ELECTRONIC SUPPORTING INFORMATION

Mono- and dialdehyde of trehalose: new synthons to prepare trehalose bio-conjugates.

Table of Contents

Section S1. Experimental Section pag. 3
Section S2. Synthetic Procedures pag. 4
Section S3. NMR Spectra pag. 10

Section S1. - Experimental Section

Materials

α, α-Trehalose anhydrous and 1,3,5-Trichloro-2,4,6-triazinetrione (trichloroisocyanuric acid) were purchased from Merck co. 2,2,6,6-Tetramethylpiperidine 1-oxyl, L-Carnosine, Sodium hydrogen carbonate, Ammonia, $\mathrm{NaBH}_{3} \mathrm{CN}$, Hydrogen peroxide, Methanol and anhydrous Dimethylformammide were purchased from Sigma Aldrich Co. Water was purified with a Milli-Q ${ }^{\circledR}$ system.

Methods

Nuclear Magnetic Resonance Spectroscopy. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Unity Inova spectrometer at 500 and 125.7 MHz , respectively. The experiments were performed in $\mathrm{D}_{2} \mathrm{O}$ at $27^{\circ} \mathrm{C}$ and the chemical shifts are reported as $\delta(\mathrm{ppm})$ referenced to the resonance of residual HOD. Unequivocal assignments of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ resonances were supported by gCOSY, gHSQC and in some cases gHMBC experiments. The VnmrJ v4.0 software was used to process the data.

Mass spectrometry. ESI-LRMS spectra were performed with an Agilent Technologies 6410 Triple Quad LC/MS equipped with a Multimode (ESI/APCI) source. All the newly synthesized compounds were ESIHRMS analysed using a quadrupole-Orbitrap hybrid mass spectrometer (Q Exactive, Thermo Scientific). Nitrogen was used as a sheet gas, capillary temperature and spray voltage were $250{ }^{\circ} \mathrm{C}$ and 3.5 kV , respectively. The MS acquisition was performed in Full scan mode (70,000 resolution, scan range 200 to $2000 \mathrm{~m} / \mathrm{z}$, maximum injection time 50 ms , AGC target $1 \cdot 10^{6}$).

The compounds were diluted (not higher than $10 \mu \mathrm{M}$) in water containing methanol (10\%) and formic acid (0.5%) and directly injected into the MS spectrometer.

Thin Layer Chromatography. TLC analyses were carried out on silica gel 60 F254 plates (Merck); unless otherwise specified, spots were revealed by spraying the plates with Molybdenum Blue reagent (Sigma).

Section S2. - Synthetic Procedures

Synthesis of the monoaldehyde of trehalose [5-formyl-5-dehydroxymethyl-trehalose] (2).
500 mg of Trehalose (1.46 mmol) were dissolved in 250 mL of anhydrous DMF and the solution was added with sodium hydrogencarbonate ($3.69 \mathrm{~g}, 43.95 \mathrm{mmol}$) and TEMPO ($5.7 \mathrm{mg}, 36.5 \mu \mathrm{~mol}$). The mixture was placed in thermostatic bath at $25{ }^{\circ} \mathrm{C}$ and then TCCA (339 mg, 1.46 mmol) was added. After 75 min of continuous stirring, the reaction mixture was quenched with 20 mL of methanol and sodium hydrogencarbonate filtered-off. The filtrate was concentrated in vacuo to $1 / 5$ of the initial volume and methylene chloride was then added to precipitate sugar components. The precipitate was recovered by filtration and a small aliquot was dissolved in $\mathrm{D}_{2} \mathrm{O}$ and analyzed by NMR.

The degree of trehalose conversion was determined from the ratio between the integration value of the signal at $3.55 \mathrm{ppm}\left(\mathrm{H}-4{ }^{\prime}\right)$ and that of the signal at $3.48 \mathrm{ppm}(\mathrm{H}-4)$; trehalose and trehalose mono-aldehyde were found in a molar ratio of about 1.25:1.

