Supporting Information for

Modular access to 1,2-allenyl ketones based on photoredox-catalysed radical-polar crossover process

Wan Lei, Yongjun Liu, Yewen Fang, Yan Li, Chan Du and Jianghua Fang

Table of contents

1 General informationS1
1.1 Solvents, reagents, and starting materialsS1
1.2 InstrumentsS1
1.3 Picture of a typical reaction setupS2
2 Synthesis of various 2-(1-alkynyl)-2-alken-1-ones
2.1 General procedure for the preparation of various 2-(1-alkynyl)-2-alken-1-ones 1, 6a-6e,
6g-6j, 6l-6n, 8a, and 10S3
2.2 Procedure for the preparation of 1,3-enyne 6f
2.3 Procedure for the preparation of 1,3-enyne 6k
2.4 General procedure for the preparation of various 2-(1-alkynyl)-2-alken-1-ones 8b-8dS6
3 General procedures of photocatalytic reactions between 1,3-enynes and alkylsilicates
3.1 General procedure for the preparation of 1,2-allenyl ketones 4, 7a, 7e-7m, 9a-9c, and
9e-9g
3.2 General procedure for the preparation of 1,2-allenyl ketones 7b, 7c-7d, 9d, and 9h-jS13
4 Mechanistic experiments
4.1 Reaction of 1,3-enyne 10 with chloromethyl silicateS24
4.2 Deuteration study
5 Transformation of 1,2-allenyl ketone
6 Reference
7 NMR spectra of new compound

1 General information

1.1 Solvents, reagents, and starting materials

All reactions were carried out under an atmosphere of nitrogen in oven-dried glassware. Photocatalysts $Ir[dF(CF_3)ppy)]_2(dtbbpy)PF_6$,^{1a} 4CzIPN,^{1b} andRu(bpz)₃(PF6)₂^{1c} were prepared according to published procedures. Alkylbis(catecholato)silicates **2** were reported in our previous literatures.² 4-Alkyldihydropyridines **3**,³ were prepared using available protocols. Dried solvents were obtained from commercial sources and used without further purification unless otherwise noted.

1.2 Instruments

NMR spectra were recorded on a Bruker Avance 500 spectrometer (500 MHz) (500 MHz for ¹H NMR, 126 MHz for ¹³C NMR, and 471 MHz for ¹⁹F NMR). Chemical shifts were reported in ppm downfield from tetramethylsilane, and calibrated using residue undeuterated solvent (CDCl₃ at 7.26 ppm ¹H NMR; 77.0 ppm ¹³C NMR, Aceton-*d*6 at 2.05 ppm ¹H NMR; 206.68, 29.92 ppm ¹³C NMR, DMSO-*d*6 at 2.50 ppm ¹H NMR, 39.51ppm ¹³C NMR). Spectra were reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q=quartet, m= multiplet, br = broad), coupling constants (Hz) and integration. High resolution mass spectra (HRMS) were recorded on Agilent 6210 ESI/TOF MS, Thermo QExactive Plus, and Waters G2-Xs QTOF mass spectrometers. Analytical thin layer chromatography was performed on Polygram SIL G/UV₂₅₄ plates. Visualization was accomplished with short wave UV light, or KMnO₄ staining solutions. Flash column chromatography was performed using silica gel (300-400 mesh) with solvents to use.

1.3 Picture of a typical reaction setup

2 Synthesis of various 2-(1-alkynyl)-2-alken-1-ones

2.1 General procedure for the preparation of various 2-(1-alkynyl)-2-alken-1-ones 1, 6a-6e, 6g-6j, 6l-6n, 8a, and 10⁴⁻⁷

To a mixture of acetophenone (20.0 mmol, 1.0 equiv) and corresponding aldehyde (20.0 mmol, 1.0 equiv) in mixture ethanol/water (100 mL, 1:1), solution of sodium hydroxide (0.96 g, 24.0 mmol, 1.2 equiv) in 5 mL of water was added dropwise at room temperature and the resulted solution was stirred for 20 hours at room temperature. The precipitate formed was then filtered, washed with water and ethanol. The product was recrystallized from ethyl acetate/hexane to afford the desired product **S-6-1** with good yield.

To a solution of (*E*)-prop-2-en-1-one **S-6-1** (15.0 mmol, 1.0 equiv) in DCM (50 mL), pyridinium tribromide (9.6 g, 30.0 mmol, 1.0 equiv) and potassium carbonate (4.2 g, 30.0 mmol, 2.0 equiv) was added, and the mixture was stirred for 2 h at room temperature. Then, the saturated Na₂S₂O₃ solution was added, the mixture was filtered and extracted with ethyl acetate (3x15 mL), dried over MgSO₄, the solvent was evaporated in vacuum. The product was recrystallized from DCM/hexane to afford the desired product **S-6-2** with good yield.

To a solution of 2,3-dibromopropan-1-one **S-6-2** (10.0 mmol, 1.0 equiv) in DCM (30 mL), triethylamine (7 mL, 50.0 mmol, 5.0 equiv) was added and the reaction mixture was stirred at room temperature for 12-36 h. Then, the saturated NH₄Cl solution (20 mL) was added, phases were separated, water phase was extracted by ethyl acetate (3x15 mL). Combined organic phase was washed with 1M HCl (4x15 mL), dried over MgSO₄ and evaporated in vacuo. The mixture was purified by flash

column chromatography to afford S-6-3.

A solution of (*Z*)-2-bromoprop-2-en-1-one **S-6-3** (5.0 mmol, 1.0 equiv) in THF (25 mL) was treated with $PdCl_2(PPh_3)_2$ (105.3 mg, 0.15 mmol, 3 mol%) and CuI (95.2 mg, 0.5 mmol, 10 mol%) and cooled down to 0°C in the dark. After 10 min of stirring, 3,3-dimethylbut-1-yne (1.2 mL, 10.0 mmol, 2.0 equiv) and diisopropylamine (2.1 mL, 15.0 mmol, 3.0 equiv) were added, and the resulting dark brown solution was stirred at 0 °C for 1 h. The reaction mixture was partitioned between ethyl acetate and 0.5 N aqueous HCl solution. The aqueous layer was extracted with ethyl acetate (3x10 mL) and the combined organic phases were washed with brine, dried over MgSO₄, filtered and concentrated under vacuum. The crude product was purified by flash column chromatography to yield the corresponding 2-(1-alkynyl)-2-alken-1-one.

2.2 Procedure for the preparation of 1,3-enyne 6f⁵⁻⁹

To a solution of crotonaldehyde (6.5 mL, 78.0 mmol, 1.0 equiv) in THF (100 mL), newly prepared phenyl Grignard reagent (80.0 mmol, 1.03 equiv) was added dropwise at 0°C. The mixture was stirred for 1 h. Then, the reaction solution was diluted with saturated NH₄Cl aqueous solution, and was extracted with ethyl acetate (4 x 15 mL). The organic layer was washed with saturated brine, dried over MgSO₄, filtered, and solvent was evaporated to obtain crude product. Flash chromatography over silica gel afforded the product **S-6f-1** (eluent = petroleum ether / ethyl acetate 10:1 v/v).

To a solution of (*E*)-1-phenylbut-2-en-1-ol **S-6f-1** (35.0 mmol, 1.0 equiv) in DCM, MnO₂ (33.5 g, 385.0 mmol, 11.0 equiv) was added. The mixture was stirred at room temperature for 6 h. The reaction was completed monitored by TLC analysis, then filtered, and solvent was evaporated to obtain crude product. Flash chromatography over silica gel afforded the product **S-6f-2**.

To a solution of (*E*)-1-phenylbut-2-en-1-one **S-6f-2** (15.0 mmol, 1.0 equiv) in DCM (50 mL), pyridinium tribromide (9.6 g, 30.0 mmol, 2.0 equiv) and potassium carbonate (4.2 g, 30.0 mmol, 2.0 equiv) was added, and the mixture was stirred for 2 h at room temperature. Then the saturated $Na_2S_2O_3$ solution was added, the mixture was filtered and extracted with ethyl acetate (3 x 15 mL), dried over MgSO₄, the solvent was evaporated in vacuum to give **S-6f-3**.

To a solution of 2,3-dibromo-1-phenylbutan-1-one **S-6f-3** (10.0 mmol, 1.0 equiv) in DCM (30 mL), triethylamine (7 mL, 50.0 mmol, 5.0 equiv)was added and the reaction mixture was stirred at room temperature for 24 h. Then, the saturated NH₄Cl solution (20 mL) was added, phases were separated, water phase was extracted by ethyl acetate (3 x 15 mL). Combined organic phase was washed with 1M HCl (3 x 10 ml),

dried over $MgSO_4$ and evaporated in vacuo. The mixture was purified by flash column chromatography to afford **S-6f-4**.

A solution of (*Z*)-2-bromo-1-phenylbut-2-en-1-one **S-6f-4** (5.0 mmol, 1.0 equiv) in THF (25 mL) was treated with $PdCl_2(PPh_3)_2$ (105.3 mg, 0.15 mmol, 3 mol%) and CuI (95.2 mg, 0.5 mmol, 10 mol%) and cooled down to 0°C in the dark. After 10 min of stirring, 3,3-dimethylbut-1-yne (1.2 mL, 10.0 mmol, 2.0 equiv) and diisopropylamine (2.1 mL, 15.0 mmol, 3.0 equiv) were added, and the resulting dark brown solution was stirred at 0 °C for 1 h. The reaction mixture was partitioned between ethyl acetate and 0.5 N aqueous HCl solution. The aqueous layer was extracted with ethyl acetate (3 x 10mL) and the combined organic phases were washed with brine, dried over MgSO₄, filtered and concentrated under vacuum. The crude product was purified by flash column chromatography to yield 1,3-enyne **6f** as a yellow liquid.

2.3 Procedure for the preparation of 1,3-enyne 6k^{6,7}

To a solution of benzalacetone (2.9 g, 20 mmol) in chloroform (40 mL), bromine (1.3 mL, 24 mmol, 1.2 equiv) was added and the mixture was stirred for 16 h at room temperature and the solvent was evaporated in vacuum. Then a solution of triethylamine (6 mL, 43.1 mmol, 2.15 equiv) in DCM (40 mL) was added and the reaction mixture was stirred at room temperature for next 16 h. Then the concentrated NH₄Cl solution (25 mL) was added, phases were separated, water phase was extracted by ethyl acetate (3x15 mL). Combined organic phase was washed with1M HCl (4x15 mL), dried over Na₂SO₄ and evaporated in vacuo. The mixture was purified by flash column chromatography to afford **S-6k-1**.

