# Supporting Information 

# Palladium-Catalyzed post-Ugi Arylative Dearomatization/Michael Addition Cascade towards Plicamine Analogues 

Chao Liu, ${ }^{\text {a }}$ Ruiqi Zhao, ${ }^{a}$ Liangliang Song, ${ }^{* b}$ Zhenghua Li, ${ }^{a}$ Guilong Tian, ${ }^{a}$ Yi He, ${ }^{\text {a }}$Luc Van Meervelt, ${ }^{c}$ Vsevolod A. Peshkov ${ }^{\text {de }}$ and Erik V. Van der Eycken*af${ }^{a}$ Laboratory for Organic \& Microwave-Assisted Chemistry (LOMAC), Department ofChemistry, KU Leuven Celestijnenlaan 200F, 3001, Leuven, Belgium.${ }^{\mathrm{b}}$ Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass,Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources,Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International InnovationCenter for Forest Chemicals and Materials, College of Chemical Engineering, NanjingForestry University, Nanjing 210037, Jiangsu, China.${ }^{\text {c Biomolecular Architecture, Department of Chemistry, KU Leuven Celestijnenlaan 200F, }}$3001, Leuven, Belgium.${ }^{d}$ College of Chemistry, Chemical Engineering and Materials Science, Soochow University,Dushu Lake Campus, Suzhou 215123, P. R. China.
${ }^{\mathrm{e}}$ Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53Kabanbay Batyr Ave, Nur-Sultan 010000, Republic of Kazakhstan.${ }^{\text {f Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya street 6, }}$Moscow, 117198, Russia.
Table of Content

1. General information ..... S2
2. General procedure for the synthesis of Ugi adducts ..... S2
3. Characterization of Ugi adducts ..... S2
4. Palladium-catalyzed cascade reaction. ..... S9
5. Characterization of products ..... S9
6. Transformations of compound 2a ..... S16
7. Single crystal X-ray diffraction ..... S18
8. References ..... S20
9. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for the products ..... S21

## 1. General information

Commercially available reagents were used without additional purification. Column chromatography was performed with silica gel (70-230 mesh). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AM ( 300 or 400 or 600 MHz ) spectrometer at ambient temperature using $\mathrm{CDCl}_{3}$ or DMSO- $d_{6}$ as solvent. HRMS (ESI) spectrometry data were acquired on a quadrupole orthogonal acceleration time-of-flight mass spectrometer [Synapt G2 high definition mass spectrometer (HDMS), Waters, Milford, MA]. Samples were infused at $3 \mu \mathrm{~L} \mathrm{~min}^{-1}$, and spectra were obtained in the positive ionization mode with a resolution of 15000 [full width at half maximum (FWHM)] with leucine encephalin as lock mass. Melting points were recorded on a Reichert Thermovar apparatus and were uncorrected. All the palladium catalysts are known compounds and commercially available.

## 2. General procedure for the synthesis of Ugi adducts



To a solution of aldehyde ( $2.0 \mathrm{mmol}, 1.0$ equiv.) in methanol 2 mL were added successively amine ( 2.2 mmol, 1.1 equiv.), acid ( $2.2 \mathrm{mmol}, 1.1$ equiv) and isonitrile ( $2.2 \mathrm{mmol}, 1.1$ equiv.) in a screw capped vial equipped with a magnetic stir bar. The reaction mixture was stirred in an oil bath at $60^{\circ} \mathrm{C}$ for 24 h in a closed vial. After completion of the reaction, the mixture was evaporated under reduced pressure to obtain residue which was purified by a silica gel column chromatography (eluent: $n$-heptane/ethyl acetate $=4: 1 \sim 2: 1 \mathrm{v} / \mathrm{v}$ ) to afford the desired Ugi products 1.

## 3. Characterization of Ugi adducts



1a was obtained as a yellow solid, Yield $81 \%(884 \mathrm{mg})$, Melting point $178-180^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ) $\delta 10.14(\mathrm{~s}, 1 \mathrm{H}), 8.18-8.01(\mathrm{~m}, 1 \mathrm{H}), 7.97-7.93(\mathrm{~m}, 1 \mathrm{H}),[7.71(\mathrm{~s}), 7.60$
(s), 3H], $7.57-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{dd}, J$
$=20.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}),[7.05-6.99(\mathrm{~m}), 6.82-6.77(\mathrm{~m}), 1 \mathrm{H}], 6.74-6.65(\mathrm{~m}, 3 \mathrm{H}), 6.55-6.50(\mathrm{~m}, 1 \mathrm{H})$, $5.88(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{dd}, J=45.8,16.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.55-4.44(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 9 \mathrm{H})$. Mixture of rotamers ( $\sim 3: 2$ ).
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ) $\delta 172.3,170.6,154.2,137.3,136.8,136.5,134.1,133.4,131.9,131.6$, $130.5,129.9,129.8,129.4,129.2,128.8,128.5,128.3,128.2,127.8,127.2,127.2,126.9,126.8,126.5$, $126.4,125.1,124.9,124.3,123.8,123.1,122.9,122.6,121.6,121.2,107.7,62.4,51.1,48.9,29.0,28.9$.
Mixture of rotamers.
HRMS (ESI, m/z) calcd for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{BrN}_{2} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 545.1434, found 545.1450.


1b was obtained as a gray solid, Yield $87 \%(974 \mathrm{mg})$, Melting point $108-111^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ): $\delta 10.16(\mathrm{~s}, 1 \mathrm{H}),[8.23(\mathrm{~s}), 8.15-8.09(\mathrm{~m}), 1 \mathrm{H}], 8.08-7.91(\mathrm{~m}, 2 \mathrm{H})$, [7.69-7.64(m), $7.59(\mathrm{~s}), 3 \mathrm{H}], 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.15(\mathrm{~m}$, $1 \mathrm{H}), 7.07-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.83-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.58-6.48(\mathrm{~m}, 1 \mathrm{H}), 5.91(\mathrm{~s}$, $1 \mathrm{H}), 4.86-4.65(\mathrm{~m}, 1 \mathrm{H}), 4.57-4.43(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{~s}, 1 \mathrm{H}), 3.11-2.98(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.36(\mathrm{~m}, 2 \mathrm{H})$, $1.31-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.23-1.16(\mathrm{~m}, 2 \mathrm{H}), 0.90-0.82(\mathrm{~m}, 3 \mathrm{H})$. Mixture of rotamers $(\sim 1: 1)$.
${ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO- $d_{6}$ ) $\delta 173.2,172.3,169.7,156.2,155.9,154.6,137.0,136.4,134.0,133.3$, $132.8,131.9,130.7,130.0,129.6,128.9,128.5,128.3,127.9,127.6,127.3,126.7,126.6,125.3,124.1$, $123.5,123.3,121.8,121.6,121.3,114.6,107.8,63.1,58.2,55.9,55.6,51.1,48.7,31.9,22.8$. Mixture of rotamers.

HRMS (ESI, m/z) calcd for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{BrN}_{2} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 581.1410, found 581.1390.


1c was obtained as a brown solid, Yield $82 \%(986 \mathrm{mg})$, Melting point $105-107^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ) $\delta 10.11(\mathrm{~s}, 1 \mathrm{H}),[8.33-8.31(\mathrm{~m}), 8.20(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 1 \mathrm{H}], 8.09-7.93$ $(\mathrm{m}, 1 \mathrm{H}),[7.84(\mathrm{~s}), 7.65-7.58(\mathrm{~m}), 3 \mathrm{H}], 7.56-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.32(\mathrm{~m}, 1 \mathrm{H})$, $7.31-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.15(\mathrm{~m}, 2 \mathrm{H}),[7.08(\mathrm{~s}), 7.03(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 1 \mathrm{H})], 6.78-6.60(\mathrm{~m}, 3 \mathrm{H}), 6.55$ $-6.43(\mathrm{~m}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 4.87-4.69(\mathrm{~m}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}),[3.36(\mathrm{~s}), 2.17(\mathrm{~d}, J=$
$13.9 \mathrm{~Hz}), 2 \mathrm{H})$ ], $[1.75-1.59(\mathrm{~m}), 1.46-1.32(\mathrm{~m}), 6 \mathrm{H}],[0.97(\mathrm{~s}), 0.89(\mathrm{~s}), 9 \mathrm{H}]$. Mixture of rotamers (~1:1).
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $d_{6}$ ) $\delta 172.8,172.3,170.5,170.2,154.2,137.5,137.3,137.0,136.6,134.2$, $133.5,131.3,131.8,130.6,129.8,129.5,128.9,128.6,128.4,128.2,127.9,127.2,127.1,126.9,126.5$, $125.2,125.0,124.5,123.9,122.7,122.4,121.7,121.2,107.6,107.5,79.9,62.6,57.2,55.5,55.0,52.5$, $51.1,49.0,32.0,31.7,30.2,29.3,29.0,28.5$. Mixture of rotamers.

