Supporting Information

Visible-light- and bromide-mediated photoredox Minisci alkylation of N-heterarenes with ester acetates

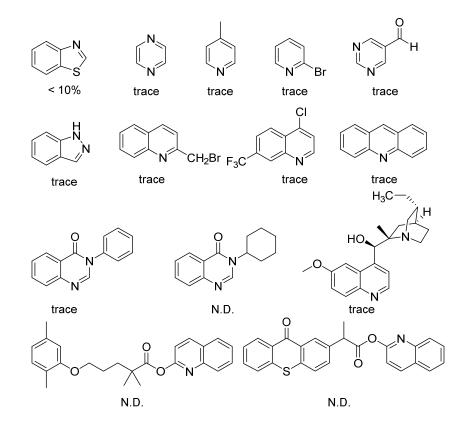
Chunlian Wang, Hang Shi, Guo-Jun Deng and Huawen Huang*

Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.

E-mail: hwhuang@xtu.edu.cn.

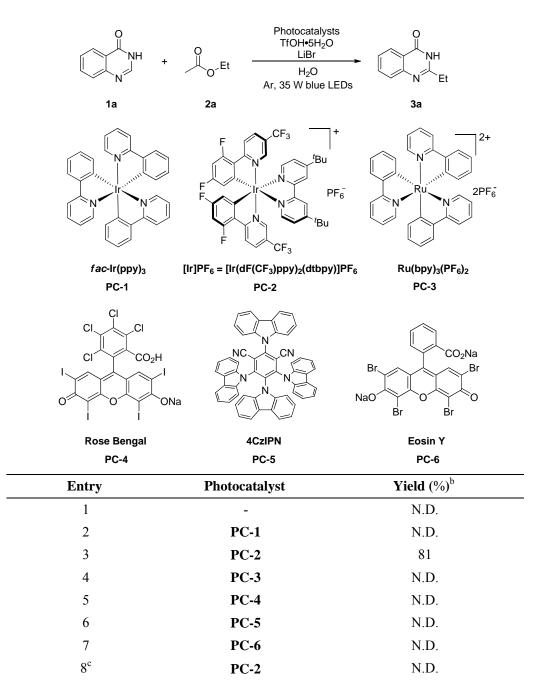
List of Contents

1. General information	S2
2. General procedure for synthetic reaction	S3
3. Optimization of reaction conditions	S4
4. Mechanistic studies	S7
5. Characterization data of products	S9
6. References	S22
7. Copies of ¹ H and ¹³ C NMR spectra of all products	S23


1. General information

The reaction via general procedure was carried out under an atmosphere of argon unless otherwise noted. Column chromatography was performed using silica gel (200-300 mesh) or thin layer chromatography was performed using silica gel (GF254). ¹H NMR and ¹³C NMR spectra were recorded on Bruker-AV (400 and 100 MHz, respectively) instrument using CDCl₃ and DMSO-*d*₆ as solvents. Mass spectra were measured on Agilent 5975 GC-MS instrument (EI). High-resolution mass spectra (ESI) were obtained with the Thermo Scientific LTQ Orbitrap XL mass spectrometer. The structures of known compounds were further corroborated by comparing their ¹H NMR, ¹³C NMR data and HRMS data with those in literature. Melting points were measured with a YUHUA X-5 melting point instrument and were uncorrected. All reagents were directly used without purification as received from commercial supplier.

2. General procedure for synthetic reaction


Standard reaction conditions: A 10 mL reaction vessel was charged with 4-hydroxyquinazoline (**1a**, 29.2 mg, 0.2 mmol), LiBr (8.6 mg, 0.1 mmol, 0.5 equiv), $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (2.2 mg, 0.002 mmol), TfOH·5H₂O (5.5 M aq, 40 µL, 1.0 equiv, 0.22 mmol), H₂O (18 µL, 1.0 mmol), The atmosphere was exchanged by applying vacuum and backfilling with Ar (this process was conducted for three times), then EA (**2a**, 2mL) was added by syringe. The resulting mixture was stirred for 60 hours under irradiation with a 35 W blue LED. The crude reaction mixture was diluted using 10 mL EA, dried over sodium sulfate, filtered and the volatiles were removed under reduced pressure. Silica gel (200-300 mesh) or thin layer chromatography was performed using silica gel (GF254) to give product **3a**.

Substrates with no or very low reactivity:

3. Optimization of Reaction Conditions

Table S1. Screening of photocatalyst^a

^a Reaction conditions: **1a** (0.2 mmol), **2a** (2.0 mL), Photocatalyst (1 mol %), LiBr (0.5 equiv), TfOH·5H₂O (aq., 1.0 equiv), H₂O (3.0 equiv), 60 °C under Ar, 60 h. ^b Isolated yield. ^c No light.

Table S2. Screening of Acid^a

O NH	+ \bigcup_{O} Et $\frac{Ir[dF(CF_3)ppy]}{Acid,}$ Acid, H ₂ / Ar, 35 W b	LiBr O NHEt NEt
1a	2a	3a
Entry	Acid	Yield $(\%)^b$
1	TfOH•5H ₂ O	81
2	-	N.D.
3	TsOH•5H ₂ O	Trace
4	AcOH•5H ₂ O	Trace
5	TFA•5H ₂ O	25
6	MAS•5H ₂ O	N.D.
7	TsOH	Trace

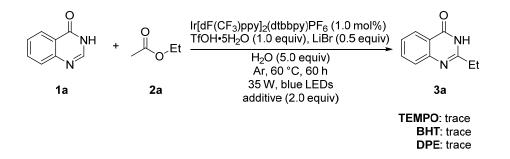
^a Reaction conditions: **1a** (0.2 mmol), **2a** (2.0 mL), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (1 mol %), LiBr (0.5 equiv), Acid (aq., 1.0 equiv), H₂O (3.0 equiv), 60 °C under Ar, 60 h. ^b Isolated yield.

Table S3. Screening of Additive^a

Entry	Additive	Yield $(\%)^b$
1	-	N.D.
2	LiBr (0.5 equiv)	81
3	NaBr (0.5 equiv)	63
4	NH ₄ Br (0.5 equiv)	71
5	LiCl (0.5 equiv)	N.D.
6	KI (0.5 equiv)	N.D.
7	ethyl 2-mercaptopropanoate (10 mol%)	N.D.
8	cyclohexanethiol (10 mol%)	N.D.
9	LiBr (0.5 equiv) +	40
	ethyl 2-mercaptopropanoate (10 mol%)	

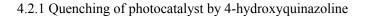
^a Reaction conditions: **1a** (0.2 mmol), **2a** (2.0 mL), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (1 mol %),

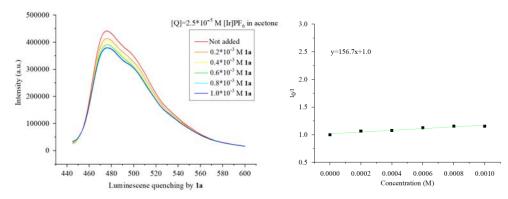
TfOH·5H₂O (aq., 1.0 equiv), H₂O (3.0 equiv), 60 °C under Ar, 60 h. ^b Isolated yield.

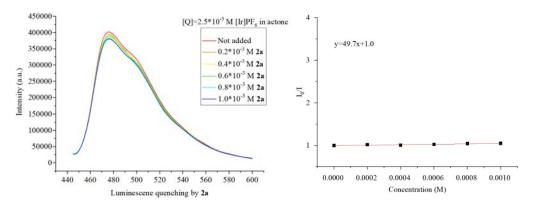

Table S4. Screening of H₂O^a

O NH	+Et	by] ₂ (dtbbpy)PF ₆ <u>5H₂O, LiBr</u> H ₂ O V blue LEDs
1a	2a	3a
Entry	H ₂ O	Yield (%) ^b
1	-	Trace
2	3.0 equiv	81
3	5.0 equiv	85
4	10.0 equiv	83
5 [°]	5.0 equiv	trace

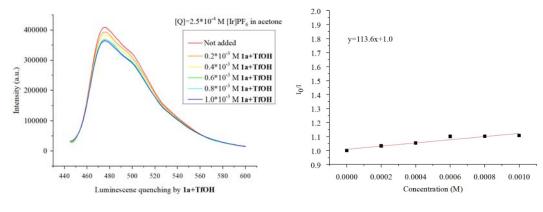
^a Reaction conditions: **1a** (0.2 mmol), **2a** (2.0 mL), $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (1 mol %), LiBr (0.5 equiv), TfOH·5H₂O (aq., 1.0 equiv), H₂O, 60 °C under Ar, 60 h. ^b Isolated yield. ^c **2a** (20 equiv) combined with DMSO (2.0 mL) was used as the solvent.


4. Mechanistic studies


4.1 Radical trapping experiments

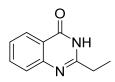

4.2 Stern–Volmer Quenching

Take 146.15 mg of 4-hydroxyquinazoline in a 10.0 mL volumetric flask and add methol to the mark, the concentration is set to 0.1 mol/L. Take 97.6 μ L of EtOAc in a 10.0 ml volumetric flask and add acetonitrile to the mark, the concentration is set to 0.1 M. Take 86.85 mg of LiBr in a 10.0 mL volumetric flask and add acetone to the mark, the concentration is set to 0.05 M. Photocatalyst (2.8 mg) was dissolved in acetone (10.0 mL) to set the concentration to be 0.1 mM. The resulting 0.1 mM solution (50.0 μ L) was added to cuvette, this solution was then diluted to a volume of 2.0 mL by adding further acetone to prepare 2.5 μ M solution. The resulting mixture was sparged with nitrogen for 3 minutes and then irradiated at 380 nm. Fluorescence emission spectra were recorded (3 trials per sample). Into this solution, 10.0 μ L of a 4-Hydroxyquinazoline methanol solution was successively added and uniformly stirred, the resulting mixture was bubbled with nitrogen for 3 minutes and irradiated at 380 nm. Fluorescence emission spectra of 0 μ L, 10.0 μ L, 20.0 μ L, 30.0 μ L, 40.0 μ L, 50.0 μ L fluorescence intensity. Follow this method and make changes to the amount, relationship is obtained in turn.



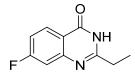
4.2.2 Quenching of photocatalyst by EtOAc

4.2.3 Quenching of photocatalyst by 4-hydroxyquinazoline (1a) + TfOH

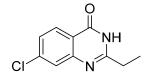


4.2.4 Quenching of photocatalyst by LiBr

5. Characterization data of products


2-ethylquinazolin-4(3H)-one (3a)¹

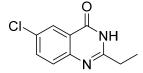
The reaction was conducted with quinazolin-4(*3H*)-one (29.2 mg, 0.2 mmol) and ethyl acetate (2.0 mL). Purification by thin layer chromatography was performed (petroleum ether/ethyl acetate = 2/1) to yield **3a** (29.5 mg, 85%) as a white solid. mp: 214-216 °C.


