Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Gold-Catalyzed Oxidative Cyclization of Amide-Alkynes: Access to Functionalized γ-Lactams

Yi Zheng,† Ting-Ting Zhang,† Wen-Bo Shen*

College of Sciences, Henan Agricultural University, Zhengzhou 450002, China

Content	Page Number
General Information	S2
Preparation of Starting Materials	S 3
General Procedure: Gold Catalysis	S 4
Synthetic Applications	S 18
X-Ray Crystallographic Data	S20
NMR Spectra	S21

General Information. Ethyl acetate (ACS grade), hexanes (ACS grade) and anhydrous 1,2-dichloroethane (ACS grade) were obtained commercially and used without further purification. Methylene chloride, tetrahydrofuran and diethyl ether were purified according to standard methods unless otherwise noted. Commercially available reagents were used without further purification. Reactions were monitored by thin layer chromatography (TLC) using silicycle pre-coated silica gel plates. Flash column chromatography was performed over silica gel (300-400 mesh). Infrared spectra were recorded on a Nicolet iS 10 spectrometer as thin film and are reported in reciprocal centimeter (cm⁻¹). Mass spectra were recorded with Micromass Q-Exactive Focus mass spectrometer using electron spray ionization.

¹H NMR spectra were recorded on a Bruker AV-400 spectrometer in chloroform-d₃. Chemical shifts are reported in ppm with the internal TMS signal at 0.0 ppm as a standard. The data is being reported as (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, brs = broad singlet, coupling constant(s) in Hz, integration).

¹³C NMR spectra were recorded on on a Bruker AV-400 spectrometer in chloroform-d₃. Chemical shifts are reported in ppm with the internal chloroform signal at 77.0 ppm as a standard. **Representative synthetic procedures for the preparation of amide-tethered alkynes 1a-1o:**

(A): Acyl chloride (12.0 mmol) was slowly added to a solution of 2-iodoaniline (10.0 mmol) in 20.0 mL dry THF at room temperature via dropping funnel. The reaction mixture was stirred at room temperature and the progress of the reaction was monitored by TLC. The reaction typically took 24 h. Upon completion, EtOAc (30 mL) was added, and the mixture was washed with 5% NaHCO₃, brine, dried over MgSO₄, and concentrated under reduced pressure to yield the crude iodobenzene **s1**, which was then used in the next step without purification.¹

(**B**): Add Pd(PPh₃)₂Cl₂ (0.2 mmol, 140.4 mg), CuI (0.4 mmol, 76.0 mg) and triethylamine (20.0 mmol, 2020.0 mg) to a solution of the *N*-sulfonyl propargyl amine (10.0 mmol) and iodobenzene **s1** (10.0 mmol) in THF (30.0 mL) at room temperature. The reaction mixture was stirred at room temperature and the progress of the reaction was monitored by TLC. The reaction typically took 12 h. Upon completion, the reaction crude was filtered through a Celite plug and concentrated under vacuum, and the residue was purified by chromatography on silica gel (eluent: petroleum ether/ethyl acetate) to afford the desired substrates **s2**.²

(C): To a mixture of s2 (3.0 mmol), K_3PO_4 (12.0 mmol, 2544.0 mg), CuI (1.5 mmol, 285.0 mg), and DMEDA (3.0 mmol, 264.0 mg) in the reaction vial was added a solution of a respective brominated alkyne (3.3 mmol) in toluene. The reaction mixture was

stirred at room temperature and the progress of the reaction was monitored by TLC. The reaction typically took 3 h. Upon completion, the reaction crude was filtered through a Celite plug and concentrated under vacuum, and the residue was purified by chromatography on silica gel (eluent: petroleum ether/ethyl acetate) to afford the desired enynamide substrates **1a-1o**.²

General procedure for the synthesis of γ-lactams 3:

3,5-Dichloropyridine *N*-oxide **2a** (0.6 mmol, 98.4 mg), PPh₃AuCl (0.01 mmol, 5.0 mg), AgNTf₂ (0.01 mmol, 3.9 mg), and 4Å molecular sieves (40 mg) were added in this order to the amide-tethered alkynes **1** (0.2 mmol) in DCE (4.0 mL) at room temperature. The reaction mixture was stirred at 80 °C (80 °C, heating mantle temperature) and the progress of the reaction was monitored by TLC. The reaction typically took 2 h. Upon completion, the mixture was then concentrated and the residue was purified by chromatography on silica gel (eluent: petroleum ether/ethyl acetate) to afford the desired product **3**.

N-(2-(5-oxo-4-phenyl-1-tosyl-2,5-dihydro-1*H*-pyrrole-3-carbonyl)phenyl)benzamide (3a)