HRMS (ESI, m/z) calcd for $\mathrm{C}_{34} \mathrm{H}_{37} \mathrm{BrN}_{2} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 601.2060, found 601.2055 .


1d was obtained as a gray solid, Yield $95 \%(1185 \mathrm{mg})$, Melting point $157-159{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ): $\delta 8.19-8.00(\mathrm{~m}, 1 \mathrm{H}), 7.98-7.87(\mathrm{~m}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.61(\mathrm{~s}, 4 \mathrm{H}), 7.56-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.16$ $(\mathrm{d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.81-6.71(\mathrm{~m}, 1 \mathrm{H}), 6.70-6.66(\mathrm{~m}, 1 \mathrm{H}), 6.53(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}),[4.75(\mathrm{~d}, J=16.7 \mathrm{~Hz}), 4.65(\mathrm{~d}, J=17.8 \mathrm{~Hz}), 1 \mathrm{H}], 4.54-4.42(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{~s}, 1 \mathrm{H})$, $2.03(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 5 \mathrm{H}), 1.64(\mathrm{~s}, 6 \mathrm{H})$. Mixture of rotamers ( $\sim 3: 2$ ).
${ }^{13} \mathrm{C}$ NMR ( 101 MHz , DMSO- $d_{6}$ ) $\delta 172.3,170.5,154.3,137.3,136.6,133.4,131.6,130.6,129.8,129.4$, $128.8,128.5,128.3,128.2,127.7,126.8,126.4,125.1,124.9,123.8,123.1,122.5,121.6,107.7,62.5$, $51.8,49.2,48.9,41.5,41.3,36.7,35.9,29.4,29.1$. Mixture of rotamers.
HRMS (ESI, m/z) calcd for $\mathrm{C}_{36} \mathrm{H}_{35} \mathrm{BrN}_{2} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 623.1904, found 623.1907.


1e was obtained as a gray solid, Yield $89 \%(855 \mathrm{mg})$, Melting point $210-212{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ) $\delta[10.22(\mathrm{~d}, J=6.4 \mathrm{~Hz}), 9.89(\mathrm{~s}), 2 \mathrm{H}], 8.19-8.04(\mathrm{~m}, 1 \mathrm{H}),[8.02-7.94$ (m), $7.74-7.67(\mathrm{~m}), 1 \mathrm{H}], 7.63-7.39(\mathrm{~m}, 6 \mathrm{H}), 7.37-6.99(\mathrm{~m}, 6 \mathrm{H}), 6.93-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.80-6.65(\mathrm{~m}$, $2 \mathrm{H}), 6.62-6.49(\mathrm{~m}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 4.92-4.65(\mathrm{~m}, 1 \mathrm{H}), 4.62-4.36(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$. Mixture of rotamers ( $\sim 3: 2$ ).
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $d_{6}$ ) $\delta 177.2,176.3,173.7,160.2,159.9,158.6,141.1,141.0,140.4$, $138.0,137.3,136.8,136.3,135.9,135.8,134.7,134.0,133.6,132.9,132.6,132.5,132.5,132.3$,
$132.3,131.9,131.6,131.3,130.7,130.6,129.3,127.5,127.3,125.8,125.6,125.3,118.6,111.8,67.1$, 62.2, 59.9, 59.6, 55.1, 52.7. Mixture of rotamers.

HRMS (ESI, m/z) calcd for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{BrN}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right):$617.1046, found 617.1028.


1f was obtained as a gray solid, Yield $89 \%(1110 \mathrm{mg})$, , Melting point $128-130{ }^{\circ} \mathrm{C}$.
${ }^{1}{ }^{H} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ) $\delta 10.24(\mathrm{~s}, 1 \mathrm{H}),[10.19(\mathrm{~s}), 9.86(\mathrm{~s}), 1 \mathrm{H}], 8.18-8.12(\mathrm{~m}, 1 \mathrm{H}), 8.07-$ $7.96(\mathrm{~m}, 1 \mathrm{H}),[7.96-7.92(\mathrm{~m}), 7.73-7.68(\mathrm{~m}), 1 \mathrm{H}], 7.60(\mathrm{~s}, 2 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.37(\mathrm{~m}$, $1 \mathrm{H}), 7.30(\mathrm{~s}, 2 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}),[7.12(\mathrm{~s}), 7.05-6.98(\mathrm{~m}), 1 \mathrm{H}], 6.91-$ $6.84(\mathrm{~m}, 1 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 6.76-6.71(\mathrm{~m}, 1 \mathrm{H}), 6.69-6.65(\mathrm{~m}, 1 \mathrm{H}), 6.60-6.50(\mathrm{~m}, 1 \mathrm{H})$, $6.06(\mathrm{~s}, 1 \mathrm{H}),[4.85(\mathrm{~d}, J=16.7 \mathrm{~Hz}), 4.71(\mathrm{~d}, J=18.0 \mathrm{~Hz}), 1 \mathrm{H}], 4.55-4.45(\mathrm{~m}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=4.9 \mathrm{~Hz}$, $2 \mathrm{H}), 4.20(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H})$. Mixture of rotamers ( $\sim 1: 1)$.
${ }^{13} \mathrm{C}$ NMR ( 101 MHz , DMSO- $d_{6}$ ) $\delta 173.2,172.3,169.7,154.6,143.6,140.3,140.0,137.12,137.0,136.4$, $134.0,133.4,133.3,133.1,132.8,131.9,131.8,130.7,130.0,129.9,129.7,129.6,129.2,128.9,128.6$, $128.4,128.3,127.9,127.5,127.3,126.7,126.6,125.3,124.0,123.5,123.3,123.3,121.6,121.5,121.4$, $121.2,117.5,113.3,113.0,109.3,108.9,107.8,64.9,64.6,60.4$. Mixture of rotamers.
HRMS (ESI, m/z) calcd for $\mathrm{C}_{34} \mathrm{H}_{27} \mathrm{BrN}_{2} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{Na}]^{+}\right):$645.0996, found 645.0994 .

$\mathbf{1 g}$ was obtained as a black solid, Yield $82 \%$ ( 1110 mg ), Melting point $234-236^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}\right.$, DMSO- $\left._{6}\right) \delta 10.25(\mathrm{~s}, 1 \mathrm{H}),[10.23-10.19(\mathrm{~m}), 9.89(\mathrm{~s}), 1 \mathrm{H}], 8.16-8.06(\mathrm{~m}, 1 \mathrm{H})$, $[8.03(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 7.95(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 1 \mathrm{H}], 7.74-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 2 \mathrm{H}), 7.55-7.45(\mathrm{~m}, 3 \mathrm{H})$, $7.44-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.20(\mathrm{~m}, 1 \mathrm{H}),[7.13(\mathrm{~s}), 7.07(\mathrm{~s}), 1 \mathrm{H}], 6.90(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.73-6.66$ $(\mathrm{m}, 1 \mathrm{H}),[6.62-6.56(\mathrm{~m}), 6.39(\mathrm{~s}), 1 \mathrm{H}],[6.26(\mathrm{~s}), 6.01(\mathrm{~s}), 1 \mathrm{H}], 5.84(\mathrm{~s}, 1 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}),[4.80(\mathrm{~d}, J=$ $16.4 \mathrm{~Hz}), 4.58(\mathrm{~d}, J=17.0 \mathrm{~Hz}), 1 \mathrm{H}], 4.42(\mathrm{t}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H})$, [3.73(s), $3.46(\mathrm{~s}), 3 \mathrm{H}]$. Mixture of rotamers (~1:1).
${ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO- $d_{6}$ ) $\delta 173.2,169.7,157.9,156.3,156.0,154.6,146.7,146.6,137.1,134.0$, $133.8,133.5,133.2,132.9,132.3,130.8,130.1,129.9,129.8,129.6,129.4,129.2,129.1,128.7,128.5$,
$128.3,126.7,123.2,121.8,121.3,114.6,111.9,111.7,111.6,111.5,108.5,108.3,107.9,102.0,101.8$, 63.1, 58.4, 55.9, 50.9. Mixture of rotamers.