¹H NMR (400 MHz, Chloroform-*d*) δ 12.13 (brs, 1H), 8.29 (d, J = 9.5 Hz, 1H), 7.79 – 7.74 (m, 1H), 7.71 (d, J = 8.0 Hz, 1H), 7.48 – 7.45 (m, J = 7.5 Hz, 1H), 2.85 (q, J = 7.6 Hz, 2H), 1.46 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 164.5, 157.7, 149.5, 134.8, 127.2, 126.3, 126.2, 120.5, 29.1, 11.5.

2-ethyl-7-fluoroquinazolin-4(3H)-one (3b)¹

The reaction was conducted with 2-ethylquinazolin-4(*3H*)-one (32.8 mg, 0.2 mmol) and ethyl acetate (2.0 mL). Purification by thin layer chromatography was performed (petroleum ether/ethyl acetate = 5/1) to yield **3b** (19.4 mg, 51%) as a white solid. mp: 225-227 °C.

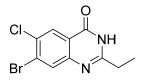
¹H NMR (400 MHz, Chloroform-*d*) δ 11.87 (brs, 1H), 8.29 (dd, J = 8.8, 6.1 Hz, 1H), 7.36 (dd, J = 9.8, 2.4 Hz, 1H), 7.19 (m, 1H), 2.83 (q, J = 7.6 Hz, 2H), 1.44 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 166.8 (d, J = 253.2 Hz), 163.1, 158.8, 129.0 (d, J = 10.8 Hz), 117.2, 115.3 (d, J = 23.3 Hz), 112.6 (d, J = 21.8 Hz), 29.1, 11.3. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -102.4. **7-chloro-2-ethylquinazolin-4(3H)-one (3c)**¹


The reaction was conducted with 7-chloroquinazolin-4(*3H*)-one (36.1 mg, 0.2 mmol) and ethyl acetate (2.0 mL). Purification by thin layer chromatography was performed (petroleum ether/ethyl acetate = 5/1) to yield **3c** (30.1 mg, 72%) as a white solid. mp: 239-241 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 12.28 (brs, 1H), 8.19 (d, *J* = 8.5 Hz, 1H), 7.69 (d, *J* = 2.0 Hz, 1H), 7.40 (dd, *J* = 8.5, 2.0 Hz, 1H), 2.83 (q, *J* = 7.6 Hz, 2H), 1.44 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 164.0, 159.1, 150.5, 141.0, 127.6, 127.0, 126.9, 118.9, 29.1, 11.4. **7-bromo-2-ethylquinazolin-4**(*3H*)-one (3d)¹

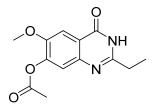
The reaction was conducted with 7-bromoquinazolin-4(*3H*)-one (45.0 mg, 0.2 mmol) and ethyl acetate (2.0 mL). Purification by thin layer chromatography was performed (petroleum ether/ethyl acetate = 5/1) to yield **3d** (32.9 mg, 65%) as a white solid. mp: 236-238 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 11.89 (brs, 1H), 8.12 (d, J = 8.5 Hz, 1H), 7.90 (d, J = 1.9 Hz, 1H), 7.56 (dd, J = 8.5, 1.9 Hz, 1H), 2.83 (q, J = 7.6 Hz, 2H), 1.43 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 163.9, 158.9, 150.4, 130.1, 129.8, 129.6, 127.7, 119.3, 29.1, 11.3.



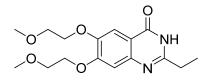
The reaction was conducted with 7-bromoquinazolin-4(*3H*)-one (36.1mg, 0.2 mmol) and ethyl acetate (2.0 mL). Purification by thin layer chromatography was performed (petroleum ether/ethyl acetate = 5/1) to yield **3e** (28.0 mg, 67%) as a white solid. mp: 229-231 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.35 (brs, 1H), 7.97 (s, 1H), 7.76 (d, *J* = 8.7 Hz, 1H), 7.59 (d,

J = 8.7 Hz, 1H), 2.59 (q, *J* = 7.5 Hz, 2H), 1.21 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 161.3, 159.4, 148.1, 134.8, 130.6, 129.5, 125.1, 122.5, 28.3, 11.6.

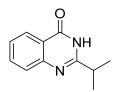

7-bromo-6-chloro-2-ethylquinazolin-4(3H)-one (3f)

The reaction was conducted with 7-bromo-6-chloroquinazolin-4(*3H*)-one (51.9 mg, 0.2 mmol) and ethyl acetate (2.0 mL). Purification by thin layer chromatography was performed (petroleum ether/ethyl acetate = 10/1) to yield **3f** (44.9 mg, 78%) as a white solid. mp: 256-258 °C.

¹H NMR (400 MHz, DMSO-*d*₆) δ 12.40 (brs, 1H), 8.02 (s, 1H), 7.87 (s, 1H), 2.58 (q, *J* = 7.5 Hz, 2H), 1.20 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 160.8, 160.7, 148.7, 132.2, 130.7, 128.3, 126.9, 121.7, 28.3, 11.5. HRMS (ESI) m/z calcd for C₁₀H₈BrClN₂NaO⁺ (M+Na)⁺ 308.9401, found 308.9400.

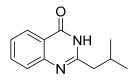

2-ethyl-6-methoxy-4-oxo-3,4-dihydroquinazolin-7-yl acetate (3g)

The reaction was conducted with 6-methoxy-4-oxo-3,4-dihydroquinazolin-7-yl acetate (46.8 mg, 0.2 mmol) and ethyl acetate (2.0 mL). Purification by thin layer chromatography was performed (petroleum ether/ethyl acetate = 10/1) to yield **3g** (36.7 mg, 78%) as a white solid. mp: 221-223 $^{\circ}$ C.


¹H NMR (400 MHz, Chloroform-*d*) δ 12.34 (brs, 1H), 7.90 (s, 1H), 7.17 (s, 1H), 3.94 (s, 3H), 2.80 (q, *J* = 7.6 Hz, 2H), 2.34 (s, 3H), 1.42 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 168.9, 163.5, 158.5, 157.0, 149.7, 139.2, 119.5, 113.6, 108.7, 56.3, 29.1, 20.6, 11.6. HRMS (ESI) m/z calcd for C₁₃H₁₄N₂NaO₄⁺ (M+Na)⁺ 285.0846, found 285.0844.

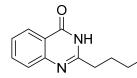
2-ethyl-6,7-bis(2-methoxyethoxy) quinazolin-4(3H)-one (3h)

The reaction was conducted with 6,7-bis(2-methoxyethoxy) quinazolin-4(*3H*)-one (58.9 mg, 0.2 mmol) and ethyl acetate (2.0 mL). Purification by thin layer chromatography was performed (petroleum ether/ethyl acetate = 5/1) to yield **3h** (22.6 mg, 78%) as a white solid. mp: 193-195 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 11.66 (brs, 1H), 7.58 (s, 1H), 7.09 (s, 1H), 4.26 (q, *J* = 5.3 Hz, 4H), 3.86 – 3.84 (m, 4H), 3.48 (s, 3H), 3.47 (s, 3H), 2.80 (q, *J* = 7.6 Hz, 2H), 1.42 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 163.4, 156.4, 155.0, 148.2, 145.9, 113.7, 108.7, 106.9, 70.7, 70.5, 68.6, 68.4, 59.4, 59.4, 29.0, 11.7. HRMS (ESI) m/z calcd for C₁₆H₂₂N₂NaO₅⁺ (M+Na)⁺ 345.1421, found 345.1419.


2-isopropylquinazolin-4(3H)-one (3i)²

The reaction was conducted with quinazolin-4(*3H*)-one (29.2 mg, 0.2 mmol) and isopropyl acetate (2.0 mL). Purification by thin layer chromatography was performed (petroleum ether/ethyl acetate = 5/1) to yield **3i** (7.0 mg, 18%) as a white solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 11.90 (brs, 1H), 8.30 (d, J = 7.9 Hz, 1H), 7.78 – 7.71 (m, 2H), 7.48 – 7.44 (m, 1H), 3.10 – 3.04 (m, 1H), δ 1.46 (d, J = 7.0 Hz, 6H); ¹³C NMR (100 MHz, Chloroform-d) δ 164.4, 161.0, 149.5, 134.7, 127.4, 126.3, 126.2, 120.7, 35.0, 20.4.


2-isobutylquinazolin-4(3H)-one (3j)²

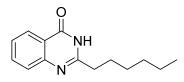
The reaction was conducted with quinazolin-4(*3H*)-one (29.2 mg, 0.2 mmol) and isobutyl acetate (2.0 mL). Purification by thin layer chromatography was performed (petroleum ether/ethyl acetate = 5/1) to yield **3j** (10.1 mg, 25%) as a white solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 12.41 (brs, 1H), 8.29 (d, *J* = 7.9 Hz, 1H), 7.78 – 7.70 (m, 2H), 7.48 – 7.44 (m, 1H), 2.69 (d, *J* = 7.4 Hz, 2H), 2.40 – 2.30 (m, 1H), 1.06 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 164.6, 156.5, 149.5, 134.8, 127.3, 126.3, 126.2, 120.4, 44.7, 28.0, 22.4.

2-butylquinazolin-4(3H)-one (3k)¹

The reaction was conducted with quinazolin-4(*3H*)-one (29.2 mg, 0.2 mmol) and n-butyl acetate (2.0 mL). Purification by thin layer chromatography was performed (petroleum ether/ethyl acetate = 2/1) to yield **3k** (22.3 mg, 55%) as a white solid. mp: 135-137 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 12.15 (brs, 1H), 8.28 (d, *J* = 8.4 Hz, 1H), 7.79 – 7.77 (m, 1H), 7.71 (d, *J* = 8.1 Hz, 1H), 7.49 – 7.45 (m, 1H), 2.83 – 2.79 (m, 2H), 1.92-1.84 (m, 2H), 1.55 –


1.45 (m, 2H), 0.99 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 164.60, 157.2, 149.5, 134.8, 127.2, 126.3, 126.2, 120.5, 35.7, 29.7, 22.4, 13.8.

2-pentylquinazolin-4(3H)-one (3l)¹

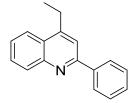
The reaction was conducted with quinazolin-4(*3H*)-one (29.2 mg, 0.2 mmol) and n-pentyl acetate (2.0 mL). Purification by thin layer chromatography was performed (petroleum ether/ethyl acetate = 2/1) to yield **3I** (21.6 mg, 50%) as a white solid. mp: 156-158 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 12.29 (brs, 1H), 8.28 (d, *J* = 7.9 Hz, 1H), 7.78 – 7.69 (m, 2H), 7.48 – 7.44 (m, 1H), 2.82 – 2.79 (m, 2H), 1.94 – 1.86 (m, 2H), 1.49 – 1.37 (m, 4H), 0.92 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 164.6, 157.2, 149.5, 134.8, 127.2, 126.3, 126.2, 120.5, 35.9, 31.4, 27.3, 22.4, 14.0.

