Stereoselective [4+3] annulation of azadienes and ethyl 4-bromo-3-

oxobutanoate: construction of benzindeno-fused azepine derivatives

Jinhui Shen, Aimin Yu, and Xiangtai Meng *

Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering Tianjin University of Technology, Tianjin 300384, P.R. China E-mail: aiminyu@tjut.edu.cn, mengxiangtai23@mail.nankai.edu.cn

Contents

1) General information	S2
2) The structure of azadienes 1	S2
3) General procedure for the synthesis of 3 and 4	S3
4) Synthetic procedure for 5 and 6	S3
5) Synthetic procedure for 7	S3
6) Characterization of all new compounds	S4
7) NMR spectra of all new compounds	S16
8) NOESY spectra of 7	S47
9) References	S47
10) X-ray crystal structures	S47

1. General information and materials

All reactions were performed under Ar atmospheres in oven-dried glassware with magnetic stirring. Unless otherwise stated, all reagents were purchased from commercial suppliers (Aldrich, TCI or Alfa Aesar) and used without further purification. All solvents were purified and dried according to standard methods prior to use. TLC monitored all reactions with silica gel-coated plates. Flash column chromatography was performed using 200-300 mesh silica gel. ¹H- and ¹³C NMR spectra were recorded at ambient temperature on Bruker 400 instruments. All spectra were referenced to CDCl₃ (¹H δ 7.26 ppm and ¹³C NMR δ 77.00 ppm) and DMSO-*d*₆ (¹H NMR, δ 2.50 ppm and ¹³C NMR, δ 39.52 ppm).. ¹⁹F NMR spectrum was recorded on Bruker 400 (376 MHz) spectrometers with CFCl₃ as external standard. HRMS were obtained on Waters Xevo Q-TOF MS with ESI resource. Melting points were measured on a RY-I apparatus and are reported uncorrected. IR were measured on a Perkin-Elmer 983G apparatus. Compound **1** was synthesized according to the reported method¹⁻².

2. The structure of azadienes 1

General procedure for the synthesis of **1 1i** as an example

To a stirred solution of *p*-toluenesulfonamide (856.07 mg, 5.00 mmol) and enone (1.50 g, 5.00 mmol) in CH₂Cl₂ (20 mL) were successively added Et₃N (1.01 g, 10.00 mmol) and TiCl₄ (0.94 g, 5.00 mmol) at 0 °C with continuous stirring. The resulting mixture was refluxed at 60 °C. After the reaction was complete (monitored by TLC), then cooled to room temperature, quenched with water and the layers were separated. The aqueous layer was extracted with CH₂Cl₂ (3 × 10 mL). The combined organic layers were washed with water (3 × 10 mL), dried over MgSO₄, and concentrated in vacuo. The residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether = 1:5) to afford **1i**.

3. General procedure for the synthesis of **3** and **4**

3a as an example

Under Ar atmosphere, **1a** (74.69 mg, 0.20 mmol, 1.0 eq) and **2a** (107.52 mg, 0.50 mmol, 2.5 eq) were dissolved in $CH_2Cl_2 4$ mL. To the above reaction mixture, NaH (14.40 mg, 0.60 mmol, 3.0 eq) was added. The reaction mixture was stirred at room temperature for 5–14 h. After the reaction was complete (monitored by TLC), the mixture was extracted with CH_2Cl_2 (10 mL × 3). The combined organic layer was dried over anhydrous MgSO₄ and the solvent was removed under reduced pressure. The reside was purified by column chromatography (ethyl acetate/petroleum ether = 1:5) to give **3a** (93 mg, 93%) as a white solid.

4. Synthetic procedure for 5 and 6

Under an Ar atmosphere, to a THF (4.0 mL) solution of 3a (100.32 mg, 0.20 mmol, 1.0 eq) were added NaBH₄ (7.57 mg, 0.20 mmol, 1.0 eq). The reaction mixture was stirred at room temperature for 10 min. After the reaction was complete (monitored by TLC), the solvent was removed in vacuum. The residue was purified by column chromatography (ethyl acetate/petroleum ether = 1:3) to give **5** (55 mg, 55%) and **6** (25 mg, 25%).

5. Synthetic procedure for 7

To a solution of **3a** (75.24 mg, 0.15 mmol, 1.0 eq) in 2.0 mL MeOH was added NaHCO₃ (28.98 mg, 0.35 mmol, 2.3 eq) and NH₂OH•HCl (23.97 mg, 0.35 mmol, 2.3 eq), the mixture was stirred at 65 °C for 10 h. Then the reaction mixture was allowed to cool to room temperature, the solvent was evaporated and the residue was purified by column chromatography to give **7** (40 mg, 52%) as a white solid.

6. Characterization of all new compounds

4-methyl-*N*-((*Z*)-2-((*E*)-4-nitrobenzylidene)-2,3-dihydro-1*H*-inden-1-ylidene)benzenesulfonamide (1e)

Yellow solid: 810 mg (yield 39%); mp 162-164 °C; IR (KBr) 3081, 1532, 1313, 1146, 1088, 840, 711, 565 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.92 (s, 1H), 8.27 (d, *J* = 8.8 Hz, 2H), 8.01 (d, *J* = 8.4 Hz, 2H), 7.79 (s, 1H), 7.73 (d, *J* = 8.8 Hz, 2H), 7.67 (t, *J* = 7.4 Hz, 1H), 7.57 – 7.50 (m, 2H), 7.39 (d, *J* = 8.0 Hz, 2H), 4.08 (s, 2H), 2.48 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 174.7, 149.9, 147.6, 143.3, 141.5, 140.4, 139.5, 135.6, 131.0, 130.8, 129.5, 128.3, 126.9, 125.7, 124.0, 34.1, 21.7 ppm. HRMS (ESI-TOF) *m/z* [M + H]⁺ calcd for C₂₃H₁₉N₂O₄S⁺ 419.1060, found 419.1057.