HRMS (ESI, m/z) calcd for $\mathrm{C}_{34} \mathrm{H}_{27} \mathrm{BrN}_{2} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 661.0945$, found 661.0918 .


1h
1 h was obtained as a brown solid, Yield $85 \%(1071 \mathrm{mg})$, Melting point $125-127^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ) $\delta 10.27(\mathrm{~s}, 1 \mathrm{H}), 9.94(\mathrm{~s}, 1 \mathrm{H}), 8.20-8.08(\mathrm{~m}, 1 \mathrm{H}), 8.05-7.96(\mathrm{~m}, 1 \mathrm{H})$, $7.80-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.41(\mathrm{~m}, 5 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.03(\mathrm{~m}, 1 \mathrm{H})$, $6.92(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.80-6.63(\mathrm{~m}, 3 \mathrm{H}), 6.09(\mathrm{~s}, 1 \mathrm{H}),[4.92(\mathrm{~d}, J=16.9 \mathrm{~Hz}), 4.75(\mathrm{~d}, J=18.1 \mathrm{~Hz})$, $1 \mathrm{H}], 4.63-4.49(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$. Mixture of rotamers ( $\sim 1: 1)$.
${ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO- $d_{6}$ ) $\delta$ 173.2, 172.4, 169.6, 156.3, 156.0, 154.7, 138.7, 138.6, 136.8, 133.9, $133.5,133.2,132.8,132.3,132.1,130.9,129.7,129.2,128.5,128.0,127.5,126.7,125.6,125.2,125.1$, $123.5,123.0,121.8,121.8,121.4,121.3,119.9,119.4,114.8,114.5,107.9,107.6,62.9,58.1,56.0,55.7$.
Mixture of rotamers.
HRMS (ESI, m/z) calcd for $\mathrm{C}_{33} \mathrm{H}_{26} \mathrm{BrClN}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 651.0657$, found 651.0653 .


1i was obtained as a brown solid, Yield $80 \%(898 \mathrm{mg})$, Melting point $210-212{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ) $\delta 10.24-10.06(\mathrm{~m}, 2 \mathrm{H}), 8.04(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.97-7.86(\mathrm{~m}, 1 \mathrm{H})$, $7.66-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.09(\mathrm{~m}, 1 \mathrm{H})$, $6.90-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.84-6.74(\mathrm{~m}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.65-6.58(\mathrm{~m}, 1 \mathrm{H}), 6.58-6.49(\mathrm{~m}$, $1 \mathrm{H}), 4.77-4.56(\mathrm{~m}, 2 \mathrm{H}),[3.71(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 3.60(\mathrm{~d}, J=12.4 \mathrm{~Hz}), 3 \mathrm{H}], 2.45-2.32(\mathrm{~m}, 1 \mathrm{H}), 1.11-$ $0.89(\mathrm{~m}, 6 \mathrm{H})$. Mixture of rotamers ( $\sim 7: 3)$.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ) $\delta 178.6,169.8,155.9,154.3,137.0,133.8,132.8,132.4,128.7,128.3$, $127.6,127.3,126.9,125.3,125.3,124.0,123.2,122.2,121.4,121.2,115.6,115.1,114.5,107.7,57.4$, 55.9, 55.8, 49.3, 31.7, 20.4, 20.1. Mixture of rotamers.

HRMS (ESI, m/z) calcd for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{BrN}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 583.1203, found 583.1192.

$\mathbf{1 j}$ was obtained as a brown solid, Yield $78 \%(798 \mathrm{mg})$, Melting point $119-121{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 8.18(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.73-6.64(\mathrm{~m}$, $1 \mathrm{H}), 6.53(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 2 \mathrm{H}), 2.59-2.44(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}), 1.21(\mathrm{~d}, J=$ 6.6 Hz, 3H), $1.10(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO- $d_{6}$ ) $\delta 178.2,170.5,153.9,137.4,133.9,132.4,128.6,127.7,126.9,125.3$, $125.0,124.2,123.6,123.1,121.4,107.6,56.8,51.0,49.4,31.6,29.0,20.1$. Major rotamer.

HRMS (ESI, m/z) calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{BrN}_{2} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 533.1410, found 533.1397.


1k was obtained as a red solid, Yield $82 \%(944 \mathrm{mg})$, Melting point $128-130^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ) $\delta 10.12(\mathrm{~s}, 1 \mathrm{H}), 8.14-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.92-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.36$ $(\mathrm{m}, 4 \mathrm{H}), 7.30-7.07(\mathrm{~m}, 4 \mathrm{H}), 6.98-6.62(\mathrm{~m}, 4 \mathrm{H}), 6.57-6.49(\mathrm{~m}, 1 \mathrm{H}), 5.97(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{dd}, J=84.1$, $15.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~d}, J=66.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO- $d_{6}$ ) $\delta 172.1,170.7,161.0,154.1,136.8,131.6,129.4,128.9,128.4,128.0$, 127.7, 126.9, 126.4, 125.1, 124.9, 123.7, 123.1, 122.9, 121.6, 114.7, 107.6, 62.5, 56.0, 51.1, 49.0, 28.9. Major rotamer.

HRMS (ESI, m/z) calcd for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{BrN}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 575.1540 , found 575.1520 .


11 was obtained as a red solid, Yield $40 \%(464 \mathrm{mg})$, Melting point $141-143{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( 300 MHz, DMSO- $d_{6}$ ) $\delta 10.17$ (s, 1H), $8.16-7.91$ (m, 2H), $7.76-7.59$ (m, 4H), $7.52(\mathrm{~d}, J=$ $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.16-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.80-6.66(\mathrm{~m}, 3 \mathrm{H}), 6.54(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=32.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.85-4.43(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( 75 MHz, DMSO- $d_{6}$ ) $\delta 171.4,170.5,154.3,136.3,136.1,135.2,133.4,131.7,129.6,129.0$, $128.8,128.5,128.3,127.9,126.9,126.5,125.1,123.7,123.2,122.3,121.6,107.7,62.3,51.1,48.9,28.8$. HRMS (ESI, m/z) calcd for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{BrClN}_{2} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 579.1045$, found 579.1050.


1m was obtained as a gray solid, Yield $75 \%$ ( 842 mg ), Melting point $176-178{ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{DMSO}_{6}$ ) $\delta 10.31-10.07(\mathrm{~m}, 2 \mathrm{H}), 8.18-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.56$ $-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.38-6.99(\mathrm{~m}, 4 \mathrm{H}), 6.88(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.81-6.64(\mathrm{~m}, 2 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 4.81-$ $4.26(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.40-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.02-0.74$ (m, 3H).
${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{DMSO}_{6}$ ) $\delta 174.5,169.9,155.9,154.3,136.7,133.9,132.9,132.3,128.6,128.2$, $127.8,127.4,126.9,125.3,124.0,123.3,122.2,121.5,121.2,114.5,107.7,57.4,55.8,49.5,35.4,18.9$, 14.3.

HRMS (ESI, m/z) calcd for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{BrN}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 583.1203, found 583.1189.