2-hexylquinazolin-4(3H)-one (3m)³

The reaction was conducted with quinazolin-4(*3H*)-one (29.2 mg, 0.2 mmol) and n-hextyl acetate (2.0 mL). Purification by thin layer chromatography was performed (petroleum ether/ethyl acetate = 2/1) to yield **3m** (23.1 mg, 50%) as a white solid. mp: 181-183 °C.

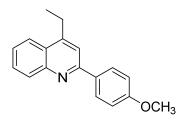
¹H NMR (400 MHz, Chloroform-*d*) δ 12.15 (brs, 1H), 8.29 (d, J = 8.0 Hz, 1H), 7.80 – 7.76 (m, 1H), 7.72 (d, J = 7.7 Hz, 1H), 7.49 – 7.45 (m, 1H), 2.83 – 2.79 (m, 2H), 1.93 – 1.85 (m, 2H), 1.51-1.43 (m, 2H), 1.39 – 1.32 (m, 4H), 0.89 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 164.4, 157.2, 149.4, 134.8, 127.2, 126.3, 126.2, 120.5, 36.0, 31.5, 28.9, 27.6, 22.5, 14.1.


2-heptylquinazolin-4(3H)-one (3n)⁵

 \cap NH

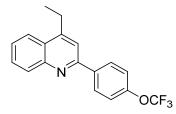
The reaction was conducted with quinazolin-4(*3H*)-one (29.2 mg, 0.2 mmol) and n-hepxtyl acetate (2.0 mL). Purification by thin layer chromatography was performed (petroleum ether/ethyl acetate = 2/1) to yield **3n** (14.6 mg, 50%) as a white solid. mp: 185-187 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 11.85 (brs, 1H), 8.29 (d, J = 8.0 Hz, 1H), 7.79 – 7.75 (m, 1H), 7.71 (d, J = 8.1 Hz, 1H), 7.49 – 7.45 (m, 1H), 2.82 – 2.78 (m, 2H), 1.92 – 1.95 (m, 2H), 1.50 – 1.46 (m, 2H), 1.44 – 1.34 (m, 2H), 1.30 – 1.25 (m, 4H), 0.86 (t, J = 6.7 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 164.3, 157.1, 149.4, 134.8, 126.3, 126.2, 120.5, 36.0, 31.8, 29.3, 29.2, 29.1, 27.6, 22.6, 14.1.

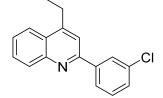

4-ethyl-2-phenylquinoline (5a)⁵

The reaction was conducted with 2-phenylquinoline (41.1 mg, 0.2 mmol) and ethyl acetate (2.0 mL). Purification by thin layer chromatography was performed (petroleum ether) to yield **5a** (23.3 mg, 50%) as a white solid. mp: 82-84 $^{\circ}$ C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.21 (d, *J* = 8.4 Hz, 1H), 8.16 (d, *J* = 7.0 Hz, 2H), 8.05 (d, *J* = 8.4 Hz, 1H), 7.73 (d, *J* = 7.0 Hz, 2H), 7.57 – 7.52 (m, 3H), 7.48 –7.45 (m, 1H), 3.18 (q, *J* = 7.6 Hz, 2H), 1.46 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 157.3, 150.6, 148.3, 139.9, 130.4, 129.3, 129.2, 128.8, 127.6, 126.4, 126.1, 123.3, 117.9, 25.4, 14.3.

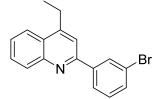

4-ethyl-2-(4-methoxyphenyl) quinoline (5b)

The reaction was conducted with 2-(4-methoxyphenyl) quinoline (47.1 mg, 0.2 mmol) and ethyl acetate (2.0 mL). Purification by thin layer chromatography was performed (petroleum ether/ethyl acetate = 100/1) to yield **5b** (29.5 mg, 56%) as a colorless liquid.


¹H NMR (400 MHz, Chloroform-*d*) δ 8.18 – 8.14 (m, 2H), 8.12 (s, 1H), 8.02 (d, *J* = 8.3 Hz, 1H), 7.71 – 7.67 (m, 2H), 7.53 – 7.49 (m, 1H), 7.05 (d, *J* = 8.7 Hz, 2H), 3.89 (s, 3H), 3.16 (q, *J* = 7.5 Hz, 2H), 1.45 (t, J = 7.5 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 160.7, 156.8, 150.4, 148.3, 132.4, 130.2, 129.2, 128.9, 126.2, 125.7, 123.3, 117.4, 114.2, 55.4, 25.5, 14.3. HRMS (ESI) m/z calcd for C₁₈H₁₇KNO⁺ (M+K)⁺ 302.0942, found 302.0945.

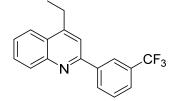
4-ethyl-2-(4-(trifluoromethoxy) phenyl) quinoline (5c)

The reaction was conducted with 2-(4-(trifluoromethyl) phenyl) quinoline (57.9 mg, 0.2 mmol) and ethyl acetate (2.0 mL). Purification by thin layer chromatography was performed (petroleum ether/ethyl acetate = 100/1) to yield **5e** (50.7 mg, 80%) as a white solid. mp: 80-82 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.21 – 8.17 (m, 3H), 8.05 (d, *J* = 7.8 Hz, 1H), 7.75 – 7.72 (m, 1H), 7.69 (s, 1H), 7.58 – 7.54 (m, 1H), 7.37 (d, *J* = 7.8 Hz, 2H), 3.18 (q, *J* = 6.8 Hz, 2H), 1.45 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 155.8, 150.9, 150.1, 148.3, 138.6, 130.4, 129.5, 129.1, 126.5, 126.3, 123.3, 121.1, 120.5 (q, *J*= 255.7 Hz), 117.5, 25.4, 14.2. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -57.7. HRMS (ESI) m/z calcd for C₁₈H₁₅F₃NO⁺ (M+H)⁺ 318.1100, found 318.1107.


2-(4-chlorophenyl)-4-ethylquinoline (5d)

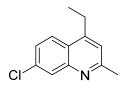
The reaction was conducted with 2-(4-chlorophenyl) quinoline (47.9 mg, 0.2 mmol) and ethyl acetate (2.0 mL). Purification by thin layer chromatography was performed (petroleum ether/ethyl acetate = 100/1) to yield **5c** (28.4 mg, 56%) as a colorless liquid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.19 (d, *J* = 7.8 Hz, 2H), 8.07 – 8.01 (m, 2H), 7.76 – 7.70 (m, 1H), 7.69 (s, 1H), 7.58 – 7.54 (m, 1H), 7.44 (d, *J* = 7.2 Hz, 2H), 3.17 (q, *J* = 7.6 Hz, 2H), 1.45 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 155.7, 150.9, 148.3, 141.7, 134.9, 130.5, 130.0, 129.5, 129.2, 127.7, 126.6, 126.4, 125.7, 123.3, 117.5, 25.5, 14.3. HRMS (ESI) m/z calcd for C₁₇H₁₄ClNNa⁺ (M+Na)⁺ 290.0707, found 290.0712.


2-(3-bromophenyl)-4-ethylquinoline (5e)

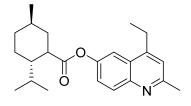
The reaction was conducted with 2-(3-bromophenyl) quinoline (56.8 mg, 0.2 mmol) and ethyl acetate (2.0 mL). Purification by thin layer chromatography was performed (petroleum ether/ethyl acetate = 100/1) to yield **5f** (40.0 mg, 80%) as a colorless liquid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.34 (s, 1H), 8.18 (d, *J* = 8.4 Hz, 1H), 8.11 – 8.01 (m, 2H), 7.77 – 7.68 (m, 1H), 7.68 (s, 1H), 7.61 – 7.52 (m, 2H), 7.39 (m, 1H), 3.17 (q, *J* = 7.6 Hz, 2H), 1.45 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 155.5, 151.0, 148.2, 141.9, 132.1, 130.6, 130.5, 130.3, 129.5, 126.6, 126.4, 126.1, 123.3, 123.1, 117.5, 25.5, 14.3. HRMS (ESI) m/z calcd for C₁₇H₁₅NBr⁺ (M+H)⁺ 312.0382, found 312.0383.


4-ethyl-2-(4-(trifluoromethyl) phenyl) quinoline (5f)

The reaction was conducted with 2-(4-(trifluoromethyl) phenyl) quinoline (54.7 mg, 0.2 mmol) and ethyl acetate (2.0 mL). Purification by thin layer chromatography was performed (petroleum ether/ethyl acetate = 100/1) to yield **5d** (42.8 mg, 71%) as a colorless liquid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.46 (s, 1H), 8.35 (d, J = 7.8 Hz, 1H), 8.21 (d, J = 8.4 Hz, 1H), 8.06 (d, J = 8.4 Hz, 1H), 7.77 – 7.70 (m, 3H), 7.64 (m, 1H), 7.60 – 7.55 (m, 1H), 3.19 (q, J = 7.6 Hz, 2H), 1.46 (t, J = 7.5 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 155.5, 151.1, 148.3, 140.7, 131.2 (q, J = 32.3 Hz), 130.8, 130.5, 129.4 (q, J = 26.7. Hz), 126.6 (q, J = 10.1 Hz), 125.8 (d, J = 3.9 Hz), 124.4 (q, J = 3.8 Hz), 124.3 (q, J = 270.6 Hz), 123.3, 117.4, 25.5, 14.3. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -62.4. HRMS (ESI) m/z calcd for C₁₈H₁₄F₃NNa⁺ (M+Na)⁺ 324.0971, found 324.0973.


7-chloro-4-ethyl-2-methylquinoline (5g)

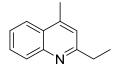
The reaction was conducted with 7-chloro-2-methylquinoline (35.5 mg, 0.2 mmol) and ethyl acetate (2.0 mL). Purification by thin layer chromatography was performed (petroleum ether) to vield **5g** (14.2 mg, 35%) as a colorless liquid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 (s, 1H), 7.91 (d, J = 8.9 Hz, 1H), 7.44 (dd, J = 8.9, 2.2 Hz, 1H), 7.13 (s, 1H), 3.04 (q, J = 7.5 Hz, 2H), 2.70 (s, 3H), 1.37 (t, J = 7.5 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 160.1, 150.0, 148.4, 134.8, 128. 2, 126.4, 124.6, 124.2, 120.9, 25.3, 25.0, 14.0. HRMS (ESI) m/z calcd for C₁₂H₁₃ClN⁺ (M+H)⁺ 206.0731, found 206.0730.