The remaining precipitate was dissolved in DMF (100 mL) and loaded onto a column of weakly basic anion exchange resin (Lewatit ${ }^{\circ}$ VP OC 1065) which was washed in sequence with DMF, DMF/ $\mathrm{H}_{2} \mathrm{O}(1: 1 \mathrm{v} / \mathrm{v})$ and water. The desired compound was recovered by elution with aqueous $20 \% \mathrm{CH} 3 \mathrm{COOH}$. The eluate was lyophilized affording 2 as a white powder ($198.6 \mathrm{mg}, 40 \%$ yield). $\mathrm{TLC}, \mathrm{SiO}_{2}, \mathrm{ACN} / \mathrm{W}(70: 30, \mathrm{v} / \mathrm{v}$); Rf 0.45 . ESI(+)-HRMS m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{O}_{11}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$341.1078, found 341.1077.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$): $5.29\left(\mathrm{~d}, \mathrm{~J}=2,1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 5.26\left(\mathrm{~d}, \mathrm{~J}=4,1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 5.25(\mathrm{~d}, \mathrm{~J}=3.5,1 \mathrm{H}, \mathrm{H}-1)$ 3.91-3.84 (overlapped multiplets, $4 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-3^{\prime}, \mathrm{H}-6 \mathrm{a}, \mathrm{H}-5$), 3.82-3.77 (partially overlapped signals, $2 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}, \mathrm{H}-5^{\prime}$), 3.70-3.66 (two overlapped doublet of doublets, $2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-2^{\prime}$), 3.55 ($\mathrm{dd}, \mathrm{J}_{4^{\prime}-5^{\prime}}=9.5 \mathrm{~Hz}$ and $\mathrm{J}_{4^{\prime}-3^{\prime}}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}$), 3.48 (dd, $\mathrm{J}_{4-5}=9.8 \mathrm{~Hz}$ and $\left.\mathrm{J}_{4-3}=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 125.7 \mathrm{MHz}\right): 93.19$ e 93.16 (C1 e C1'), 87.90 (C6'), 72.97 (C5'), 72.45 (C3), 72.28 (C3'), 72.11 (C5), 70.97 e 70.85 (C2 e C2'), 70.40 (C4'), 69.66 (C4), 60.51 (C6).

A colorless aqueous solution of $\mathbf{2}$, which gave a positive Tollens's test, turned red-orange in color when treated with the 2,4-dinitrophenylhydrazine reagent. A direct spectrometry analysis [ESI(+)-LRMS] of this mixture revealed the presence of an intense peak at $\mathrm{m} / \mathrm{z} 543.2(\mathrm{M}+\mathrm{Na})^{+}$correlated to the molecular ion of the 2,4-dinitrophenylhydrazone of 2.

Synthesis of the dialdehyde of trehalose [5,5'-diformyl-5,5'-didehydroxymethyl-trehalose] (3).
The title compound was prepared following the procedure above described for $\mathbf{2}$, but utilizing different molar amounts of TCCA ($1.696 \mathrm{~g}, 7.3 \mathrm{mmol}$), sodium hydrogencarbonate ($18.566 \mathrm{~g}, 0.221 \mathrm{~mol}$) and TEMPO ($17.5 \mathrm{mg}, 112 \mu \mathrm{~mol}$). The reaction time was extended to 3.5 hours. After purification and freeze-drying, 439 mg of pure 3 were obtained (89% yield) as a white powder. TLC, SiO2, ACN/W (70:30, v/v); Rf 0,35. ESI(+)-HRMS: m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{11}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$339.0922, found 339.0921. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right)$: 5.23-5.22 (two overlapped doublets, $4 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-1$), 3.85 ($\mathrm{dd}, \mathrm{J}_{3-4}=9.5 \mathrm{~Hz}, \mathrm{~J}_{3-2}=9.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3$), 3.75 (dd, $\mathrm{J}_{5-6}=3.5 \mathrm{~Hz}$ and J_{5-4}
$=9.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5), 3.62\left(\mathrm{dd}, \mathrm{J}_{1-2}=3.5 \mathrm{~Hz}\right.$ and $\mathrm{J}_{2-3}=9.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2$), 3.49 (dd, $\mathrm{J}_{4-5}=9.5 \mathrm{~Hz}$ and $\mathrm{J}_{4-3}=9.6 \mathrm{~Hz}, 2$ $\left.\mathrm{H}, \mathrm{H}-4^{\prime}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 125.7 \mathrm{MHz}\right): 93.18$ (C1), 87.94 (C6), 73.01 (C5), 72.29 (C3), 70.85 (C2), 70.41 (C4).

Synthesis of 6-amino-6-deoxy-trehalose (4).