The reaction was conducted with *N*-(2-(3-((4-methyl-*N*-(phenylethynyl)phenyl)sulfonamido)prop-1-yn-1-yl)phenyl)benzamide (**1a**, 0.2 mmol, 101.0 mg), 3,5-dichloropyridine *N*-oxide (**2a**, 0.6 mmol, 98.4 mg), PPh₃AuCl (0.01 mmol, 5.0 mg), AgNTf₂ (0.01 mmol, 3.9 mg), and 4Å molecular sieves (40 mg) in DCE (4.0 mL) at 80 °C (80 °C, heating mantle temperature). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 4:1) yielded **3a** (83.3 mg, 77%) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ (ppm) 12.22 (s, 1H), 8.93 (d, *J* = 8.5 Hz, 1H), 8.10 – 8.04 (m, 4H), 7.62 – 7.53 (m, 4H), 7.48 (d, *J* = 8.0 Hz, 1H), 7.39 – 7.32 (m, 4H), 7.22 – 7.19 (m, 3H), 6.87 (t, *J* = 6.6 Hz, 1H), 4.82 (s, 2H), 2.46 (s, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 196.3, 166.2, 166.1, 147.6, 145.7, 142.2, 137.1, 136.0, 134.7, 134.3, 133.3, 132.4, 129.9, 129.0, 128.9, 128.6, 128.4, 127.5, 122.7, 120.8, 119.7, 50.7, 21.7; IR (neat): 3284 (br), 2924, 1727, 1683, 1624, 1582, 1494, 1449, 1367, 1241, 1183, 1158, 1090, 965, 665; HRMS (ESI) m/z: [M + H]⁺ calcd for C₃₁H₂₅N₂O₅S 537.1479, found 537.1477.

N-(2-(4-(4-fluorophenyl)-5-oxo-1-tosyl-2,5-dihydro-1*H*-pyrrole-3carbonyl)phenyl)benzamide (3b)

The reaction was conducted with N-(2-(3-((N-((4-fluorophenyl)ethynyl)-4methylphenyl)sulfonamido)prop-1-yn-1-yl)phenyl)benzamide (**1b**, 0.2 mmol, 104.6 mg), 3,5-dichloropyridine N-oxide (**2a**, 0.6 mmol, 98.4 mg), PPh₃AuCl (0.01 mmol, 5.0 mg), AgNTf₂ (0.01 mmol, 3.9 mg), and 4Å molecular sieves (40 mg) in DCE (4.0 mL) at 80 °C (80 °C, heating mantle temperature). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 4:1) yielded **3b** (94.8 mg, 85%) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 12.20 (s, 1H), 8.94 (d, J = 8.5 Hz, 1H), 8.10 – 8.03 (m, 4H), 7.63 – 7.55 (m, 4H), 7.47 (d, J = 7.9 Hz, 1H), 7.39 – 7.32 (m, 4H), 6.93 – 6.88 (m, 3H), 4.82 (s, 2H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 196.1, 166.2, 166.0, 163.4 (d, J = 251.0 Hz), 147.5, 145.8, 142.3, 137.3, 134.8, 134.6, 134.3, 133.2, 132.4, 131.0 (d, J = 9.0 Hz), 129.9, 129.0, 128.3, 127.5, 124.5 (d, J = 3.0 Hz), 122.7, 120.9, 119.6, 115.9 (d, J = 22.0 Hz), 50.7, 21.7; IR (neat): 3284 (br), 2924, 1727, 1683, 1626, 1582, 1509, 1495, 1449, 1366, 1297, 1159, 1090, 966, 666; HRMS (ESI) m/z: [M + H]⁺ calcd for C₃₁H₂₄FN₂O₅S 555.1384, found 555.1383.

N-(2-(4-(4-chlorophenyl)-5-oxo-1-tosyl-2,5-dihydro-1*H*-pyrrole-3carbonyl)phenyl)benzamide (3c)

The reaction conducted with N-(2-(3-((N-((4-chlorophenyl)ethynyl)-4was methylphenyl)sulfonamido)prop-1-yn-1-yl)phenyl)benzamide (1c, 0.2 mmol, 107.8 mg), 3,5-dichloropyridine N-oxide (2a, 0.6 mmol, 98.4 mg), PPh₃AuCl (0.01 mmol, 5.0 mg), AgNTf₂ (0.01 mmol, 3.9 mg), and 4Å molecular sieves (40 mg) in DCE (4.0 mL) at 80 °C (80 °C, heating mantle temperature). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 4:1) yielded 3c (77.3 mg, 68%) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 12.20 (s, 1H), 8.95 (d, J = 8.5 Hz, 1H), 8.09 – 8.02 (m, 4H), 7.61 - 7.54 (m, 4H), 7.47 (d, J = 8.0 Hz, 1H), 7.38 (d, J = 7.4 Hz, 2H), 7.30 - 1007.26 (m, 2H), 7.19 (d, J = 6.9 Hz, 2H), 6.91 (t, J = 7.6 Hz, 1H), 4.81 (s, 2H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 196.0, 166.0(2), 165.9(7), 148.1, 145.8, 142.3, 137.4, 136.2, 134.6, 134.5, 134.2, 133.2, 132.4, 130.1, 130.0, 129.0, 128.3, 127.5, 126.8, 122.8, 121.0, 119.5, 50.8, 21.7; IR (neat): 3285 (br), 2925, 1728, 1682, 1626, 1581, 1529, 1494, 1449, 1367, 1297, 1138, 1090, 966, 665; HRMS (ESI) m/z: $[M + H]^+$ calcd for C₃₁H₂₄ClN₂O₅S 571.1089, found 571.1088.