A solution of (*Z*)-3-bromo-4-phenylbut-3-en-2-one **S-6k-1** (1.1 g, 5.0 mmol, 1.0 equiv) in THF (25 mL) was treated with $PdCl_2(PPh_3)_2$ (105.3 mg, 0.15 mmol, 3 mol%) and CuI (95.2 mg, 0.5 mmol, 10 mol%) and cooled down to 0°C in the dark. After 10 min of stirring, 3,3-dimethylbut-1-yne (1.2 mL, 10.0 mmol, 2.0 equiv) and diisopropylamine (2.1 mL, 15.0 mmol, 3.0 equiv) were added, and the resulting dark brown solution was stirred at 0 °C for 1 h. The reaction mixture was partitioned between ethyl acetate and 0.5 N aqueous HCl solution. The aqueous layer was extracted with ethyl acetate (3x10 mL) and the combined organic phases were washed with brine, dried over MgSO₄, filtered and concentrated under vacuum. The crude product was purified by flash column chromatography to yield 1,3-enyne **6k** as a yellow liquid.

2.4 General procedure for the preparation of various 2-(1-alkynyl)-2-alken-1-ones 8b-8d^{7,10-12}

A 250 mL Schlenk flask was charged with CsOH•H₂O (840 mg, 5.0 mmol, 10 mol%). THF (100 mL) and phenylacetylene (7.6 g, 75.0 mmol, 1.5 equiv) were added successively by syringe. The reaction mixture was vigorously stirred and cyclohexanecarboxaldehyde (5.6 g, 50.0 mmol, 1.0 equiv) was added slowly and stirred at 40 °C for 6 h. Then, H₂O (30 mL) was added to quench the reaction and the mixture was extracted by ethyl acetate. The combined organic layer was dried over MgSO₄. After filtration and concentration, the residue was purified by column chromatography on silica gel (eluent = petroleum ether /ethyl acetate 20:1 v/v) to afford the desired product **S-8-1** as a colorless oil.

To a solution of 1-cyclohexyl-3-phenylprop-2-yn-1-ol **S-8-1** (8.5 g, 39.7 mmol, 1.0 equiv), Et₃N (11 mL, 79.4 mmol, 2.0 equiv), and DMAP (243 mg, 2.0 mmol, 5 mol%) in DCM (100 mL) was added acetylchloride (3.4 mL, 47.7 mmol, 1.2 equiv) and the mixture was stirred at room temperature overnight. Then the mixture was quenched with water (30 mL) and the aqueous layer was extracted with ethyl acetate (3 x 10 mL). The combined organic layers were washed with brine (15 mL) and dried with Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (petroleum ether /ethyl acetate 30:1 v/v) to give propargylic acetate S-8-2.

The solution of propargylic acetate **S-8-2** (2.0 g, 7.8 mmol, 1.0 equiv) and NBS (3.15 g, 17.7 mmol, 2.2 equiv) in CH₃CN/H₂O (40 mL, 1:1 mixture) was stirred for 2 h at 100 °C. Reaction mixture was quenched with saturated brine solution (10 mL) and extracted with ethyl acetate (3 x 15 mL). The combined organic layer was washed with saturated brine and dried over Na₂SO₄. Evaporation of the solvent under reduced pressure and purification of the crude reaction mixture by flash column chromatography (petroleum ether /ethyl acetate 40:1 v/v) gave the 2,2-dibromopropargylic acetate **S-8-3** as a colorless oil.

The solution of 2,2-dibromopropargylic acetate S-8-3 (2.58 g, 6.0 mmol, 1.0 equiv)

and DIPEA (3.0 mL, 18.0 mmol, 3.0 equiv) in MeCN (40 mL) was stirred overnight at 50 °C. The reaction solution was diluted with 1N HCl aqueous solution, and was extracted with ethyl acetate (3 x 10 mL). The organic layer was washed with brine, dried over MgSO₄, filtered, and solvent was evaporated to obtain crude product. Flash chromatography over silica gel afforded the product **S-8-4** (eluent = petroleum ether / ethyl acetate 40:1 v/v).

A solution of (*Z*)-2-bromo-3-cyclohexyl-1-phenylprop-2-en-1-one **S-8-4** (1.39 g, 5.0 mmol, 1.0 equiv) in THF (25 mL) was treated with $PdCl_2(PPh_3)_2$ (105.3 mg, 0.15 mmol, 3 mol%) and CuI (95.2 mg, 0.5 mmol, 10 mol%) and cooled down to 0°C in the dark. After 10 min of stirring, alkyne (10.0 mmol, 2.0 equiv) and diisopropylamine (2.1 mL, 15.0 mmol, 3.0 equiv) were added, and the resulting dark brown solution was stirred at 45 °C for several hours. The reaction mixture was partitioned between ethyl acetate and 0.5 N HCl aqueous solution. The aqueous layer was extracted with ethyl acetate (3 x 10mL) and the combined organic phases were washed with brine, dried over MgSO₄, filtered and concentrated under vacuum. The crude product was purified by flash column chromatography to yield the corresponding 2-(1-alkynyl)-2-alken-1-one **8**.

(*E*)-2-benzylidene-5,5-dimethyl-1-phenylhex-3-yn-1-one (1). ¹H NMR (500 MHz, CDCl₃) δ 8.09-8.07 (m, 2H), 7.96-7.93 (m, 2H), 7.56-7.53 (m, 1H), 7.51 (s, 1H), 7.47-7.39 (m, 5H), 1.26 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 193.9, 143.6, 137.2, 135.0, 132.2, 130.2, 130.1, 129.7, 128.3, 127.8, 121.5, 110.7, 77.2, 30.3, 28.7. These data are consistent with the published literature.⁷

(*E*)-2-(4-methoxybenzylidene)-5,5-dimethyl-1-phenylhex-3-yn-1-one (6a), bright yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 8.09-8.07 (m, 2H), 7.92-7.90 (m, 2H), 7.54-7.51 (m, 2H), 7.44-7.41 (m, 2H), 6.94-6.91 (m, 2H), 3.87 (s, 3H), 1.27 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 194.1, 161.2, 143.9, 137.7, 132.1, 131.9, 129.6, 127.9, 127.7, 118.9, 113.7, 110.0, 77.5, 55.4, 30.4, 28.6. HRMS (ESI) [M+H]⁺: calculated for C₂₂H₂₃O₂: 319.1698, found 319.1697.

(*E*)-5,5-dimethyl-2-(4-methylbenzylidene)-1-phenylhex-3-yn-1-one (6b), pale yellow oil. 1H NMR (500 MHz, CDCl3) δ 8.00-7.98 (m, 2H), 7.94-7.92 (m, 2H), 7.55-7.52 (m, 1H), 7.50 (s, 1H), 7.45-7.42 (m, 2H), 7.22 (d, *J* = 5.0 Hz, 2H), 2.40 (s, 3H), 1.26 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 194.1, 144.0, 140.7, 137.5, 132.3, 132.1, 130.2, 129.7, 129.1, 127.7, 120.4, 110.4, 77.4, 30.4, 28.6, 21.6. HRMS (ESI) [M+H]⁺: calculated for C₂₂H₂₃O: 303.1749, found 303.1752.

(*E*)-2-(4-chlorobenzylidene)-5,5-dimethyl-1-phenylhex-3-yn-1-one (6c), pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.03-8.00 (m, 2H), 7.95-7.93 (m, 2H), 7.57-7.53 (m, 1H), 7.47-7.43 (m, 3H), 7.40-7.37 (m, 2H), 1.25 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 193.5, 141.9, 137.0, 135.8, 133.5, 132.4, 131.2, 129.7, 128.6, 127.8, 121.9, 111.5, 77.1, 30.3, 28.7. HRMS (ESI) [M+H]⁺: calculated for C₂₁H₂₀OCl: 323.1203, found 323.1202.

(*E*)-2-(4-fluorobenzylidene)-5,5-dimethyl-1-phenylhex-3-yn-1-one (6d), yellow brown oil. ¹H NMR (500 MHz, CDCl₃) δ 8.11-8.07 (m, 2H), 7.94-7.91 (m, 2H), 7.56-7.53 (m, 1H), 7.48 (s, 1H), 7.46-7.43 (m, 2H), 7.12-7.07 (m, 2H), 1.25 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 193.8, 163.5 (d, *J*=253.2 Hz), 142.3, 137.1, 132.3, 132.1(d, *J* = 8.8 Hz), 131.3 (d, *J*=3.8 Hz), 129.7, 127.8, 121.0 (d, *J* = 2.6 Hz), 115.4 (d, *J*=21.4 Hz), 110.7, 77.1, 30.3, 28.6. ¹⁹F NMR (471 MHz, CDCl₃) δ -108.75. HRMS (ESI) [M+H]⁺: calculated for C₂₁H₂₀OF: 307.1498, found 307.1501.

(*E*)-5,5-dimethyl-2-(naphthalen-2-ylmethylene)-1-phenylhex-3-yn-1-one (6e), yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 8.65-8.60 (m, 1H), 8.18-8.13 (m, 1H), 7.99-7.97 (m, 2H), 7.87-7.84 (m, 3H), 7.68 (s, 1H), 7.58-7.49 (m, 3H), 7.48-7.44 (m, 2H), 1.32 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 193.9, 143.7, 137.3, 134.1, 133.1, 132.6, 132.2, 130.4, 129.7, 128.7, 127.8, 127.7, 127.3, 127.0, 126.4, 121.6, 110.8,

77.5, 30.4, 28.7. HRMS (ESI) $[M+H]^+$: calculated for $C_{25}H_{23}O$: 339.1749, found 339.1745.

(*E*)-2-ethylidene-5,5-dimethyl-1-phenylhex-3-yn-1-one (6f), pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.88-7.86 (m, 2H), 7.53-7.50 (m, 1H), 7.43-7.40 (m, 2H), 6.88 (q, *J* = 7.0 Hz, 1H), 2.07 (d, *J* = 6.9 Hz, 3H), 1.24 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 193.0, 146.5, 137.3, 132.1, 129.5, 127.8, 126.3, 108.3, 74.3, 30.8, 28.3, 16.7. HRMS (ESI) [M+H]⁺: calculated for C₁₆H₁₉O:227.1436, found 227.1432.

t-Bu

(*E*)-2-benzylidene-5,5-dimethyl-1-(*p*-tolyl)hex-3-yn-1-one (6g), yellow brown solid. ¹H NMR (500 MHz, CDCl₃) δ 8.08-8.06 (m, 2H), 7.90-7.88 (m, 2H), 7.46 (s, 1H), 7.43-7.39 (m, 3H), 7.26-7.24 (m, 2H), 2.43 (s, 3H), 1.28 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 193.5, 143.3, 143.1, 135.0, 134.3, 130.0 (2), 130.0 (1), 129.9 (9), 128.5, 128.2, 121.7, 110.4, 77.2, 30.3, 28.6, 21.7. HRMS (ESI) [M+H]⁺: calculated for C₂₂H₂₃O: 303.1749, found 303.1748.