50 mg of 2 (0.147 mmol) were dissolved in 50 mL of methanol and gaseous ammonia was bubbled through this solution for 4 hours at r. t. . Next, $\mathrm{NaBH}_{3} \mathrm{CN}$ was added ($46.2 \mathrm{mg}, 0.735 \mathrm{mmol}$) and the reaction mixture was allowed to stand for 1 hour at room temperature. The reaction was then quenched by adding $10 \% \mathrm{HCl}$ up to $\mathrm{pH}=4$ and subsequently neutralized. The resulting mixture was concentrated in vacuo and then charged onto a column of strongly acidic cation exchange resin (Dowex ${ }^{\circledR} 50 \mathrm{XB}, \mathrm{H}^{+}$). After washing with water, the desired compound was recovered by elution with $2 \mathrm{~N} \mathrm{NH}_{4} \mathrm{OH}$. The eluate was then freeze dried, affording 48 mg of pure 4 (96% yield). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$): 5.26 (d, J=4, $1 \mathrm{H}, \mathrm{H}-1$), 5.23 ($\mathrm{d}, \mathrm{J}=4,1 \mathrm{H}, \mathrm{H}-\mathrm{1}^{\prime}$) 3.96 (m, $1 \mathrm{H}, \mathrm{H}-5^{\prime}$) 3.91-3.84 (overlapped multiplets, $4 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-3^{\prime}, \mathrm{H}-6 \mathrm{a}, \mathrm{H}-5$), 3.79 (dd, $\mathrm{J}_{5-6 \mathrm{~b}}=5, \mathrm{~J}_{6 \mathrm{a}-6 \mathrm{~b}}=10,1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}$), 3.72-3.67 (two overlapped doublet of doublets, $2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-2^{\prime}$), 3.48 (dd, $1 \mathrm{H}, \mathrm{H}-4^{\prime}$), 3.42-3.35 (partially overlapped multiplets, $2 \mathrm{H}, \mathrm{H}-4$ and $\mathrm{H}_{6 \mathrm{a}}$), 3.07 (dd, $\mathrm{H}_{6 \mathrm{~b}}$). ${ }^{13} \mathrm{C}$ - NMR ($\mathrm{D}_{2} \mathrm{O}, 125.7 \mathrm{MHz}$): 93.2 and 93.1 (C 1 e C1'), 72.97 (C5'), 72.45 (C3), 72.28 (C3'), 72.11 (C5), 70.97 e 70.85 (C2 e C2'), 70.41 (C4'), 69.67 (C4), 60.51 (C6). 41.2 (C^{\prime}).

Synthesis of 6,6'-diamino-6,6'-dideoxy-trehalose (5).

Following an experimental procedure similar to that used for preparing compound 4, compound 5 (47.9 mg) was obtained with a yield of 96%, starting from $3(50 \mathrm{mg}, 0.148 \mathrm{mmol})$ and using 94.26 mg (1.5 mmol) of $\mathrm{NaBH}_{3} \mathrm{CN} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right): 5.23(\mathrm{~d}, \mathrm{~J}=4,2 \mathrm{H}, \mathrm{H}-1) 3.96(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5)$ 3.91-3.84 (overlapped multiplets, 4 H , $\mathrm{H}-3, \mathrm{H}-5$), 3.72-3.67 (doublet of doublets, $2 \mathrm{H}, \mathrm{H}-2$), 3.48 (dd, $2 \mathrm{H}, \mathrm{H}-4$), 3.42-3.35 (partially overlapped multiplets, $2 \mathrm{H}, \mathrm{H}-4$ and $\mathrm{H}_{6 \mathrm{a}}$), 3.07 (dd, $\mathrm{H}_{6 \mathrm{~b}}$). ${ }^{13} \mathrm{C}$ - NMR ($\mathrm{D}_{2} \mathrm{O}, 125.7 \mathrm{MHz}$): 93.2 (C1), 72.97 (C5), 72.45 (C3), 70.97 (C2), 70.41 (C4), 41.2 (C6).

Synthesis of 5-carboxy-5-dehydroxymethyl-trehalose (6) and 5,5'-dicarboxy-5,5'-didehydroxymethyltrehalose (7).