N-((Z)-2-((E)-3-bromobenzylidene)-2,3-dihydro-1H-inden-1-ylidene)-4-

methylbenzenesulfonamide (1i)

Yellow solid: 650 mg (yield 29%); mp 176-178 °C; IR (KBr) 3056, 1546, 1296, 1145, 1085, 846, 732, 670 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.90 (d, J = 6.4 Hz, 1H), 8.01 (d, J = 8.0 Hz, 2H), 7.75 – 7.67 (m, 1H), 7.64 (t, J = 7.4 Hz, 1H), 7.57 – 7.47 (m, 5H), 7.38 (d, J = 8.0 Hz, 2H), 7.30 (t, J = 7.8 Hz, 1H), 4.03 (s, 2H), 2.48 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 175.2, 150.2, 143.1, 139.8, 137.8, 137.4 135.3, 133.2, 132.5, 130.6, 130.4, 129.4, 129.1, 128.1, 126.8, 125.7, 123.0, 34.1, 21.7 ppm. HRMS (ESI-TOF) m/z [M +H]⁺ calcd for C₂₃H₁₉BrNO₂S⁺ 452.0314, found 452.0325.

4-methyl-N-((Z)-2-((E)-3-methylbenzylidene)-2,3-dihydro-1H-inden-1-

ylidene)benzenesulfonamide (1j)

Yellow solid: 435 mg (yield 22%); mp 176-178 °C; IR (KBr) 2915, 1541, 1289, 1139, 1082, 863, 717, 556 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.90 (d, J = 7.2 Hz, 1H), 8.03 (d, J = 8.0 Hz, 2H), 7.80 (s, 1H), 7.63 (t, J = 7.6 Hz, 1H), 7.54 (d, J = 7.6 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.43 (d, J = 8.0 Hz, 1H), 7.41 – 7.36 (m, 3H), 7.33 (t, J = 7.6 Hz, 1H), 7.20 (d, J = 7.6 Hz, 1H), 4.05 (s, 2H), 2.47 (s, 3H), 2.40 (s,

3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 175.8, 150.4, 142.9, 140.1, 138.6, 136.1, 135.7, 135.3, 135.0, 134.4, 131.7, 130.7, 130.4, 129.4, 128.8, 127.9, 127.8, 126.8, 125.6, 34.3, 21.6, 21.5 ppm. HRMS (ESI-TOF) *m/z* [M + H]⁺ calcd for C₂₄H₂₂NO₂S⁺ 388.1366, found 388.1372.

N-((Z)-2-((E)-3,4-dimethylbenzylidene)-2,3-dihydro-1H-inden-1-ylidene)-4-methylbenzenesulfon-1H-inden-1-ylidenesulfon-1H-inden-1-ylidenesulfon-1H-inden-1-ylidenesulfon-1H-inden-1-ylidenesulfon-1H-inden-1-ylidenesulfon-1H-inden-1-ylidenesulfon-1H-inden-1-ylidenesulfon-1H-inden-1-ylidenesulfon-1H-inden-1-ylidenesulfon-1H-inden-1-ylidenesulfon-1H-inden-1-ylidenesulfon-1H-inden-1H-inden-1-ylidenesulfon-1H-inden-1H-inden-1H-inden-1H-inden-1H-inden-1-ylidenesulfon-1H-inden-1H-

amide (1m)

Yellow solid: 448 mg (yield 22%); mp 182-184 °C; IR (KBr) 3244, 3124, 1532, 1299, 1147, 1085, 853, 723, 557 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.89 (d, *J* = 7.2 Hz, 1H), 8.03 (d, *J* = 8.0 Hz, 2H), 7.80 (s, 1H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.53 (d, *J* = 7.6 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 1H), 7.37 (d, *J* = 8.0 Hz, 4H), 7.19 (d, *J* = 8.0 Hz, 1H), 4.03 (s, 2H), 2.47 (s, 3H), 2.30 (s, 6H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 175.9, 150.4, 142.8, 140.2, 139.3, 137.2, 135.9, 135.1, 134.9, 134.6, 133.0, 132.4, 130.35, 130.26, 129.4, 128.4, 127.9, 126.8, 125.6, 34.4, 21.6, 19.90, 19.88 ppm. HRMS (ESI-TOF) *m/z* [M + H]⁺ calcd for C₂₅H₂₄NO₂S⁺ 402.1522, found 402.1522.

Ethyl 3-oxo-5-phenyl-1-tosyl-1,2,3,4,5,6-hexahydroindeno[1,2-b]azepine-4-carboxylate (3a)

White solid: 94 mg (yield 94%); mp 182-184 °C; 2965, 1748, 1716, 1370, 1340, 1165, 1090, 849, 769, 703 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.4 Hz, 2H), 7.42 (d, *J* = 8.4 Hz, 2H), 7.35 (d, *J* = 7.2 Hz, 2H), 7.34 – 7.25 (m, 2H), 7.26 – 7.21 (m, 2H), 7.20 – 7.12 (m, 2H), 7.06 – 7.00 (m, 1H), 4.90 (d, *J* = 18.4 Hz, 1H), 4.85 (d, *J* = 11.6 Hz, 1H), 4.29 (d, *J* = 12.0 Hz, 1H), 4.15 (d, *J* = 18.4 Hz, 1H), 4.07 – 3.94 (m, 2H), 3.11 (s, 2H), 2.50 (s, 3H), 1.06 (t, *J* = 7.0 Hz, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 202.2, 167.9, 144.8, 143.3, 141.5, 140.8, 140.6, 137.1, 136.7, 130.3, 128.8, 128.7, 127.6, 127.6, 126.4, 125.8, 123.7, 120.1, 61.7, 61.7, 59.8, 46.8, 39.7, 21.7, 13.9 ppm. HRMS (ESI-TOF) *m/z* [M + H]⁺ calcd for C₂₉H₂₈NO₅S⁺ 502.1683, found 502.1664.

Ethyl 5-(4-fluorophenyl)-3-oxo-1-tosyl-1,2,3,4,5,6-hexahydroindeno[1,2-*b*]azepine-4-carboxylate (3b)

White solid: 95 mg (yield 91%); mp 154-156 °C; I2981, 1746, 1722, 1408, 1336, 1238, 1160, 846, 815, 671 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.4 Hz, 2H), 7.46 – 7.36 (m, 4H), 7.26 – 7.21 (m, 1H), 7.18 – 7.12 (m, 2H), 6.99 (t, *J* = 8.6 Hz, 2H), 6.94 – 6.87 (m, 1H), 4.93 (d, *J* = 5.6 Hz, 1H), 4.89 (s, 1H), 4.31 (d, *J* = 12.0 Hz, 1H), 4.12 (d, *J* = 18.4 Hz, 1H), 4.09 – 3.95 (m, 2H), 3.11 (s, 2H), 2.50 (s, 3H), 1.09 (t, *J* = 7.0 Hz, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 202.05 168.0, 162.1 (d, *J* = 245.1 Hz), 144.8, 143.3, 141.3, 140.7, 137.0 (d, *J* = 40.8 Hz), 136.44, 136.41, 130.5 (d, *J* = 81.0 Hz), 130.3, 127.6, 126.4, 125.9, 123.8, 120.0, 115.7 (d, *J* = 21.3 Hz), 61.7, 61.3, 59.4, 46.0, 39.5, 21.7, 14.0 ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ -114.55 ppm. HRMS (ESI-TOF) *m*/*z* [M +H]⁺ calcd for C₂₉H₂₇FNO₅S⁺ 520.1588, found 520.1583.