4-ethyl-2-methylquinolin-6-yl (2S,5R)-2-isopropyl-5-methylcyclohexane-1-carboxylate (5h)

Thereactionwasconductedwith2-methylquinolin-6-yl(2S,5R)-2-isopropyl-5-methylcyclohexane-1-carboxylate(65.1 mg, 0.2 mmol) and ethyl acetate(2.0 mL). Purification by thin layer chromatography was performed (petroleum ether) to yield **5h**(28.3 mg, 40%) as a colorless liquid.

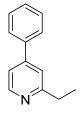
¹H NMR (400 MHz, Chloroform-*d*) δ 8.76 (s, 1H), 8.25 (d, *J* = 8.8 Hz, 1H), 8.05 (d, *J* = 8.8 Hz, 1H), 7.20 (s, 1H), 5.03 – 4.97 (m, 1H), 3.20 – 3.09 (m, 2H), 2.74 (s, 3H), 2.19 – 2.15 (m, 1H), 2.04 – 1.96 (m, 1H), 1.78 – 1.74 (m, 2H), 1.64 – 1.59 (m, 2H), 1.41 (t, *J* = 7.5 Hz, 3H), 1.20-1.12 (m, 2H), 0.95 – 0.82 (m, 7H), 0.83 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 166.0, 161.2, 151.4, 149.8, 129.4, 128.7, 127.6, 126.5, 125.1, 121.3, 75.2, 47.3, 41.0, 34.3, 31.5, 26.7, 25.6, 24.9, 23.8, 22.1, 20.8, 16.7, 14.1. HRMS (ESI) m/z calcd for C₂₃H₃₁NNaO₂⁺ (M+Na)⁺ 376.2247, found 376.2247.


6-bromo-4-ethyl-2-methylquinoline (5i)

Br

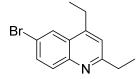
The reaction was conducted with 6-bromo-2-methylquinoline (41.4 mg, 0.2 mmol) and ethyl acetate (2.0 mL). Purification by thin layer chromatography was performed (petroleum ether) to yield **5i** (28.0 mg, 56%) as a white solid. mp: 85-87 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.11 (s, 1H), 7.88 (d, J = 8.9 Hz, 1H), 7.71 (d, J = 8.9 Hz, 1H), 7.15 (s, 1H), 3.01 (q, J = 7.6 Hz, 2H), 2.69 (s, 3H), 1.37 (t, J = 7.5 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 159.4, 149.0, 146.5, 132.4, 131.1, 127.1, 125.7, 121.4, 119.4, 25.4, 24.8, 13.9. HRMS (ESI) m/z calcd for C₁₂H₁₃BrN⁺ (M+H)⁺ 250.0226, found 250.0225.

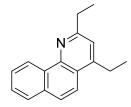

2-ethyl-4-methylquinoline (5j)⁷

The reaction was conducted with 4-methylquinoline (27 μ L, 0.2 mmol) and ethyl acetate (2.0 mL). Purification by thin layer chromatography was performed (petroleum ether) to yield **5j** (18.8 mg, 55%) as a colorless liquid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.04 (d, *J* = 8.3 Hz, 1H), 7.96 – 7.93 (m, 1H), 7.69 – 7.65 (m, 1H), 7.52 – 7.48 (m, 1H), 7.16 (s, 1H), 2.96 (q, *J* = 7.6 Hz, 2H), 2.68 (s, 3H), 1.38 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 163.7, 147.6, 144.4, 129.3, 129.1, 126.8, 125.4, 123.6, 121.6, 32.2, 18.7, 14.1.


2-ethyl-4-phenylpyridine (5k)⁸

The reaction was conducted with 4-phenylpyridine (31.0 mg, 0.2 mmol) and ethyl acetate (2.0 mL). Purification by thin layer chromatography was performed (petroleum ether/ethyl acetate = 5/1) to yield **5k** (14.7 mg, 40%) as a colorless liquid.

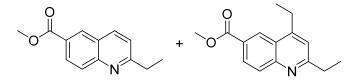

¹H NMR (400 MHz, Chloroform-*d*) δ 8.57 (d, J = 5.2 Hz, 1H), 7.65 – 7.61 (m, 2H), 7.51 – 7.40 (m, 3H), 7.38 (s, 1H), 7.33 (d, J = 5.2 Hz, 1H), 2.89 (q, J = 7.6 Hz, 2H), 1.36 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 164.0, 149.6, 148.9, 138.6, 129.0, 128.9, 127.1, 120.1, 119.1, 31.5, 14.0.

6-bromo-2-methylquinoline (51)

The reaction was conducted with 6-bromoquinoline (41.6 mg, 0.2 mmol) and ethyl acetate (2.0 mL). Purification by thin layer chromatography was performed (petroleum ether) to yield **51** (30.6 mg, 58%) as a white solid. mp: 83-85 $^{\circ}$ C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.10 (s, 1H), 7.90 (d, *J* = 8.9 Hz, 1H), 7.71 (d, *J* = 8.9 Hz, 1H), 7.16 (s, 1H), 3.01 (q, *J* = 7.5 Hz, 2H), 2.94 (q, *J* = 7.6 Hz, 2H), 1.39 – 1.35 (m, 6H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 164.3, 149.1, 146.5, 132.2, 131.3, 127.3, 125.7, 120.2, 119.4, 32.3, 25.0, 14.0, 13.9. HRMS (ESI) m/z calcd for C₁₃H₁₅BrN⁺ (M+H)⁺ 264.0382, found 264.0387. **2,4-diethylbenzo[h]quinoline (5m)**⁹

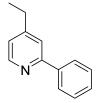
The reaction was conducted with benzo[h]quinoline (36.0 mg, 0.2 mmol) and ethyl acetate (2.0 mL). Purification by thin layer chromatography was performed (petroleum ether) to yield **5m** (40.0 mg, 86%) as a colorless liquid.


¹H NMR (400 MHz, Chloroform-*d*) δ 9.40 (d, J = 8.1 Hz, 1H), 7.88 – 7.84 (m, 2H), 7.75 – 7.61 (m, 3H), 7.23 (s, 1H), 3.12 – 3.01 (m, 4H), 1.47 (t, J = 7.6 Hz, 3H), 1.38 (t, J = 7.5 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 162.2, 149.7, 145.8, 133.3, 132.0, 127.7, 127.5, 126.6, 126.2, 125.0, 123.1, 121.0, 120.2, 32.1, 25.5, 14.6, 13.8.

2-ethyl-6-(phenylethynyl) quinoline (5n)

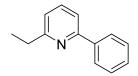
The reaction was conducted with 6-(phenylethynyl) quinoline (45.9 mg, 0.2 mmol) and ethyl acetate (2.0 mL). Purification by thin layer chromatography was performed (petroleum ether/ ethyl acetate = 100/1) to yield **5n** (20.6 mg, 40%) as a white solid. mp: 82-84 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 – 7.98 (m, 3H), 7.79 (d, J = 8.7 Hz, 1H), 7.59 – 7.56 (m, 2H), 7.40 – 7.33 (m, 4H), 3.01 (q, J = 7.6 Hz, 2H), 1.40 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 164.8, 147.2, 136.1, 132.2, 131.7, 130.9, 128.9, 128.5, 128.4, 126.5, 123.1, 121.6, 120.6, 90.2, 89.2, 32.4, 14.0. HRMS (ESI) m/z calcd for C₁₉H₁₅NNa⁺ (M+Na)⁺ 280.1097, found 280.1099.


methyl 2-ethylquinoline-6-carboxylate (50) + methyl 2,4-diethylquinoline-6-carboxylate (5p)

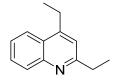
The reaction was conducted with methyl quinoline-6-carboxylate (37.4 mg, 0.2 mmol) and ethyl acetate (2.0 mL). Purification by thin layer chromatography was performed (petroleum ether) to yield **5p+5q** (28.2 mg, 58%) as a colorless liquid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.73 (d, *J* = 1.9 Hz, 0.37H), 8.52 (d, *J* = 1.9 Hz, 0.63H), 8.26 – 8.21 (m, 1.02H), 8.14 (d, *J* = 8.5 Hz, 0.65H), 8.05 (dd, *J* = 8.8, 6.3 Hz, 1.02H), 7.35 (d, *J* = 8.5 Hz, 0.65H), 3.97 (s, 0.37H), 3.97 (s, 1.11H), 3.96 (s, 2.16H). 3.15 – 2.95 (m, 2.74H), 1.39 (t, *J* = 7.7 Hz, 4.11H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 167.0, 166.8, 166.5, 166.3, 151.7, 149.8, 149.8, 130.7, 129.6, 129.0, 128.9, 128.6, 127.2, 126, 126.5, 125.8, 125.2, 52.4, 32.5, 32.4, 25.0, 14.2, 13.9, 13.8.


4-ethyl-2-phenylpyridine (5q)

The reaction was conducted with 2-phenylpyridine (31 μ L, 0.2 mmol) and ethyl acetate (2.0 mL). Purification by thin layer chromatography was performed (petroleum ether/ethyl acetate = 5/1) to yield **5q** (17 mg, 47%) as a colorless liquid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.58 (d, *J* = 5.0 Hz, 1H), 7.98 (d, *J* = 7.0 Hz, 2H), 7.57 (s, 1H), 7.49 – 7.46 (m, 2H), 7.43 – 7.39 (m, 1H), 7.09 (d, *J* = 5.0 Hz, 1H), 2.72 (q, *J* = 7.6 Hz, 2H), 1.30 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 157.4, 153.9, 149.5, 139.5, 128.9, 128.7, 127.0, 121.9, 120.4, 28.6, 14.5. HRMS (ESI) m/z calcd for C₁₃H₁₃NNa⁺ (M+Na)⁺ 206.0940, found 206.0940.