1n was obtained as a brown solid, Yield $43 \%(440 \mathrm{mg})$, Melting point $114-116^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J$ $=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.72-6.63(\mathrm{~m}, 2 \mathrm{H}), 6.44(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H}), 4.80$ $-4.63(\mathrm{~m}, 2 \mathrm{H}), 2.46-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO- $d_{6}$ ) $\delta 174.0,170.7,153.9,136.9,133.9,132.3,128.5,127.7,127.6,126.9$, 126.7, 125.2, 125.0, 124.3, 123.4, 123.1, 121.5, 107.6, 56.6, 51.0, 49.6, 35.4, 29.0, 18.9, 14.2. Major rotamer.

HRMS (ESI, m/z) calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{BrN}_{2} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 511.1591 , found 511.1580

## 4. Palladium-catalyzed cascade reaction



Ugi product 1 ( $0.1 \mathrm{mmol}, 1.0$ equiv), palladium( $\pi$-cinnamyl) chloride dimer ( $0.005 \mathrm{mmol}, 0.05$ equiv), Q phos ( $0.0075 \mathrm{mmol}, 0.075$ equiv) and potassium carbonate ( $0.15 \mathrm{mmol}, 1.5$ equiv) were placed to the screw cap vial followed by addition of 1,4-dioxane ( 1.0 ml ). The resulting mixture was flushed with argon, sealed and stirred in an oil bath at $100^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, the mixture was evaporated under reduced pressure to obtain residue which was purified by a silica gel column chromatography (eluent: $n$-heptane/ethyl acetate $=2: 1 \sim 1: 1 \mathrm{v} / \mathrm{v}$ ) to afford the desired products $\mathbf{2}$.

## 5. Characterization of products



2a

2a was obtained as a yellow solid, Yield $52 \%(24 \mathrm{mg}$, d. r. $\approx 1.8: 1)$, Melting point $205-207{ }^{\circ} \mathrm{C}$.
${ }^{1}{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.06-7.97(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.40$ (m, 1H), $7.39-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.29$ (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.17-$ $7.08(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.93(\mathrm{~m}, 1 \mathrm{H}),[6.92(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 6.84-6.80(\mathrm{~m}), 1 \mathrm{H}]$, [6.10 (s), $5.67(\mathrm{~d}, J=17.8 \mathrm{~Hz}), 1 \mathrm{H}], 4.88-4.82(\mathrm{~m}, 1 \mathrm{H}),[4.75-4.68(\mathrm{~m}), 4.62-4.58(\mathrm{~m}), 1 \mathrm{H}], 4.57-$ $4.52(\mathrm{~m}, 1 \mathrm{H}),[3.30(\mathrm{dd}, J=15.7,5.4 \mathrm{~Hz}), 3.17(\mathrm{dd}, J=11.6,4.5 \mathrm{~Hz}), 1 \mathrm{H}],[3.14-3.08(\mathrm{~m}), 2.58-2.50$ (m), 1H], [1.25 (s), 1.19 (s), 9H].
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 195.2,194.6,172.7,171.5,168.8,168.3,144.8,144.3,138.6,137.5$, $135.4,134.8,134.7,134.7,134.1,133.5,131.0,130.8,130.3,130.2,130.0,128.8,128.6,128.5,128.2$, $128.0,127.9,127.9,127.9,127.7,127.3,127.1,126.9,126.7,125.9,65.1,62.6,61.7,59.3,55.5,47.6$, 47.1, 47.0, 44.9, 44.5, 41.8, 27.9.

HRMS (ESI, m/z) calcd for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 465.2173$, found 465.2166 .


2b
2b was obtained as a brown solid, Yield $31 \%(15 \mathrm{mg}$, d. r. $\approx 1.5: 1)$, Melting point $112-114{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{dd}, J=17.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.23(\mathrm{~m}, 3 \mathrm{H})$, $7.19-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.00-6.85(\mathrm{~m}, 2 \mathrm{H}),[6.17(\mathrm{~s}), 5.76(\mathrm{~d}, J=17.6 \mathrm{~Hz}), 1 \mathrm{H}], 4.98-4.77(\mathrm{~m}, 1 \mathrm{H}), 4.74$ $-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.35(\mathrm{dd}, J=11.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.10(\mathrm{~m}, 1 \mathrm{H}), 3.02-2.73$ $(\mathrm{m}, 1 \mathrm{H}), 2.49-2.30(\mathrm{~m}, 1 \mathrm{H}), 1.18-0.71(\mathrm{~m}, 6 \mathrm{H}), 0.65(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 195.3,194.6,172.7,171.4,169.5,168.2,144.2,137.8,134.9,134.6$, $133.6,133.2,130.8,130.2,130.5,130.2,130.1,129.1,128.8,128.7,128.4,128.3,128.0,128.0,127.7$, $127.4,127.3,127.2,126.8,126.7,126.6,125.9,64.3,62.6,61.7,58.5,47.0,46.6,46.3,41.8,41.7,41.4$, 40.7, 29.8, 28.1, 26.5, 26.4, 22.2, 13.9.

HRMS (ESI, m/z) calcd for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 479.2329, found 479.2331.


2c was obtained as a black solid, Yield $38 \%(20 \mathrm{mg}$, d. r. $\approx 1.5: 1)$, Melting point $98-100{ }^{\circ} \mathrm{C}$
1 H NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta[8.03(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}$ ), $7.98(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}), 1 \mathrm{H}], 7.57-7.52$ $(\mathrm{m}, 1 \mathrm{H}), 7.51-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.93(\mathrm{~m}, 1 \mathrm{H}),[6.93-6.90(\mathrm{~m}), 6.84-6.80(\mathrm{~m}), 1 \mathrm{H}],[6.10$ (s), $5.68(\mathrm{~d}, J=17.9 \mathrm{~Hz}), 1 \mathrm{H}], 4.86(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}),[4.73(\mathrm{~d}, J=16.8 \mathrm{~Hz}), 4.58(\mathrm{~d}, J=6.1 \mathrm{~Hz})$, $1 \mathrm{H}], 4.65-4.60(\mathrm{~m}, 1 \mathrm{H}),[3.36(\mathrm{dd}, J=15.5,5.3 \mathrm{~Hz}), 3.22(\mathrm{dd}, J=10.9,5.0 \mathrm{~Hz}), 1 \mathrm{H}],[3.17(\mathrm{dd}, J=$ $10.5,7.3 \mathrm{~Hz}), 2.57(\mathrm{dd}, J=15.9,12.2 \mathrm{~Hz}), 1 \mathrm{H})$, $1.92(\mathrm{dd}, J=30.4,14.7 \mathrm{~Hz}, 1 \mathrm{H}),[1.62(\mathrm{~d}, J=14.7 \mathrm{~Hz})$, $1.49(\mathrm{~d}, J=14.7 \mathrm{H}), 1 \mathrm{H}],[1.40(\mathrm{~s}), 1.33(\mathrm{~s}), 3 \mathrm{H}],[1.19(\mathrm{~s}), 1.18(\mathrm{~s}), 3 \mathrm{H}],[0.80(\mathrm{~s}), 0.77(\mathrm{~s}), 9 \mathrm{H}]$ ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 195.4,194.8,172.7,171.5,169.0,168.4,144.9,144.4138 .6,137.5,135.4$, $134.8,134.7,134.7,134.0,133.5,131.0,130.7,130.4,130.2,130.2,130.0,128.8,128.6,128.2,128.0$, $128.0,127.8,127.7,127.3,127.1,126.8,126.8,126.6,126.0,65.1,62.6,61.7,60.3,59.2,51.0,50.9$, 47.3, 47.1, 46.8, 45.1, 44.8, 41.9, 31.4, 28.5, 26.8.

HRMS (ESI, m/z) calcd for $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 521.2799, found 521.2800.