(*E*)-2-benzylidene-1-(4-methoxyphenyl)-5,5-dimethylhex-3-yn-1-one (6h), yellow brown solid. ¹H NMR (500 MHz, CDCl₃) δ 8.07-8.05 (m, 2H), 8.04-8.01 (m, 2H), 7.43-7.37 (m, 4H), 6.95-6.92 (m, 2H), 3.88 (s, 3H), 1.29 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 192.3, 163.1, 142.7, 135.2, 132.3, 129.9(3), 129.8(9), 129.6, 128.2, 121.8, 113.1, 110.4, 77.4, 55.4, 30.4, 28.7. HRMS (ESI) [M+H]⁺: calculated for C₂₂H₂₃O₂: 319.1698, found 319.1693.

(*E*)-2-benzylidene-1-(4-fluorophenyl)-5,5-dimethylhex-3-yn-1-one (6i), yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.08-8.06 (m, 2H), 8.03-7.99 (m, 2H), 7.50 (s, 1H), 7.44-7.40 (m, 3H), 7.14-7.10 (m, 2H), 1.26 (s, 9H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 191.4, 164.6 (d, *J* = 251.7 Hz), 143.5, 134.3, 133.1(d, *J* = 2.9 Hz), 132.3 (d, *J* = 9.4 Hz), 130.7, 129.9, 128.5, 120.4, 115.3 (d, *J* = 22.1 Hz), 110.4, 76.9, 30.0, 28.3. ¹⁹F NMR (471 MHz, CDCl₃) δ -106.18. HRMS (ESI) [M+H]⁺: calculated for C₂₁H₂₀OF: 307.1498, found 307.1497.

(*E*)-2-benzylidene-5,5-dimethyl-1-(thiophen-3-yl)hex-3-yn-1-one (6j), bright yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.37-8.36 (m, 1H), 8.08-8.05 (m, 2H), 7.69-7.68 (m, 1H), 7.58 (s, 1H), 7.43-7.38 (m, 3H), 7.31-7.30 (m, 1H), 1.33 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 186.4, 143.3, 140.5, 135.0, 133.7, 130.1, 128.8, 128.3, 125.1, 121.5, 110.0, 77.4, 30.4, 28.7. HRMS (ESI) [M+H]⁺: calculated for C₁₉H₁₉OS: 295.1157, found 295.1159.

(*E*)-3-benzylidene-6,6-dimethylhept-4-yn-2-one (6k), dark green solid. ¹H NMR (500 MHz, CDCl₃) δ 8.08-8.04 (m, 2H), 7.69 (s, 1H), 7.41-7.38 (m, 3H), 2.51 (s, 3H), 1.38 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 197.0, 141.2, 134.7, 130.4, 130.3, 128.3, 120.5, 108.7, 77.0, 30.6, 28.7, 28.0. HRMS (ESI) [M+H]⁺: calculated for C₁₆H₁₉O: 227.1436, found 227.1431.

(*E*)-2-(4-chlorobenzylidene)-1-(4-chlorophenyl)-5,5-dimethylhex-3-yn-1-one (6l), pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.02-7.99 (m, 2H), 7.93-7.90 (m, 2H), 7.46 (s, 1H), 7.44-7.41 (m, 2H), 7.40-7.37 (m, 2H), 1.26 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 192.1, 142.3, 138.8, 136.0, 135.3, 133.3, 131.2(5), 131.1(9), 128.6, 128.1, 121.4, 111.8, 77.0, 30.3, 28.7. HRMS (ESI) [M+H]⁺: calculated for C₂₁H₁₉OCl₂: 357.0813, found 357.0813.

(*E*)-2-(4-fluorobenzylidene)-1-(4-fluorophenyl)-5,5-dimethylhex-3-yn-1-one (6m), yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 8.10-8.07 (m, 2H), 8.03-7.99 (m, 2H), 7.48 (s, 1H), 7.14-7.08 (m, 4H), 1.26 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 192.0, 165.4 (d, *J* = 221.8 Hz), 163.4 (d, *J* = 220.6 Hz), 142.2, 133.3 (d, *J* = 3.8 Hz), 132.4 (d, *J* = 10.0 Hz), 132.1 (d, *J* = 8.8 Hz), 131.2 (d, *J* = 3.8 Hz), 120.7 (d, *J* = 2.6 Hz), 115.5 (d, *J* = 25.2 Hz), 114.9 (d, *J* = 21.4 Hz), 111.0, 77.1, 30.3, 28.7. ¹⁹F NMR (471 MHz,

CDCl₃) δ -106.06, -108.63. HRMS (ESI) [M+H]⁺: calculated for C₂₁H₁₉OF₂: 325.1404, found 325.1400.

(*E*)-2-benzylidene-1-(4-chlorophenyl)-5,5-dimethylhex-3-yn-1-one (8a), pale yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 8.08-8.06 (m, 2H), 7.94-7.91 (m, 2H), 7.51 (s, 1H), 7.44-7.40 (m, 5H), 1.27 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 192.5, 143.9, 138.6, 135.5, 134.8, 131.2, 130.4, 130.2, 128.3, 128.1, 120.9, 111.0, 77.1, 30.3, 28.7. HRMS (ESI) [M+H]⁺: calculated for C₂₁H₂₀OCl: 323.1203, found 323.1200.

(*E*)-2-(cyclohexylmethylene)-5,5-dimethyl-1-phenylhex-3-yn-1-one (8b), pale yellow oil. ¹ H NMR (500 MHz, CDCl₃) δ 7.87-7.84 (m, 2H), 7.53-7.50 (m, 1H), 7.42-7.39 (m, 2H), 6.65 (d, *J* = 9.2 Hz, 1H), 2.75-2.67 (m, 1H), 1.84-1.74 (m, 4H), 1.71-1.66 (m,1H), 1.41-1.16(m, 14H). ¹³C NMR (126 MHz, CDCl₃) δ 193.4, 156.8, 137.4, 132.1, 129.6, 128.3, 127.8, 123.4, 107.4, 74.4, 40.1, 31.5, 30.7, 30.6, 28.3, 25.9, 25.6. HRMS (ESI) [M+H]⁺: calculated for C₂₁H₂₇O: 295.2062, found 295.2060.

(*E*)-2-(cyclohexylmethylene)-1-phenyloct-3-yn-1-one (8c), pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.84-7.79 (m, 2H), 7.55-7.50 (m, 1H), 7.44-7.40 (m, 2H), 6.58 (d, *J* = 9.5 Hz, 1H), 2.82-2.70 (m, 1H), 2.40 (t, *J* = 6.9 Hz, 2H), 1.84-1.73 (m, 4H), 1.72-1.66 (m, 1H), 1.59-1.48 (m, 2H), 1.46-1.37 (m, 2H), 1.37-1.29 (m, 2H), 1.28-1.14 (m, 3H), 0.91 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 193.9, 157.0, 137.5, 132.1, 129.5, 127.9, 123.5, 99.1, 75.6, 40.1, 31.6, 30.6, 25.8, 25.5, 21.8, 19.3, 13.6. These data are consistent with the published literature.¹³

(*E*)-2-(cyclohexylmethylene)-1,4-diphenylbut-3-yn-1-one (8d), pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.93-7.90 (m, 2H), 7.57-7.54 (m, 1H), 7.47-7.44 (m, 2H), 7.42-7.39 (m, 2H), 7.33-7.30 (m, 3H), 6.78 (d, *J* = 9.6 Hz, 1H), 2.91-2.83 (m, 1H), 1.89-1.85 (m, 2H),1.82-1.77 (m,2H),1.74-1.69 (m,1H), 1.44-1.35 (m,2H), 1.31-1.20 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 192.9, 158.0, 137.3, 132.4, 131.4, 129.6, 128.5, 128.3, 128.0, 123.1, 122.9, 97.8, 84.6, 40.4, 31.6, 25.8, 25.5. HRMS (ESI) [M+H]⁺: calculated for C₂₃H₂₃O: 315.1749, found 315.1745.

(*E*)-2-benzylidene-1,4-diphenylbut-3-yn-1-one (10). ¹H NMR (500 MHz, CDCl₃) δ 8.18-8.09 (m, 2H), 8.07-7.98 (m, 2H), 7.64 (s, 1H), 7.62-7.56 (m, 1H), 7.54-7.43 (m, 5H), 7.43-7.38 (m, 2H), 7.37-7.30 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 193.4, 145.1, 137.1, 134.8, 132.5, 131.3, 130.6, 130.4, 129.7, 128.8, 128.6, 128.4, 128.1, 122.8, 120.9, 100.8, 87.1. These data are consistent with the published literature.⁷

3 General procedures of photocatalytic reactions between 1,3-enynes and alkylsilicates

3.1 General procedure for the preparation of 1,2-allenyl ketones 4, 7a, 7e-7m, 9a-9c, and 9e-9g

To an oven dried transparent 10 mL Schlenk tube equipped with stirring bar, CuI (7.6 mg, 0.04 mmol, 20 mol%), $Ir[dF(CF_3)ppy)]_2(dtbbpy)PF_6$ (4.5mg, 0.004 mmol, 2 mol%) and the 2-(1-alkynyl)-2-alken-1-one (0.2 mmol, 1.0 equiv) were added. In a glovebox, potassium [18-Crown-6] bis(catecholato) alkylsilicate **2** (0.4 mmol, 2.0

equiv) was added in the tube. The tube was sealed with a rubber septum and removed from the glovebox. The tube was then charged with degassed DMSO (6.0 mL, 0.033 M) *via* a syringe. The tube was irradiated with a 9 W blue LEDs strip spiraled within a bowel for 24 or 36 h (cooling with a fan). After the reaction was completed, the reaction solution was diluted with saturated Na₂CO₃ aqueous solution, and was extracted with ethyl acetate (4 x 5 mL). The organic layer was washed with brine, dried over MgSO₄, filtered, and solvent was evaporated to obtain crude product. Flash chromatography over silica gel afforded the product (eluent = petroleum ether / ethyl acetate 25:1 v/v).