Both title compounds 6 and 7 were obtained from compounds $\mathbf{2}$ ($50 \mathrm{mg}, 0.147 \mathrm{mmol}$) and $\mathbf{3}$ ($50 \mathrm{mg}, 0.148$ $\mathrm{mmol})$ respectively by treating both these with $10 \% \mathrm{H}_{2} \mathrm{O}_{2}(25 \mathrm{ml})$ at r . t . for 12 hours The reaction mixture was concentrated under vacuum and the solution was charged onto a column of a strong basic anion exchange resin (Dowex 1X4), from which the desired compound was recovered by elution with 2 N $\mathrm{CH}_{3} \mathrm{COOH}$. The eluate was then freeze dried, affording pure $6(49.2 \mathrm{mg})$ or $\mathbf{7}(52 \mathrm{mg})$.
(6) : 94% yield; $\mathrm{TLC}, \mathrm{SiO}_{2}, \mathrm{BuOH} / \mathrm{AcOH} / \mathrm{W}(60: 15: 25, \mathrm{v} / \mathrm{v} / \mathrm{v})$, Rf 0.12). ESI(-)-HRMS: m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{12}$ ([M-H] $\left.]^{-}\right) 355.0882$, found 355.0883. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$): 5.26 (d, J=3 Hz, $1 \mathrm{H}, \mathrm{H}-1$), $5.21\left(\mathrm{~d}, \mathrm{~J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right)$, 4.28 (d, J=9.5 Hz, 1H, H-5'), 3.92-3.84 (overlapped multiplets, $4 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-3^{\prime}, \mathrm{H}-6 \mathrm{a}, \mathrm{H}-5$), 3.78 (dd, J.6b $=6 \mathrm{~Hz}$,
$\mathrm{J}_{6 \mathrm{a}-6 \mathrm{~b}}=16 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}$), 3.73 ($\mathrm{dd}, \mathrm{J}_{2^{\prime}-1^{\prime}}=3 \mathrm{~Hz}, \mathrm{~J}_{2^{\prime}-3^{\prime}}=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$), 3.68 (dd, $\mathrm{J}_{2-1}=3.5 \mathrm{~Hz}, \mathrm{~J}_{2-3}=10 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 2), 3.62 (dd, $\left.\mathrm{J}_{4^{\prime}, 5^{\prime}}=9.5 \mathrm{~Hz}, \mathrm{~J}_{4^{\prime}, 3^{\prime}}=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 3.48\left(\mathrm{dd}, \mathrm{J}_{4,5}=9.9 \mathrm{~Hz}, \mathrm{~J}_{4,3}=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right.$, 125.7 MHz): 167.1 (C6'), 93.62 e 93.52 (C1 e C1'), 72.41 (C3), 72.22 (C3'), 72.17 (C5), 71.75 (C5'), 70.89 (C2 e C2'), 70.69 (C4'), 69.61 (C4), 60.48 (C6).
(7) : 95\% yield. ESI(-)-HRMS: m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{13}\left([\mathrm{M}-\mathrm{H}]^{-}\right) 369.0675$, found 369.0676. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$): $5.21(\mathrm{~d}, \mathrm{~J}=3.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1), 4.28(\mathrm{~d}, \mathrm{~J}=9.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5), 3.88(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3), 3.73\left(\mathrm{dd}, \mathrm{J}_{2-1}=3 \mathrm{~Hz}, \mathrm{~J}_{2-3}=9.5 \mathrm{~Hz}, 1\right.$ $\mathrm{H}, \mathrm{H}-2$), 3.62 ($\mathrm{dd}, \mathrm{J}_{4,5}=10 \mathrm{~Hz}, \mathrm{~J}_{4,3}=9.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4$). ${ }^{13} \mathrm{C}-$ NMR ($\mathrm{D}_{2} \mathrm{O}, 125.7 \mathrm{MHz}$): 167.1 (C6), 93.52 (C1), 71.9 (C5), 72.28 (C3), 70.97 (C2), 70.41 (C4).

Synthesis of the mono-carnosine conjugate of trehalose [6-((3-()1-carboxy-2-(1H-imidazol-4-yl)ethyl)amino)-3-oxopropyl)amino)-6-deoxy- α - α-trehalose] (8).

50 mg of $2(0.147 \mathrm{mmol})$ were dissolved in 50 mL of methanol and carnosine methyl ester ($42.24 \mathrm{mg}, 0.176$ mmol) was added to this solution. After 4 hours under continuous stirring, $\mathrm{NaBH}_{3} \mathrm{CN}$ ($46.19 \mathrm{mg}, 0.735$ mmol) was added and the reaction mixture was allowed to stand for 1 hour at room temperature. After this time, the reaction mixture was cooled to $5^{\circ} \mathrm{C}$ and 25 mL of 0.1 N NaOH were added to it, leaving it to stand still for 1 hour. The end of the hydrolysis was checked by TLC/SiO $\left[2-\mathrm{PrOH} / c o n c . \mathrm{NH}_{3}(7: 3, \mathrm{v} / \mathrm{v})\right]$. Spots were detected by spraying first with "Fast Red B salt" solution and then with 0.1 N NaOH ; the Rf value for 8 was 0.2 . The mixture was then neutralized, concentrated under vacuum and charged onto a column of a strongly acidic cation exchange resin (Dowex $50 \mathrm{X} 8, \mathrm{H}^{+}$). After washing with water, crude 8 was recovered from the column by elution with $2 \mathrm{~N} \mathrm{NH}_{4} \mathrm{OH}$. The eluate was taken to dryness under vacuum and the residue fractionated by PLC (eluent: 2-Propanol / $0.05 \mathrm{M}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}(7: 3, \mathrm{v} / \mathrm{v})$. Fractions containing 8 were collected and lyophilized, affording $8\left(58.2 \mathrm{mg}, 72 \%\right.$ yield). ESI(+)-LRMS: m/z $551.2\left([\mathrm{M}+\mathrm{H}]^{+}\right) .{ }^{1} \mathrm{H}-\mathbf{N M R}$ ($\mathrm{D}_{2} \mathrm{O}$): (ppm) 7.72 (s, $1 \mathrm{H}, \mathrm{H}-2$ of the imidazole ring), 6.88 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-5$ of imidazole), $5.12(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1), 5.07$ (d, $\left.1 \mathrm{H}, \mathrm{H}-\mathrm{1}^{\prime}\right), 3.94$ (m, $1 \mathrm{H}, \mathrm{CH}$ of the histidine chain), 3.94 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$), 3.88-3.70 (m, $4 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-3^{\prime}, \mathrm{H}-5, \mathrm{H}-$ $6^{\prime}{ }_{b}$), 3.66 (dd, 1H, H-6'a), 3.58 (dd, 1H, H-2), 3.52 (dd, 1H, H-2'), 3.34 (dd, 1H, H-4), 3.30 (dd, 1H, H-6' ${ }_{b}$), 3.25 (m, 2H, H-6' ${ }_{\text {a }}, \mathrm{H}-{ }^{-} 4$), 3.10 (m, $2 \mathrm{H}, \beta-\mathrm{CH}_{2}$ of β-Ala); 3.04 (m, $1 \mathrm{H}, \mathrm{Ha}$ of CH_{2} of His), 2.87 (dd, $1 \mathrm{H}, \mathrm{Hb}$ of CH_{2} of His), 2.26 ($\mathrm{m}, 2 \mathrm{H}, \alpha-\mathrm{CH}_{2}$ of β-Ala). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 125.7 \mathrm{MHz}\right.$): 176.9 (-COOH of His), 172.2 (-CONH-), 133.8 (C2 of imidazole ring), 130.1 (C4 of imidazole ring), 117.2 (C5 of imidazole ring), 94.9 (C1), 93.26 (C1'), 72.9 (C6), 72.2 (C3'), 71.9 (C3), 71.6 (C4'), 70.9 (C2), 70.6 (C2'), 70.3 (C4), 67.7 (C5'), 54.4 (CH of His), 48.5 ($\beta-\mathrm{C}$ of β-Ala), 43.4 (C6), 30.5 (α-C of β-Ala), 27.1 (CH_{2} of Hys).