2d
2d was obtained as a brown solid, Yield $38 \%(21 \mathrm{mg}$, d. r. $\approx 1.9: 1)$, Melting point $135-137{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11-8.01(\mathrm{~m}, 1 \mathrm{H}),[8.00-7.97(\mathrm{~m}), 7.63-7.57(\mathrm{~m}), 1 \mathrm{H}], 7.56-7.47$ $(\mathrm{m}, 2 \mathrm{H}), 7.47-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.92(\mathrm{~m}, 1 \mathrm{H}),[6.91(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 6.82(\mathrm{~d}, J=7.6 \mathrm{~Hz})$, 1H], [6.10 (s), $5.67(\mathrm{~d}, J=17.8 \mathrm{~Hz}), 1 \mathrm{H}], 4.87-4.81(\mathrm{~m}, 1 \mathrm{H}), 4.73-4.60(\mathrm{~m}, 1 \mathrm{H}), 4.60-4.54(\mathrm{~m}, 1 \mathrm{H})$, $[3.36-3.28(\mathrm{~m}), 3.21-3.15(\mathrm{~m}), 1 \mathrm{H}],[3.15-3.11(\mathrm{~m}), 2.62-2.47(\mathrm{~m}), 1 \mathrm{H}], 2.05-1.95(\mathrm{~m}, 4 \mathrm{H}), 1.94$ $-1.83(\mathrm{~m}, 3 \mathrm{H}), 1.62-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.57(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 195.4,194.9,172.8,171.5,168.7,168.2,144.8,144.4,138.6,137.5$, $135.4,134.8,134.7,134.6,134.0,133.7,133.5,131.0,130.9,130.3,130.3,130.2,130.0,128.8,128.6$, $128.6,128.6,128.2,128.0,127.9,127.9,127.8,127.7,127.2,127.1,126.9,126.7,125.9,65.4,61.5,60.7$, $59.5,56.7,47.5,47.0,47.0,45.5,45.1,41.8,39.8,36.2,36.1,29.6,29.5$.

HRMS (ESI, m/z) calcd for $\mathrm{C}_{36} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 543.2642$, found 543.2643 .

$2 e$
2e was obtained as a black solid, Yield $52 \%$ ( 28 mg , d. r. $\approx 1.5: 1$ ), Melting point $142-144{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06-7.96(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.18$ $(\mathrm{m}, 2 \mathrm{H}), 7.18-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 3 \mathrm{H}), 7.08-7.01(\mathrm{~m}, 1 \mathrm{H}), 7.00-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.81$ (m, 2H), [6.35 (s), $5.77(\mathrm{~d}, J=17.8 \mathrm{~Hz}), 1 \mathrm{H}],[5.09(\mathrm{~s}), 4.80(\mathrm{~d}, J=13.9 \mathrm{~Hz}), 1 \mathrm{H}], 4.94-4.84(\mathrm{~m}, 1 \mathrm{H})$, $4.70-4.53(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.33-3.15(\mathrm{~m}, 1 \mathrm{H}),[3.13-3.04(\mathrm{~m}), 2.64-2.52(\mathrm{~m}), 1 \mathrm{H}]$. ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 194.9,194.3,172.7,171.5,167.7,167.3,158.3,144.5,144.0,138.5$, $137.3,135.3,134.9,134.5,133.6,133.1,132.8,132.6,131.2,130.8,130.5,130.2,129.4,128.9,128.7$, $128.4,128.2,127.9,127.4,127.3,127.1,127.0,126.9,126.7,126.5,126.2,124.5,114.8,88.3,65.0,64.7$, 55.6, 47.0, 46.3, 41.8, 41.7, 27.0.

HRMS (ESI, $\mathrm{m} / \mathrm{z}$ ) calcd for $\mathrm{C}_{33} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 515.1965 , found 515.1956.


2f was obtained as a brown solid, Yield $48 \%(26 \mathrm{mg}$, d. r. $\approx 1.2: 1)$, Melting point $140-142{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.15-6.88$ $(\mathrm{m}, 4 \mathrm{H}), 6.85-6.66(\mathrm{~m}, 3 \mathrm{H}),[6.33(\mathrm{~s}), 5.76(\mathrm{~d}, J=17.5 \mathrm{~Hz}), 1 \mathrm{H}],[5.07(\mathrm{~s}), 4.61(\mathrm{~d}, J=17.9 \mathrm{~Hz}), 1 \mathrm{H}]$, $4.96-4.73(\mathrm{~m}, 2 \mathrm{H}), 4.23(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.37-3.16(\mathrm{~m}, 1 \mathrm{H}),[3.13-2.97(\mathrm{~m}), 2.62-2.50(\mathrm{~m})$, $1 \mathrm{H}]$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 194.8,194.2,172.6,171.5,167.6,167.2,144.5,143.9,142.4,138.4$, $137.2,134.9,134.5,133.5,133.1,131.2,130.8,130.7,130.5,130.2,130.1,128.9,128.7,128.5,128.3$, $128.2,127.9,127.3,127.1,127.0,126.9,126.7,126.2,117.8,116.3,116.1,112.4,112.3,65.6,64.9,64.7$, 64.4, 64.4, 58.9, 47.0, 46.2, 45.7, 41.8, 41.6, 29.8.

HRMS (ESI, m/z) calcd for $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 543.1914, found 543.1920.


2g was obtained as a black solid, Yield $46 \%(27 \mathrm{mg}$, d. r. $\approx 1.8: 1)$, Melting point $163-165{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ) $\delta 7.94(\mathrm{t}, \mathrm{J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.25(\mathrm{~m}, 7 \mathrm{H}), 7.15(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.02-6.83(\mathrm{~m}, 5 \mathrm{H}),[6.71(\mathrm{~s}), 6.24(\mathrm{~s}), 1 \mathrm{H}], 6.05-5.87(\mathrm{~m}, 2 \mathrm{H}),[5.48-5.26(\mathrm{~m}), 5.11(\mathrm{~s}), 2 \mathrm{H}], 4.73-$ $4.52(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{~d}, \mathrm{~J}=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}),[3.64-3.47(\mathrm{~m}), 3.16-3.04(\mathrm{~m}), 1 \mathrm{H}]$, $3.03-2.84(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( 151 MHz, DMSO- $d_{6}$ ) $\delta 194.8,194.5,172.0,170.9,168.0,167.6,157.5,147.7,145.0,144.3$, $135.8,135.0,134.9,134.9,131.7,131.2,130.9,130.8,130.8,130.6,129.5,129.0,128.4,128.0,127.5$, 127.4, 127.0, 126.7, 126.3, 123.4, 123.4, 115.0, 108.8, 108.3, 101.9, 64.9, 63.3, 62.9, 59.2, 55.9, 46.9, 46.4, 45.8, 42.4, 41.3, 41.0.

HRMS (ESI, m/z) calcd for $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 559.1864, found 559.1867 .


2h

2h was obtained as a brown solid, Yield $31 \%(18 \mathrm{mg}$, d. r. $\approx 1.5: 1)$, Melting point $295-297{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.09-7.94(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.31(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26$ $-6.66(\mathrm{~m}, 10 \mathrm{H}),[6.33(\mathrm{~s}), 5.09(\mathrm{~s}), 1 \mathrm{H}],[5.75(\mathrm{~d}, J=18.0 \mathrm{~Hz}), 4.58(\mathrm{~d}, J=18.0 \mathrm{~Hz}), 1 \mathrm{H}], 4.90-4.74$ $(\mathrm{m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.36-3.14(\mathrm{~m}, 1 \mathrm{H}),[3.13-3.03(\mathrm{~m}), 2.65-2.49(\mathrm{~m}), 1 \mathrm{H}]$.
${ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 193.8,192.1,172.5,166.9,158.3,143.3,135.9,135.4,134.9,134.0$, $130.6,130.2,129.6,129.1,128.8,128.6,128.3,127.2,127.0,127.0,126.7,124.4,124.4,114.7,65.5$, $64.8,64.5,58.7,55.5,46.6,45.9,41.5,41.4$
HRMS (ESI, m/z) calcd for $\mathrm{C}_{33} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 549.1576, found 549.1559.