Ethyl 5-(4-chlorophenyl)-3-oxo-1-tosyl-1,2,3,4,5,6-hexahydroindeno[1,2-*b*]azepine-4-carboxylate (3c)

White solid: 88 mg (yield 82%); mp 153-155 °C; IR (KBr) 2973, 1747, 1718, 1367, 1341, 1161, 1129, 849, 769, 670 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.0 Hz, 2H), 7.43 (d, *J* = 8.0 Hz, 2H), 7.35 (d, *J* = 8.4 Hz, 2H), 7.27 (d, *J* = 8.4 Hz, 2H), 7.25 – 7.21 (m, 1H), 7.19 – 7.10 (m, 2H), 6.97 – 6.86 (m, 1H), 4.92 (d, *J* = 11.6 Hz, 1H), 4.88 (d, *J* = 5.2 Hz, 1H), 4.29 (d, *J* = 12.0 Hz, 1H), 4.13 (d, *J* = 18.4 Hz, 1H), 4.09 – 3.96 (m, 2H), 3.11 (s, 2H), 2.51 (s, 3H), 1.11 (t, *J* = 7.0 Hz, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 202.0, 168.0, 144.9, 142.9, 141.3, 140.7, 139.1, 137.2, 137.0, 133.5, 130.3, 130.2, 129.0, 127.6, 126.4, 126.0, 123.8, 120.0, 61.7, 61.4, 59.2, 46.0, 39.5, 21.7, 14.0 ppm. HRMS (ESI-TOF) *m/z* [M + H]⁺ calcd for C₂₉H₂₇CINO₅S⁺ 536.1293, found 536.1287.

Ethyl 5-(4-bromophenyl)-3-oxo-1-tosyl-1,2,3,4,5,6-hexahydroindeno[1,2-*b*]azepine-4-carboxylate (3d)

White solid: 96 mg (yield 83%); mp 159-161 °C; IR (KBr) 2983, 1755, 1730, 1711, 1362, 1261, 1163, 1089, 849, 768, 669 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.4 Hz, 2H), 7.47 – 7.39 (m, 4H), 7.29 (d, *J* = 8.4 Hz, 2H), 7.25 – 7.21 (m, 1H), 7.19 – 7.12 (m, 2H), 6.96 – 6.89 (m, 1H), 4.92 (d, *J* = 12.8 Hz, 1H), 4.88 (d, *J* = 6.4 Hz, 1H), 4.28 (d, *J* = 12.4 Hz, 1H), 4.13 (d, *J* = 18.4 Hz, 1H), 4.10 – 3.95 (m, 2H), 3.11 (s, 2H), 2.51 (s, 3H), 1.11 (t, *J* = 7.0 Hz, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 202.0, 167.9, 144.9, 142.8, 141.3, 140.7, 139.7, 137.2, 137.1, 132.0, 130.6, 130.3, 127.6, 126.4, 126.0, 123.8, 121.7, 120.0, 61.7, 61.4, 59.1, 46.1, 39.5, 21.7, 14.0 ppm. HRMS (ESI-TOF) *m/z* [M + H]⁺ calcd for C₂₉H₂₇BrNO₅S⁺ 580.0788, found 580.0784.

Ethyl 5-(4-nitrophenyl)-3-oxo-1-tosyl-1,2,3,4,5,6-hexahydroindeno[1,2-*b*]azepine-4-carboxylate (3e)

White solid: 77 mg (yield 70%); mp 169-171 °C; IR (KBr) 2961, 1742, 1519, 1345, 1158, 834, 694, 561 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 8.8 Hz, 2H), 7.91 (d, *J* = 8.0 Hz, 2H), 7.69 (d, *J* = 8.8 Hz, 2H), 7.44 (d, *J* = 8.0 Hz, 2H), 7.25 (d, *J* = 6.8 Hz, 1H), 7.19 – 7.10 (m, 2H), 6.79 (d, *J* = 6.8 Hz, 1H), 5.09 (d, *J* = 11.6 Hz, 1H), 4.97 (d, *J* = 18.4 Hz, 1H), 4.46 (d, *J* = 12.0 Hz, 1H), 4.17 – 3.97 (m, 3H), 3.20 – 3.02 (m, 2H), 2.52 (s, 3H), 1.12 (t, *J* = 7.0 Hz, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 201.6, 167.9, 147.9, 147.4, 145.0, 141.8, 140.9, 140.6, 137.8, 137.3, 130.3, 130.0, 127.6, 126.6, 126.3, 124.1, 123.9, 119.9, 61.8, 61.7, 58.6, 46.2, 39.4, 21.8, 14.0 ppm. HRMS (ESI-TOF) *m/z* [M + Na]⁺ calcd for C₂₉H₂₇N₂O₇S⁺ 547.1533, found 547.1548.

Ethyl-(4-methoxyphenyl)-3-oxo-1-tosyl-1,2,3,4,5,6-hexahydroindeno[1,2-*b*]azepine-4-carboxylate (3f)

White solid: 64 mg (yield 60%); mp 145-147 °C; IR (KBr) 2930, 1748, 1718, 1511, 1258, 1178, 1161, 816, 671, 548 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.0 Hz, 2H), 7.42 (d, *J* = 8.0 Hz, 2H), 7.28 (d, *J* = 8.4 Hz, 2H), 7.25 – 7.21 (m, 1H), 7.20 – 7.10 (m, 2H), 7.03 – 6.97 (m, 1H), 6.86 – 6.79 (m, 2H), 4.89 (d, *J* = 18.4 Hz, 1H), 4.81 (d, *J* = 12.0 Hz, 1H), 4.25 (d, *J* = 11.6 Hz, 1H), 4.13 (d, *J* = 18.4 Hz, 1H), 4.07 – 3.95 (m, 2H), 3.78 (s, 3H), 3.12 (d, *J* = 2.2 Hz, 2H), 2.50 (s, 3H), 1.09 (t, *J* = 7.2 Hz, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 202.0, 168.0, 144.9, 142.9, 141.3, 140.7, 139.1, 137.2, 137.0, 133.5, 130.3, 130.2, 129.0, 127.6, 126.4, 126.02, 125.99, 123.8, 120.0, 61.7, 61.4, 59.2, 46.0, 39.5, 21.7, 14.0 ppm. HRMS (ESI-TOF) *m*/*z* [M + H]⁺ calcd for C₃₀H₃₀NO₆S⁺ 532.1788, found 532.1797.