3.2 General procedure for the preparation of 1,2-allenyl ketones 7b, 7c-7d, 9d, and 9h-j.

To an oven dried transparent 10 mL Schlenk tube equipped with stirring bar, $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (4.5 mg, 0.004 mmol, 2 mol %) and the 2-(1-alkynyl)-2alken-1-one (0.2 mmol, 1.0 equiv) were added. In a glovebox, potassium [18-Crown-6] bis(catecholato) alkylsilicate 2 (0.4 mmol, 2.0 equiv) and CuI (7.6 mg, 0.04 mmol, 20 mol%) were added in the tube. The tube was sealed with a rubber septum and removed from the glovebox. The tube was then charged with degassed DMSO (6.0 mL, 0.033 M) via a syringe. The tube was irradiated with a 9 W blue LEDs strip spiraled within a bowel for 36 h (cooling with a fan). After 36 h, an additional portion of $Ir[dF(CF_3)ppy)]_2(dtbbpy)PF_6$ (2.2 mg, 0.002 mmol, 1 mol%), potassium [18-Crown-6] bis(catecholato) alkylsilicate 2 (0.2 mmol, 1.0 equiv), and CuI (3.8 mg, 0.02 mmol, 10 mol %) were added, and the reaction was stirred for an additional 12 h under irradiation. After the reaction was completed, the reaction solution was diluted with saturated Na₂CO₃ aqueous solution, and was extracted with ethyl acetate (4 x 5 mL). The organic layer was washed with brine, dried over MgSO₄, filtered, and solvent was evaporated to obtain crude product. Flash chromatography over silica gel afforded the product (eluent = petroleum ether / ethyl acetate 25:1 v/v).

$$\begin{array}{c}
H \\
COPh \\
t-Bu \\
Ph \\
H
\\
4
\end{array}$$
COPh
CH₂OCH₃

2-(2-Methoxy-1-phenylethyl)-5,5-dimethyl-1-phenylhexa-2,3-dien-1-one (4). Flash column chromatography to afford product 4 (52.8 mg, 79% yield, dr = 50:50). The first fraction:colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.69-7.66 (m, 2H), 546 (1, 2, 4) (1, 2, 4) (1, 2, 4) (1,

7.46-7.43 (m, 1H), 7.37-7.28 (m, 6H), 7.22-7.18 (m, 1H), 5.46 (d, J = 1.9 Hz, 1H), 4.48-4.45 (m, 1H), 3.77-3.71 (m, 2H), 3.35 (s, 3H), 0.80 (s, 9H). ¹³C NMR (126 MHz,

CDCl₃) δ 211.4, 194.5, 140.8, 138.8, 131.4, 128.7, 128.3, 128.2, 127.5, 126.7, 111.6, 108.6, 74.8, 58.7, 43.1, 33.0, 29.5. HRMS (ESI) [M+H]⁺: calculated for C₂₃H₂₇O₂: 335.2011, found 335.2013. The second fraction: solid. ¹H NMR (500 MHz, CDCl₃) δ 7.65-7.63 (m, 2H), 7.45-

7.41 (m, 1H), 7.36-7.28 (m, 6H), 7.22-7.19 (m, 1H), 5.51 (d, J = 1.8 Hz, 1H), 4.47-4.44 (m, 1H), 3.78-3.65 (m, 2H), 3.34 (s, 3H), 0.96 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 211.2, 194.4, 141.1, 138.6, 131.4, 128.7, 128.3, 128.1, 127.5, 126.7, 111.2, 108.8, 75.4, 58.5, 42.9, 33.2, 29.6. HRMS (ESI) [M+H]⁺: calculated for C₂₃H₂₇O₂: 335.2011, found 335.2015.

2-(2-Methoxy-1-(4-methoxyphenyl)ethyl)-5,5-dimethyl-1-phenylhexa-2,3-dien-1-one (7a). Flash column chromatography to afford product **7a** (55.6 mg, 72% yield, dr = 43:57).

The first fraction: colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.64-7.62 (m, 2H), 7.44-7.41 (m, 1H), 7.34-7.31 (m, 2H), 7.28-7.25 (m, 2H), 6.85-6.82 (m, 2H), 5.50 (d, J = 1.8 Hz, 1H), 4.40-4.37 (m, 1H), 3.77 (s, 3H), 3.74-3.61 (m, 2H), 3.33 (s, 3H), 0.95 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 211.1, 194.5, 158.3, 138.6, 133.2, 131.4, 129.0, 128.7, 127.5, 113.8, 111.4, 108.8, 75.6, 58.5, 55.2, 42.1, 33.2, 29.7.HRMS (ESI) [M+Na]⁺: calculated for C₂₄H₂₈O₃Na: 387.1936, found 387.1932.

The second fraction: colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.67-7.65 (m, 2H), 7.46-7.43 (m, 1H), 7.34-7.32 (m, 2H), 7.28-7.26 (m, 2H), 6.85-6.82 (m, 2H), 5.46 (d, J = 2.1 Hz, 1H), 4.44-4.38 (m, 1H), 3.77 (s, 3H), 3.71-3.69 (m, 2H), 3.34 (s, 3H), 0.83 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 211.2, 194.6, 158.3, 138.9, 133.0, 131.4, 129.3, 128.7, 127.5, 113.7, 111.8, 108.5, 75.1, 58.7, 55.2, 42.4, 33.0, 29.6. HRMS (ESI) [M+Na]⁺: calculated for C₂₄H₂₈O₃Na: 387.1936, found 387.1934.

2-(2-Methoxy-1-(*p***-tolyl)ethyl)-5,5-dimethyl-1-phenylhexa-2,3-dien-1-one (7b).** Flash column chromatography to afford product **7b** (45.4 mg, 65% yield, dr = 37:63). The first fraction: solid. ¹H NMR (500 MHz, CDCl₃) δ 7.65-7.62 (m, 2H), 7.44-7.41 (m, 1H), 7.34-7.31 (m, 2H), 7.24-7.23 (m, 2H), 7.11-9.09 (m, 2H), 5.51 (d, *J* = 1.8 Hz, 1H), 4.42-4.39 (m, 1H), 3.75-3.62 (m, 2H), 3.33 (s, 3H), 2.30 (s, 3H), 0.96 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 211.2, 194.5, 138.6, 138.0, 136.2, 131.3, 129.0, 128.7, 128.0, 127.5, 111.3, 108.7, 75.6, 58.5, 42.5, 33.2, 29.7, 21.0.HRMS (ESI) [M+H]⁺: calculated for C₂₄H₂₉O₂: 349.2168, found 349.2165. The second fraction: solid. ¹H NMR (500 MHz, CDCl₃) δ 7.68-7.66 (m, 2H), 7.46-7.42 (m, 1H), 7.35-7.32 (m, 2H), 7.26-7.23 (m, 2H), 7.11-7.00 (m, 2H), 5.47 (d, J = 2.0 Hz, 1H), 4.43-4.40 (m, 1H), 3.74-3.69 (m, 2H), 3.34 (s, 3H), 2.30 (s, 3H), 0.84 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 211.2, 194.5, 138.9, 137.7, 136.1, 131.4, 128.9, 128.7, 128.2, 127.5, 111.7, 108.5, 75.0, 58.6, 42.8, 33.0, 29.6, 21.0. HRMS (ESI) [M+H]⁺: calculated for C₂₄H₂₉O₂: 349.2168, found 349.2163.

2-(1-(4-Chlorophenyl)-2-methoxyethyl)-5,5-dimethyl-1-phenylhexa-2,3-dien-1-

one (7c). Flash column chromatography to afford product 7c (66.2 mg, 90% yield, dr = 48:52).

The first fraction: solid. ¹H NMR (500 MHz, CDCl₃) δ 7.63-7.61 (m, 2H), 7.46-7.42 (m, 1H), 7.35-7.32 (m, 2H), 7.29-7.25 (m, 4H), 5.51 (d, J = 1.8 Hz, 1H), 4.42-4.39 (m,1H), 3.75-0.61 (m, 2H), 3.33 (s, 3H), 0.96 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 211.1, 194.2, 139.7, 138.4, 132.4, 131.5, 129.5, 128.7, 128.4, 127.6, 110.8, 109.0, 75.1, 58.6, 42.4, 33.2, 29.6. HRMS (ESI) [M+H]⁺: calculated for C₂₃H₂₆O₂Cl: 369.1621, found 369.1614.

The second fraction: colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.67-7.65 (m, 2H), 7.47-7.44 (m, 1H), 7.36-7.33 (m, 2H), 7.31-7.26 (m, 4H), 5.48 (d, *J* = 2.0 Hz, 1H), 4.44-4.41 (m, 1H), 3.73-3.67 (m, 2H), 3.33 (s, 3H), 0.81 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 211.3, 194.3, 139.5, 138.6, 132.4, 131.6, 129.7, 128.6, 128.4, 127.6, 111.2, 108.8, 74.6, 58.7, 42.6, 33.1, 29.5. HRMS (ESI) [M+H]⁺: calculated for C₂₃H₂₆O₂Cl: 369.1621, found 369.1613.

2-(1-(4-Fluorophenyl)-2-methoxyethyl)-5,5-dimethyl-1-phenylhexa-2,3-dien-1one (7d). Flash column chromatography to afford product **7d** (54.9 mg, 78% yield, dr = 45:55).

The first fraction: solid. ¹H NMR (500 MHz, CDCl₃) δ 7.64-7.62 (m, 2H), 7.46-7.42 (m, 1H), 7.36-7.29 (m, 4H), 7.00-6.95 (m, 2H), 5.50 (d, J = 1.8 Hz, 1H), 4.44-4.40 (m, 1H), 3.75-3.61 (m, 2H), 3.33 (s, 3H), 0.96 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 211.1, 194.3, 161.7 (d, J = 122.9 Hz), 138.5, 136.9 (d, J = 1.9 Hz), 131.5, 129.6 (d, J = 3.8 Hz), 128.7, 127.5, 115.1 (d, J = 10.7 Hz), 111.1, 108.9, 75.3, 58.6, 42.2, 33.2, 29.6. ¹⁹F NMR (471 MHz, CDCl₃) δ -116.45. HRMS (ESI) [M+H]⁺: calculated for C₂₃H₂₆O₂F: 353.1917, found 353.1913.

The second fraction: solid. ¹H NMR (500 MHz, CDCl₃) δ 7.67-7.65 (m, 2H), 7.47-7.43 (m, 1H), 7.36-7.30 (m, 4H), 7.01-6.96 (m, 2H), 5.47 (d, J = 2.0 Hz, 1H), 4.46-4.42 (m, 1H), 3.73-3.68 (m, 2H), 3.34 (s, 3H), 0.79 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 211.3, 194.4, 161.7 (d, J = 122.2 Hz), 138.7, 136.6 (d, J = 1.9 Hz), 131.5, 129.8 (d, J = 3.8 Hz), 128.7, 127.6, 115.0 (d, J = 4.4 Hz), 111.5, 108.8, 74.8, 58.7, 42.4, 33.1, 29.5. ¹⁹F NMR (471 MHz, CDCl₃) δ -116.51. HRMS (ESI) [M+H]⁺: calculated for C₂₃H₂₆O₂F: 353.1917, found 353.1913.

2-(2-Methoxy-1-(naphthalen-2-yl)ethyl)-5,5-dimethyl-1-phenylhexa-2,3-dien-1-

one (7e). Flash column chromatography to afford product 7e (52.2 mg, 68% yield, dr = 54:46).