N-(2-(4-(4-bromophenyl)-5-oxo-1-tosyl-2,5-dihydro-1*H*-pyrrole-3carbonyl)phenyl)benzamide (3d)

The N-(2-(3-((N-((4-bromophenyl)ethynyl)-4reaction conducted with was methylphenyl)sulfonamido)prop-1-yn-1-yl)phenyl)benzamide (1d, 0.2 mmol, 116.8 mg), 3,5-dichloropyridine N-oxide (2a, 0.6 mmol, 98.4 mg), PPh₃AuCl (0.01 mmol, 5.0 mg), AgNTf₂ (0.01 mmol, 3.9 mg), and 4Å molecular sieves (40 mg) in DCE (4.0 mL) at 80 °C (80 °C, heating mantle temperature). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 4:1) yielded **3d** (82.4 mg, 67%) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 12.19 (s, 1H), 8.95 (d, J = 8.5 Hz, 1H), 8.08 (d, J =7.2 Hz, 2H), 8.03 (d, J = 8.2 Hz, 2H), 7.61 – 7.54 (m, 4H), 7.47 (d, J = 7.9 Hz, 1H), 7.38 -7.34 (m, 4H), 7.22 (d, J = 8.5 Hz, 2H), 6.91 (t, J = 7.6 Hz, 1H), 4.80 (s, 2H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 195.9, 166.0, 165.9, 148.1, 145.8, 142.3, 137.4, 134.6, 134.5, 134.2, 133.2, 132.4, 131.9, 130.3, 129.9, 129.0, 128.3, 127.5, 127.2, 124.6, 122.8, 121.0, 119.5, 50.8, 21.7; IR (neat): 3284 (br), 2923, 1727, 1660, 1605, 1582, 1527, 1464, 1449, 1362, 1298, 1172, 1089, 965, 664; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₃₁H₂₃BrN₂O₅SNa 637.0403, found 637.0399.

N-(2-(5-oxo-4-(*p*-tolyl)-1-tosyl-2,5-dihydro-1*H*-pyrrole-3carbonyl)phenyl)benzamide (3e)

The reaction was conducted with *N*-(2-(3-((4-methyl-*N*-(*p*-tolylethynyl)phenyl)sulfonamido)prop-1-yn-1-yl)phenyl)benzamide (**1e**, 0.2 mmol, 103.8 mg), 3,5-dichloropyridine *N*-oxide (**2a**, 0.6 mmol, 98.4 mg), PPh₃AuCl (0.01 mmol, 5.0 mg), AgNTf₂ (0.01 mmol, 3.9 mg), and 4Å molecular sieves (40 mg) in DCE (4.0 mL) at 80 °C (80 °C, heating mantle temperature). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 4:1) yielded **3e** (86.0 mg, 78%) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ (ppm) 12.25 (s, 1H), 8.93 (d, J = 8.5 Hz, 1H), 8.09 (d, J = 7.1 Hz, 2H), 8.04 (d, J = 7.9 Hz, 2H), 7.61 – 7.56 (m, 4H), 7.49 (d, J = 8.0 Hz, 1H), 7.37 (d, J = 7.8 Hz, 2H), 7.22 (d, J = 7.8 Hz, 2H), 7.00 (d, J = 7.5 Hz, 2H), 6.88 (t, J = 7.6 Hz, 1H), 4.79 (s, 2H), 2.44 (s, 3H), 2.22 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 196.5, 166.4, 166.0, 146.8, 145.6, 142.2, 140.2, 137.0, 135.8, 134.8, 134.3, 133.3, 132.4, 129.9, 129.3, 128.9, 128.8, 128.3, 127.5, 125.5, 122.7, 120.8, 119.8, 50.6, 21.7, 21.3; IR (neat): 3282 (br), 2922, 1727, 1682, 1625, 1581, 1527, 1449, 1365, 1330, 1239, 1173, 1089, 965, 665; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₃₂H₂₆N₂O₅SNa 573.1455, found 573.1450.

N-(2-(4-(4-methoxyphenyl)-5-oxo-1-tosyl-2,5-dihydro-1*H*-pyrrole-3carbonyl)phenyl)benzamide (3f)

The N-(2-(3-((N-((4-methoxyphenyl)ethynyl)-4reaction was conducted with methylphenyl)sulfonamido)prop-1-yn-1-yl)phenyl)benzamide (1f, 0.2 mmol, 107.0 mg), 3,5-dichloropyridine N-oxide (2a, 0.6 mmol, 98.4 mg), PPh₃AuCl (0.01 mmol, 5.0 mg), AgNTf₂ (0.01 mmol, 3.9 mg), and 4Å molecular sieves (40 mg) in DCE (4.0 mL) at 80 °C (80 °C, heating mantle temperature). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 4:1) yielded **3f** (77.1 mg, 68%) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 12.27 (s, 1H), 8.94 (d, J = 7.4 Hz, 1H), 8.10 (d, J =6.7 Hz, 2H), 8.04 (d, J = 8.2 Hz, 2H), 7.62 – 7.55 (m, 4H), 7.50 (d, J = 8.0 Hz, 1H), 7.37 (d, J = 7.3 Hz, 2H), 7.30 (d, J = 6.9 Hz, 2H), 6.88 (t, J = 6.9 Hz, 1H), 6.72 (d, J = 6.9 Hz, 100 Hz)2H), 4.79 (s, 2H), 3.70 (s, 3H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 196.6, 166.6, 166.1, 160.8, 145.7, 145.6, 142.2, 137.0, 135.4, 134.8, 134.4, 133.3, 132.4, 130.5, 129.9, 129.0, 128.3, 127.5, 122.7, 120.8(3), 120.8(0), 119.7, 114.1, 55.2, 50.5, 21.7; IR (neat): 3282 (br), 2924, 1726, 1682, 1605, 1581, 1513, 1449, 1367, 1296, 1255, 1173, 1090, 966, 665; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₃₂H₂₆N₂O₆SNa 589.1404, found 589.1397.