$\mathbf{2 i}$ was obtained as a brown solid, Yield $59 \%(28.4 \mathrm{mg}$, d. r. $\approx 1.5: 1)$. Melting point $219-221^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.08-7.97(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.09$ $(\mathrm{m}, 2 \mathrm{H}), 7.03-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.89-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.77(\mathrm{~m}, 1 \mathrm{H}),[6.28(\mathrm{~s}), 5.68(\mathrm{~d}, J=17.8 \mathrm{~Hz})$, $1 \mathrm{H}],[5.19(\mathrm{~s}), 5.02(\mathrm{~d}, J=16.6 \mathrm{~Hz}), 1 \mathrm{H}], 4.94-4.89(\mathrm{~m}, 1 \mathrm{H}),[4.89-4.85(\mathrm{~m}), 4.41-4.36(\mathrm{~m}), 1 \mathrm{H}]$, [3.77 (s), $3.76(\mathrm{~s}), 3 \mathrm{H}], 3.37-3.20(\mathrm{~m}, 1 \mathrm{H}),[3.17-3.08(\mathrm{~m}), 2.51-2.41(\mathrm{~m}), 1 \mathrm{H}], 3.07-2.91(\mathrm{~m}, 1 \mathrm{H})$, [1.27(d, $J=6.7 \mathrm{~Hz}), 0.84(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 3 \mathrm{H}],[1.23(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.17(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3 \mathrm{H}]$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 195.0,194.5,177.5,177.3,168.0,167.3,158.4,158.1,144.4,144.3$, $138.7,137.4,134.9,134.7,134.2,133.1,131.1,130.9,130.6,130.1,129.5,129.4,128.8,128.5,128.2$, $128.1,128.0,127.9,127.0,126.9,126.6,126.4,124.7,124.6,114.8,114.7,65.6,65.3,63.1,58.3,55.6$ 46.2, 45.6, 44.7, 41.8, 41.5, 31.0, 30.1, 20.1, 19.9, 19.2, 19.1.

HRMS (ESI, m/z) calcd for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 481.2122, found 481.2111 .


2j
$\mathbf{2 j}$ was obtained as a brown solid, Yield $43 \%(18.5 \mathrm{mg}$, d. r. $\approx 1.2: 1)$, Melting point 205-207 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07-7.97(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.13$ $(\mathrm{m}, 2 \mathrm{H}), 6.98-6.89(\mathrm{~m}, 1 \mathrm{H}),[6.80-6.76(\mathrm{~m}), 6.72-6.65(\mathrm{~m}), 1 \mathrm{H}],[6.04(\mathrm{~s}), 5.60(\mathrm{~d}, J=17.8 \mathrm{~Hz})$, $1 \mathrm{H}], 4.96(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}),[4.86(\mathrm{~d}, J=16.5 \mathrm{~Hz}), 4.60(\mathrm{dd}, J=12.2,5.6 \mathrm{~Hz}), 1 \mathrm{H}],[4.56-4.50(\mathrm{~m})$, $4.37-4.31(\mathrm{~m}), 1 \mathrm{H}], 3.36-3.22(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.02(\mathrm{~m}, 1 \mathrm{H}),[2.97-2.87(\mathrm{~m}), 2.40-2.30(\mathrm{~m}), 1 \mathrm{H}]$, $1.26-1.11$ (m, 14H), $0.75(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 195.4,194.9,177.6,177.3,169.1,168.3,144.7,144.6,138.7,137.5$, $134.8,134.6,134.5,133.5,130.7,130.7,130.3,130.1,128.5,128.2,128.0,127.9,127.8,127.8,127.7$, $126.9,126.6,126.6,126.0,63.5,62.3,62.0,58.6,55.6,55.3,47.4,47.0,44.7,44.1,41.4,31.0,30.0,27.8$, 20.1, 19.9, 19.2, 19.1.

HRMS (ESI, m/z) calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 431.2329$, found 431.2318 .


2k
$\mathbf{2 k}$ was obtained as a gray solid, Yield $37 \%(18.4 \mathrm{mg}$, d. r. $\approx 1.8: 1)$, Melting point $216-218{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05-7.97(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23$ - $7.04(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.78(\mathrm{~m}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, 1H), [6.08 (s), $5.63(\mathrm{~d}, J=17.8 \mathrm{~Hz}), 1 \mathrm{H}], 4.98-4.78(\mathrm{~m}, 1 \mathrm{H}), 4.60-4.51(\mathrm{~m}, 2 \mathrm{H}),[3.87(\mathrm{~s}), 3.72(\mathrm{~s})$, $3 \mathrm{H}],[3.29(\mathrm{dd}, J=15.7,5.3 \mathrm{~Hz}), 3.18(\mathrm{dd}, J=16.1,5.6 \mathrm{~Hz}), 1 \mathrm{H}],[3.12-3.06(\mathrm{~m}), 2.64-2.55(\mathrm{~m}), 1 \mathrm{H}]$, [1.25 (s), $1.20(\mathrm{~s}), 9 \mathrm{H}]$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 195.3$, 194.8, 172.7, 171.3, 168.9, 168.4, 161.3, 160.9, 144.8, 144.4, 138.7, 137.5, 134.8, 134.7, 134.2, 133.7, 131.0, 130.8, 130.3, 130.3, 129.4, 129.1, 128.6, 128.1, 128.0, $127.9,127.8,127.6,127.4,126.9,126.7,126.7,126.6,125.9,65.3,62.5,61.8,59.4,55.6,55.5,55.4$, 55.3, 47.5, 47.2, 47.1, 44.8, 44.6, 42.0, 27.8.

HRMS (ESI, m/z) calcd for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 495.2278, found 495.2272 .

$\mathbf{2 l}$ was obtained as a yellow solid, Yield $43 \%(21.5 \mathrm{mg}$, d. r. $\approx 1.9: 1)$, Melting point $223-225{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07-7.99(\mathrm{~m}, 1 \mathrm{H}),[7.75-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.57(\mathrm{~m}), 1 \mathrm{H}], 7.54-$ $7.46(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.02-6.92(\mathrm{~m}, 2 \mathrm{H}),[6.90(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 6.78(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 1 \mathrm{H}],[6.08-5.98(\mathrm{~m}), 5.71-5.56(\mathrm{~m})$, $1 \mathrm{H}], 4.89-4.78(\mathrm{~m}, 1 \mathrm{H}) 4.69-4.52(\mathrm{~m}, 2 \mathrm{H}),[3.35-3.27(\mathrm{~m}), 3.24-3.16(\mathrm{~m}), 1 \mathrm{H}],[3.15-3.06(\mathrm{~m})$, $2.64-2.53(\mathrm{~m}), 1 \mathrm{H}],[1.24(\mathrm{~s}), 1.20(\mathrm{~s}), 9 \mathrm{H}]$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 195.1,194.5,171.7,170.5,168.6,168.1,144.6,144.2,138.4,137.3$, $136.6,136.2,134.8,134.7,133.7,133.6,133.2,133.0,130.8,130.3,130.1,129.1,129.0,128.8,128.7$, $128.6,128.3,128.1,128.1,128.0,127.9,127.8,127.0,126.8,126.7,125.9,65.3,62.6,61.9,59.4,55.6$, 55.5, 47.5, 47.1, 44.8, 44.6, 41.1, 27.9, 27.8.

HRMS (ESI, m/z) calcd for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 499.1783, found 499.1772 .