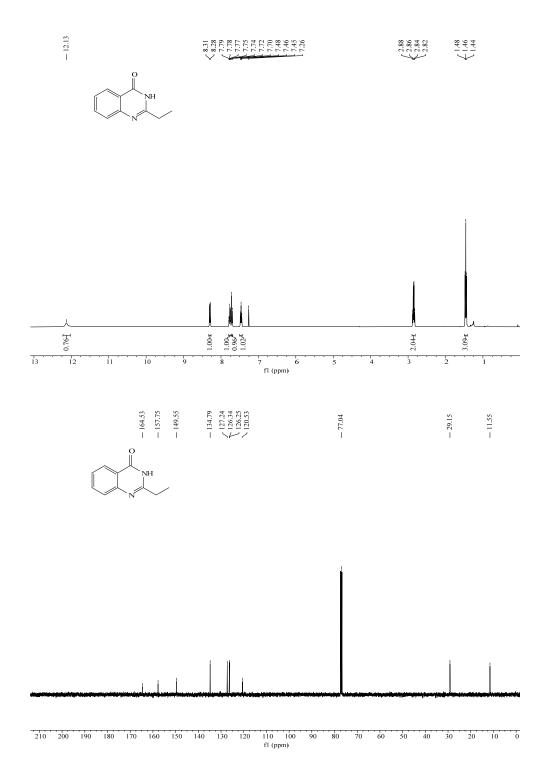

2-ethyl-6-phenylpyridine (5r)⁴

The reaction was conducted with 2-phenylpyridine (31 μ L, 0.2 mmol) and ethyl acetate (2.0 mL). Purification by thin layer chromatography was performed (petroleum ether/ethyl acetate = 5/1) to yield **5r** (6.1 mg, 21%) as a colorless liquid.

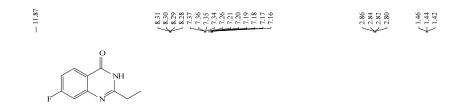
¹H NMR (400 MHz, Chloroform-*d*) δ 8.00 (d, J = 7.0 Hz, 2H), 7.68 – 7.65 (m, 1H), 7.53 (d, J = 7.7 Hz, 1H), 7.48 – 7.45 (m, 2H), 7.42 – 7.40 (m, 1H), 7.11 (d, J = 7.5 Hz, 1H), 2.91 (q, J = 7.6 Hz, 2H), 1.37 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 163.4, 156.8, 139.8, 137.0, 128.7, 128.7, 127.0, 120.4, 117.8, 31.5, 13.9.

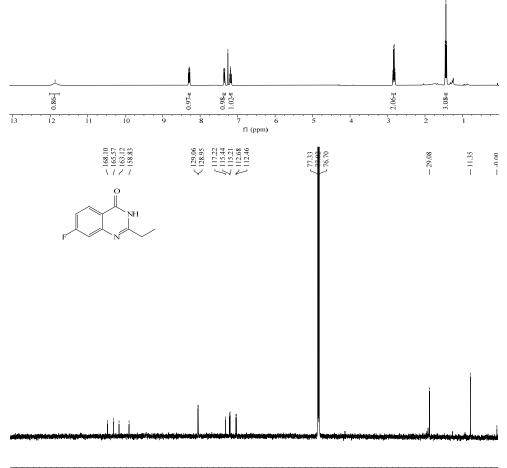
2,4-diethylquinoline (5s)

The reaction was conducted with 4-chloroquinoline (32.7 mg, 0.2 mmol) and ethyl acetate (2.0 mL). Purification by thin layer chromatography was performed (petroleum ether) to yield **5s** (24.8 mg, 67%) as a colorless liquid.

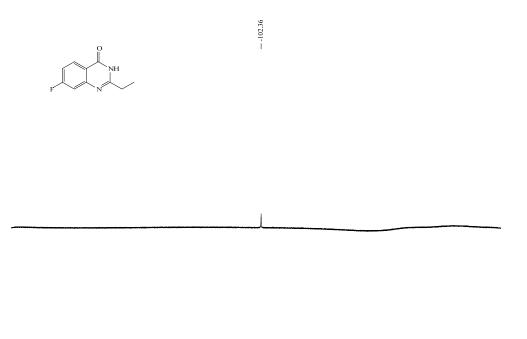

¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 (d, *J* = 8.4 Hz, 1H), 7.98 (d, *J* = 8.4 Hz, 1H), 7.68 – 7.62 (m, 1H), 7.51 – 7.46 (m, 1H), 7.16 (s, 1H), 3.08 (q, *J* = 7.5 Hz, 2H), 2.97 (q, *J* = 7.6 Hz, 2H), 1.41 – 1.36 (m, 6H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 163.9, 150.1, 147.8, 129.4, 128.9, 126.0, 125.4, 123.2, 119.5, 32.4, 25.1, 14.2, 14.1. HRMS (ESI) m/z calcd for C₁₃H₁₆N⁺ (M+H)⁺ 186.1277, found 186.1281.

6. References

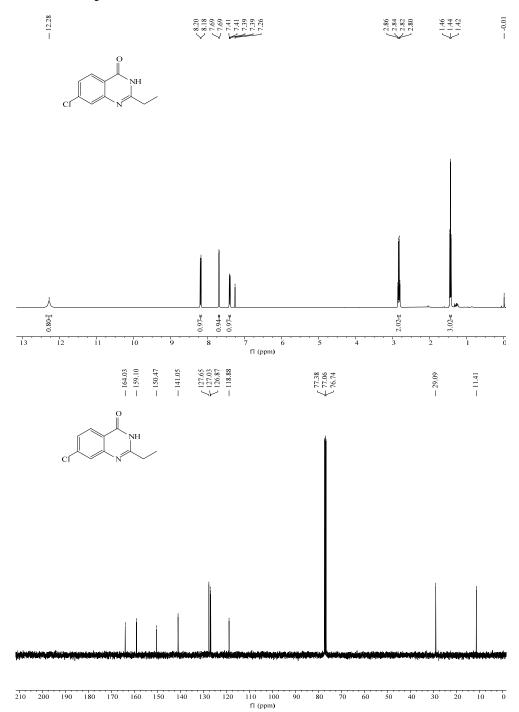

- 1 W. Zhang, K. Meng, C. Liu, Y. Tang, Y. W. Li, F. Adv. Synth. Catal, 2018, 360, 3751-3759.
- 2 Z. Li, J. Dong, X. Chen, Q. Li, Y. Zhou and S. F. Yin, J. Org. Chem. 2015, 80, 9392-400.
- 3. Ma, Z. Song, T. Yuan, Y. Yang, Y. Chem. Sci. 2019, 10, 10283-10289.
- 4 B. Guan, T. Hou, Z. J. Am. Chem. Soc. 2011, 133, 18086-18089.
- 5 Xu, T. Shao, Y. Dai, L. Yu, S. Cheng, T. Chen, J. J. Org. Chem. 2019, 84, 13604-13614.
- 6 Reen, F. J. Clarke, S. L. Legendre, C. McSweeney, C. M. Eccles, K. S. Lawrence, S. E. O'Gara,
 F. McGlacken, G. P. Org. Biomol. Chem. 2012, 10, 8903–8910.
- 7 L. Zhang, Z. Q. Liu, Org. Lett. 2017, 19, 6594-6597.
- 8 Sun, A. C. McClain, E. J. Beatty, J. W. Stephenson, C. R. J. Org. Lett. 2018, 20, 3487-3490.
- 9 C. Zhu, R. Guo, Z. Sheng, Y. Li, and C. Chu, Chin. J. Chem. 2017, 35, 1595–1600.


7. Copies of ¹H and ¹³C NMR spectra of all products

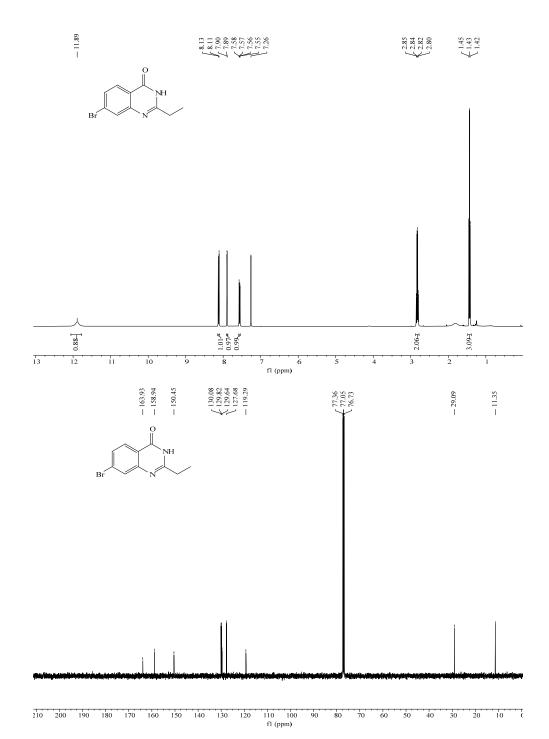
¹H and ¹³C NMR spectra of 3a



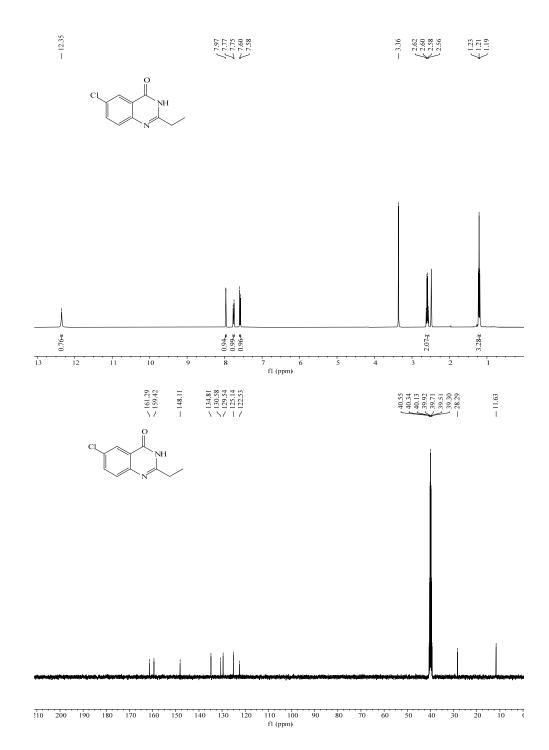
¹H NMR, ¹³C NMR and ¹⁹F NMR spectra of 3b

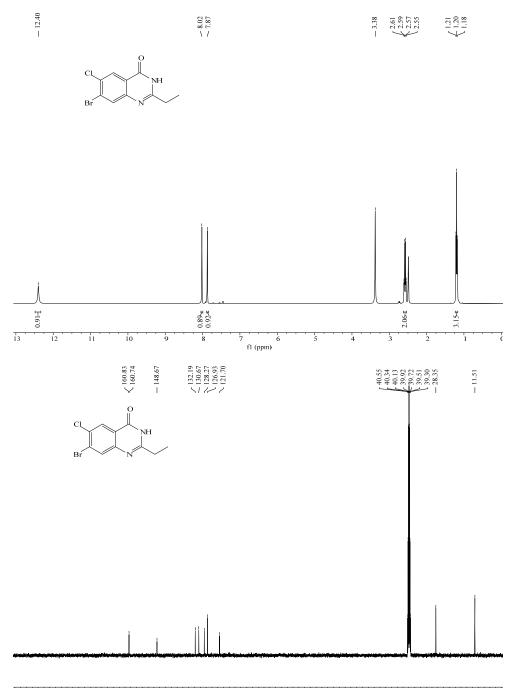


10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 (fl (ppm)