N-(2-(5-oxo-4-(thiophen-3-yl)-1-tosyl-2,5-dihydro-1*H*-pyrrole-3carbonyl)phenyl)benzamide (3g)

The reaction was conducted with *N*-(2-(3-((4-methyl-*N*-(thiophen-3-ylethynyl)phenyl)sulfonamido)prop-1-yn-1-yl)phenyl)benzamide (**1g**, 0.2 mmol, 102.2 mg), 3,5-dichloropyridine *N*-oxide (**2a**, 0.6 mmol, 98.4 mg), PPh₃AuCl (0.01 mmol, 5.0 mg), AgNTf₂ (0.01 mmol, 3.9 mg), and 4Å molecular sieves (40 mg) in DCE (4.0 mL) at 80 °C (80 °C, heating mantle temperature). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 4:1) yielded **3g** (89.1 mg, 82%) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ (ppm) 12.31 (s, 1H), 9.01 (d, *J* = 8.6 Hz, 1H), 8.10 (d, *J* = 7.8 Hz, 2H), 8.03 (d, *J* = 7.2 Hz, 2H), 7.95 – 7.90 (m, 1H), 7.66 – 7.54 (m, 5H), 7.38 (d, *J* = 7.7 Hz, 2H), 7.13 – 7.11 (m, 1H), 6.99 (t, *J* = 7.6 Hz, 1H), 6.91 (d, *J* = 5.1 Hz, 1H), 4.77 (s, 2H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 196.7, 166.2, 166.1, 145.7, 144.9, 142.3, 137.5, 134.7, 134.3, 133.5, 132.4, 129.9, 129.8, 129.0, 128.5, 128.3, 127.5, 126.9, 126.2, 123.0, 121.0, 119.8, 50.7, 21.7; IR (neat): 3289 (br), 2920, 1727, 1628, 1581, 1527, 1449, 1368, 1298, 1243, 1173, 1089, 756, 666; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₂₉H₂₂N₂O₅S₂Na 565.0862, found 565.0856.

N-(2-(5-oxo-4-styryl-1-tosyl-2,5-dihydro-1*H*-pyrrole-3-carbonyl)phenyl)benzamide (3h)

3h The reaction was conducted with *N*-(2-(3-((4-methyl-*N*-(4-phenylbut-3-en-1-yn-1-yl)phenyl)sulfonamido)prop-1-yn-1-yl)phenyl)benzamide (**1h**, 0.2 mmol, 106.2 mg), 3,5-dichloropyridine *N*-oxide (**2a**, 0.6 mmol, 98.4 mg), PPh₃AuC1 (0.01 mmol, 5.0 mg), AgNTf₂ (0.01 mmol, 3.9 mg), and 4Å molecular sieves (40 mg) in DCE (4.0 mL) at 80 °C (80 °C, heating mantle temperature). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 4:1) yielded **3h** (82.8 mg, 74%) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 12.08 (s, 1H), 9.02 (d, *J* = 8.6 Hz, 1H), 8.08 – 8.03 (m, 5H), 7.72 (d, *J* = 7.9 Hz, 2H), 7.62 – 7.53 (m, 4H), 7.40 (d, *J* = 7.8 Hz, 2H), 7.26 – 7.23 (m, 4H), 7.16 (t, *J* = 7.6 Hz, 1H), 6.51 (d, *J* = 16.2 Hz, 1H), 4.78 (s, 2H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 195.2, 166.3, 166.1, 145.7, 144.8, 141.8, 138.8, 137.1, 135.8, 134.9, 134.3, 133.6, 133.1, 132.4, 130.0, 129.4, 129.0, 128.7, 128.3, 127.5, 127.3, 123.0, 121.4(3), 121.3(8), 116.0, 50.2, 21.7; IR (neat): 3286 (br), 2922, 1724, 1682, 1621, 1580, 1525, 1448, 1369, 1239, 1171, 1127, 1088, 911, 666; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₃₃H₂₆N₂O₅SNa 585.1455, found 585.1447.

N-(4-bromo-2-(5-oxo-4-phenyl-1-tosyl-2,5-dihydro-1*H*-pyrrole-3carbonyl)phenyl)benzamide (3i)

The reaction was conducted with *N*-(4-bromo-2-(3-((4-methyl-*N*-(phenylethynyl)phenyl)sulfonamido)prop-1-yn-1-yl)phenyl)benzamide (**1i**, 0.2 mmol, 116.8 mg), 3,5-dichloropyridine *N*-oxide (**2a**, 0.6 mmol, 98.4 mg), PPh₃AuCl (0.01 mmol, 5.0 mg), AgNTf₂ (0.01 mmol, 3.9 mg), and 4Å molecular sieves (40 mg) in DCE (4.0 mL) at 80 °C (80 °C, heating mantle temperature). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 4:1) yielded **3i** (79.5 mg, 65%) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ (ppm) 12.03 (s, 1H), 8.80 (d, *J* = 9.0 Hz, 1H), 8.10 – 8.02 (m, 4H), 7.63 – 7.53 (m, 4H), 7.52 – 7.46 (m, 1H), 7.38 (d, *J* = 7.8 Hz, 2H), 7.27 – 7.24 (m, 5H), 4.84 (s, 2H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 194.8, 166.1, 165.9, 146.4, 145.8, 140.8, 139.3, 138.1, 135.4, 134.6, 134.0, 132.6, 130.3, 130.0, 129.0(2), 128.9(8), 128.7, 128.4, 128.3, 127.4, 122.5, 121.1, 114.8, 50.4, 21.7; IR (neat): 3287 (br), 2922, 1729, 1684, 1627, 1598, 1573, 1492, 1370, 1288, 1239, 1171, 1089, 966, 666; HRMS (ESI) m/z: [M + H]⁺ calcd for C₃₁H₂₄BrN₂O₅S 615.0584, found 615.0580.