Ethyl 3-oxo-5-(p-tolyl)-1-tosyl-1,2,3,4,5,6-hexahydroindeno[1,2-b]azepine-4-carboxylate (3g)

White solid: 100 mg (yield 97%); mp 162-164 °C; IR (KBr) 2981, 1737, 1708, 1370, 1341, 1272, 1162, 1090, 813, 768, 670 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.4 Hz, 2H), 7.42 (d, *J* = 8.0 Hz, 2H), 7.22 (d, *J* = 7.6 Hz, 3H), 7.16 (t, *J* = 6.2 Hz, 2H), 7.09 (d, *J* = 8.0 Hz, 2H), 7.05 (d, *J* = 7.2 Hz, 1H), 4.89 (d, *J* = 18.4 Hz, 1H), 4.79 (d, *J* = 11.6 Hz, 1H), 4.25 (d, *J* = 12.0 Hz, 1H), 4.14 (d, *J* = 18.4 Hz, 1H), 4.08 – 3.94 (m, 2H), 3.11 (s, 2H), 2.50 (s, 3H), 2.31 (s, 3H), 1.07 (t, *J* = 7.0 Hz, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 202.3, 168.0, 144.7, 143.6, 141.6, 140.8, 137.6, 137.2, 137.1, 136.4, 130.3, 129.4, 128.5, 127.7, 126.3, 125.8, 123.7, 120.1, 61.6, 61.1, 59.4, 46.4, 39.6, 21.7, 21.1, 13.9 ppm. HRMS (ESI-TOF) *m*/*z* [M + H]⁺ calcd for C₃₀H₃₀NO₅S⁺ 516.1839, found 516.1840.

Ethyl 5-(3-chlorophenyl)-3-oxo-1-tosyl-1,2,3,4,5,6-hexahydroindeno[1,2-b]azepine-4-carboxylate (3h)

White solid: 80 mg (yield 75%); mp 195-197 °C; IR (KBr) 2945, 1744, 1711, 1367, 1263, 1169, 1091, 817, 767, 668 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.0 Hz, 2H), 7.44 (d, *J* = 8.0 Hz, 2H), 7.37 (s, 1H), 7.33 – 7.28 (m, 1H), 7.26 – 7.21 (m, 3H), 7.20 – 7.15 (m, 2H), 7.05 – 6.99 (m, 1H), 4.92 (d, *J* = 18.8 Hz, 1H), 4.69 (d, *J* = 11.6 Hz, 1H), 4.26 (d, *J* = 12.0 Hz, 1H), 4.15 (d, *J* = 18.4 Hz, 1H), 4.09 – 3.98 (m, 2H), 3.12 (s, 2H), 2.49 (s, 3H), 1.09 (t, *J* = 7.1 Hz, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 201.9, 167.7, 144.9, 142.5, 142.3, 141.4, 140.7, 137.2, 137.0, 134.5, 130.4, 130.1, 128.7, 127.9, 127.6, 127.1, 126.5, 126.0, 123.8, 120.3, 61.7, 61.4, 59.1, 46.3, 39.5, 21.7, 13.9 ppm. HRMS (ESITOF) *m/z* [M + H]⁺ calcd for C₂₉H₂₇CINO₅S⁺ 536.1293, found 536.1271.

Ethyl 5-(3-bromophenyl)-3-oxo-1-tosyl-1,2,3,4,5,6-hexahydroindeno[1,2-*b*]azepine-4-carboxylate (3i)

White solid: 62 mg (yield 53%); mp 186-188 °C; IR (KBr) 2945, 1743, 1711, 1367, 1264, 1169, 1092, 767, 668, 573 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.0 Hz, 2H), 7.52 (s, 1H), 7.45 (d, *J* = 8.0 Hz, 2H), 7.38 (d, *J* = 7.6 Hz, 1H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.26 – 7.23 (m, 1H), 7.22 – 7.14 (m, 3H), 7.06 – 7.00 (m, 1H), 4.91 (d, *J* = 18.4 Hz, 1H), 4.65 (d, *J* = 12.0 Hz, 1H), 4.25 (d, *J* = 12.0 Hz, 1H), 4.15 (d, *J* = 18.8 Hz, 1H), 4.09 – 3.94 (m, 2H), 3.11 (s, 2H), 2.49 (s, 3H), 1.09 (t, *J* = 7.2 Hz, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 201.9, 167.7, 144.9, 142.8, 142.2, 141.4, 140.7, 137.3, 137.0, 131.5, 130.9, 130.4, 127.62, 127.56, 126.5, 126.0, 123.8, 122.7, 120.3, 61.6, 61.4, 59.2, 46.2, 39.5, 21.7, 13.9 ppm. HRMS (ESI-TOF) *m*/*z* [M + H]⁺ calcd for C₂₉H₂₇BrNO₅S⁺ 580.0788, found 580.0801.

Ethyl 3-oxo-5-(m-tolyl)-1-tosyl-1,2,3,4,5,6-hexahydroindeno[1,2-b]azepine-4-carboxylate (3j)

White solid: 100 mg (yield 97%); mp 176-178 °C; IR (KBr) 2911, 1746, 1712, 1367, 1264, 1170, 1093, 768, 702, 669 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.0 Hz, 2H), 7.43 (d, *J* = 8.0 Hz, 2H), 7.23 (d, *J* = 6.8 Hz, 1H), 7.20 – 7.11 (m, 5H), 7.05 (t, *J* = 6.4 Hz, 2H), 4.89 (d, *J* = 18.8 Hz, 1H), 4.75 (d, *J* = 11.6 Hz, 1H), 4.24 (d, *J* = 11.6 Hz, 1H), 4.15 (d, *J* = 18.8 Hz, 1H), 4.07 – 3.94 (m, 4H), 3.11 (s, 2H), 2.49 (s, 3H), 2.33 (s, 3H), 1.06 (t, *J* = 7.2 Hz, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 202.3, 167.9, 144.7, 143.4, 141.6, 140.8, 140.5, 138.4, 137.1, 136.5, 130.3, 129.3, 128.6, 128.4, 127.6, 126.4, 125.8, 123.7, 120.1, 61.6, 61.1, 59.4, 46.7, 39.6, 21.7, 21.5, 13.9 ppm. HRMS (ESI-TOF) *m/z* [M + H]⁺ calcd for C₃₀H₃₀NO₅S⁺ 516.1839, found 516.1845.