2m
$\mathbf{2 m}$ was obtained as a brown solid, Yield $47 \%(23 \mathrm{mg}$, d. r. $\approx 1.3: 1)$, Melting point $217-219{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.08-7.98(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.17$ $(\mathrm{m}, 2 \mathrm{H}), 7.14-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.91-6.78(\mathrm{~m}, 3 \mathrm{H}),[6.27(\mathrm{~s}), 5.13(\mathrm{~s}), 1 \mathrm{H}],[5.68(\mathrm{~d}$, $\mathrm{J}=17.7 \mathrm{~Hz}), 4.39(\mathrm{~d}, \mathrm{~J}=17.8 \mathrm{~Hz}), 1 \mathrm{H}], 4.99-4.83(\mathrm{~m}, 2 \mathrm{H}),[3.77(\mathrm{~s}), 3.76(\mathrm{~s}), 3 \mathrm{H}], 3.35-3.21(\mathrm{~m}$, $1 \mathrm{H}), 3.07-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.58(\mathrm{~m}, 3 \mathrm{H}),[2.32-2.22(\mathrm{~m}), 1.95-1.87(\mathrm{~m}), 1 \mathrm{H}],[1.81-1.72(\mathrm{~m})$, $1.57-1.52(\mathrm{~m}), 2 \mathrm{H}],[1.03(\mathrm{t}, J=7.4 \mathrm{~Hz}), 0.82(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3 \mathrm{H}]$.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 195.0,194.5,173.4,173.2,168.0,167.3,158.4,158.2,144.4,138.6$, $137.4,135.1,134.9,134.1,133.0,131.1,130.4,130.1,129.5,128.8,128.5,128.2,128.2,128.1,128.0$, 127.9, 127.0, 126.9, 126.6, 126.4, 124.8, 124.6, 114.8, 114.7, 65.6, 65.4, 63.3, 58.3, 55.6, 46.2, 45.6, 44.9, 41.8, 41.3, 35.8, 34.8, 29.8, 18.7, 18.4, 14.0.

HRMS (ESI, $\mathrm{m} / \mathrm{z}$ ) calcd for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 481.2122, found 481.2114 .


2n

2n was obtained as a brown solid, Yield $49 \%(21 \mathrm{mg}$, d. r. $\approx 1.2: 1)$, Melting point $224-226^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08-7.98(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.27$ $(\mathrm{m}, 1 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.97-6.88(\mathrm{~m}, 1 \mathrm{H}),[6.81-6.78(\mathrm{~m}), 6.72-6.68$ (m), 1H], [6.02 (s), $5.59(\mathrm{~d}, J=17.8 \mathrm{~Hz}), 1 \mathrm{H}], 4.89(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}),[4.83(\mathrm{~d}, J=16.5 \mathrm{~Hz}), 4.38-$ $4.32(\mathrm{~m}), 1 \mathrm{H}], 4.62-4.51(\mathrm{~m}, 1 \mathrm{H}), 3.36-3.22(\mathrm{~m}, 1 \mathrm{H}),[3.06(\mathrm{dd}, J=15.6,12.3 \mathrm{~Hz}), 2.93(\mathrm{dd}, J=16.0$, $12.3 \mathrm{~Hz}), 1 \mathrm{H}], 2.59-2.53(\mathrm{~m}, 1 \mathrm{H}),[2.22-2.14(\mathrm{~m}), 1.85-1.77(\mathrm{~m}), 1 \mathrm{H}], 1.76-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.55-$ $1.43(\mathrm{~m}, 1 \mathrm{H}),[1.23(\mathrm{~s}), 1.21(\mathrm{~s}), 1 \mathrm{H}],[1.01(\mathrm{t}, J=7.4 \mathrm{~Hz}), 0.78(\mathrm{t}, J=7.4 \mathrm{~Hz}), 3 \mathrm{H}]$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 195.4,194.9,173.4,173.3,169.0,168.3,144.7,144.6,138.6,137.5$, $135.0,134.7,134.4,133.4,130.7,130.5,130.1,128.5,128.2,128.0,127.9,127.8,127.7,127.7,126.8$, $126.6,126.1,63.7,62.4,62.0,58.7,55.6,55.3,47.3,46.9,44.9,44.7,41.3,35.8,34.7,27.9,18.7,18.4$, 14.0, 13.9.

HRMS (ESI, m/z) calcd for for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 431.2329$, found 431.2313.

## Scale-up reaction for the synthesis of 2a.

Ugi adduct 1a ( $1 \mathrm{mmol}, 1.0$ equiv), palladium( $\pi$-cinnamyl) chloride dimer ( $0.05 \mathrm{mmol}, 0.05$ equiv), Qphos ( $0.075 \mathrm{mmol}, 0.075$ equiv) and potassium carbonate ( $1.5 \mathrm{mmol}, 1.5$ equiv) were placed to the screw cap vial followed by addition of 1,4-dioxane ( 10.0 ml ). The resulting mixture was flushed with argon, sealed and stirred in an oil bath at $100^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, the mixture was evaporated under reduced pressure to obtain residue which was purified by a silica gel column chromatography (eluent: $n$-heptane/ethyl acetate $=2: 1 \sim 1: 1 \mathrm{v} / \mathrm{v}$ ) to afford $190 \mathrm{mg} \mathbf{2 a}$ in $41 \%$ yield.

## 6. Transformations of compound 2 a

1) Synthesis of compound 3a and 3b


Step I: To a glass vial of $\mathbf{2 a}(37.2 \mathrm{mg}, 0.08 \mathrm{mmol})$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(0.7 \mathrm{ml} / 0.07 \mathrm{~mL})$ was slowly added $\mathrm{NaBH}_{4}(3.9 \mathrm{mg}, 0.16 \mathrm{mmol})$ at room temperature and the resulting mixture was stirred for 1 h at room temperature. After completion, the mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with DCM. The organic layer was dried with sodium sulfate and concentrated. The residue was purified by column chromatography on silica gel (eluent: $n$-heptane/ethyl acetate $=1: 1 \sim 1: 2 \mathrm{v} / \mathrm{v}$ ) to afford the desired products 3a.

Step II: To a glass vial of $\mathbf{3 a}(10 \mathrm{mg}, 0.022 \mathrm{mmol})$ in THF $(0.2 \mathrm{ml})$ was slowly added $\mathrm{NaH}(1.6 \mathrm{mg}$, $0.066 \mathrm{mmol})$, $\mathrm{MeI}(9.4 \mathrm{mg}, 0.066 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 12 h at room temperature. After the solvent was concentrated under reduced pressure, the residue was purified by flash column chromatography on silica gel (eluent: $n$-heptane/ethyl acetate $=1: 1 \sim 1: 2 \mathrm{v} / \mathrm{v}$ ) to afford the desired products $\mathbf{3 b}$.


3a was obtained as a white solid, Yield $82 \%(38.4 \mathrm{mg}, \mathrm{d} . \mathrm{r} . \approx 2.3: 1)$, Melting point $112-114{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta[7.79-7.75(\mathrm{~m}), 7.68-7.67(\mathrm{~m}), 1 \mathrm{H}], 7.66-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.54$ $(\mathrm{m}, 1 \mathrm{H}), 7.39-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.18$ $(\mathrm{m}, 4 \mathrm{H}), 7.06-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.89(\mathrm{~m}, 1 \mathrm{H}),[6.05(\mathrm{~s}, 1 \mathrm{H}), 5.76(\mathrm{~d}, J=17.6 \mathrm{~Hz}), 1 \mathrm{H}], 5.19-5.06$ $(\mathrm{m}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.88-4.74(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.31(\mathrm{~m}, 1 \mathrm{H})$, [2.89-2.83(m), $2.68-2.61(\mathrm{~m}), 1 \mathrm{H}],[2.25-2.14(\mathrm{~m}), 1.78-1.67(\mathrm{~m}), 1 \mathrm{H}],[1.39(\mathrm{~s}), 1.34(\mathrm{~s}), 9 \mathrm{H}]$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 172.7,171.4,168.7,168.2,139.5,138.7,138.5,138.4,137.8,135.5$, $134.9,133.3,132.9,130.1,129.8,129.6,129.2,128.7,128.6,128.3,128.2,128.1,127.9,127.6,127.3$, $127.3,127.2,127.2,127.1,127.0,126.3,125.5,125.0,124.9,67.5,67.3,66.1,62.7,62.1,60.4,55.2$, 55.1, 47.7, 47.2, 46.8, 41.5, 39.4, 39.1, 27.8.

HRMS (ESI, m/z) calcd for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 467.2329$, found 467.2335 .


