Alkylation of Quinoxalin-2(1*H*)-Ones Using Phosphonium Ylides as Alkylating Reagents

Sha Peng, Jun-Jia Liu and Luo Yang*

Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan, 411105, PR China.

E-mail: yangluo@xtu.edu.cn

Table of Content

1. General information	S2
2. Experimental Section	S2
3. Characterization data of products	S4
4. References	S11
5. ¹ H and ¹³ C NMR spectra of products	S13

1. General information

Unless otherwise specified, all reagents and solvents were obtained from commercial suppliers and used without further purification. Dry solvents (toluene, xylene, 1,2-dichloroethane, acetonitrile, *N*,*N*-dimethylformamide, dimethyl sulfoxide, tetrahydrofuran) were used as commercially available. ¹H NMR spectra were recorded at 400 MHz and ¹³C NMR spectra were recorded at 101 MHz by using a Bruker Avance 400 spectrometer. Chemical shifts were calibrated using residual undeuterated solvent as an internal reference (¹H NMR: CDCl₃ 7.26 ppm, ¹³C NMR: CDCl₃ 77.0 ppm). The following abbreviations were used to describe peak splitting patterns when appropriate: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, brs = broad singlet. Mass spectra were performed on a spectrometer operating on ESI-TOF.

2. Experimental Section

General procedure for the preparation of 3-alkylquinoxalin-2(1H)-ones

$$R^{2} \stackrel{\text{II}}{=} N \\ N \\ N \\ N \\ O \\ + R-Ph_{3}PBr$$

$$R^{2} \stackrel{\text{II}}{=} N \\ Toluene, 110^{\circ}C$$

$$R^{2} \stackrel{\text{II}}{=} N \\ N \\ N \\ O \\ R^{1}$$

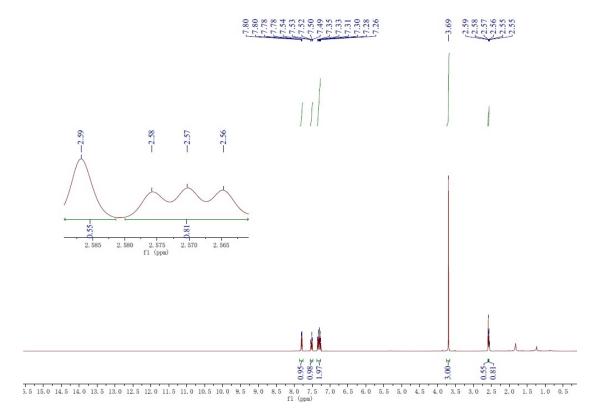
$$R^{1}$$

$$R^{2} \stackrel{\text{II}}{=} N \\ N \\ O \\ R^{1}$$

$$R^{3} \stackrel{\text{II}}{=} N \\ N \\ O \\ R^{1}$$

An oven-dried tube was charged with 1-methylquinoxalin-2(1*H*)-one **1a** (0.048 g, 0.3 mmol), KHCO₃ (0.090 g, 0.9 mmol), methyltriphenylphosphonium bromide **2a** (0.321 g, 0.9 mmol) and toluene (3 mL) at room temperature. The reaction mixture was open to the air and stirred at 110 °C with a condenser for about 24 h. After completion, the reaction mixture was cooled to room temperature and quenched with water (5mL), extracted with EtOAc (5 mL× 3), the solvent was then removed under vacuum. The residue was purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the desired products **3aa**.

Gram-scale synthesis of 3aa


An oven-dried round-bottom flask was charged with 1-methylquinoxalin-2(1*H*)-one **1a** (1.281 g, 8 mmol), KHCO₃ (2.402 g, 24 mmol), methyltriphenylphosphonium bromide **2a** (8.573 g, 24 mmol) and toluene (80 mL) at room temperature. The reaction mixture was open to the air and stirred at 110 °C with a condenser for about 24 h. After completion, the reaction mixture was cooled to room temperature and quenched with water (30 mL), extracted with EtOAc (20 mL× 3), the organic phase was then removed under vacuum. The residue was purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give 1.295 g of **3aa**, yield 93%.

One pot synthesis of 3-ethylquinoxalin-2(1H)-one (3ab)

To an oven-dried round-bottom flask was added ethyl bromide (0.981 g, 9 mmol) and Ph₃P (2.361 g, 9 mmol) in toluene (30 mL), the reaction mixture was stirred at 110 °C with a condenser for 24h under N₂ conditions, the reaction was allowed to room temperature, then, 1-methylquinoxalin-2(1*H*)-one **1a** (0.480 g, 3 mmol) and KHCO₃ (0.901 g, 9 mmol) were added to the reaction mixture, The reaction mixture was open to the air and stirred at 110 °C with a condenser for about 24 h. After completion, the reaction mixture was cooled to room temperature and quenched with water (20mL), extracted with EtOAc (10 mL× 3), the solvent was then removed under vacuum. The residue was purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give 0. 412 g of **3ab**, total yield 73%, based on 1-methylquinoxalin-2(1*H*)-one.