Synthesis of the bis-carnosine conjugate of trehalose [6,6'-bis((3-((1-carboxy-2-(1H-imidazol-4-yl)ethyl)amino)-3-oxopropyl)amino)-6,6'-dideoxy- α - α-trehalose] (9).

The title compound, was prepared following the same synthetic procedure above described for 8, starting from 50 mg of $\mathbf{3}$ (0.148 mmol) but utilizing different molar amounts of carnosine methyl ester (85.2 mg ,
$0.355 \mathrm{mmol})$ and $\mathrm{NaBH} 4 \mathrm{CN}(93.0 \mathrm{mg}, 1.48 \mathrm{mmol})$. At the end of the synthesis, $9(93 \mathrm{mg})$ was obtained with a yield of 83%. TLC, $\mathrm{SiO}_{2}, 2-\mathrm{PrOH} /$ conc. $\mathrm{NH}_{3}(7: 3, \mathrm{v} / \mathrm{v})$, detection: "Fast Red B" - $0.1 \mathrm{~N} \mathrm{NaOH}, \mathrm{Rf} 0.15$. ESI(+)HRMS: m / z calcd. for $\mathrm{C}_{30} \mathrm{H}_{47} \mathrm{~N}_{8} \mathrm{O}_{15}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 759.3155$, found 759.3149. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right):(\mathrm{ppm}) 8.57(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{H}-2$ of imidazole ring), 7.25 (s, $2 \mathrm{H}, \mathrm{H}-5$ of imidazole), 5.22 (d, $2 \mathrm{H}, \mathrm{H}-1$), 4.46 (dd, $2 \mathrm{H}, \mathrm{CH}$ of the His), 4.07 (m, $2 \mathrm{H}, \mathrm{H}-5$), 3.80 (dd, $2 \mathrm{H}, \mathrm{H}-3$), 3.63 (dd, $2 \mathrm{H}, \mathrm{H}-2$), 3.43 (m, $2 \mathrm{H}, \mathrm{Ha}$ of $\beta-\mathrm{CH}_{2}$ of $\beta-\mathrm{Ala}$); 3.33 (m, $2 \mathrm{H}, \mathrm{H} 6^{\prime} \mathrm{a}$), 3.32 (dd, $2 \mathrm{H}, \mathrm{H}-4$), 3.28 (m, $2 \mathrm{H}, \mathrm{Hb}$ of $\beta-\mathrm{CH}_{2}$ of $\beta-\mathrm{Ala}$); 3.24 (m, $2 \mathrm{H}, \mathrm{H} 6^{\prime} \mathrm{b}$), 3.21 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{Ha}$ of CH_{2} of His), 3.04 (m, $2 \mathrm{H}, \mathrm{Hb}$ of CH_{2} of His), 2.7 ($\mathrm{m}, 4 \mathrm{H}, \alpha-\mathrm{CH}_{2}$ of $\beta-\mathrm{Ala}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 125.7 \mathrm{MHz}\right.$): 176.9 (-COOH of His), 172.2 (-CONH-), 133.8 (C2 of imidazole ring), 130.1 (C4 of imidazole ring), 117.2 (C5 of imidazole ring), 94.9 (C1), 71.9 (C3), 71.6 (C4), 70.6 (C2), 67.7 (C5), 54.4 (CH of His), 48.5 (β-C of β-Ala), 43.4 (C6), 30.5 ($\alpha-C$ of β-Ala), 27.1 (CH_{2} of His).