Eethyl 5-(3-methoxyphenyl)-3-oxo-1-tosyl-1,2,3,4,5,6-hexahydroindeno[1,2-b]azepine-4-

carboxylate (3k)

Yellow solid: 76 mg (yield 72%); mp 162-164 °C; IR (KBr) 2909, 1743, 1172, 1367, 1257, 1170, 1091, 770, 668, 579 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.0 Hz, 2H), 7.42 (d, *J* = 8.0 Hz, 2H), 7.25 – 7.18 (m, 2H), 7.17 – 7.11 (m, 2H), 7.07 (s, 1H), 6.98 – 6.89 (m, 2H), 6.78 (dd, *J* = 7.8, 2.2 Hz, 1H), 4.95 (d, *J* = 11.6 Hz, 1H), 4.90 (d, *J* = 18.4 Hz, 1H), 4.29 (d, *J* = 12.0 Hz, 1H), 4.12 (d, *J* = 18.4 Hz, 1H), 4.09 – 3.97 (m, 2H), 3.80 (s, 3H), 3.14 (d, *J* = 1.6 Hz, 2H), 2.50 (s, 3H), 1.10 (t, *J* = 7.0 Hz, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 202.3, 168.0, 160.0, 144.8, 143.6, 142.1, 141.5, 140.8, 137.3, 136.6, 130.3, 129.6, 127.6, 126.3, 125.8, 123.8, 121.1, 119.9, 113.8, 113.5, 61.7, 61.3, 59.3, 55.4, 46.7, 39.6, 21.7, 14.0 ppm. HRMS (ESI-TOF) *m*/*z* [M + H]⁺ calcd for C₃₀H₃₀NO₆S⁺ 532.1788, found 532.1775.

Ethyl 5-(3,4-dimethylphenyl)-3-oxo-1-tosyl-1,2,3,4,5,6-hexahydroindeno[1,2-b]azepine-4-

carboxylate (3m)

White solid: 99 mg (yield 93%); mp 158-160 °C; IR (KBr) 2912, 1744, 1720, 1369, 1340, 1267, 1162, 826, 815, 671 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.4 Hz, 2H), 7.42 (d, *J* = 8.0 Hz,

2H), 7.24 – 7.12 (m, 4H), 7.06 (d, J = 7.6 Hz, 1H), 7.03 (s, 2H), 4.87 (d, J = 18.8 Hz, 1H), 4.72 (d, J = 11.6 Hz, 1H), 4.21 (d, J = 10.8 Hz, 1H), 4.14 (d, J = 18.4 Hz, 1H), 4.08 – 3.93 (m, 2H), 3.11 (s, 2H), 2.49 (s, 3H), 2.24 (s, 3H), 2.21 (s, 3H), 1.07 (t, J = 7.2 Hz, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 202.4, 168.0, 144.7, 143.7, 141.7, 140.8, 138.0, 137.1, 136.9, 136.3, 135.8, 130.3, 129.9, 129.7, 127.6, 126.3, 126.0, 125.7, 123.7, 120.1, 61.6, 61.1, 59.5, 46.3, 39.6, 21.7, 19.9, 19.4, 13.9 ppm. HRMS (ESITOF) m/z [M + H]⁺ calcd for C₃₁H₃₂NO₅S⁺ 530.1996, found 530.2009.

Ethyl 8-chloro-3-oxo-5-phenyl-1-tosyl-1,2,3,4,5,6-hexahydroindeno[1,2-*b*]azepine-4-carboxylate (3n)

Yellow solid: 96 mg (yield 85%); mp 178-180 °C; IR (KBr) 2922, 1744, 1712, 1365, 1265, 1169, 1092, 817, 668, 594 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 8.0 Hz, 2H), 7.43 (d, *J* = 8.4 Hz, 2H), 7.33 – 7.26 (m, 4H), 7.26 – 7.21 (m, 1H), 7.19 (s, 1H), 7.15 (dd, *J* = 8.4, 1.6 Hz, 1H), 6.95 (d, *J* = 8.0 Hz, 1H), 4.90 (d, *J* = 18.8 Hz, 1H), 4.75 (d, *J* = 12.0 Hz, 1H), 4.26 (d, *J* = 12.0 Hz, 1H), 4.14 (d, *J* = 18.4 Hz, 1H), 4.05 – 3.95 (m, 2H), 3.09 (d, *J* = 2.8 Hz, 2H), 2.49 (s, 3H), 1.05 (t, *J* = 7.0 Hz, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 202.0, 167.8, 145.0, 143.6, 142.4, 140.3, 140.1, 136.9, 136.1, 131.9, 130.4, 128.8, 128.6, 127.7, 127.6, 126.7, 124.2, 121.1, 61.6, 61.2, 59.3, 46.7, 39.4, 21.7, 13.9 ppm. HRMS (ESI-TOF) *m/z* [M + H]⁺ calcd for C₂₉H₂₇CINO₅S⁺ 536.1293, found 536.1301.