KIE experiment

An oven-dried tube was charged with 1-methylquinoxalin-2(1*H*)-one **1a** (0.048 g, 0.3 mmol), KHCO₃ (0.090 g. 0.9 mmol), trideuteromethylphenylphosphonium bromide **2f** (0.324 g, 0.9 mmol) and toluene (3 mL) at room temperature. The reaction mixture was open to the air and stirred at 110 °C with a condenser for about 24 h. After completion, the reaction mixture was cooled to room temperature and quenched with water (5 mL), extracted with EtOAc (5 mL× 3), the solvent was then removed under vacuum. The residue was purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the methylated products, the yields of **3af-d2** and **3af** were calculated by ¹H NMR of the isolated mixture. Peak areas at 2.59 ppm (single peak) belong to CH₃ peak of **3af**, the integral value is 0.55 relative to CH₃ peak at 3.69 whose integral value is defined as 3.00, Peak areas at 2.57 ppm (triple peak) belong to CD₂H peak of **3af-d2**, the integral value is 0.81 relative to CH₃ peak at 3.69, the NMR yield of **3af** is (0.55/3)*100% = 18%, and the NMR yield of **3af-d2** is 0.81*100% = 81%. (note: compound **2f** was prepared from CD₃OD and triphenylphosphine hydrobromide according to Hamanaka's work¹)

3. Characterization data of products

1,3-dimethylquinoxalin-2(1H)-one (3aa)²

Purified by using a flash column chromatography; isolated yield = 96%, 50.1 mg; white solid; mp: 86-87 °C. 1 H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 7.9 Hz, 1H), 7.53 (t, J = 7.8 Hz, 1H), 7.37 – 7.28 (m, 2H), 3.71 (s, 3H), 2.60 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 158.4, 155.2, 133.2, 132.6, 129.4, 123.6, 113.6, 29.1, 21.6.

1-ethyl-3-methylquinoxalin-2(1H)-one (3ba)³

Purified by using a flash column chromatography; isolated yield = 86%, 48.5 mg; white solid; mp: 79-80 °C. 1 H NMR (400 MHz, CDCl₃) δ 7.81 (dd, J = 8.2, 1.4 Hz, 1H), 7.55 – 7.48 (m, 1H), 7.36 – 7.29 (m, 2H), 4.31 (q, J = 7.2 Hz, 2H), 2.59 (s, 3H), 1.37 (t, J = 7.2 Hz, 3H); 13 C NMR (101 MHz, CDCl₃) δ 158.4, 154.6, 132.9, 132.1, 129.6, 129.5, 123.4, 113.4, 37.2, 21.5, 12.4.

3-methyl-1-pentylquinoxalin-2(1H)-one (3ca)²

Purified by using a flash column chromatography; isolated yield = 76%, 52.4 mg; colorless liquid. 1 H NMR (400 MHz, CDCl₃) δ 7.80 (dd, J = 7.9, 1.2 Hz, 1H), 7.53 – 7.47 (m, 1H), 7.35 – 7.27 (m, 2H), 4.28 – 4.19 (m, 2H), 2.59 (s, 3H), 1.78 – 1.71 (m, 2H), 1.42 (tt, J = 9.8, 5.0 Hz, 4H), 0.92 (t, J = 7.0 Hz, 3H); 13 C NMR (101 MHz, CDCl₃) δ 158.4, 132.9, 132.4, 129.6, 129.5, 123.3, 113.6, 42.3, 29.1, 26.9, 22.4, 21.5, 13.9.

1-benzyl-3-methylquinoxalin-2(1H)-one (3da)4

Purified by using a flash column chromatography; isolated yield = 96%, 72.0 mg; white solid; mp: 88-89 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.78 (m, 1H), 7.43 – 7.36 (m, 1H), 7.34 – 7.21 (m, 7H), 5.50 (s, 2H), 2.66 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.5, 155.3, 135.2, 132.9, 132.5, 129.6, 129.5, 128.9, 127.7, 126.8, 123.6, 114.4, 45.9, 21.7.