3b was obtained as a white solid, Yield $70 \%(33.6 \mathrm{mg}$, d. r. $\approx 3.5: 1)$, Melting point $84-86^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[7.62-7.51(\mathrm{~m}), 7.47-7.39(\mathrm{~m}), 2 \mathrm{H}], 7.28-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.13$ (m, 3H), 7.12 - $7.04(\mathrm{~m}, 3 \mathrm{H}), 6.92(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}),[5.67(\mathrm{~s}), 5.61(\mathrm{~s}), 1 \mathrm{H}]$, [4.81 (s), $4.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 1 \mathrm{H}], 4.54-4.47(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.18(\mathrm{~m}, 1 \mathrm{H})$, [3.57 (s), $3.16(\mathrm{~s}), 3 \mathrm{H}], 2.51-2.40(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.75(\mathrm{~m}, 1 \mathrm{H}),[1.30(\mathrm{~s}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 9 \mathrm{H}]$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 172.8,168.7,139.7,138.9,135.4,135.2,133.9,130.1,129.6,128.6$, 128.4, 127.7, 127.3, 127.3, 127.1, 126.7, 126.4, 76.5, 66.8, 62.6, 56.0, 55.3, 47.8, 41.4, 34.6, 28.1 HRMS (ESI, m/z) calcd for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 481.2486, found 549.1559 .
2) Synthesis of compound $\mathbf{3 c}$


To the glass vial were added $\mathbf{2 a}(32.5 \mathrm{mg}, 0.07 \mathrm{mmol}), \mathrm{KOH}(19.6 \mathrm{mg}, 0.35 \mathrm{mmol})$, diethylene glycol $(0.7 \mathrm{~mL})$ and hydrazine hydrate $(17.5 \mathrm{mg}, 0.35 \mathrm{mmol})$. The resulting mixture was flushed with argon, sealed and stirred in an oil bath at $170^{\circ} \mathrm{C}$ for 12 h . After completion, the mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with DCM. The organic layer was dried with sodium sulfate and concentrated. The residue was purified by flash column chromatography on silica gel with (eluent: $n$-heptane/ethyl acetate $=1: 1 \sim 1: 2 \mathrm{v} / \mathrm{v}$ ) to afford the desired products $\mathbf{3 c}$.


3c was obtained as a white solid, Yield $25 \%(11.3 \mathrm{mg}, \mathrm{d} . \mathrm{r} . \approx 2.3: 1)$, Melting point $201-203{ }^{\circ} \mathrm{C}$.
${ }^{1}{ }^{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[7.57-7.54(\mathrm{~m}), 7.47-7.45(\mathrm{~m}), 1 \mathrm{H}], 7.25-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.06$ (m, 7H), $7.06-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.79(\mathrm{~m}, 1 \mathrm{H}),[5.89(\mathrm{~s}), 5.64(\mathrm{~d}, J=17.7 \mathrm{~Hz}), 1 \mathrm{H}], 4.76-4.62(\mathrm{~m}$, $1 \mathrm{H}), 4.49(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.09(\mathrm{~m}, 1 \mathrm{H}), 3.12-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.46-$ $2.26(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.03(\mathrm{~m}, 1 \mathrm{H}),[1.28(\mathrm{~s}), 1.23(\mathrm{~s}), 9 \mathrm{H}]$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 172.8,168.5,139.8,139.0,135.2,134.4,133.6,130.3,129.6,128.5$, $128.4,127.6,127.4,127.2,126.9,126.4,66.2,64.1,55.1,47.8,41.7,29.9,28.5,28.0$.

HRMS (ESI, m/z) calcd for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 451.2380, found 451.2372.

## 7. Single crystal X-ray diffraction

A single crystal of $\mathbf{2 a}$ was obtained by slow diffusion from a solution of the compound in $\mathrm{CHCl}_{3}$ layered with heptane at room temperature for several days. X-ray intensity data were collected at 293(2) K on an Agilent SuperNova diffractometer with Eos CCD detector using MoK $\alpha$ radiation. The images were processed (unit cell determination, intensity data integration, correction for Lorentz and polarization effects, and empirical absorption correction) using CrysAlisPRO ${ }^{1}$. Using Olex $2^{2}$, the structure was solved with the ShelXT ${ }^{3}$ structure solution program using Intrinsic Phasing and refined with the ShelXL ${ }^{4}$ refinement package using full-matrix least-squares minimization on $\mathrm{F}^{2}$. The asymmetric unit contains one molecule 2a All H atoms were placed in idealized positions and refined in the riding mode. Nonhydrogen atoms were refined anisotropically and hydrogen atoms in the riding mode with isotropic temperature factors fixed at 1.2 times $\mathrm{U}_{\mathrm{eq}}$ of the parent atoms ( 1.5 for methyl groups). Crystal data, data collection and structure refinement details are summarized in Table S1. Crystallographic data for 2a has been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC- 2088708.


Figure S1. Molecular structure of 2a showing the atom-labelling scheme. Displacement ellipsoids are drawn at the $50 \%$ probability level. H atoms are shown as small circles of arbitrary radii.

Table S1. Crystal data, data collection and structure refinement details of compound 2a

| Empirical formula | $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3}$ |
| :--- | :--- |
| Formula weight | 464.54 |
| Temperature/K | $293(2)$ |


| Crystal system | triclinic |
| :--- | :--- |
| Space group | $P-1$ |
| $\mathrm{a} / \AA$ | $9.1811(2)$ |
| $\mathrm{b} / \AA$ | $9.9659(2)$ |
| $\mathrm{c} / \AA$ | $14.9148(4)$ |
| $\alpha /{ }^{\circ}$ | $85.493(2)$ |
| $\beta /{ }^{\circ}$ | $80.059(2)$ |
| $\gamma^{\circ}$ | $63.776(3)$ |
| Volume $/ \AA^{3}$ | $1205.83(6)$ |
| Z | 2 |
| $\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$ | 1.279 |
| $\mu / \mathrm{mm}^{-1}$ | 0.083 |
| $\mathrm{~F}(000)$ | 492.0 |
| Crystal size/mm ${ }^{3}$ | $0.35 \times 0.35 \times 0.3$ |
| Radiation | $\mathrm{MoK} \alpha(\lambda=0.71073 \AA)$ |
| $2 \Theta$ range for data collection/ ${ }^{\circ}$ | 5.006 to 52.742 |
| Index ranges | $-11 \leq \mathrm{h} \leq 11,-12 \leq \mathrm{k} \leq 12,-18 \leq 1 \leq 18$ |
| Reflections collected | 49581 |
| Independent reflections | $4945\left[\mathrm{R}_{\text {int }}=0.0355, \mathrm{R}_{\text {sigma }}=0.0178\right]$ |
| Data/restraints/parameters | $4945 / 0 / 319$ |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 1.075 |
| Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$ | $\mathrm{R}_{1}=0.0470, \mathrm{wR}_{2}=0.1133$ |
| Final R indexes [all data] | $0.24 /-0.19$ |
| Largest diff. peak/hole / e $\AA-3$ |  |

## 8. References

[1] CrysAlis PRO (2012). Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England.
[2] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339-341.
[3 G.M. Sheldrick, Acta. Cryst., 2015, A71, 3-8.
[4] G.M. Sheldrick, Acta. Cryst., 2015, C71, 3-8

## 9. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for the products



2a


200
$\begin{array}{llllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{ff}(\mathrm{pm})\end{array}$

NOESY NMR spectra of compound 2a








2d
$\begin{array}{lllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90\end{array}$




$2 e$







2h

ఇ゙



2h

$2 \mathbf{i}$


| $\infty$ | 단 | \％${ }_{\circ}^{\circ}$ | लヲ | 二®om\％ |
| :---: | :---: | :---: | :---: | :---: |
| ぶ心 | 过 | 过 | $\stackrel{\infty}{\infty}$ |  |
| J | 『 | 》 |  | －5， 5 |




$2 i$





2j



2k


2k
$\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ & & & & & & \\ (\mathrm{ppm})\end{array}$









2m













wher Lil cenbilith








3b





3b





$3 c$