The first fraction: solid. ¹H NMR (500 MHz, CDCl₃) δ 7.81-7.78 (m, 4H), 7.65-7.63 (m, 2H), 7.50-7.48 (m, 1H), 7.43-7.40 (m, 3H), 7.323-7.30 (m, 2H), 5.54 (d, *J* = 1.7 Hz, 1H), 4.64-4.61 (m, 1H), 3.87-3.76 (m, 2H), 3.36 (s, 3H), 0.98 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 211.2, 194.4, 138.6, 138.5, 133.4, 132.5, 131.4, 128.7, 127.9, 127.8, 127.5(3), 127.5(1), 126.8, 126.4, 125.8, 125.4, 111.2, 108.9, 75.3, 58.6, 43.0, 33.2, 29.7. HRMS (ESI) [M+H]⁺: calculated for C₂₇H₂₉O₂: 385.2168, found 385.2164. The second fraction: solid. ¹H NMR (500 MHz, CDCl₃) δ 7.86-7.74 (m, 4H), 7.69-7.67 (m, 2H), 7.52-7.49 (m, 1H), 7.48-7.39 (m, 3H), 7.36-7.32 (m, 2H), 5.51 (s, 1H), 4.64-4.62 (m, 1H), 3.91-3.76 (m, 2H), 3.37 (s, 3H), 0.79 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 211.3, 194.5, 138.8, 138.4, 133.4, 132.5, 131.4, 128.7, 127.8, 127.7, 127.5(4), 127.5(2), 126.9, 126.8, 125.8, 125.4, 111.6, 108.7, 74.9, 58.8, 43.2, 33.1, 29.5. HRMS (ESI) [M+H]⁺: calculated for C₂₇H₂₉O₂: 385.2168, found 385.2168.

2-(1-Methoxypropan-2-yl)-5,5-dimethyl-1-phenylhexa-2,3-dien-1-one (7f). Flash column chromatography to afford product 7f (24.5 mg, 48% yield, dr = 52:48).

The first fraction: colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.70-7.65 (m, 2H), 7.48-7.43 (m, 1H), 7.37-7.34 (m, 2H), 5.46 (d, J = 1.7 Hz, 1H), 3.48-3.45 (m, 1H), 3.34 (s, 3H), 3.29-3.26 (m, 1H), 3.23-3.18 (m, 1H), 1.11 (d, J = 6.8 Hz, 3H), 0.95 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 210.6, 195.2, 139.1, 131.3, 128.6, 127.5, 112.6, 108.2, 58.5, 32.8, 31.6, 29.8, 16.6. ¹³C NMR (126 MHz, Acetone- d_6) δ 211.1, 195.2, 140.3, 132.3, 129.4, 128.6, 113.3, 109.0, 77.6, 58.7, 33.5, 32.6, 17.1. HRMS (ESI) [M+H]⁺: calculated for C₁₈H₂₅O₂: 273.1855, found 273.1853.

The second fraction: colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.69-7.67 (m, 2H), 7.47-7.44 (m, 1H), 7.37-7.34 (m, 2H), 5.46 (d, J = 1.7 Hz, 1H), 3.48-3.45 (m, 1H),

3.34 (s, 3H), 3.29-3.26 (m, 1H), 3.23-3.18 (m, 1H), 1.11 (d, J = 6.8 Hz, 3H), 0.95 (s, 9H).¹³C NMR (126 MHz, CDCl₃) δ 210.6, 195.2, 139.1, 131.3, 128.6, 127.5, 112.6, 108.2, 58.5, 32.8, 31.6, 29.8, 16.6. ¹³C NMR (126 MHz, Acetone- d_6) δ 211.3, 195.1, 140.1, 132.3, 129.5, 128.6, 113.4, 109.1, 77.5, 58.8, 33.5, 32.6, 17.5. HRMS (ESI) [M+H]⁺: calculated for C₁₈H₂₅O₂: 273.1855, found 273.1852.

2-(2-Methoxy-1-phenylethyl)-5,5-dimethyl-1-(p-tolyl)hexa-2,3-dien-1-one (7g). Flash column chromatography to afford product 7g (68.2 mg, 98% yield, dr = 36:64). The first fraction: solid. ¹H NMR (500 MHz, CDCl₃) δ 7.60-7.58 (m, 2H), 7.35-7.33 (m, 2H), 7.30-7.27 (m, 2H), 7.21-7.18 (m, 1H), 7.14-7.12 (m, 2H), 5.50 (d, *J* = 1.8 Hz, 1H), 4.46-4.42 (m, 1H), 3.78-3.65 (m, 2H), 3.33 (s, 3H), 2.36 (s, 3H), 0.99 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 210.5, 193.8, 142.1, 141.2, 135.7, 129.0, 128.3, 128.2, 128.1, 126.7, 110.9, 108.6, 75.5, 58.5, 43.1, 33.2, 29.7, 21.5. HRMS (ESI) [M+H]⁺: calculated for C₂₄H₂₉O₂: 349.2168, found 349.2159.

The second fraction: colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.65-7.63 (m, 2H), 7.37-7.35 (m, 2H), 7.31-7.28 (m, 2H), 7.21-7.18 (m, 1H), 7.16-7.14 (m, 2H), 5.47 (d, J = 2.0 Hz, 1H), 4.49-4.45 (m, 1H), 3.77-3.71 (m, 2H), 3.34 (s, 3H), 2.37 (s, 3H), 0.83 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 210.6, 193.8, 142.1, 140.9, 135.9, 129.0, 128.4, 128.2(1), 128.1(9), 126.6, 111.3, 108.4, 74.8, 58.6, 43.3, 33.0, 29.5, 21.5. HRMS (ESI) [M+H]⁺: calculated for C₂₄H₂₉O₂: 349.2168, found 349.2164.

2-(2-Methoxy-1-phenylethyl)-1-(4-methoxyphenyl)-5,5-dimethylhexa-2,3-dien-1-one(7h). Flash column chromatography to afford product **7h** (59.7mg, 82% yield, dr = 35:65).

The first fraction: colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.75-7.69 (m, 2H), 7.34-7.32 (m, 2H), 7.29-7.26 (m, 2H), 7.20-7.17 (m, 1H), 6.85-6.79 (m, 2H), 5.51 (d, J = 1.9 Hz, 1H), 4.44-4.41 (m, 1H), 3.82 (s, 3H), 3.78-3.64 (m, 2H), 3.33 (s, 3H), 1.00 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 209.7, 192.5, 162.5, 141.2, 131.3, 131.0, 128.3, 128.1, 126.7, 112.8, 110.7, 108.5, 75.5, 58.5, 55.3, 43.3, 33.2, 29.8. HRMS (ESI) [M+H]⁺: calculated for C₂₄H₂₉O₃: 365.2117, found 365.2116.

The second fraction: colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.78-7.75 (m, 2H), 7.36-7.34 (m, 2H), 7.30-7.27 (m, 2H), 7.21-7.17 (m, 1H), 6.86-6.83 (m, 2H), 5.46 (d, J = 2.0 Hz, 1H), 4.47-4.40 (m, 1H), 3.83 (s, 3H), 3.82-3.70 (m, 2H), 3.33 (s, 3H), 0.83 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 209.9, 192.6, 162.6, 140.9, 131.2, 131.2,

128.4, 128.2, 126.6, 112.8, 111.1, 108.3, 74.9, 58.7, 55.3, 43.5, 33.0, 29.6. HRMS (ESI) $[M+H]^+$: calculated for $C_{24}H_{29}O_3$: 365.2117, found 365.2117.

1-(4-Fluorophenyl)-2-(2-methoxy-1-phenylethyl)-5,5-dimethylhexa-2,3-dien-1-one (7i). Flash column chromatography to afford product **7i** (50.0 mg, 71% yield, dr = 46:54).

The first fraction: colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.71-7.67 (m, 2H), 7.34-7.27 (m, 4H), 7.22-7.19 (m, 1H), 7.03-6.99 (m, 2H), 5.54 (d, *J*= 1.8 Hz, 1H), 4.44-4.41 (m, 1H), 3.77-3.63 (m, 2H), 3.33 (s, 3H), 0.98 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 210.8, 192.7, 164.7(d, *J* = 252.0Hz), 141.0, 134.6(d, *J* = 3.8 Hz), 131.3(d, *J* = 8.8 Hz), 128.4, 128.1, 126.8, 114.6(d, J = 21.4 Hz), 111.1, 109.0, 75.4, 58.6, 43.1, 33.3, 29.7.¹⁹F NMR (471 MHz, CDCl₃) δ -107.64. HRMS (ESI) [M+H]⁺: calculated for C₂₃H₂₆OF: 353.1917, found 353.1911.

The second fraction: colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.76-7.72 (m, 2H), 7.35-7.28 (m, 4H), 7.22-7.19 (m, 1H), 7.05-7.01 (m, 2H), 5.49 (d, *J* = 2.0 Hz, 1H), 4.47-4.43 (m, 1H), 3.77-3.71 (m, 2H), 3.34 (s, 3H), 0.81 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 210.9, 192.8, 164.8(d, *J* = 252.0 Hz), 140.7, 134.9(d, *J* = 3.8 Hz), 131.3(d, *J* = 8.8 Hz), 128.3, 128.3, 126.7, 114.6(d, *J* = 22.6 Hz), 111.6, 108.8, 74.8, 58.7, 43.3, 33.1, 29.5. ¹⁹F NMR (471 MHz, CDCl₃) δ -107.58. HRMS (ESI) [M+H]⁺: calculated for C₂₃H₂₆O₂F: 353.1917, found 353.1910.

2-(2-Methoxy-1-phenylethyl)-5,5-dimethyl-1-(thiophen-3-yl)hexa-2,3-dien-1-one (7j). Flash column chromatography to afford product 7j (54.4 mg, 80 % yield, dr = 48:52).

The first fraction: solid. ¹H NMR (500 MHz, CDCl₃) δ 7.99-7.98 (m, 1H), 7.47-7.46 (m, 1H), 7.33-7.27 (m, 4H), 7.22-7.18 (m, 2H), 5.65 (d, J = 1.7 Hz, 1H), 4.44-4.42 (m, 1H), 3.77-3.62 (m, 2H), 3.33 (s, 3H), 1.07 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 210.0, 186.4, 141.3, 141.1, 131.6, 128.3, 128.1, 126.7, 124.7, 111.5, 109.1, 75.4, 58.5, 43.0, 33.4, 29.7. HRMS (ESI) [M+H]⁺: calculated for C₂₁H₂₅O₂S: 341.1575, found 341.1565.

The second fraction: colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 8.03-8.02(m, 1H), 7.50-7.49 (m, 1H), 7.34-7.27 (m, 4H), 7.23-7.18 (m, 2H), 5.59 (d, *J* = 1.9 Hz, 1H), 4.47-4.44 (m, 1H), 3.75-3.68 (m, 2H), 3.33 (s, 3H), 0.87 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 210.4, 186.5, 141.5, 140.8, 131.6, 128.4, 128.3, 128.2, 126.7, 124.8, 111.9,

109.0, 74.8, 58.7, 43.2, 33.2, 29.5. HRMS (ESI) $[M+H]^+$: calculated for $C_{21}H_{25}O_2S$: 341.1575, found 341.1580.