Synthesis of the mono-fluorescein conjugate of trehalose [6-((3',6'-dihydroxy-3H-spiro[isobenzofuran-1,9'-xanthen]-3-one-5yl)amino)-6-deoxy- α - α-trehalose] (10).

10

50 mg of 2 (0.147 mmol) were dissolved in 50 mL of methanol and 5 -aminofluorescein ($61.1 \mathrm{mg}, 0.176$ $\mathrm{mmol}, 1.2 \mathrm{eq}$) was added to this solution. After 1 hours under continuous stirring at r . t ., $\mathrm{NaBH}_{3} \mathrm{CN}(46.19$ $\mathrm{mg}, 0.735 \mathrm{mmol}, 5$ eq.) was added and the reaction mixture was allowed to stand for 2 hour at r . t . The end of the reaction was checked by $\mathrm{TLC} / \mathrm{SiO}_{2}[\mathrm{ACN} / \mathrm{H} 2 \mathrm{O}(80: 20, \mathrm{v} / \mathrm{v})]$, where the Rf value of 10 was 0.63 . The
mixture was then concentrated under vacuum and charged onto a column of a strongly acidic cation exchange resin (Dowex 50X8, H^{+}). After washing with water, crude 10 was recovered from the column by eluting with $2 \mathrm{~N} \mathrm{NH}_{4} \mathrm{OH}$. The eluate was taken to dryness under vacuum and the residue fractionated by PLC (eluent: $\mathrm{H}_{2} \mathrm{O}$ gradient in ACN (from 0 to 20%). Fractions containing 10 were collected and lyophilized, affording 10 ($50.35 \mathrm{mg}, 51 \%$ yield\%). ESI(+)-HRMS: m / z calcd. for $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{NO}_{15}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 672.1923$, found 672.1920. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right)$: (ppm) 7.47 (d, $1 \mathrm{H}, \mathrm{H}-8^{\prime}$ of fluorescein), 7.45 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$ of fluorescein), 7.29 (d , $1 \mathrm{H}, \mathrm{H}-4$ of fluorescein), 7.18 (d, $1 \mathrm{H}, \mathrm{H}-7$ of fluorescein), 7.06 (d, $1 \mathrm{H}, \mathrm{H}-6$ of fluorescein), 6.80 (d, $2 \mathrm{H}, \mathrm{H}-2^{\prime}$ and H-7' of fluorescein), 6.79 (s, $2 \mathrm{H}, \mathrm{H}-5^{\prime}$ and $\mathrm{H}-4^{\prime}$ of fluorescein), 5.25 (d, 1H, H-1 of trehalose), 5.14 (d, $1 \mathrm{H}, \mathrm{H}-1^{\prime}$ of trehalose), 4.10 (m, $1 \mathrm{H}, \mathrm{H}-5^{\prime}$ of trehalose), 3.92-3.75 (m, $6 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-3{ }^{\prime}, \mathrm{H}-5, \mathrm{H}-6_{a}, \mathrm{H}-6_{b}, \mathrm{H}^{\prime}-6^{\prime}{ }_{\mathrm{b}}$ of trehalose), 3.72 (dd, 1H, H-2' of trehalose), 3.58 (dd, 1H, H-2 of trehalose), 3.53-3.40 (overlapped m, 3 H , H-6'a, H-4 and H-'4 of trehalose). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 125.7 \mathrm{MHz}\right.$): 158.4 (C3 of fluorescein), 149.4 (C5 of fluorescein), 149.35 (C3' and C6' of fluorescein), 143.4 (C10'a and C4'a of fluorescein), 139.2 (C7a of fluorescein), 132.13 (C8' and C1' of fluorescein), 131.6 (C7 of fluorescein), 128.3 (C3a of fluorescein), 121.4 (C5' and C4' of fluorescein), 114.5 (C6 of fluorescein), 113.9 (C4 of fluorescein), 108.5 (C8'a and C9'a of fluorescein), 103.9 (C7' and C2' of fluorescein), 93.3 (C1 of trehalose), 93.0 (C^{\prime} ' of trehalose), 72.6 (C5 of trehalose), 72.5 ($C^{\prime} 3^{\prime}$ of trehalose), 71.9 (C 3 of trehalose), 71.8 (C 4 of trehalose), 71.6 (C^{\prime} of trehalose), 70.2 (C2 of trehalose), 69.6 (C5' of trehalose), 60.6 (C4 of trehalose), 60.5 (C6 of trehalose), 44.8 (C6' of trehalose).