Ethyl 9-bromo-3-oxo-5-phenyl-1-tosyl-1,2,3,4,5,6-hexahydroindeno[1,2-*b*]azepine-4-carboxylate

(30)

White solid: 110 mg (yield 95%); mp 113-115 °C; IR (KBr) 2974, 1744, 1616, 1360, 1346, 1269, 1161, 699, 672, 552 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.0 Hz, 2H), 7.47 – 7.40 (m, 4H), 7.31 (t, *J* = 7.2 Hz, 2H), 7.28 – 7.24 (m, 1H), 7.22 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.05 (d, *J* = 8.0 Hz, 1H), 6.71 – 6.61 (m, 1H), 5.02 (s, 1H), 4.99 (d, *J* = 8.0 Hz, 1H), 4.30 (d, *J* = 11.6 Hz, 1H), 4.11 (d, *J* = 18.4 Hz, 1H), 4.07 – 3.96 (m, 1H), 3.06 (s, 1H), 2.52 (s, 2H), 1.07 (t, *J* = 7.2 Hz, 1H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 202.2, 167.9, 145.7, 145.2, 143.3, 140.3, 139.5, 137.3, 135.6, 130.4, 128.9, 128.8, 128.5, 127.7, 127.6, 125.1, 123.1, 120.4, 61.8, 61.3, 59.2, 46.9, 39.3, 21.8, 13.9 ppm. HRMS (ESITOF) *m/z* [M + H]⁺ calcd for C₂₉H₂₇BrNO₅S⁺ 580.0788, found 580.0809.

Ethyl 1-((4-nitrophenyl)sulfonyl)-3-oxo-5-phenyl-1,2,3,4,5,6-hexahydroindeno[1,2-b]azepine-4-

carboxylate (3p)

White solid: 73 mg (yield 69%); mp 171-173 °C; IR (KBr) 3096, 1737, 1713, 1532, 1371, 1350, 1167, 1091, 737, 626, 599 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.53 – 8.44 (m, 2H), 8.22 (d, *J* = 8.8 Hz, 2H), 7.38 (d, *J* = 7.2 Hz, 2H), 7.34 – 7.29 (m, 2H), 7.29 – 7.26 (m, 1H), 7.24 (s, 1H), 7.20 – 7.11 (m, 2H), 6.75 (d, *J* = 7.2 Hz, 1H), 4.96 (d, *J* = 18.4 Hz, 1H), 4.80 (d, *J* = 12.0 Hz, 1H), 4.34 (d, *J* = 12.0 Hz, 1H), 4.21 (d, *J* = 18.4 Hz, 1H), 4.08 – 3.94 (m, 2H), 3.16 (s, 2H), 1.04 (t, *J* = 7.2 Hz, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 201.2, 167.6, 150.6, 145.7, 144.5, 140.8, 140.8, 140.1, 136.0, 128.9, 128.6, 127.9, 126.5, 126.2, 124.9, 124.1, 119.3, 61.8, 61.5, 59.4, 46.8, 39.7, 13.9 ppm. HRMS (ESITOF) *m/z* [M + H]⁺ calcd for C₂₉H₂₅N₂O₇S⁺ 533.1377, found 533.1393.

Ethyl 3-oxo-5-phenyl-1-tosyl-2,3,4,5-tetrahydro-1H-benzofuro[3,2-b]azepine-4-carboxylate (4a)

Yellow solid: 85 mg (yield 84%); mp 156-158 °C; IR (KBr) 2962, 1728, 1452, 1363, 1267, 1166, 1101, 755, 670, 544 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.0 Hz, 2H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.49 (d, *J* = 6.8 Hz, 2H), 7.42 (d, *J* = 8.0 Hz, 2H), 7.36 – 7.26 (m, 4H), 7.22 – 7.11 (m, 2H), 5.16 (d, *J* = 11.6 Hz, 1H), 5.00 (d, *J* = 18.4 Hz, 1H), 4.80 (d, *J* = 11.6 Hz, 1H), 4.16 (d, *J* = 18.4Hz, 1H), 4.10 – 3.99 (m, 2H), 2.51 (s, 2H), 1.09 (t, *J* = 7.2 Hz, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 201.9, 167.8, 144.9, 143.4, 141.2, 137.24, 137.20, 135.8, 130.3, 128.8, 128.7, 127.9, 127.7, 125.3, 124.4, 122.4, 122.1, 62.0, 61.4, 59.4, 46.1, 21.7, 13.9 ppm. HRMS (ESI-TOF) *m*/*z* [M + H]⁺ calcd for C₂₈H₂₆NO₆S⁺ 504.1475, found 504.1490.

Ethyl 5-(4-fluorophenyl)-3-oxo-1-tosyl-2,3,4,5-tetrahydro-1H-benzofuro[3,2-b]azepine-4-

carboxylate (4b)

White solid: 85 mg (yield 81%); mp 174-176 °C; IR (KBr) 2964, 1748, 1606, 1517, 1344, 1235, 1169, 825, 677, 560 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 8.4 Hz, 2H), 7.42 (d, *J* = 8.0 Hz, 2H), 7.30 – 7.26 (m, 1H), 7.25 – 7.17 (m, 3H), 7.16 – 7.10 (m, 2H), 6.95 (t, *J* = 8.6 Hz, 2H), 5.12 (d, *J* = 18.8 Hz, 1H), 4.64 (q, *J* = 12.4 Hz, 2H), 4.23 (d, *J* = 18.4 Hz, 1H), 4.14 – 3.99 (m, 2H), 2.51 (s, 3H), 1.12 (t, *J* = 7.2 Hz, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 201.3, 167.0, 162.2 (d, *J* = 245.5 Hz), 153.6, 152.1, 145.1, 136.5, 133.8, 130.5 (d, *J* = 8.2 Hz), 130.4, 127.9, 125.5, 125.0, 123.4, 120.1, 119.2, 115.6 (d, *J* = 21.5 Hz), 111.6, 62.7, 61.7, 58.2, 43.7, 21.8, 14.0 ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ - 114.10 ppm. HRMS (ESI-TOF) *m*/*z* [M + H]⁺ calcd for C₂₈H₂₅FNO₆S⁺ 522.1381, found 522.1384.

 $Ethyl \ 5-(4-chlorophenyl)-3-oxo-1-tosyl-2, 3, 4, 5-tetrahydro-1 H-benzofuro \ [3,2-b] a zepine-4-benzofuro \ [3,2-b] a ze$

carboxylate (4c)

White solid: 100 mg (yield 93%); mp 154-156 °C; IR (KBr) 2950, 1736, 1337, 1228, 1162, 1083, 814, 748, 672 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 8.4 Hz, 2H), 7.42 (d, *J* = 8.0 Hz, 2H), 7.28 (s, 1H), 7.26 – 7.20 (m, 3H), 7.20 – 7.12 (m, 4H), 5.12 (d, *J* = 18.8 Hz, 1H), 4.62 (q, *J* = 12.1 Hz, 2H), 4.24 (d, *J* = 18.58 Hz, 1H), 4.15 – 3.98 (m, 2H), 2.51 (s, 3H), 1.14 (t, *J* = 7.2 Hz, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 201.2, 167.0, 153.6, 151.8, 145.1, 136.6, 136.4, 133.8, 130.4, 130.2, 128.9, 127.9, 125.5, 125.0, 123.4, 120.1, 119.3, 111.6, 62.9, 61.7, 57.9, 43.8, 21.8, 14.0 ppm. HRMS (ESI-TOF) *m/z* [M + H]⁺ calcd for C₂₈H₂₅ClNO₆S⁺ 538.1086, found 538.1072.