N-(4-methyl-2-(5-oxo-4-phenyl-1-tosyl-2,5-dihydro-1*H*-pyrrole-3carbonyl)phenyl)benzamide (3j)

The reaction was conducted with *N*-(4-methyl-2-(3-((4-methyl-*N*-(phenylethynyl)phenyl)sulfonamido)prop-1-yn-1-yl)phenyl)benzamide (**1j**, 0.2 mmol, 103.8 mg), 3,5-dichloropyridine *N*-oxide (**2a**, 0.6 mmol, 98.4 mg), PPh₃AuCl (0.01 mmol, 5.0 mg), AgNTf₂ (0.01 mmol, 3.9 mg), and 4Å molecular sieves (40 mg) in DCE (4.0 mL) at 80 °C (80 °C, heating mantle temperature). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 4:1) yielded **3j** (72.2 mg, 65%) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ (ppm) 12.10 (s, 1H), 8.79 (d, *J* = 8.6 Hz, 1H), 8.08 – 8.04 (m, 4H), 7.60 – 7.53 (m, 3H), 7.38 – 7.20 (m, 9H), 4.83 (s, 2H), 2.45 (s, 3H), 2.07 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 196.0, 166.4, 165.9, 147.7, 145.7, 139.8, 137.8, 136.3, 134.7, 134.4, 133.4, 132.4, 132.3, 129.9(2), 129.8(8), 128.9(0), 128.8(5), 128.6, 128.4, 127.4, 120.8, 119.6, 50.7, 21.7, 20.3; IR (neat): 3289 (br), 2924, 1727, 1679, 1626, 1589, 1522, 1495, 1446, 1366, 1259, 1171, 1090, 969, 666; HRMS (ESI) m/z: [M + H]⁺ calcd for C₃₂H₂₇N₂O₅S 551.1635, found 551.1630.

4-fluoro-*N*-(2-(5-oxo-4-phenyl-1-tosyl-2,5-dihydro-1*H*-pyrrole-3carbonyl)phenyl)benzamide (3k)

The reaction was conducted with 4-fluoro-*N*-(2-(3-((4-methyl-*N*-(phenylethynyl)phenyl)sulfonamido)prop-1-yn-1-yl)phenyl)benzamide (**1k**, 0.2 mmol, 104.6 mg), 3,5-dichloropyridine *N*-oxide (**2a**, 0.6 mmol, 98.4 mg), PPh₃AuCl (0.01 mmol, 5.0 mg), AgNTf₂ (0.01 mmol, 3.9 mg), and 4Å molecular sieves (40 mg) in DCE (4.0 mL) at 80 °C (80 °C, heating mantle temperature). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 4:1) yielded **3k** (72.1 mg, 65%) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ (ppm) 12.21 (s, 1H), 8.89 (d, *J* = 8.5 Hz, 1H), 8.12 – 8.09 (m, 2H), 8.05 (d, *J* = 7.9 Hz, 2H), 7.55 (t, *J* = 7.9 Hz, 1H), 7.48 (d, *J* = 8.0 Hz, 1H), 7.38 (d, *J* = 7.8 Hz, 2H), 7.32 (d, *J* = 6.3 Hz, 2H), 7.26 – 7.22 (m, 5H), 6.87 (t, *J* = 7.4 Hz, 1H), 4.82 (s, 2H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 196.4, 166.2, 165.3 (d, *J* = 251.0 Hz), 164.9, 147.5, 145.8, 142.2, 137.2, 136.1, 134.7, 133.4, 130.5 (d, *J* = 3.0 Hz), 129.9, 129.9 (d, *J* = 9.0 Hz), 128.9, 128.6, 128.4, 122.8, 120.8, 119.6, 116.1 (d, *J* = 22.0 Hz), 50.7, 21.7; IR (neat): 3283 (br), 2924, 1728, 1683, 1604, 1583, 1505, 1447, 1367, 1295, 1237, 1172, 1089, 964, 667; HRMS (ESI) m/z: [M + H]⁺ calcd for C₃₁H₂₄FN₂O₅S 555.1384, found 555.1382.