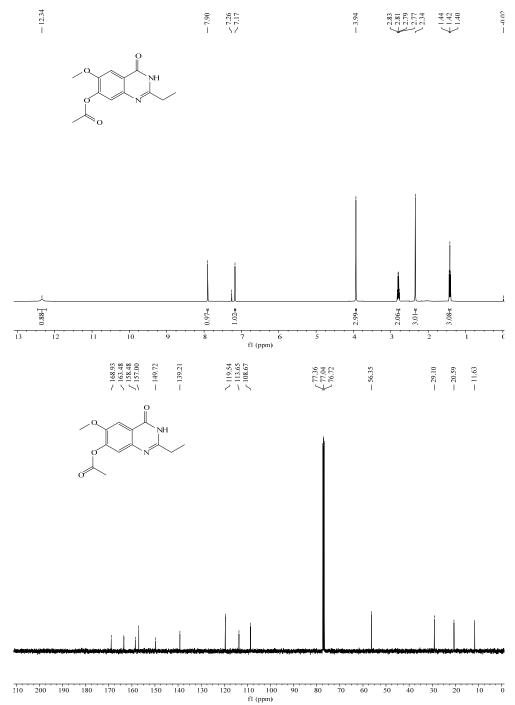


10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)


¹H and ¹³C NMR spectra of 3c

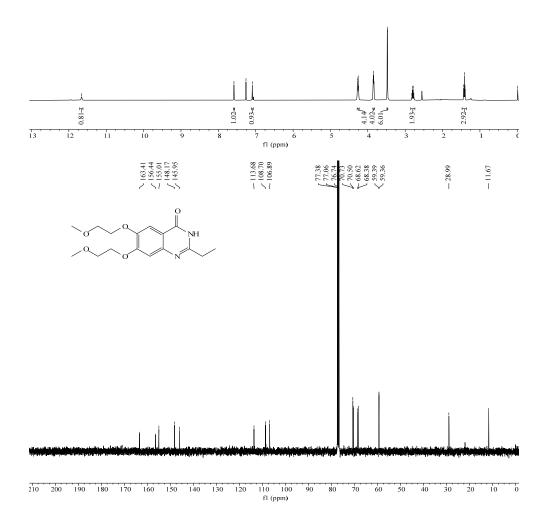

¹H and ¹³C NMR spectra of 3d

¹H and ¹³C NMR spectra of 3e

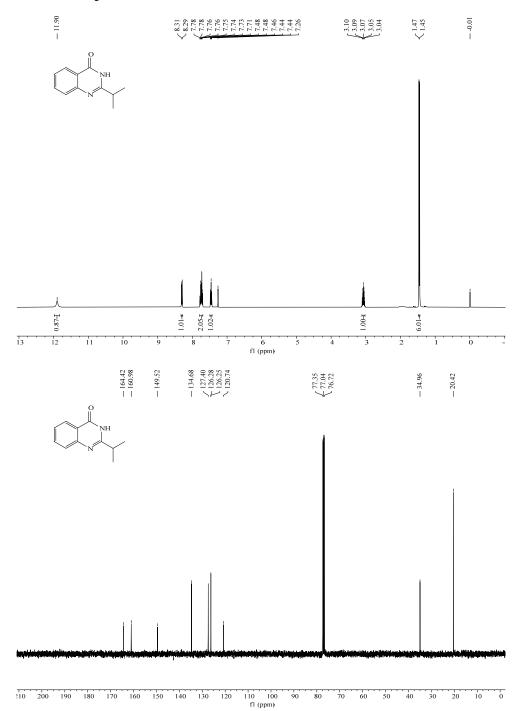


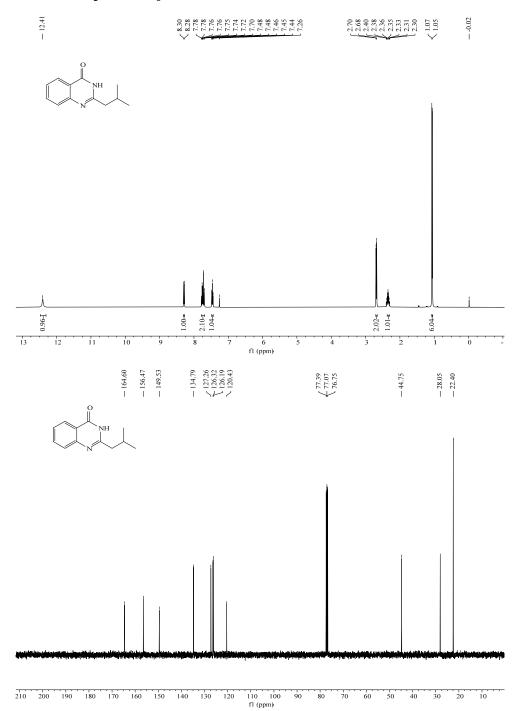
¹H and ¹³C NMR spectra of 3f

lo 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 (fl (ppm)