1-(4-methoxybenzyl)-3-methylquinoxalin-2(1H)-one (3ea)⁵

Purified by using a flash column chromatography; isolated yield = 94%, 78.9 mg; white solid; mp: 96-98 °C. 1 H NMR (400 MHz, CDCl₃) δ 7.87 – 7.75 (m, 1H), 7.40 (t, J = 8.4 Hz, 1H), 7.31 – 7.25 (m, 2H), 7.19 (d, J = 8.6 Hz, 2H), 6.83 (d, J = 8.7 Hz, 2H), 5.41 (s, 2H), 3.74 (s, 3H), 2.64 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 159.0, 158.4, 155.2, 132.8, 132.5, 129.5, 129.5, 128.3, 127.2, 123.6, 114.3, 114.2, 55.2, 45.3, 21.6.

3-methyl-1-(prop-2-yn-1-yl)quinoxalin-2(1H)-one (3fa)⁶

Purified by using a flash column chromatography; isolated yield = 93%, 55.3 mg; white solid; mp: 131-133 °C..¹H NMR (400 MHz, CDCl₃) δ 7.82 (dd, J = 8.0, 1.2 Hz, 1H), 7.59 – 7.53 (m, 1H), 7.45 (d, J = 8.3 Hz, 1H), 7.40 – 7.34 (m, 1H), 5.06 (s, 2H), 2.60 (s, 3H), 2.29 (t, J = 2.5 Hz, 1H); 13 C NMR (101 MHz, CDCl₃) δ 158.2, 154.1, 132.8, 131.6, 129.7, 129.5, 124.0, 114.1, 73.2, 31.5, 21.5.

ethyl 2-(3-methyl-2-oxoquinoxalin-1(2H)-yl)acetate (3ga)5

Purified by using a flash column chromatography; isolated yield = 94%, 69.4 mg; white solid; mp: 128-130 °C. 1 H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 8.0 Hz, 1H), 7.49 (t, J = 8.5 Hz, 1H), 7.34 (t, J = 7.6 Hz, 1H), 7.06 (d, J = 8.2 Hz, 1H), 5.03 (s, 2H), 4.25 (q, J = 7.1 Hz, 2H), 2.61 (s, 3H), 1.27 (t, J = 7.1 Hz, 3H); 13 C NMR (101 MHz,

CDCl₃) δ 167.1, 158.2, 154.7, 132.6, 132.3, 129.8, 129.7, 123.9, 113.0, 62.1, 43.5, 21.5.

3-methyl-1-phenylquinoxalin-2(1H)-one (3ha)7

Purified by using a flash column chromatography; isolated yield = 91%, 64.4 mg; white solid; mp: 166-168 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (dd, J = 6.0, 3.5 Hz, 1H), 7.62 (t, J = 7.4 Hz, 2H), 7.55 (t, J = 7.4 Hz, 1H), 7.34 – 7.27 (m, 4H), 6.66 (dq, J = 7.2, 3.7 Hz, 1H), 2.64 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 159.2, 154.9, 135.8, 134.1, 132.4, 130.3, 129.4, 129.2, 129.0, 128.2, 123.8, 115.4, 21.4.

1-(4-fluorophenyl)-3-methylquinoxalin-2(1H)-one (3ia)²

Purified by using a flash column chromatography; isolated yield = 86%, 65.5 mg; white solid; mp: 153-155 °C. 1 H NMR (400 MHz, CDCl₃) δ 8.18 – 7.74 (m, 1 H), 7.35 – 7.26 (m, 6 H), 6.81 – 6.49 (m, 1H), 2.63 (s, 3 H); 13 C NMR (101 MHz, CDCl₃) δ 162.8 (d, J_{C-F} = 251.5 Hz), 159.1, 154.9, 134.0, 132.4, 131.6 (d, J = 3.0 Hz), 130.1 (d, J = 8.9 Hz), 129.4, 129.1, 123.9, 117.4 (d, J = 23.2 Hz), 115.2, 21.4; 19 F NMR (376 MHz, CDCl₃) δ -111.3.

3-methyl-1-(2-oxo-2-phenylethyl)quinoxalin-2(1H)-one (3ja)⁵

Purified by using a flash column chromatography; isolated yield = 64%, 53.4 mg; white solid; mp: 168-170 °C. 1 H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 8.0 Hz, 1H), 7.57 – 7.49 (m, 2H), 7.49 – 7.30 (m, 5H), 7.19 (d, J = 8.3 Hz, 1H), 5.27 (s, 2H), 2.64 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 158.4, 154.9, 140.5, 138.5, 132.8, 129.6, 129.4, 128.6, 128.4, 126.1, 123.7, 114.6, 112.6, 45.7, 21.6.