4-chloro-*N*-(2-(5-oxo-4-phenyl-1-tosyl-2,5-dihydro-1*H*-pyrrole-3carbonyl)phenyl)benzamide (3l)

The reaction was conducted with 4-chloro-*N*-(2-(3-((4-methyl-*N*-(phenylethynyl)phenyl)sulfonamido)prop-1-yn-1-yl)phenyl)benzamide (**1**l, 0.2 mmol, 107.8 mg), 3,5-dichloropyridine *N*-oxide (**2a**, 0.6 mmol, 98.4 mg), PPh₃AuCl (0.01 mmol, 5.0 mg), AgNTf₂ (0.01 mmol, 3.9 mg), and 4Å molecular sieves (40 mg) in DCE (4.0 mL) at 80 °C (80 °C, heating mantle temperature). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 4:1) yielded **3**l (85.5 mg, 75%) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ (ppm) 12.23 (s, 1H), 8.89 (d, J = 8.5 Hz, 1H), 8.03 (t, J = 7.5 Hz, 4H), 7.56 – 7.52 (m, 3H), 7.48 (d, J = 8.0 Hz, 1H), 7.38 (d, J = 7.8 Hz, 2H), 7.31 (d, J = 7.3 Hz, 2H), 7.24 – 7.20 (m, 3H), 6.87 (t, J = 7.6 Hz, 1H), 4.81 (s, 2H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 196.4, 166.2, 164.9, 147.5, 145.8, 142.0, 138.8, 137.2, 136.1, 134.7, 133.4, 132.7, 129.9, 129.2, 128.9, 128.6, 128.4, 122.9, 120.8, 119.6, 50.7, 21.7; IR (neat): 3283 (br), 2924, 1728, 1685, 1624, 1584, 1530, 1490, 1448,

1367, 1239, 1172, 1093, 965, 666; HRMS (ESI) m/z: $[M + H]^+$ calcd for $C_{31}H_{24}ClN_2O_5S$ 571.1089, found 571.1083.

4-bromo-*N*-(2-(5-oxo-4-phenyl-1-tosyl-2,5-dihydro-1*H*-pyrrole-3carbonyl)phenyl)benzamide (3m)

3m

The reaction was conducted with 4-bromo-*N*-(2-(3-((4-methyl-*N*-(phenylethynyl)phenyl)sulfonamido)prop-1-yn-1-yl)phenyl)benzamide (**1m**, 0.2 mmol, 116.8 mg), 3,5-dichloropyridine *N*-oxide (**2a**, 0.6 mmol, 98.4 mg), PPh₃AuCl (0.01 mmol, 5.0 mg), AgNTf₂ (0.01 mmol, 3.9 mg), and 4Å molecular sieves (40 mg) in DCE (4.0 mL) at 80 °C (80 °C, heating mantle temperature). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 4:1) yielded **3m** (97.3 mg, 79%) as a yellow solid (mp 165-167 °C).

¹H NMR (400 MHz, CDCl₃) δ (ppm) 12.23 (s, 1H), 8.88 (d, *J* = 8.5 Hz, 1H), 8.05 (d, *J* = 7.7 Hz, 2H), 7.95 (d, *J* = 7.7 Hz, 2H), 7.69 (d, *J* = 7.6 Hz, 2H), 7.54 (t, *J* = 7.9 Hz, 1H), 7.48 (d, *J* = 8.0 Hz, 1H), 7.38 (d, *J* = 7.9 Hz, 2H), 7.31 (d, *J* = 7.2 Hz, 2H), 7.22 – 7.19 (m, 3H), 6.87 (t, *J* = 7.6 Hz, 1H), 4.81 (s, 2H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 196.4, 166.2, 165.0, 147.5, 145.8, 142.0, 137.2, 136.1, 134.7, 133.4, 133.2, 132.2, 129.9, 129.0, 128.9, 128.6, 128.4, 127.3, 122.9, 120.8, 119.6, 50.7, 21.7; IR (neat): 3282 (br), 2924, 1728, 1684, 1606, 1585, 1529, 1487, 1448, 1328, 1296, 1172, 1090, 965, 666; HRMS (ESI) m/z: [M + H]⁺ calcd for C₃₁H₂₄BrN₂O₅S 615.0584, found 615.0583.

4-methyl-*N*-(2-(5-oxo-4-phenyl-1-tosyl-2,5-dihydro-1*H*-pyrrole-3carbonyl)phenyl)benzamide (3n)

The reaction was conducted with 4-methyl-*N*-(2-(3-((4-methyl-*N*-(phenylethynyl)phenyl)sulfonamido)prop-1-yn-1-yl)phenyl)benzamide (**1n**, 0.2 mmol, 103.8 mg), 3,5-dichloropyridine *N*-oxide (**2a**, 0.6 mmol, 98.4 mg), PPh₃AuCl (0.01 mmol, 5.0 mg), AgNTf₂ (0.01 mmol, 3.9 mg), and 4Å molecular sieves (40 mg) in DCE (4.0 mL) at 80 °C (80 °C, heating mantle temperature). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 4:1) yielded **3n** (75.5 mg, 69%) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ (ppm) 12.19 (s, 1H), 8.93 (d, J = 8.4 Hz, 1H), 8.05 (d, J = 3.1 Hz, 2H), 7.98 (d, J = 2.8 Hz, 2H), 7.54 – 7.46 (m, 2H), 7.37 – 7.32 (m, 6H), 7.26 – 7.21 (m, 3H), 6.88 – 6.83 (m, 1H), 4.82 (s, 2H), 2.46 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 196.2, 166.3, 166.1, 147.7, 145.7, 143.1, 142.4, 137.1, 135.9, 134.8, 133.3, 131.5, 129.9, 129.6, 128.9, 128.6, 128.4, 127.5, 122.5, 120.8, 119.6, 50.7, 29.7, 21.7, 21.6; IR (neat): 3286 (br), 2922, 1728, 1683, 1610, 1581, 1507, 1447, 1367, 1297, 1240, 1172, 1089, 965, 667; HRMS (ESI) m/z: [M + H]⁺ calcd for C₃₂H₂₇N₂O₅S 551.1635, found 551.1631.