3-(2-Methoxy-1-phenylethyl)-6,6-dimethylhepta-3,4-dien-2-one (7k). Flash column chromatography to afford product 7k (43.5 mg, 74% yield, dr = 40:60). The first fraction: colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.28-7.24 (m, 4H), 7.20-7.17 (m, 1H), 5.70 (d, *J* = 1.7 Hz, 1H), 4.24-4.21 (m, 1H), 3.65-3.55 (m, 2H), 3.30 (s, 3H), 2.23 (s, 3H), 1.19 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 210.1, 197.7, 141.3, 128.2, 128.0, 126.6, 112.6, 108.8, 75.5, 58.5, 41.6, 33.4, 30.0, 26.9. HRMS (ESI) [M+Na]⁺: calculated for C₁₈H₂₄O₂Na: 295.1674, found 295.1667.

The second fraction: colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.28-7.24 (m, 4H), 7.20-7.17 (m, 1H), 5.69 (d, J = 1.9 Hz, 1H), 4.47-4.44 (m, 1H), 3.65-3.58 (m, 2H), 3.31 (s, 3H), 2.24 (s, 3H), 0.99 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 210.4, 197.8, 140.9, 128.2, 126.6, 112.8, 108.8, 74.8, 58.6, 41.8, 33.3, 29.8, 27.0. HRMS (ESI) [M+Na]⁺: calculated for C₁₈H₂₄O₂Na: 295.1674, found 295.1670.

1-(4-Chlorophenyl)-2-(1-(4-chlorophenyl)-2-methoxyethyl)-5,5-dimethylhexa-2,3dien-1-one (7l). Flash column chromatography to afford product 7l (68.3 mg, 85% yield, dr = 51:49).

The first fraction: solid. ¹H NMR (500 MHz, CDCl₃) δ 7.61-7.58 (m, 2H), 7.33-7.31 (m, 2H), 7.26 (br, 4H), 5.55 (d, *J* = 1.9 Hz, 1H), 4.40-4.37 (m, 1H), 3.74-3.60 (m, 2H), 3.32 (s, 3H), 0.98 (s, 9H).¹³C NMR (126 MHz, CDCl₃) δ 210.9, 192.8, 139.5, 137.9, 136.6, 132.5, 130.2, 129.4, 128.5, 127.9, 110.8, 109.3, 75.0, 58.6, 42.5, 33.4, 29.7. HRMS (ESI) [M+H]⁺: calculated for C₂₃H₂₅O₂Cl₂: 403.1232, found 403.1230.

The second fraction: solid. ¹H NMR (500 MHz, CDCl₃) δ 7.65-7.62 (m, 2H), 7.35-7.32 (m, 2H), 7.27 (br, 4H), 5.51 (d, J = 2.0 Hz, 1H), 4.41-4.38(m, 1H), 3.72-3.66 (m, 2H), 3.33 (s, 3H), 0.82 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 211.0, 192.8, 139.3, 137.9, 136.8, 132.5, 130.2, 129.7, 128.4, 127.9, 111.1, 109.2, 74.5, 58.8, 42.7, 33.2, 29.6. HRMS (ESI) [M+H]⁺: calculated for C₂₃H₂₅O₂Cl₂: 403.1232, found 403.1230.

1-(4-Fluorophenyl)-2-(1-(4-fluorophenyl)-2-methoxyethyl)-5,5-dimethylhexa-2,3dien-1-one (7m). Flash column chromatography to afford product **7m** (62.2 mg, 84% yield, dr = 44:56).

The first fraction: colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.70-7.67 (m, 2H), 7.30-7.27 (m, 2H), 7.04-6.96 (m, 4H), 5.53 (d, J = 1.8 Hz, 1H), 4.41-4.38 (m, 1H), 3.74-3.60 (m, 2H), 3.33 (s, 3H), 0.98 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 210.7, 192.6, 164.8(d, J = 253.2 Hz), 161.7(d, J = 245.8 Hz), 136.7(d, J = 3.8 Hz), 134.5(d, J = 2.6 Hz), 131.3(d, J = 8.8 Hz), 129.5(d, J = 8.8 Hz), 115.1(d, J = 20.2 Hz), 114.7(d, J = 22.6 Hz), 111.0, 109.1, 75.2, 58.6, 42.4, 33.3, 29.7. ¹⁹F NMR (471 MHz, CDCl₃) δ - 107.39, -116.28. HRMS (ESI) [M+H]⁺: calculated for C₂₃H₂₅O₂F₂: 371.1823, found 371.1823.

The second fraction: colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.74-7.71 (m, 2H), 7.32-7.26 (m, 2H), 7.06-6.96 (m, 4H), 5.49 (d, J = 2.0 Hz, 1H), 4.44-4.40 (m, 1H), 3.73-3.67 (m, 2H), 3.33 (s, 3H), 0.80 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 210.9, 192.7, 164.8(d, J = 253.2 Hz), 161.7(d,J=244.4 Hz), 136.5(d, J = 2.6 Hz), 134.7(d, J = 3.8 Hz), 131.3(d, J = 8.8 Hz), 129.8(d, J = 8.8 Hz), 115.1(d, J = 21.4 Hz), 114.7(d, J = 21.4 Hz), 111.4, 109.0, 74.8, 58.7, 42.6, 33.1, 29.5. ¹⁹F NMR (471 MHz, CDCl₃) δ -107.36, -116.37. HRMS (ESI) [M+H]⁺: calculated for C₂₃H₂₅O₂F₂: 371.1823, found 371.1818.

1-(4-Chlorophenyl)-2-(2-methoxy-1-phenylethyl)-5,5-dimethylhexa-2,3-dien-1-one (9a). Flash column chromatography to afford product **9a** (67.0 mg, 91% yield, dr = 52:48).

The first fraction: solid. ¹H NMR (500 MHz, CDCl₃) δ 7.62-7.59 (m, 2H), 7.34-7.28 (m, 6H), 7.22-7.19 (m, 1H), 5.55 (d, J = 1.8 Hz, 1H), 4.44-4.41 (m, 1H), 3.77-3.63 (m, 2H), 3.33 (s, 3H), 0.98 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 210.9, 193.0, 140.9, 137.7, 136.8, 130.2, 128.4, 128.1, 127.8, 126.8, 111.1, 109.1, 75.3, 58.5, 43.0, 33.3, 29.7. HRMS (ESI) [M+H]⁺: calculated for C₂₃H₂₆O₂Cl: 369.1621, found 369.1616.

The second fraction: solid. ¹H NMR (500 MHz, CDCl₃) δ 7.66-7.63 (m, 2H), 7.34-7.28 (m, 6H), 7.22-7.19 (m, 1H), 5.50 (d, J = 2.0 Hz, 1H), 4.45-4.42 (m, 1H), 3.76-3.70 (m, 2H), 3.34 (s, 3H), 0.81 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 211.1, 193.0, 140.7, 137.7, 137.0, 130.2, 128.3(2), 128.2(8), 127.9, 126.8, 111.6, 108.9, 74.8, 58.7, 43.2, 33.1, 29.5. HRMS (ESI) [M+H]⁺: calculated for C₂₃H₂₆O₂Cl: 369.1621, found 369.1617.

1-(4-Chlorophenyl)-5,5-dimethyl-2-(1-phenylpropyl)hexa-2,3-dien-1-one (9b). Flash column chromatography to afford product 9b as a colorless oil (53.5 mg, 76% yield, dr = 44:56).

Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ 7.65-7.60 (m, 1H), 7.59-7.55 (m, 1H), 7.35-7.24 (m, 7H), 7.22-7.14 (m, 1H), [5.52 (d, *J* = 1.8 Hz, 0.39H), 5.47 (d, *J* = 2.0 Hz, 0.61H)], 4.00-3.91 (m, 1H), 1.94-1.83 (m, 1H), 1.82-1.70 (m, 1H), 0.98 (s, 3.51H), 0.89 (t, *J* = 7.5 Hz, 3H), 0.82 (s, 5.49H). ¹³C NMR (126 MHz, CDCl₃) δ 210.7, 210.6, 193.5, 193.3, 143.4, 143.3, 137.6(4), 137.6 (2), 137.2, 136.9, 130.2, 130.1, 128.2 (2), 128.1 (8), 128.1, 128.0, 127.8 (3), 127.8 (0), 126.3 (1), 126.2 (7), 114.6 (3), 114.5 (9), 109.0, 108.7, 44.8, 44.6, 33.3, 33.1, 29.9, 29.6, 28.3, 27.7, 12.6, 12.5. HRMS (ESI) [M+H]⁺: calculated for C₂₃H₂₆OCl: 353.1672, found 353.1701.

1-(4-Chlorophenyl)-5,5-dimethyl-2-(1-phenylbutyl)hexa-2,3-dien-1-one (9c). Flash column chromatography to afford product 9c as a colorless oil (65.1 mg, 89% yield, dr = 46:54). Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ 7.64-7.62 (m, 1H), 7.59-7.57 (m, 1H), 7.33-7.26 (m, 6H), 7.19-7.16 (m, 1H), [5.53 (d, *J* = 1.8 Hz, 0.44H),5.47(d, *J* = 1.8 Hz, 0.56H)], 4.12-4.06 (m, 1H), 1.86-1.72 (m, 2H), 1.31-1.26 (m, 2H), 0.99 (s, 3.96H), 0.93-0.90 (m, 3H), 0.82 (s, 5.04H). ¹³C NMR (126 MHz, CDCl₃) δ 210.7, 210.6, 193.4, 193.3, 143.7, 143.4, 137.6 (2), 137.5 (9), 137.2, 136.9, 130.1 (5), 130.1 (3), 128.2, 128.1, 127.9, 127.8 (0), 127.7 (7), 126.3, 126.2, 114.7, 114.6, 109.0, 108.7, 42.7, 42.5, 37.6, 36.9, 33.2, 33.1, 29.8, 29.7, 29.5, 21.0, 20.8, 14.0. HRMS (ESI) [M+H]⁺: calculated for C₂₄H₂₈OCI: 367.1829, found 367.1826.