Synthesis of the mono-Sulfamethoxazole conjugate of trehalose [N -(5-methylisoxazol-3-yl)-4-((6-deoxy- α -α-trehalose-6-yl)amino)benzenesulfonamide] (11).

50 mg of 2 (0.147 mmol) were dissolved in 50 mL of methanol and sulfamethoxazole ($74,5 \mathrm{mg}, 0.294 \mathrm{mmol}$, 2 eq.) was added to this solution. After 6 hours under continuous stirring at $40^{\circ} \mathrm{C}$, the mixture was brought to r. t. and then $\mathrm{NaBH}_{3} \mathrm{CN}(46.19 \mathrm{mg}, 0.735 \mathrm{mmol})$ was added allowing to react for 2 hour. The end of the reaction was checked by $\mathrm{TLC} / \mathrm{SiO}_{2}[\mathrm{ACN} / \mathrm{H} 2 \mathrm{O}(80: 20, \mathrm{v} / \mathrm{v})]$, where the Rf value of 11 was 0.74 . The mixture was then concentrated under vacuum and charged onto a SiO_{2} column and, after washing with ACN , a fraction containing crude 11 was recovered by eluting with $\mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}(1: 1, \mathrm{v} / \mathrm{v})$. The aqueous eluate, concentrated under reduced pressure, was then charged onto a column of a strongly acidic cation exchange resin (Dowex $50 \times 8, \mathrm{H}^{+}$), which was washed with water and by which 11 was recovered by elution with 2 N $\mathrm{NH}_{4} \mathrm{OH}$. The ammonia eluate was concentrated under reduced pressure and then lyophilized, affording 61.13 mg of 11 (72% yield\%). ESI(+)-HRMS: m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{13} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 578.1650$, found 578.1648. ${ }^{1} \mathrm{H}-\mathbf{N M R}\left(\mathrm{D}_{2} \mathrm{O}\right)$: (ppm) 7.68 ($\mathrm{d}, \mathrm{J}=10 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3$ and H-5 of benzene ring), 6.79 ($\mathrm{d}, \mathrm{J}=10 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2$ and $\mathrm{H}-6$ of benzene ring), 6,06 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-4$ of isoxazole ring), 5.17 ($\mathrm{d}, \mathrm{J}=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ of trehalose), 5.03 (d, $\mathrm{J}=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$ of trehalose $), 3.97\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right.$ of trehalose), 3.89-3.79 (m, $4 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-3^{\prime}, \mathrm{H}-5$ and H-6b of trehalose), 3.76 (dd, $1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}$ of trehalose), 3.67 (dd, $1 \mathrm{H}, \mathrm{H}-2$ of trehalose), 3.61 (d, 1H, H-6'a of trehalose), 3.51 (dd, 1H, H-2' of trehalose), 3.44 (2 overlapped dd, $2 \mathrm{H}, \mathrm{H}-4$ and $\mathrm{H}-4{ }^{\prime}$ of trehalose), 3.36 (dd, $1 \mathrm{H}, \mathrm{H}-6^{\prime}{ }_{b}$ of trehalose), 2.31 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ of isoxazole ring). ${ }^{13} \mathrm{C}$-NMR ($\mathrm{D}_{2} \mathrm{O}, 125.7 \mathrm{MHz}$): 172.0 (C 5 of isoxazole ring), 158.1(C3 of isoxazole ring), 153.1 (C4 of benzene ring), 129.1 (C3 and C5 of benzene ring), 123.5 (C1 of benzene ring), 112.4 (C2 and C6 of benzene ring), 95.4 (C4 of isoxazole ring), 93.2 (C1 of trehalose), 93.1 ($\mathrm{C} 1^{\prime}$ of trehalose), 72.6 (C 5 of trehalose), 72.5 (C3' of trehalose), 72.1 (C 3 of trehalose), 71.4 (C4 of trehalose), 71.0 (C2' of trehalose), 70.9 (C2 of trehalose), 70.3(C5' of trehalose), 60.6 (C4 of trehalose), 60.5 (C6 of trehalose), 43.3 (C^{\prime} of trehalose), $11.6\left(\mathrm{CH}_{3}\right.$ on isoxazole ring).

Section S3. - NMR Spectra

Figure S1: ${ }^{1} \mathrm{H}$-NMR spectrum of 5-formyl-5-dehydroxymethyl-trehalose (2)

Figure S2: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 5-formyl-5-dehydroxymethyl-trehalose (2); magnification between 3.4 and 5.5 ppm .