Ethyl 5-(4-bromophenyl)-3-oxo-1-tosyl-2,3,4,5-tetrahydro-1H-benzofuro[3,2-b]azepine-4-

carboxylate (4d)

White solid: 105 mg (yield 90%); mp 134-136 °C; IR (KBr) 2953, 1737, 1337, 1288, 1163, 1082, 815, 672, 556 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 8.0 Hz, 2H), 7.49 – 7.35 (m, 4H), 7.30 – 7.26 (m, 1H), 7.26 – 7.21 (m, 1H), 7.19 – 7.13 (m, 2H), 7.11 (d, *J* = 8.4 Hz, 2H), 5.12 (d, *J* = 18.4 Hz, 1H), 4.63 (q, *J* = 13.2 Hz, 2H), 4.24 (d, *J* = 18.4 Hz, 1H), 4.16 – 3.98 (m, 2H), 2.51 (s, 3H), 1.14 (t, *J* = 7.2 Hz, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 201.2, 167.0, 153.6, 151.7, 145.1, 137.1, 136.4, 131.8, 130.5, 130.4, 127.8, 125.5, 125.0, 123.5, 122.0, 120.1, 119.3, 111.6, 62.7, 61.7, 57.9, 43.8, 21.8, 14.0 ppm. HRMS (ESI-TOF) *m/z* [M + H]⁺ calcd for C₂₈H₂₅BrNO₆S⁺ 582.0580, found 582.0598.

Ethyl 5-(4-methoxyphenyl)-3-oxo-1-tosyl-2,3,4,5-tetrahydro-1H-benzofuro[3,2-b]azepine-4-

carboxylate (4e)

White solid: 93 mg (yield 87%); mp 145-147 °C; IR (KBr) 2989, 1742, 1606, 1513, 1257, 1165, 826, 674, 553 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 8.4 Hz, 2H), 7.42 (d, *J* = 8.0 Hz, 2H), 7.28 (s, 1H), 7.25 – 7.20 (m, 2H), 7.18 – 7.12 (m, 1H), 7.10 (d, *J* = 8.8 Hz, 2H), 6.78 (d, *J* = 8.8 Hz, 2H), 5.11 (d, *J* = 18.8 Hz, 1H), 4.65 – 4.50 (m, 2H), 4.23 (d, *J* = 18.4 Hz, 1H), 4.12 – 3.96 (m, 2H), 3.77 (s, 3H), 2.50 (s, 3H), 1.12 (t, *J* = 7.1 Hz, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 201.5, 167.1, 159.0, 153.5, 152.5, 145.0, 136.4, 130.4, 130.1, 129.8, 127.9, 125.3, 125.2, 123.3, 120.1, 118.9, 111.6, 62.7, 61.5, 58.4, 55.2, 43.8, 21.8, 14.0 ppm. HRMS (ESI-TOF) *m*/*z* [M + H]⁺ calcd for C₂₉H₂₈NO₇S⁺ 534.1581, found 534.1572.

Ethyl 5-(3-chlorophenyl)-3-oxo-1-tosyl-2,3,4,5-tetrahydro-1H-benzofuro[3,2-b]azepine-4-

carboxylate (4f)

White solid: 92 mg (yield 86%); mp 150-152 °C; IR (KBr) 2980, 1741, 1449, 1346, 1163, 1092, 751, 667, 648 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.4 Hz, 2H), 7.44 (d, *J* = 8.0 Hz, 3H), 7.28 (d, *J* = 8.4 Hz, 3H), 7.26 – 7.12 (m, 9H), 5.12 (d, *J* = 18.8 Hz, 1H), 4.57 (d, *J* = 12.4 Hz, 1H), 4.44 (d, *J* = 12.0 Hz, 1H), 4.26 (d, *J* = 18.4 Hz, 1H), 2.50 (s, 3H), 1.12 (t, *J* = 7.2 Hz, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 201.2, 166.8, 153.6, 151.2, 145.1, 139.9, 136.2, 134.4, 130.5, 129.9, 128.5, 128.2, 127.7, 127.3, 125.6, 125.1, 123.5, 120.4, 119.5, 111.6, 62.6, 61.7, 57.9, 43.9, 21.8, 13.9 ppm. HRMS (ESI-TOF) *m/z* [M + H]⁺ calcd for C₂₈H₂₅CINO₆S⁺ 538.1086, found 538.1078.

Ethyl 5-(3-bromophenyl)-3-oxo-1-tosyl-2,3,4,5-tetrahydro-1*H*-benzofuro[3,2-*b*]azepine-4-

carboxylate (4g)

White solid: 90 mg (yield 77%); mp 159-141 °C; IR (KBr) 2991, 1732, 1453, 1365, 1270, 1166, 751, 672, 546 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.4 Hz, 2H), 7.45 (d, *J* = 8.0 Hz, 2H), 7.41 –

7.36 (m, 2H), 7.33 – 7.26 (m, 2H), 7.26 – 7.23 (m, 1H), 7.22 – 7.14 (m, 3H), 5.10 (d, J = 18.8 Hz, 1H), 4.55 (d, J = 12.0 Hz, 1H), 4.41 (d, J = 12.0 Hz, 1H), 4.25 (d, J = 18.4 Hz, 1H), 4.11 – 3.99 (m, 2H), 2.50 (s, 3H), 1.12 (t, J = 7.2 Hz, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 201.1, 166.8, 153.6, 151.2, 145.1, 140.2, 136.2, 131.5, 131.2, 130.6, 130.2, 128.7, 127.72, 127.71, 125.6, 125.1, 123.5, 122.6, 120.4, 119.6, 111.6, 62.6, 61.7, 58.0, 43.9, 21.8, 13.9 ppm. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₈H₂₅BrNO₆S⁺ 582.0580, found 582.0580.