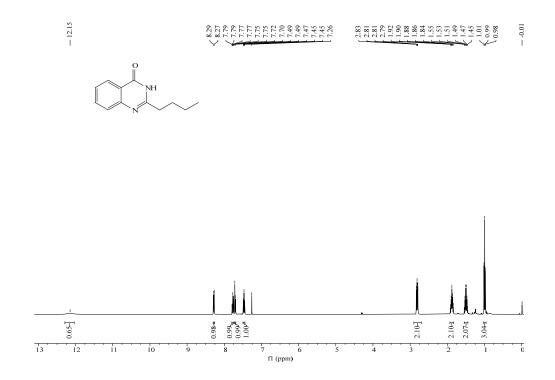

¹H and ¹³C NMR spectra of 3g

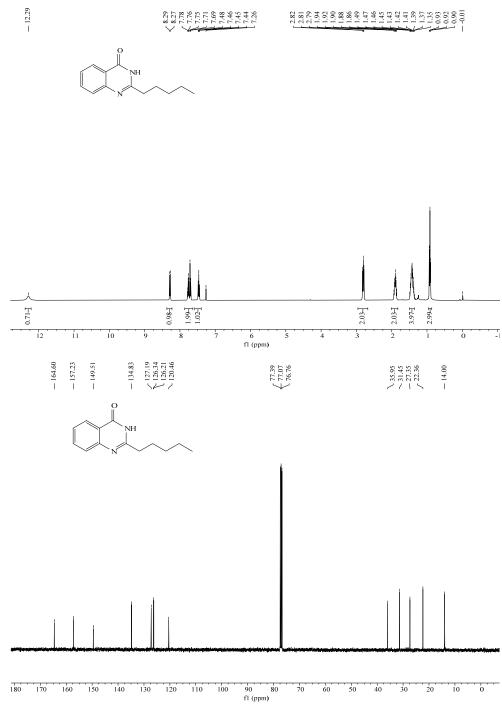
S30

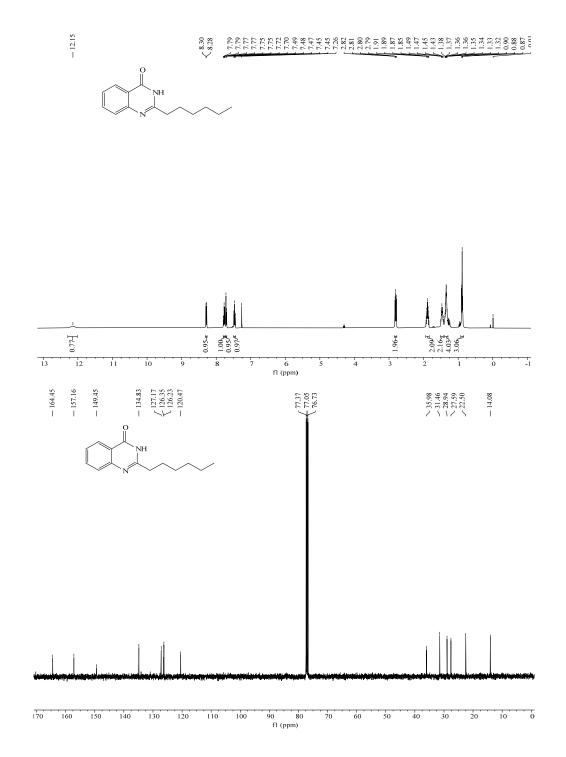

¹H and ¹³C NMR spectra of 3h



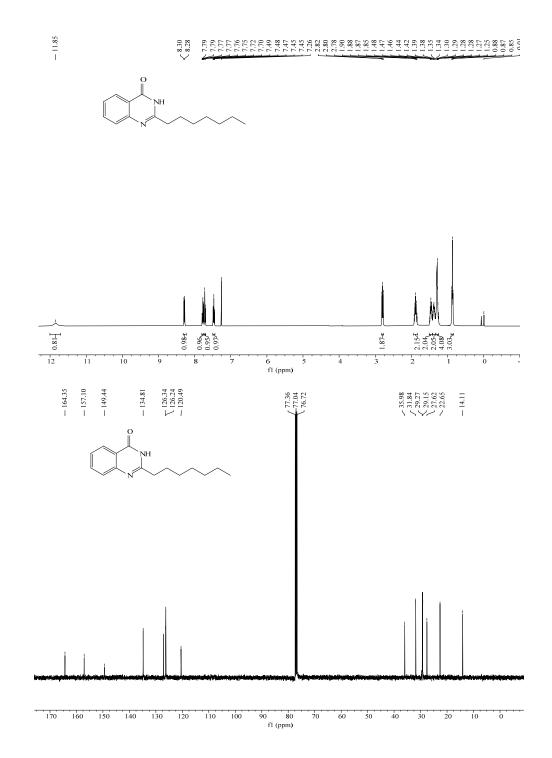
S31


¹H and ¹³C NMR spectra of 3i


¹H and ¹³C NMR spectra of 3j

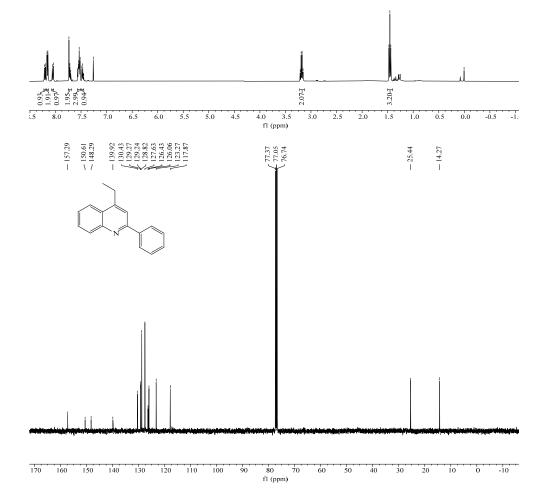

¹H and ¹³C NMR spectra of 3k

¹H and ¹³C NMR spectra of 3l



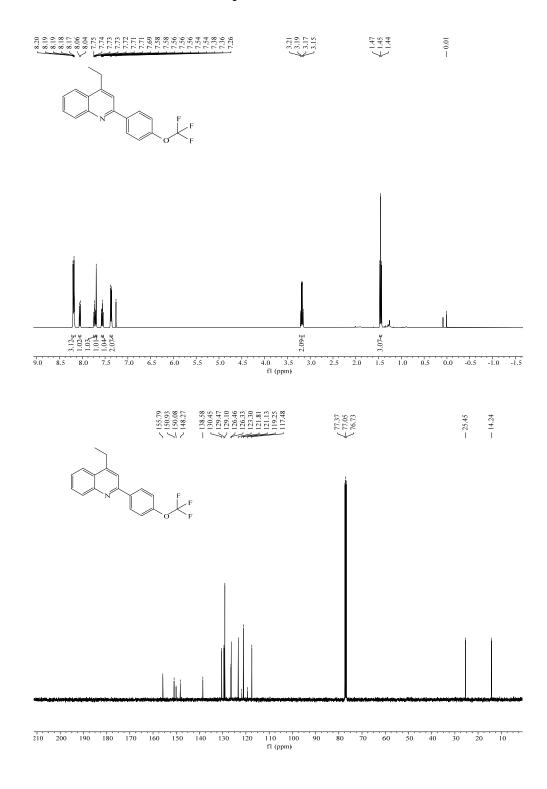
¹H and ¹³C NMR spectra of 3m

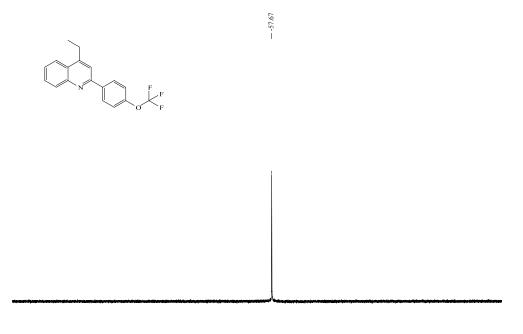
S36


¹H and ¹³C NMR spectra of 3n

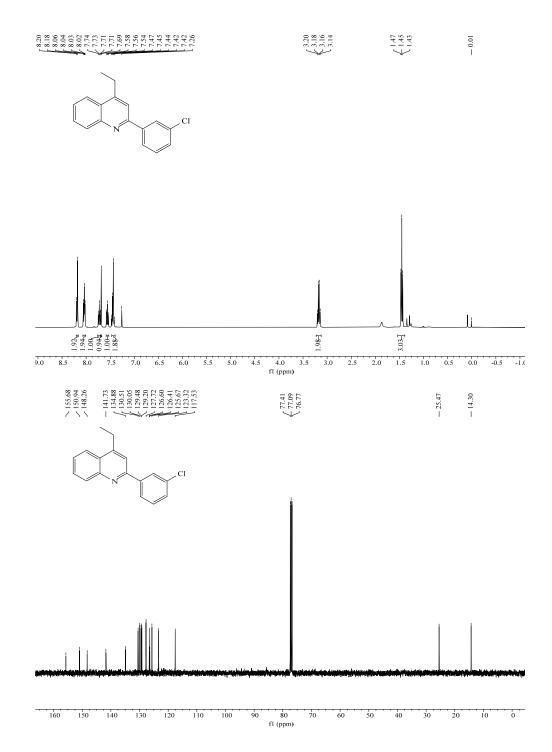

S37

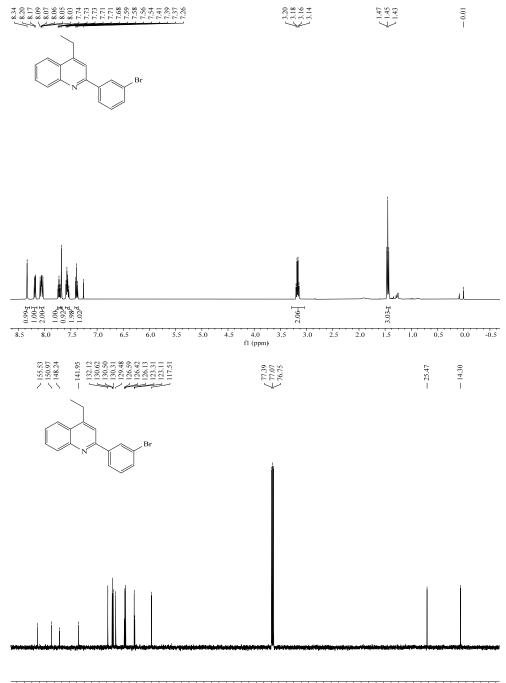
¹H and ¹³C NMR spectra of 5a





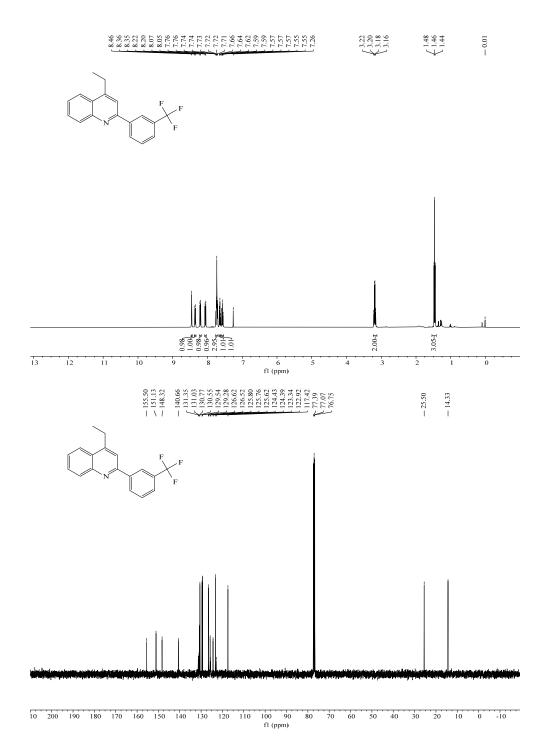
¹H and ¹³C NMR spectra of 5b

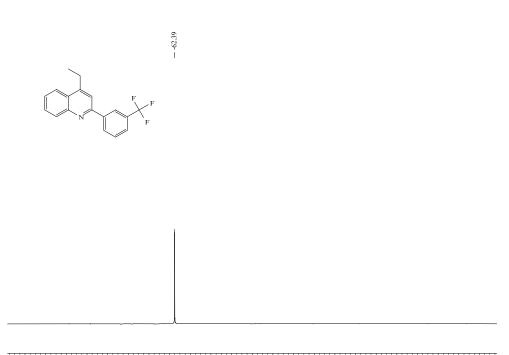

¹H NMR and ¹³C NMR and ¹⁹F NMR spectra of 5c



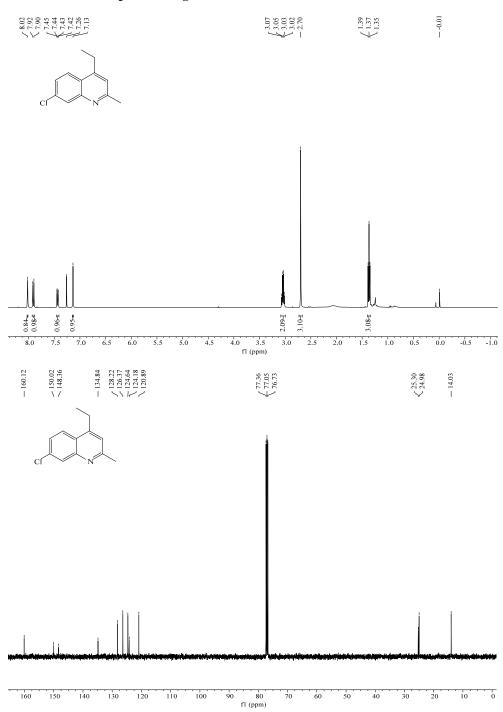
-10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 fl (ppm)

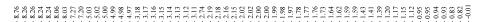
¹H and ¹³C NMR spectra of 5d

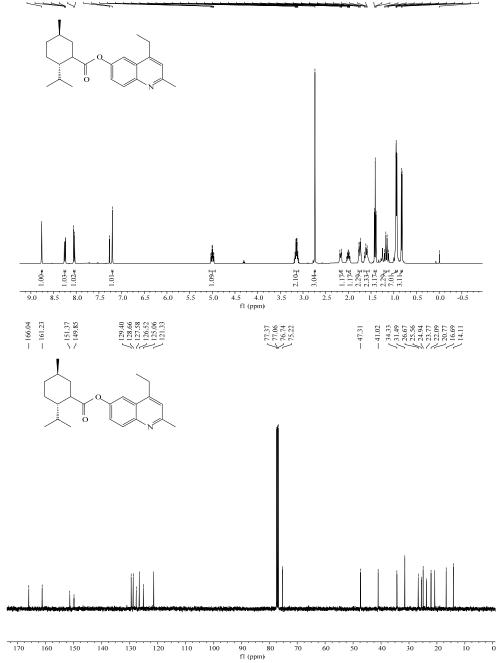



¹H and ¹³C NMR spectra of 5e

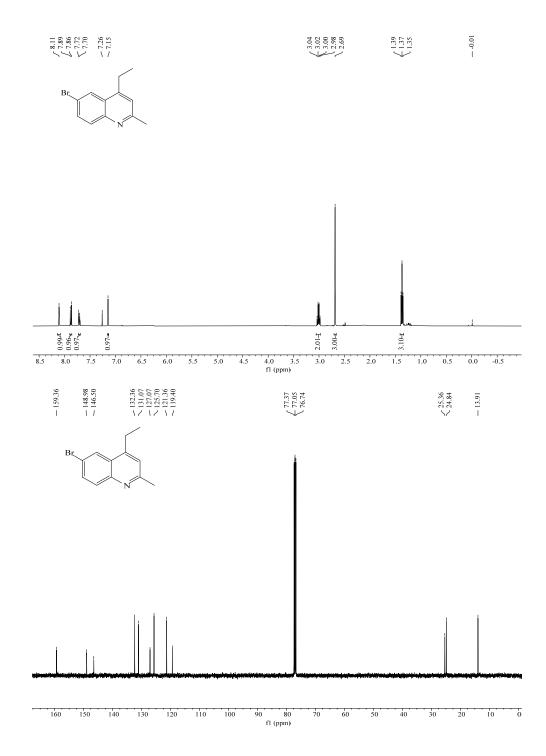
160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 fl (ppm)