4-methoxy-*N*-(2-(5-oxo-4-phenyl-1-tosyl-2,5-dihydro-1*H*-pyrrole-3carbonyl)phenyl)benzamide (30)

The reaction was conducted with 4-methoxy-*N*-(2-(3-((4-methyl-*N*-(phenylethynyl)phenyl)sulfonamido)prop-1-yn-1-yl)phenyl)benzamide (**1o**, 0.2 mmol,

107.0 mg), 3,5-dichloropyridine *N*-oxide (**2a**, 0.6 mmol, 98.4 mg), PPh₃AuCl (0.01 mmol, 5.0 mg), AgNTf₂ (0.01 mmol, 3.9 mg), and 4Å molecular sieves (40 mg) in DCE (4.0 mL) at 80 °C (80 °C, heating mantle temperature). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 4:1) yielded **3o** (81.4 mg, 72%) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ (ppm) 12.16 (s, 1H), 8.91 (d, J = 8.5 Hz, 1H), 8.07 – 8.03 (m, 4H), 7.53 (t, J = 7.9 Hz, 1H), 7.46 (d, J = 8.0 Hz, 1H), 7.37 (d, J = 8.1 Hz, 2H), 7.32 (d, J = 7.7 Hz, 2H), 7.23 – 7.20 (m, 3H), 7.04 (d, J = 8.6 Hz, 2H), 6.84 (t, J = 7.6 Hz, 1H), 4.81 (s, 2H), 3.90 (s, 3H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 196.2, 166.3, 165.6, 162.9, 147.8, 145.7, 142.6, 137.1, 135.8, 134.8, 133.3, 129.9, 129.5, 128.9, 128.6, 128.4(0), 128.3(6), 126.6, 122.4, 120.7, 119.5, 114.2, 55.5, 50.7, 21.7; IR (neat): 3286 (br), 2923, 1727, 1680, 1606, 1581, 1531, 1447, 1367, 1296, 1251, 1173, 1090, 965, 667; HRMS (ESI) m/z: [M + H]⁺ calcd for C₃₂H₂₇N₂O₆S 567.1584, found 567.1580.

4-benzoyl-3-phenyl-1-tosyl-1,5-dihydro-2*H*-pyrrol-2-one (3p)

3p

This compound is known and the spectroscopic data match those reported.³ ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 6.9 Hz, 2H), 7.67 (d, *J* = 6.8 Hz, 2H), 7.45 (t, *J* = 7.4 Hz, 1H), 7.37 (d, *J* = 7.3 Hz, 2H), 7.30 – 7.26 (m, 4H), 7.19 – 7.13 (m, 3H), 4.80 (s, 2H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 192.5, 166.6, 147.7, 145.6, 136.4, 134.8, 134.4, 134.2, 129.9, 129.7, 129.4, 129.2, 128.7, 128.6, 128.4, 128.3, 50.6, 21.7.

2-oxo-2-phenyl-*N*-(3-phenylprop-2-yn-1-yl)-*N*-tosylacetamide (3pa)

3pa

S16

This compound is known and the spectroscopic data match those reported.⁴ ¹H NMR (400 MHz, CDCl₃) δ 8.00 – 7.94 (m, 4H), 7.65 (t, *J* = 7.3 Hz, 1H), 7.55 – 7.51 (m, 2H), 7.34 – 7.26 (m, 5H), 7.15 (d, *J* = 7.1 Hz, 2H), 4.86 (s, 2H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 187.4, 166.3, 145.9, 134.5(3), 134.4(9), 132.8, 131.7, 129.9, 129.7, 128.9, 128.8, 128.6, 128.1, 121.9, 84.6, 81.6, 34.9, 21.6.

Synthetic Applications

N-(2-(5-oxo-4-phenyl-2,5-dihydro-1H-pyrrole-3-carbonyl)phenyl)benzamide (4)

H₂SO₄ (98%, 8.0 mL) was added to a flame dried *Schlenk*-flask containing **3a** (0.2 mmol, 107.4 mg) at room temperature. The reaction mixture was stirred at room temperature and the progress of the reaction was monitored by TLC. The reaction took 10 h. Upon completion, the solution was diluted with 20 mL EtOAc and neutralized with saturated Na₂CO₃ at 0 °C. The aqueous phase was extracted with EtOAc three times and the combined organic phase was dried with Mg₂SO₄. The solvent was removed under reduced pressure and the residue was purified by chromatography on silica gel (eluent: petroleum ether/ethyl acetate) to afford the desired product **4** (46.6 mg, 61% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 12.31 (s, 1H), 8.91 (d, *J* = 8.4 Hz, 1H), 8.11 (d, *J* = 7.1 Hz, 2H), 7.85 (s, 1H), 7.61 – 7.49 (m, 6H), 7.42 (d, *J* = 3.4 Hz, 2H), 7.26 – 7.24 (m, 2H), 6.84 (t, *J* = 7.5 Hz, 1H), 4.42 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 197.4, 166.1, 148.2, 141.9, 136.4, 134.5, 133.5, 132.3, 129.8, 129.3, 129.0, 128.9, 128.5, 127.5, 122.5, 120.7, 120.4, 47.6; IR (neat): 3277 (br), 2921, 1693, 1621, 1605, 1581, 1526, 1494, 1448, 1384, 1296, 1163, 1088, 911, 697; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₄H₁₉N₂O₃ 383.1390, found 383.1387.

