Supporting Information

Merging cobalt and photoredox catalysis for C8–H Alkoxylation of 1-naphthylamine derivatives with alcohols

Zhaoliang Xu,†,a,b Yu Hu,†,a Lei Wang,*a,b,d Mingli Sun,a,b and Pinhua Li,*a,c,d

a Department of Chemistry; Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
Fax: (+86)-561-309-0518; phone: (+86)-561-380-2069
E-mail: jieliu_1024@163.com; pphuali@126.com
b Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China; E-mail: leiwang@chnu.edu.cn
c Department of Chemistry, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. China
d State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
† These authors contributed equally to this work.

Contents

1. General considerations...2
2. Representative procedure for the model reaction2
3. Preliminary mechanistic investigation..4
4. X-Ray single crystal diffraction analysis of 3aa..............................8
5. 1H and 13C NMR spectra of the products....................................10
1. General considerations

The 1H NMR and 13C NMR spectra were recorded on a 400 MHz Bruker FT-NMR spectrometer (400/100 MHz). All chemical shifts are given as δ value (ppm) with reference to tetramethylsilane (TMS) as an internal standard. The peak patterns are indicated as follows: s, singlet; d, doublet; t, triplet; m, multiplet; q, quartet. The coupling constants, J, are reported in Hertz (Hz). High resolution mass spectroscopy data of the product were collected on an Agilent Technologies 6540 UHD Accurate-Mass Q-TOF LC/MS (ESI). All the solvents and commercially available reagents were purchased from commercial suppliers. Products were purified by flash chromatography on 200–300 mesh silica gels, SiO$_2$.

2. Representative procedure for the model reaction

2.1 Representative procedure for the reaction in 0.20 mmol scale

\[
\begin{array}{c}
\text{N} \quad \text{H} \\
\text{N} \quad \text{H} \\
\text{O} \\
\text{MeOH} \\
\end{array}
\quad \xrightarrow{\text{DBN (2.0 equiv), RB (3 mol%), Co(OAc)$_2$·4H$_2$O (20 mol%)}}
\begin{array}{c}
\text{N} \\
\text{H} \\
\text{MeO} \\
\text{MeO} \\
\end{array}
\]

A 15 mL oven-dried reaction vessel equipped with a magnetic stirrer bar was charged with N-(naphthalen-1-yl)picolinamide (1a, 0.20 mmol), methanol (2a, 3.0 mL), Co(OAc)$_2$·4H$_2$O (20 mol%), rose bengal (3 mol%) and DBN (2.0 equiv.). The reaction vessel was stirred at 50 °C under green LED (36 W) irradiation in air for 12 h. After completion of the reaction, the mixture was concentrated to yield the crude product, which
was further purified by flash chromatography (silica gel, petroleum ether/ethyl acetate) to give the desired product 3aa (73% yield).

2.2 Representative procedure for the reaction in 5.0 mmol scale

A 100 mL oven-dried reaction vessel equipped with a magnetic stirrer bar was charged with N-(naphthalen-1-yl)picolinamide (1a, 1.24 g, 5.0 mmol), methanol (2, 35 mL), Co(OAc)$_2$·4H$_2$O (20 mol%), rose bengal (3 mol%) and DBN (2.0 equiv.). The reaction vessel was stirred at 50 °C under green LED (36 W) irradiation in air for 18 h. After completion of the reaction, the mixture was concentrated to yield the crude product, which was further purified by flash chromatography (silica gel, EtOAc/petroleum ether = 1:10) to give the desired product 3aa in 62% yield.
3. Preliminary mechanistic investigation

3.1 The free-radical inhibition and trapping experiment

A 5 mL oven-dried sealed tube equipped with a magnetic stirrer bar was charged with N-(naphthalen-1-yl)picolinamide (1a, 0.20 mmol), methanol (2a, 3 mL), Co(OAc)₂·4H₂O (20 mol%), rose bengal (3 mol%), DBN (2.0 equiv) and BHT (3 equiv). The reaction vessel was stirred at 50 °C under green LED (36 W) irradiation in air for 12 h. After completion of the reaction, TLC detection showed that the reaction was completely inhibited, and only trace amount of desired product 3aa was found, indicating a radical pathway involved in the reaction. Meanwhile, the key intermediate was captured by BHT as a free-radical trapping reagent and its corresponding adduct 5a was detected by high-resolution mass.
spectrum (HRMS) analysis (Figure S1).