¹H NMR, ¹³C NMR and ¹⁹F NMR spectra of 5f




^{10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210} fl (ppm)

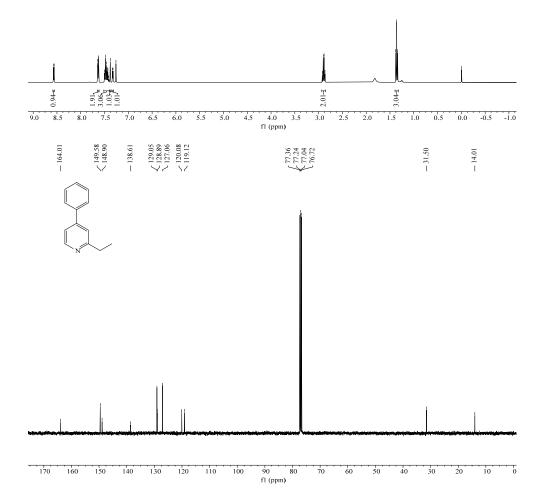
¹H and ¹³C NMR spectra of 5g

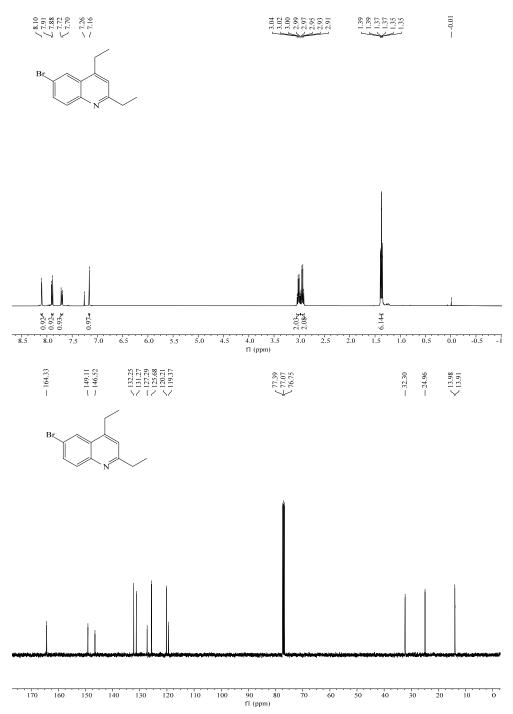


¹H and ¹³C NMR spectra of 5h

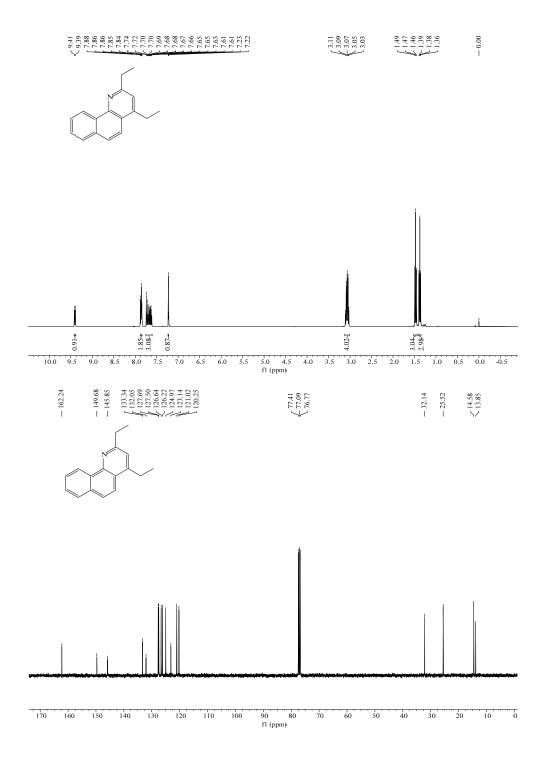

¹H and ¹³C NMR spectra of 5i

¹H and ¹³C NMR spectra of 5j

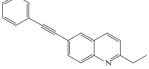

8.05 8.05 8.05 8.05 7.95 7.95 7.66 7.66 7.66 7.66 7.66 7.66 7.66 7.6	2.98 2.95 2.68	1.40 1.38 1.36	-0.00
		\searrow	l l

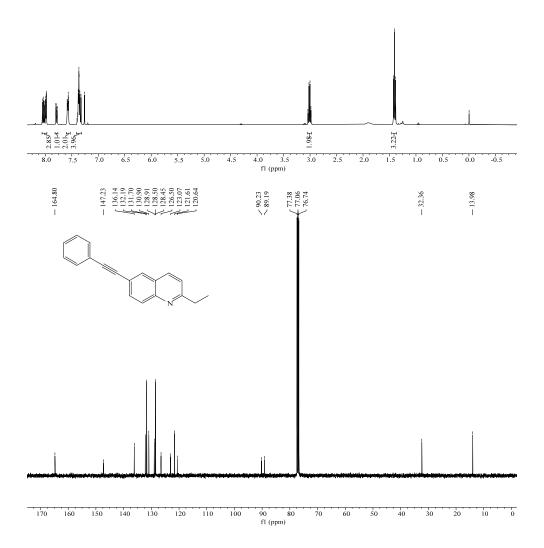


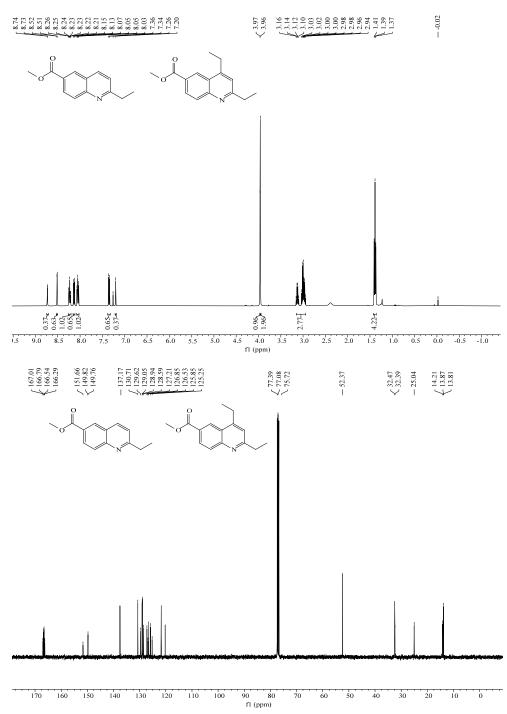
¹H and ¹³C NMR spectra of 5k

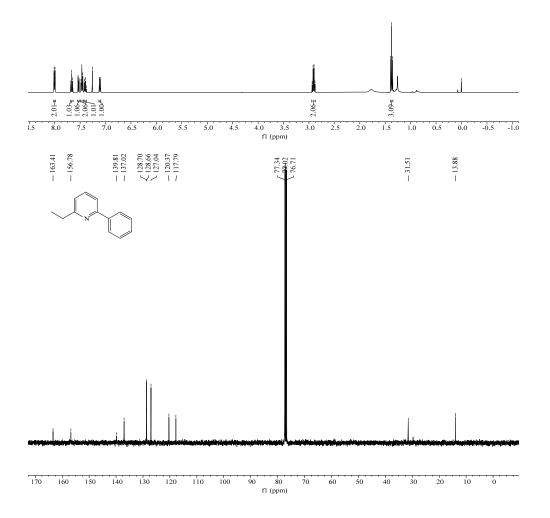


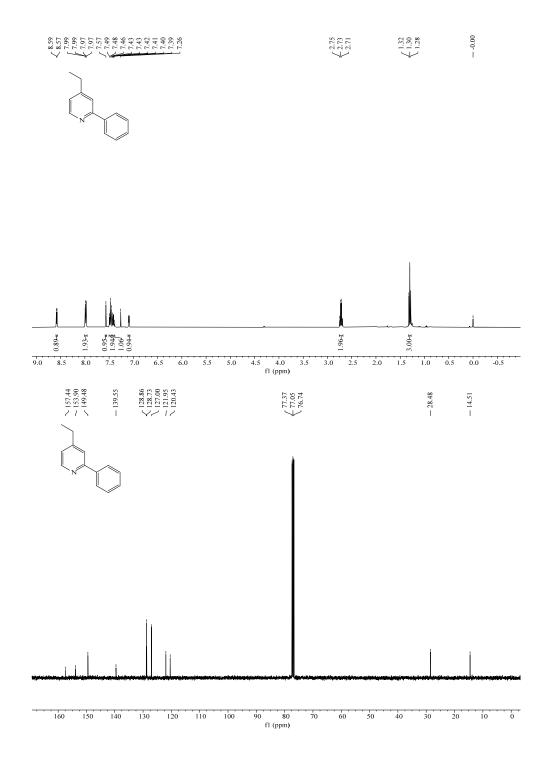
¹H and ¹³C NMR spectra of 5l



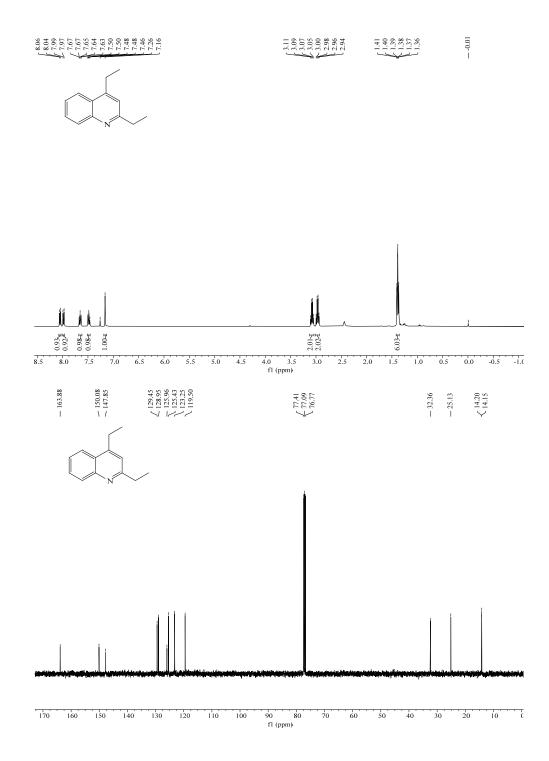

¹H and ¹³C NMR spectra of 5n


¹H and ¹³C NMR spectra of 5n


¹H and ¹³C NMR spectra of 50, 5p


¹H and ¹³C NMR spectra of 5q

8.01 8.01 8.01 8.01 8.00 7.59 7.67 7.67 7.47 7.48 7.48 7.49 7.41 7.73 7.41 7.73 7.73 7.73 7.73 7.73 7.73 7.73 7.7	2.94 2.92 2.88	1.39 1.37 1.35	00.00
		\searrow	1



¹H and ¹³C NMR spectra of 5r

¹H and ¹³C NMR spectra of 5s