(2-(benzylamino)phenyl)(4-phenyl-1-tosylpyrrolidin-3-yl)methanol (5)

To a mixture of I₂ (0.6 mmol, 152.4 mg), and NaBH₄ (1.2 mmol, 45.6 mg) was added to a solution of compound **3a** (0.2 mmol, 107.4 mg) in DCE (4.0 mL) at room temperature. The reaction mixture was stirred at room temperature and the progress of the reaction was monitored by TLC. Upon completion, the mixture was then concentrated and the residue was purified by chromatography on silica gel (eluent: petroleum ether/ethyl acetate) to afford the desired product **5** (101.4 mg, 99% yield, yellow oil). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.68 (d, *J* = 8.0 Hz, 2H), 7.34 – 7.08 (m, 14H), 6.83 (d, *J* = 7.4 Hz, 1H), 6.66 – 6.62 (m, 2H), 4.52 (d, *J* = 8.5 Hz, 1H), 4.31 – 4.18 (m, 2H), 3.77 – 3.72 (m, 1H), 3.37 – 3.32 (m, 1H), 3.23 – 3.18 (m, 3H), 3.03 – 2.97 (m, 1H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 146.7, 143.6, 141.4, 139.2, 133.4, 129.7, 129.5, 128.8, 128.6, 128.4, 127.7, 127.4, 127.3, 127.1, 127.0, 124.2, 116.7, 111.8, 78.8, 55.4, 50.6, 48.2, 48.0, 47.9, 21.6; IR (neat): 3373 (br), 2921, 1653, 1603, 1515, 1494, 1452, 1384, 1161, 1088, 1042, 1021, 751, 667; HRMS (ESI) m/z: [M + H]⁺ calcd for C₃₁H₃₃N₂O₃S 513.2206, found 513.2203.

Reference

(1) Evindar, G.; Batey, R. A. Parallel synthesis of a library of benzoxazoles and benzothiazoles using ligand-accelerated copper-catalyzed cyclizations of orthohalobenzanilides. *J. Org. Chem.* **2006**, *71*, 1802-1808.

(2) Shen, W.-B.; Tang, X.-T.; Zhang, T.-T.; Liu, S.-Y.; He, J.-M.; Su, T.-F. Cu(I)-catalyzed oxidative cyclization of enynamides: regioselective access to cyclopentadiene frameworks and 2-aminofurans. *Org. Lett.* **2020**, *22*, 6799-6804.

(3) Liu, R.; Winston-McPherson, G. N.; Yang, Z.-Y.; Zhou, X.; Song, W.; Guzei, I. A.; Xu, X.; Tang, W. Generation of rhodium(I) carbenes from ynamides and their reactions with alkynes and alkenes. *J. Am. Chem. Soc.* **2013**, *135*, 8201-8204.

(4) Zhu, G.; Gao, W.-C.; Jiang, X. Rh(I)-catalyzed carbene migration/carbonylation/cyclization: straightforward construction of fully substituted aryne precursors. *J. Am. Chem. Soc.* **2021**, *143*, 1334-1340.

4-bromo-*N*-(2-(5-oxo-4-phenyl-1-tosyl-2,5-dihydro-1*H*-pyrrole-3carbonyl)phenyl)benzamide (3m). CCDC Number = 2049244

Crystal of **3m** was grown by slow evaporation of hexane/dichloromethane solution of **3m** at room temperature (25 °C). X-ray diffraction data was collected at 293 K on a Rigaku Gemini E diffractometer with graded-multilayer focused CuK(alpha) X-rays.

Figure S2. Crystal structure of 3m with thermal ellipsoids at 50% probability

Bond precision:	C-C = 0.0053 A	Wavelength=1.54184			
Cell:	a=10.9570(4) alpha=90	b=29.1941 beta=101.	(10) 076(3)	c=8.9667(3) gamma=90	
Temperature:	293 K				
	Calculated		Reported		
Volume	2814.84(17)		2814.84(18)		
Space group	P 21/C		P 1 21/C 1		
Hall group	-P 2ybc		-P 2ybc		
Moiety formula	C31 H23 Br N2 O5	S	C31 H23 Br	N2 05 S	
Sum formula	C31 H23 Br N2 O5	S	C31 H23 Br	N2 05 S	
Mr	615.47		615.48		
Dx,g cm-3	1.452		1.452		
Z	4		4		
Mu (mm-1)	3.046		3.046		
F000	1256.0		1256.0		
F000'	1257.95				
h,k,lmax	13,34,10		13,34,10		
Nref	5029		5010		
Tmin,Tmax	0.756,0.885		0.664,1.000		
Tmin'	0.518				
Correction method= # Reported T Limits: Tmin=0.664 Tmax=1.000 AbsCorr = MULTI-SCAN					
Data completeness= 0.996 Theta(max) = 67.068					
R(reflections) = 0.0485(3531) wR2(reflections) = 0.1328(5010)					
S = 1.038	Npar=	366			

13.5 12.5 11.5 10.5 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectra of **3p**

----0. 000

----2. 367

-4.861

f1 (ppm) -10

 $<_{7.672}^{7.692}$ 34332332322902201211 1211

--6. 835 -6. 817 -6.655

¹H NMR (400 MHz, CDCl₃) spectra of 5

____/ بر کم کر l r

