

4.0

1.0

130

2.28 2.28

Allylamine 2i in CDCl₃

87 87

91 92 93

Allylamine 2w in CDCl₃

-0

73.73

65

44 64 64

0.05

MeO₂C CO₂Et

6	3,99	5875258	6,110	6,110	VB
7	5,00	7015533	7,296	7,296	BV
8	6 , 59	12256972	12 , 746	12,746	VV
9	7,69	12903632	13,419	13,419	VV
10	9,16	7363037	7 , 657	7,657	VV
11	11 , 17	28893378	30,047	30,047	VV
12	13,03	65037	0,068	0,068	TBB
13	15,61	4224353	4,393	4,393	VV
14	16 , 79	4141218	4,307	4,307	VV