Ethyl 3-oxo-5-phenyl-1-tosyl-2,3,4,5-tetrahydro-1*H*-benzo[4,5]thieno[3,2-*b*]azepine-4-carboxylate (4h)

White solid: 80 mg (yield 77%); mp 175-177 °C; IR (KBr) 2985, 1737, 1344, 1281, 1163, 1091, 814, 758, 697 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.4 Hz, 2H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.49 (d, *J* = 7.2 Hz, 2H), 7.42 (d, *J* = 8.4 Hz, 2H), 7.36 – 7.27 (m, 4H), 7.21 – 7.13 (m, 2H), 5.16 (d, *J* = 12.0 Hz, 1H), 5.00 (d, *J* = 18.4 Hz, 1H), 4.80 (d, *J* = 12.0 Hz, 1H), 4.16 (d, *J* = 18.4 Hz, 1H), 4.12 – 3.99 (m, 2H), 2.51 (s, 3H), 1.09 (t, *J* = 7.0 Hz, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 201.9, 167.8, 144.9, 143.4, 141.2, 137.2, 137.2, 135.8, 130.3, 128.8, 128.7, 127.9, 127.7, 125.3, 124.4, 122.4, 122.1, 62.0, 61.4, 59.4, 46.1, 21.7, 13.9 ppm. HRMS (ESI-TOF) *m*/*z* [M + H]⁺ calcd for C₂₈H₂₆NO₅S₂⁺ 520.1247, found 520.1230.

Ethyl 3-hydroxy-5-phenyl-1-tosyl-1,2,3,4,5,6-hexahydroindeno[1,2-b]azepine-4-carboxylate (5)

White solid: 55 mg (yield 55%); mp 172-174 °C; IR (KBr) 3530, 2982, 2879, 1709, 1595, 1453, 1341, 1641, 1096, 1024, 770, 701, 673 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.79 (dd, *J* = 39.8, 7.4 Hz, 4H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.28 (d, *J* = 7.2 Hz, 3H), 7.24 – 7.21 (m, 4H), 6.86 (s, 1H), 4.40 (d, *J* = 9.2 Hz, 2H), 3.84 – 3.72 (m, 3H), 3.54 (d, *J* = 11.6 Hz, 2H), 3.14 (s, 2H), 2.46 (s, 2H), 0.95 – 0.87 (m, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 174.8, 144.0, 142.1 141.1, 138.2, 137.6, 129.9, 128.7, 128.6, 128.3, 127.5, 127.2, 126.5, 126.2, 125.2, 123.5, 121.5, 120.6, 68.8, 60.9, 50.5, 44.3, 39.9, 21.6, 13.6 ppm. HRMS (ESI-TOF) *m/z* [M + Na]⁺ calcd for C₂₉H₃₀NO₅S⁺ 504.1839, found 504.1874.

Ethyl 3-hydroxy-5-phenyl-1-tosyl-1,2,3,4,5,6-hexahydroindeno[1,2-*b*]azepine-4-carboxylate (6) White solid: 25 mg (yield 25%); mp 194-196 °C; IR (KBr) 3452, 2979, 2931, 1704, 1596, 1459, 1362, 1166, 1024, 814, 765, 663 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.00 – 7.71 (m, 2H), 7.67 – 7.35 (m, 3H), 7.34 – 7.27 (m, 2H), 7.24 – 6.53 (m, 5H), 4.51 (d, *J* = 14.8 Hz, 1H), 4.41 – 3.93 (m, 2H), 3.81 – 3.63 (m, 2H), 3.26 – 2.80 (m, 3H), 2.69 – 2.42 (m, 5H), 0.79 (t, *J* = 7.0 Hz, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 172.7, 145.2, 144.1, 142.0, 140.5, 139.0, 138.0, 137.5, 129.9, 128.8, 128.3, 127.7, 127.4, 126.5, 125.3, 123.3, 121.0, 71.2, 60.6, 55.3, 53.7, 43.5, 40.2, 21.7, 13.6 ppm. HRMS (ESI-TOF) *m/z* [M + Na]⁺ calcd for C₂₉H₃₀NO₅S ⁺ 504.1839, found 504.1855.

Ethyl (E)-3-(hydroxyimino)-5-phenyl-1-tosyl-1,2,3,4,5,6-hexahydroindeno[1,2-b]azepine-4-

carboxylate (7)

White solid: 40 mg (yield 52%); mp 235-237 °C; IR (KBr) 3308, 2984, 1731, 1338, 1161, 1093, 852, 729, 668 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.48 (s, 1H), 7.95 (d, *J* = 8.4 Hz, 2H), 7.54 (d, *J* = 8.4 Hz, 2H), 7.35 – 7.23 (m, 6H), 7.17 – 7.09 (m, 2H), 6.93 – 6.88 (m, 1H), 4.85 (d, *J* = 18.8 Hz, 1H), 4.59 (d, *J* = 18.8 Hz, 1H), 4.29 (d, *J* = 11.6 Hz, 1H), 4.14 (d, *J* = 12.0 Hz, 1H), 3.91 – 3.77 (m, 2H), 3.35 (d, *J* = 23.2 Hz, 1H), 2.81 (d, *J* = 23.2 Hz, 1H), 2.45 (s, 3H), 0.93 (t, *J* = 7.0 Hz, 3H) ppm. ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 168.8, 153.2, 144.4, 144.0, 141.8, 141.7, 140.7, 136.9, 135.0, 130.4, 128.5, 128.4, 127.2, 127.2, 126.1, 125.1, 123.7, 119.5, 60.0, 50.5, 50.2, 48.2, 21.1, 13.8 ppm. HRMS (ESI-TOF) *m/z* [M + Na]⁺ calcd for C₂₉H₂₉N₂O₅S⁺ 517.1792, found 517.1812.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

8. NOESY spectra of 7

9. References

(1) K. Verma and P. Banerjee, Synthesis of Indenopyridine Derivatives *via* MgI₂-Promoted [2+4] Cycloaddition Reaction of *In-situ* Generated 2-Styrylmalonate from Donor-Acceptor Cyclopropanes and Chalconimines, *Adv. Synth. Catal.*, 2018, **360**, 3687-3692.

(2) S. P. Midya, E. Gopi, N. Satam and I. N. N. Namboothiri, Synthesis of fused cyanopyrroles and spirocyclopropanes *via* addition of *N*-ylides to chalconimines, *Org. Biomol. Chem.*, 2017, **15**, 3616-3627.

10. X-ray crystal structures