1-(4-Chlorophenyl)-5,5-dimethyl-2-(3-methyl-1-phenylbutyl)hexa-2,3-dien-1-one (**9d**). Flash column chromatography to afford product **9d** as a solid (63.8 mg, 84% yield, dr = 49:51). Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ 7.63 (s, 0H), 7.60-7.53 (m, 1H), 7.33-7.26 (m, 6H), 7.19-7.16 (m, 1H), [5.52 (d, *J* = 1.7 Hz, 0.47H), 5.46 (d, *J* = 2.0 Hz, 0.53H)], 4.23-4.18 (m, 1H), 1.77-1.59 (m, 2H), 1.49-1.40 (m, 1H), 0.98 (s, 4.23H), 0.95 (d, *J* = 5.0 Hz, 3H), 0.90 (d, *J* = 6.6 Hz, 3H), 0.81 (s, 4.77H). ¹³C NMR (126 MHz, CDCl₃) δ 210.8, 193.4, 193.3, 143.7, 143.4, 137.6 (4), 137.5 (9), 137.2, 137.0, 130.1, 128.2 (0), 128.1 (9), 128.1, 127.9, 127.8 (2), 127.7 (8), 126.3, 126.2, 114.9, 114.8, 109.1, 108.9, 44.6, 43.8, 40.8, 40.5, 33.2, 33.1, 29.8, 29.5, 25.7, 25.5,

23.4, 23.1, 22.1, 21.9. HRMS (ESI) $[M+H]^+$: calculated for $C_{25}H_{30}OCI$: 381.1980, found 381.1976

1-(4-Chlorophenyl)-2-(1,2-diphenylethyl)-5,5-dimethylhexa-2,3-dien-1-one (9e). Flash column chromatography to afford product 9e as a solid (72.0 mg, 87% yield, dr = 44:56). Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ 7.63-7.57 (m, 1H), 7.56-7.50 (m, 1H), 7.39-7.26 (m, 4H), 7.25-7.11 (m, 7H), 7.11-7.02 (m, 1H), [5.61 (d, *J* = 1.8 Hz, 0.39H),5.50 (d, *J* = 1.8 Hz, 0.61H)], 4.53-4.44 (m, 1H), 3.26-3.02 (m, 2H), 0.96 (s, 3.51H), 0.85(s, 5.49H). ¹³C NMR (126 MHz, CDCl₃) δ 211.1, 210.6, 193.2, 193.0, 142.8, 142.4, 139.9, 139.7, 137.7, 137.6, 137.0, 136.7, 130.2, 130.0, 129.0 (1), 128.9 (7), 128.1 (5), 128.1 (0), 128.0 (7), 128.0 (4), 127.9 (9), 127.8 (1), 127.7 (9), 127.7, 126.4 (2), 126.4 (0), 126.0, 125.9, 113.9 (3), 113.8 (5), 109.3, 109.2, 44.4 (3), 44.3 (8), 41.5, 40.8, 33.3, 33.2, 29.7, 29.5. HRMS (ESI) [M+H]⁺: calculated for C₂₈H₂₈OCI: 415.1829, found 415.1826.

3-(4-Chlorobenzoyl)-6,6-dimethyl-2-phenylhepta-3,4-dien-1-yl acetate (9f). Flash column chromatography to afford product **9f** as a colorless oil. (68.6 mg, 82% yield, dr = 47:53). Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ 7.67-7.58 (m, 2H), 7.38-7.27 (m, 6H), 7.25-7.20 (m, 1H), [5.62 (d, *J* = 1.7 Hz, 0.34H),5.51 (d, *J* = 1.8 Hz, 0.66H)], 4.53-4.29 (m, 3H), 1.97 (d, *J* = 11.2 Hz, 3H), 0.98 (s, 3.06H), 0.80 (s, 5.94H). ¹³C NMR (126 MHz, CDCl₃) δ 211.0, 210.4, 192.6, 192.5, 170.9, 170.8, 139.8, 139.7, 138.0, 137.9, 136.7, 136.4, 130.1 (8), 130.1 (6), 128.5, 128.4, 128.2, 128.0 (2), 128.9 (5), 127.9, 127.1 (3), 127.0 (5), 111.0, 110.6, 109.8, 109.4, 66.5, 66.0, 42.2 (4), 42.1 (6), 33.4, 33.2, 29.7, 29.4, 20.9 (2), 20.8 (6). HRMS (ESI) [M+Na]⁺ : calculated for C₂₄H₂₅O₃ClNa: 419.1384, found 419.1382.

2-(4-Chloro-1-phenylbutyl)-1-(4-chlorophenyl)-5,5-dimethylhexa-2,3-dien-1-one (9g). Flash column chromatography to afford product 9g as a colorless oil (71.4 mg, 89% yield, dr = 40.60). Two diastereoisomers are hard to be separated by column

chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ 7.64-7.61 (m, 1H), 7.59-7.56 (m, 1H), 7.34-7.27 (m, 6H), 7.21-7.17 (m, 1H), [5.56 (d, *J* = 1.8 Hz, 0.44H),5.51 (d, *J* = 2.0Hz, 0.56H)], 4.13-4.06 (m, 1H), 3.57-3.49 (m, 2H), 2.04-1.89 (m, 2H), 1.81-1.68 (m, 2H), 0.99 (s, 3.96H), 0.82(s, 5.04H). ¹³C NMR (126 MHz, CDCl₃) δ 210.6, 210.5, 193.2, 193.0, 142.8, 142.6, 137.7, 137.0, 136.7, 130.1 (4), 130.1 (1), 128.4, 128.3, 128.1, 127.9, 127.8 (4), 127.8 (2), 126.6, 126.5, 114.3, 114.2, 109.4, 109.1, 44.9 (8), 44.9 (6), 42.4, 42.2, 33.3, 33.2, 32.6, 31.8, 30.9, 30.6, 29.8, 29.5. HRMS (ESI) [M+H]⁺: calculated for C₂₄H₂₇OCl₂: 401.1439, found 401.1438.

2-(Dicyclohexylmethyl)-5,5-dimethyl-1-phenylhexa-2,3-dien-1-one (9h). Flash column chromatography to afford product 9h as a solid (65.0 mg, 86% yield). The product 9h was obtained in 86% yield as a solid after column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.69-7.66 (m, 2H), 7.46-7.42 (m, 1H), 7.37-7.34 (m, 2H), 5.35 (s, 1H), 2.69 (m, 1H), 1.82-1.73 (m, 10H), 1.30-0.96 (m, 12H), 0.89 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 212.6, 196.3, 139.0, 131.0, 128.7, 127.5, 111.9, 107.9, 46.5, 39.3, 39.1, 33.4, 32.3, 31.2, 29.9, 28.0, 26.9 (3), 26.9 (0), 26.8, 26.7, 26.6, 26.4.HRMS (ESI) [M+H]⁺: calculated for C₂₇H₃₉O: 379.3001, found 379.2991.

2-(Dicyclohexylmethyl)-1-phenylocta-2,3-dien-1-one (9i). Flash column chromatography to afford product 9i as a solid (28.7 mg, 38% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.77-7.72 (m, 2H), 7.51-7.45 (m, 1H), 7.39-7.36 (m, 2H), 5.28 (t, *J* = 7.5 Hz, 1H), 2.66 (t, *J* = 7.3 Hz, 1H), 2.15-1.99 (m, 2H), 1.76-1.51 (m, 10H), 1.35-1.09 (m, 12H), 1.09-0.91 (m, 4H), 0.82 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 213.8, 196.0, 138.8, 131.5, 129.1, 127.6, 108.4, 95.3, 46.7, 38.6, 38.5, 31.7, 31.3, 29.7, 29.3, 29.2, 28.2, 26.9 (0), 26.8 (6), 26.8, 26.7, 26.6, 22.0, 13.8. HRMS (ESI) [M+H]⁺: calculated for C₂₇H₃₉O: 379.3001, found 379.3004.

2-(Dicyclohexylmethyl)-1,4-diphenylbuta-2,3-dien-1-one (9j). Flash column chromatography to afford product 9j as a solid (46.2 mg, 58% yield). ¹H NMR (500

MHz, CDCl₃) δ 7.84-7.82 (m, 2H), 7.44-7.41 (m, 1H), 7.36-7.23 (m, 7H), 6.45 (s, 1H), 2.84 (t, *J* = 7.4 Hz, 1H), 1.84-1.63 (m, 10H), 1.33-1.00 (m, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 215.3, 194.6, 138.2, 132.9, 131.9, 128.9, 128.7, 127.8, 127.5, 127.3, 112.5, 99.1, 48.3, 39.0, 31.8, 31.6, 30.0, 29.3, 26.8 (3), 26.7 (6), 26.7 (1), 26.6, 26.5, 26.2. HRMS (ESI) [M+H]⁺: calculated for C₂₉H₃₅O: 399.2688, found 399.2679.

4 Mechanistic experiments

4.1 Reaction of 1,3-enyne 10 with chloromethyl silicate

To an oven dried transparent 10 mL Schlenk tube equipped with stirring bar, $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (4.5 mg, 0.004 mmol, 2 mol%) and the 2-(1-alkynyl)-2alken-1-one 10 (64.5 mg, 0.2 mmol, 1.0 equiv) were added. In a glovebox, potassium [18-Crown-6] bis(catecholato) chloromethylsilicate 11 (238.4 mg, 0.4 mmol, 2.0 equiv) and CuI (7.6 mg, 0.04 mmol, 20 mol%) were added in the tube. The tube was sealed with a rubber septum and removed from the glovebox. The tube was then charged with degassed DMSO (6.0 mL, 0.033 M) via a syringe. The tube was irradiated with a 9 W blue LEDs strip spiraled within a bowel for 36 h (cooling with a fan). After 36 h, an additional portion of Ir[dF(CF₃)ppy)]₂(dtbbpy)PF₆ (2.2 mg, 0.002 mmol, 1 mol%), potassium [18-Crown-6] bis(catecholato) chloromethylsilicate 11 (119.2 mg, 0.2 mmol, 1.0 equiv), and CuI (3.8 mg, 0.02 mmol, 10 mol%) were added, and the reaction was stirred for an additional 12 h under irradiation. After the reaction was completed, the reaction solution was diluted with saturated Na_2CO_3 aqueous solution, and was extracted with ethyl acetate (4 x 5 mL). The organic layer was washed with brine, dried over MgSO₄, filtered, and solvent was evaporated to obtain crude product. Flash chromatography over silica gel afforded the product 12 (eluent = petroleum ether / ethyl acetate 100:1 v/v).