Figure S1. HRMS analysis of an adduct 5a from a reaction of free-radical with BHT

3.2 Determination of superoxide radicals by EPR

In order to determine the active species of oxygen involved in the present reaction, 5,5-dimethyl-pyrroline-N-oxide (DMPO) was employed to capture O$_2^{-}$•. There was no signal when DMPO was added into a solution of 1a, DBN, RB and Co(OAc)$_2$ in air-saturated CH$_3$OH in the absence of light irradiation (Figure S2A). Irradiation of air-saturated the above CH$_3$OH solution in air with 36 W green LED resulted in the formation of a strong characteristic signal of O$_2^{-}$ adduct with DMPO (Figure S2B–2D). As the reaction time was prolonged, a series of stronger characteristic signal of O$_2^{-}$ were observed, indicating the formation of O$_2^{-}$ during the reaction (Figure S2B–2D).
3.3 Cyclic voltammetry (CV) measurements

The cyclic voltammetry (CV) measurements of substrate 1a and rose bengal (RB) were recorded in an electrolyte of n-Bu$_4$NBF$_4$ (0.1 M) in MeOH (5 mL) using a glassy carbon electrode (diameter, 3 mm), a Pt wire auxiliary electrode and a Ag/AgCl reference electrode (Figure S3 and S4). The results ($E_{p/2}$ (1a/1a$^{++}$) = +1.429 V vs Ag/AgCl, and $E_{p/2}$ (RB*/RB$^{--}$) = +0.889 V vs Ag/AgCl) indicated that 1a into 1a$^{++}$ could not be oxidized by RB* under the present reaction conditions.
Figure S3. Cyclic voltammogram of 1a in CH$_3$OH (5.0 mL, containing 0.10 M of n-Bu$_4$NBF$_4$) using glassy carbon electrode, Pt wire as counter electrode, and Ag/AgCl reference electrode at 100 mV/s scan rate.

Figure S4. Cyclic voltammogram of RB in CH$_3$OH (5.0 mL, containing 0.10 M of n-Bu$_4$NBF$_4$) using glassy carbon electrode, Pt wire as counter electrode, and Ag/AgCl reference electrode at 100 mV/s scan rate.
4. X-Ray single crystal diffraction analysis of 3aa (CCDC: 2104863)
checkCIF/PLATON report

Structure factors have been supplied for datablock(s) T

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: T

Bond precision: C-C = 0.0023 A Wavelength=0.71073

Cell:
 a=11.631(2) b=14.557(3) c=15.796(3)
 alpha=90 beta=90 gamma=90

Temperature: 223 K

<table>
<thead>
<tr>
<th>Calculated</th>
<th>Reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>2674.5(9)</td>
</tr>
<tr>
<td>Space group</td>
<td>P b c a</td>
</tr>
<tr>
<td>Hall group</td>
<td>-P 2ac 2ab</td>
</tr>
<tr>
<td>Moiety formula</td>
<td>C17 H14 N2 O2</td>
</tr>
<tr>
<td>Sum formula</td>
<td>C17 H14 N2 O2</td>
</tr>
<tr>
<td>Mr</td>
<td>278.30</td>
</tr>
<tr>
<td>Dx,g cm^-3</td>
<td>1.382</td>
</tr>
<tr>
<td>Z</td>
<td>8</td>
</tr>
<tr>
<td>Mu (mm^-1)</td>
<td>0.092</td>
</tr>
<tr>
<td>F000</td>
<td>1168.0</td>
</tr>
<tr>
<td>F000'</td>
<td>1168.51</td>
</tr>
<tr>
<td>h,k,lmax</td>
<td>15,19,21</td>
</tr>
<tr>
<td>Nref</td>
<td>3414</td>
</tr>
<tr>
<td>Tmin,Tmax</td>
<td>0.985,0.992</td>
</tr>
<tr>
<td>Tmin'</td>
<td>0.984</td>
</tr>
</tbody>
</table>

Correction method= # Reported T Limits: Tmin=0.953 Tmax=0.998
AbsCorr = MULTI-SCAN

Data completeness= 0.982 Theta(max)= 28.580

R(reflections)= 0.0436(1878) wr2(reflections)= 0.1143(3352)
S = 1.001 Npar= 191

The following ALERTS were generated. Each ALERT has the format
test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.
5. 1H and 13C NMR spectra of the products