Figure S3: ${ }^{13} \mathrm{C}$-NMR spectrum of 5-formyl-5-dehydroxymethyl-trehalose (2)

Figure S4: gCOSY NMR spectrum of 5-formyl-5-dehydroxymethyl-trehalose (2)

Figure S5: gHSQC NMR spectrum of 5-formyl-5-dehydroxymethyl-trehalose (2)

Figure S6: gHMBC NMR spectrum of 5-formyl-5-dehydroxymethyl-trehalose (2)

Figure S7: ${ }^{1} \mathrm{H}$-NMR spectrum of $5,5^{\prime}$-diformyl-5, 5^{\prime}-didehydroxymethyl-trehalose (3)

Figure S8: ${ }^{1} \mathrm{H}$-NMR spectrum of 5,5'-diformyl-5,5'-didehydroxymethyl-trehalose (3); magnification between 3.4 and 5.3 ppm.

Figure S9: ${ }^{13} \mathrm{C}$-NMR spectrum of 5,5'-diformyl-5,5'-didehydroxymethyl-trehalose (3)

Figure S10: gCOSY spectrum of 5,5'-diformyl-5,5'-didehydroxymethyl-trehalose (3)

Figure S11: ${ }^{1} \mathrm{H}$-NMR spectrum of 5-carboxy-5-dehydroxymethyl-trehalose (6)

Figure S12: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 5-carboxy-5-dehydroxymethyl-trehalose (6); magnification of area between 3.3 and 5.3 ppm .

Figure S13: ${ }^{13} \mathrm{C}$-NMR spectrum of 5-carboxy-5-dehydroxymethyl-trehalose (6)

Figure S14: gCOSY NMR spectrum of 5-carboxy-5-dehydroxymethyl-trehalose (6)

Figure S15: gHSQC NMR spectrum of 5-carboxy-5-dehydroxymethyl-trehalose (6)

Figure S16: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 6,6’-bis((3-((1-carboxy-2-(1H-imidazol-4-yl)ethyl)amino)-3-oxopropyl)amino)-6,6'-dideoxy- α - α-trehalose (9)

Figure S17: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of 6,6'-bis((3-((1-carboxy-2-(1H-imidazol-4-yl)ethyl)amino)-3-oxopropyl)amino)-6,6'-dideoxy- α - α-trehalose (9)

Figure S18: gCOSY spectrum of 6,6'-bis((3-((1-carboxy-2-(1H-imidazol-4-yl)ethyl)amino)-3-oxopropyl)amino)-6,6'-dideoxy- α - α-trehalose (9)

Figure S19: gHSQC spectrum of 6,6'-bis((3-((1-carboxy-2-(1H-imidazol-4-yl)ethyl)amino)-3-oxopropyl)amino)-6, 6^{\prime}-dideoxy- α - α-trehalose (9).

Figure S20: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 6-(($3^{\prime}, 6$ '-dihydroxy-3H-spiro[isobenzofuran-1,9'-xanthen]-3-one$5 y l)$ amino)-6-deoxy- α - α-trehalose (10).

Figure S21: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 6-((3',6'-dihydroxy-3H-spiro[isobenzofuran-1,9'-xanthen]-3-one$5 y l) a m i n o)-6$-deoxy- α - α-trehalose (10); magnification of area between 2.7 and 7.7 ppm .

Figure S22: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of 6-((3',6'-dihydroxy-3H-spiro[isobenzofuran-1,9'-xanthen]-3-one$5 y l)$ amino)-6-deoxy- α - α-trehalose (10).

Figure S23: gCOSY spectrum of 6-((3',6'-dihydroxy-3H-spiro[isobenzofuran-1, 9^{\prime}-xanthen]-3-one-5yl)amino)6 -deoxy- α - α-trehalose (10).

Figure S24: gHSQC spectrum of 6-((3',6'-dihydroxy-3H-spiro[isobenzofuran-1,9'-xanthen]-3-one-5yl)amino)-6-deoxy- α - α-trehalose (10).

Figure S25: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of N -(5-methylisoxazol-3-yl)-4-((6-deoxy- α - α-trehalose-6-
yl)amino)benzenesulfonamide (11).

Figure S26: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of [N -(5-methylisoxazol-3-yl)-4-((6-deoxy- α - α-trehalose-6yl)amino)benzenesulfonamide] (11); magnification of area between 2.0 and 7.8 ppm

Figure S27: ${ }^{13} \mathrm{C}$-NMR spectrum of [N -(5-methylisoxazol-3-yl)-4-((6-deoxy- α - α-trehalose-6yl)amino)benzenesulfonamide] (11).

Figure S28: gCOSY spectrum of [N -(5-methylisoxazol-3-yl)-4-((6-deoxy- α - α-trehalose-6yl)amino)benzenesulfonamide] (11).

Figure S29: gHSQC spectrum of[N-(5-methylisoxazol-3-yl)-4-((6-deoxy- α - α-trehalose-6yl)amino)benzenesulfonamide] (11).

Figure S30: gHMBC spectrum of [N-(5-methylisoxazol-3-yl)-4-((6-deoxy- α - α-trehalose-6yl)amino)benzenesulfonamide] (11).