Phenyl((1S^{*}, 2R^{*})-2-phenyl-1-(phenylethynyl)cyclopropyl)methanone (12). Flash column chromatography to afford product **12** as a solid. (45.7 mg, 71% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.09-8.07 (m, 2H), 7.55-7.52 (m, 1H), 7.45-7.37 (m, 6H), 7.36-7.33 (m, 1H), 7.21-7.14 (m, 3H), 7.00-6.98 (m, 2H), 3.06-3.04 (m, 1H), 2.54-2.51 (m, 1H), 1.98-1.96 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 196.8, 136.8, 135.8,

132.6, 131.1, 129.2, 128.7, 128.1, 128.0, 127.9, 127.8, 127.3, 123.0, 88.2, 84.9, 38.0, 32.1, 23.6. These data are consistent with the published literature.¹⁴

4.2 Deuteration study

To an oven dried transparent 10 mL Schlenk tube equipped with stirring bar, $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (4.5 mg, 0.004 mmol, 2 mol %) and the (E)-2-(cyclohexylmethylene)-5,5-dimethyl-1-phenylhex-3-yn-1-one **8b** (58.9 mg, 0.2 mmol, 1.0 equiv) were added. In a glovebox, potassium [18-Crown-6] bis(catecholato) cyclohexylsilicate 2h (252.1 mg, 0.4 mmol, 2.0 equiv) and CuI (7.6 mg, 0.04 mmol, 20 mol %) were added in the tube. The tube was sealed with a rubber septum and removed from the glovebox. The tube was then charged with degassed DMSO (6.0 mL, 0.033 M) via a syringe. Then CD₃OD (244.0 µL, 6 mmol, 30.0 equiv) was added via a micro syringe. The tube was irradiated with a 9 W blue LEDs strip spiraled within a bowel for 36 h (cooling with a fan). After 36 h, an additional portion of $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (2.2 mg, 0.002 mmol, 1 mol%), potassium [18-Crown-6] bis(catecholato) cyclohexylsilicate 2h (126.0 mg, 0.2 mmol, 1.0 equiv), and CuI (3.8 mg, 0.02 mmol, 10 mol%) were added, and the reaction was stirred for an additional 12 h under irradiation. After the reaction was completed, the reaction solution was diluted with saturated Na₂CO₃ aqueous solution, and was extracted with ethyl acetate (4 x 5 mL). The organic layer was washed with brine, dried over MgSO₄, filtered, and solvent was evaporated to obtain crude product. Flash chromatography over silica gel afforded the product **9h-D** in 82% yield (33.1 mg) (eluent = petroleum ether /ethyl acetate 100:1 v/v). The product 9h-D with 89% D-incorporation was determined by ¹H NMR.

2-(Dicyclohexylmethyl)-5,5-dimethyl-1-phenylhexa-2,3-dien-1-one-4-d (9h-D). The product **9h-D** was obtained in 82% yield (62.1 mg, with 89% D-incorporation) as a solid after column chromatography.¹H NMR (500 MHz, CDCl₃) δ 7.70-7.64 (m, 2H), 7.48-7.40 (m, 1H), 7.38-7.32 (m, 1H), 5.35 (s, 0.11H), 2.69-2.66 (m, 1H), 1.81-1.61 (m, 10H), 1.27-0.99 (m, 12H), 0.89 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 212.7, 196.3, 139.0, 131.0, 128.7, 127.4, 112.0, 107.6 (t, *J*= 24.2 Hz, C-D), 46.4, 39.3,

39.1, 33.3, 32.2, 31.2, 29.8, 28.0, 26.9(3), 26.9(0), 26.8, 26.7, 26.6, 26.4. HRMS (ESI) $[M+H]^+$: calculated for $C_{27}H_{38}DO$: 380.3058, found 380.3056.

7.46 7.66 7.776 7.775 7.77

5 Transformation of 1,2-allenyl ketone

To a solution of 4 (0.25 mmol, 85.0 mg, 1.0 equiv) in dry DCM (3 mL) was added $PdCl_2(CH_3CN)_2$ (6.5 mg, 0.025 mmol, 10 mol%). After 24 hours, the reaction was quenched with H_2O (3 mL) and the mixture was extracted by ethyl acetate. The combined organic layer was dried over MgSO₄. After filtration and concentration, the residue was purified by column chromatography on silica gel (eluent = petroleum ether /ethyl acetate 100:1 v/v) to give 5 in 70% yield.

5-(*tert***-Butyl)-3-(2-methoxy-1-phenylethyl)-2-phenylfuran (5).** The product **5** was obtained in 70% yield (59.5 mg) as a colorless oil after column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.53-7.49 (m, 2H), 7.36-7.31 (m, 6H), 7.25-7.19 (m, 2H), 6.10 (s, 1H), 4.45 (t, *J* = 7.1 Hz, 1H), 3.88-3.75 (m, 2H), 3.34 (s, 3H), 1.34 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 163.1, 147.3, 142.1, 131.7, 128.5, 128.4, 128.1, 126.7, 126.5, 125.9, 121.4, 104.1, 76.9, 58.8, 42.2, 32.7, 29.1. These data are consistent with the published literature.⁷

6 Reference

1 (a) M. S. Oderinde and J. W. Johannes, Practical Syntheses of [2,2'bipyridine]bis[3,5-difluoro-2-[5-(trifluoromethyl)-2pyridinyl]phenyl]Iridium(III) hexafluorophosphate, $[Ir{dF(CF_3)ppy}_2(bpy)]PF_6$ and [4,4'-bis(tert-butyl)-2,2'-bipyridine]bis[3,5difluoro-2-[5-(trifluoromethyl)-2pyridinyl]phenyl]iridium(III)hexafluorophosphate, [Ir{dF(CF₃)ppy}₂(dtbbpy)]PF₆, Org. Synth., 2017, **94**, 77-92; (b) J. Luo and J. Donor-Acceptor FluorophoresforVisible-Light-Promoted Zhang, OrganicSynthesis: Photoredox/Ni Dual Catalytic C(sp³)-C(sp²) Cross-Coupling, ACS Catal., 2016, 6, 873-877; (c) D. M. Schultz, J. W. Sawicki and T. P. Yoon, An improved procedure for the preparation of $Ru(bpz)_3(PF_6)_2$ via a high-yielding synthesis of 2,2'-bipyrazine, Beilstein J. Org. Chem., 2015, 11, 61-65.

- (a) T. Guo, L. Zhang, X. Liu, Y. Fang, X. Jin, Y. Yang, Y. Li, B. Chen and M. Ouyang, Visible-Light-Promoted Redox-Neutral Cyclopropanation Reactions of α-Substituted Vinylphosphonates and Other Michael Acceptors with Chloromethyl Silicate as Methylene Transfer Reagent, *Adv. Synth. Catal.*, 2018, 360, 4459-4463; (b) W. Luo, Y. Yang, Y. Fang, X. Zhang, X. Jin, G. Zhao, L. Zhang, Y. Li, W. Zhou, T. Xia and B. Chen, Photoredox-Catalyzed Cyclopropanation of 1,1-Disubstituted Alkenes via Radical-Polar Crossover Process, *Adv. Synth. Catal.*, 2019, 361, 4215-4221; (c) W. Luo, Y. Fang, L, Zhang, T. Xu, Y. Liu, Y. Li, X. Jin, J. Bao, X. Wu and Z. Zhang, Bromomethyl Silicate: A Robust Methylene Transfer Reagent for Radical-Polar Crossover Cyclopropanation of Alkenes, *Eur. J. Org. Chem.*, 2020, 1778-1781.
- J. L. Schwarz, H.-M. Huang, T. O. Paulisch and F. Glorius, Dialkylation of 1,3-Dienes by Dual Photoredox and Chromium Catalysis, *ACS Catal.*, 2020, **10**, 1621-1627.
- 4 V. K. Gopinatha, H. A. Swarup, S. C. Raghavan, K. Mantelingu and K. S. Rangappa, Discovery of Novel Approach for Regioselective Synthesis of Thioxotriaza-Spiro Derivatives *via* Oxalic Acid, *Synlett*, 2019, **30**, 2004-2009.
- 5 H. Yu, C. Wan, J. Han, A. Li, *Acta Chim. Sinica*, 2013, **71**, 1488-1491.
- 6 R. Iakovenko and J. Hlaváč, Visible light-mediated metal-free double bond deuteration of substituted phenylalkenes, *Green Chem.*, 2021, **23**, 440-446.
- Y. Liu, W. Luo, T. Xia, Y. Fang, C. Du, X. Jin, Y. Li, L. Zhang, W. Lei and H. Wu, Merging radical-polar crossover/cycloisomerization processes: access to polyfunctional furans enabled by metallaphotoredox catalysis, *Org. Chem. Front.*, 2021, **8**, 1732–1738.
- 8 F. Lu, L. Lu, G. He, J. Bai and W. Xiao, Enantioselective Radical Carbocyanation of 1,3-Dienes via Photocatalytic Generation of Allylcopper Complexes, *J. Am. Chem. Soc.*, 2021, **143**, 4168–4173.
- 9 D. Wu and D. F. O'Shea, Synthesis and Properties of BF_2 -3,3'-Dimethyldiarylazadipyrromethene Near-Infrared Fluorophores, *Org. Lett.*, 2013, **15**, 3392–3395.
- 10 D. Tzalis and P. Knochel, Cesium Hydroxide: A Superior Base for the Catalytic Alkynylation of Aldehydes and Ketones and Catalytic Alkenylation of Nitriles, *Angew. Chem. Int. Ed.*, 1999, **38**, 1463-1465.
- E. Manoni, M. Daka, M. Mastandrea, A. Nisi, M. Monari, M. and Bandini, Catalytic α-Allylation of Enones with Alcohols via [Gold(I)]-Mediated [3,3]-Sigmatropic Rearrangement of Propargylic Carboxylates, *Adv. Synth. Catal.*, 2016, **358**, 1404-1409.
- 12 S. Sadhukhan and B. Baire, Formal Halo-Meyer–Schuster Rearrangement of Propargylic Acetates through a Novel Intermediate and an Unexampled Mechanistic Pathway, *Eur. J. Chem.*, 2019, **25**, 9816-9820.
- 13 H. Y. Kim, J.-Y. Li and K. Oh, A Soft Vinyl Enolization Approach to α-Acylvinyl Anions: Direct Aldol/Aldol Condensation Reactions of

(*E*)-β-Chlorovinyl Ketones, *Angew. Chem. Int. Ed.*, 2013, **52**, 3736-3740.

14 Y. Bai, J. Fang, J. Ren and Z. Wang, Highly Diastereoselective Gold- or Copper-Catalyzed Formal [4+3] Cycloaddition of 1-(1-Alkynyl) Cyclopropyl Ketones and Nitrones, *Eur. J. Chem.*, 2009, **15**, 8975-8978.

7 NMR spectra of new compound

Dec04-2020/10

t-Bu Õ 6d

Dec 28-2020/232

t-Bu 6m Ö

S59

Mar15-2021/170

MeOH₂C H 〉 t-Bu 7d (the first fraction)

---116.45

May28-2021/121

MeOH₂C H t-Bu 0 7d (the second fraction)

S104

Mar04-2021/72

MeOH₂C H t-Bu 7i (the first fraction)

Dec24-2020/261

MeOH₂C t-Bu

7i (the second fraction)

S124

Apr08-2021/172

MeOH₂C Н t-Bu 7m (the first fraction)

Apr07-2021/32

MeOH₂C H =C: t-Bu 7m (the second fraction)

May 05-2021/20040-040-01-0000	NN400000NN900004000000	00000004400-00000
8 8 7 7 7 M M M M M M M M M M M M M M M	4888887777779999911177777777777777777777	