3-methylquinoxalin-2(1H)-one $(3ka)^6$

$$\bigvee_{N}^{N} \bigcap_{O}^{Me}$$

Purified by using a flash column chromatography; isolated yield = 53%, 25.4 mg; yellow solid; mp: 195-196 °C. 1 H NMR (400 MHz, DMSO- d_{6}) δ 12.30 (s, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.45 (t, J = 7.7 Hz, 1H), 7.26 (d, J = 7.7

Hz, 2H), 2.38 (s, 3H); 13 C NMR (101 MHz, DMSO- d_6) δ 160.0, 155.8, 132.6, 132.4, 130.2, 128.6, 124.0, 116.1, 21.3.

5-chloro-1,3-dimethylquinoxalin-2(1H)-one (3la)

Purified by using a flash column chromatography; isolated yield = 97%, 60.5 mg; white solid; mp: 132-134 °C. 1 H NMR (400 MHz, CDCl₃) δ 7.45 – 7.38 (m, 2H), 7.23 – 7.16 (m, 1H), 3.68 (s, 3H), 2.63 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 159.1, 154.7, 134.6, 134.0, 129.5, 129.2, 124.4, 112.5, 29.5, 21.9; HRMS (ESI): m/z [M+H]⁺ calcd for $C_{10}H_{10}CIN_2O$: 209.0476; found: 209.0481.

6-fluoro-1,3-dimethylquinoxalin-2(1H)-one (3ma)⁵

Purified by using a flash column chromatography; isolated yield = 91%, 52.4 mg; white solid; mp: 147-149 °C. 1 H NMR (400 MHz, CDCl₃) δ 7.50 (dd, J = 8.6, 2.3 Hz, 1H), 7.27 (dd, J = 6.4, 3.6 Hz, 2H), 3.70 (s, 3H), 2.60 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 160.0, 158.5 (d, $J_{\text{C-F}}$ = 244.4 Hz), 154.8, 133.1 (d, $J_{\text{C-F}}$ = 11.1 Hz), 129.9 (d, $J_{\text{C-F}}$ = 2.0 Hz), 117.3 (d, $J_{\text{C-F}}$ = 24.2 Hz), 114.9 (d, $J_{\text{C-F}}$ = 23.2 Hz), 114.7(d, $J_{\text{C-F}}$ = 9.1 Hz), 29.3, 21.7.

6-chloro-1,3-dimethylquinoxalin-2(1H)-one (3na)4

Purified by using a flash column chromatography; isolated yield = 87%, 54.3 mg; white solid; mp: 137-138 °C. 1 H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 2.4 Hz, 1H), 7.47 (dd, J = 8.9, 2.4 Hz, 1H), 7.22 (d, J = 8.9 Hz, 1H), 3.68 (s, 3H), 2.59 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 159.9, 154.8, 133.1, 131.9, 129.6, 128.9, 128.8, 114.7, 29.2, 21.7.

6-bromo-1,3-dimethylquinoxalin-2(1H)-one (3oa)6

Purified by using a flash column chromatography; isolated yield = 92%, 69.5 mg; white solid; mp: 185-187 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 2.1 Hz, 1H), 7.60 (dd, J = 8.9, 2.1 Hz, 1H), 7.16 (d, J = 8.9 Hz, 1H), 3.67 (s, 3H), 2.59 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 159.8, 154.8, 133.4, 132.3, 132.3, 131.9, 116.1, 115.0, 29.2, 21.7.

7-fluoro-1,3-dimethylquinoxalin-2(1H)-one (3pa)4

Purified by using a flash column chromatography; isolated yield = 88%, 50.7 mg; white solid; mp: 131-132 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (dd, J = 8.8, 5.9 Hz, 1H), 7.05 (td, J = 8.5, 2.6 Hz, 1H), 6.98 (dd, J = 10.0, 2.6 Hz, 1H), 3.66 (s, 3H), 2.57 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.9 (d, J_{C-F} = 250.5 Hz), 157.2 (d, J_{C-F} = 4.0 Hz), 155.1, 134.6 (d, J_{C-F} = 12.1 Hz), 131.3 (d, J_{C-F} = 10.1 Hz), 129.3 (d, J_{C-F} = 3.0 Hz), 111.4 (d, J_{C-F} = 23.2 Hz), 100.6 (d, J_{C-F} = 28.3 Hz), 29.3, 21.5.

1,3-dimethyl-7-(trifluoromethyl)quinoxalin-2(1H)-one (3qa)4

Purified by using a flash column chromatography; isolated yield = 93%, 67.5 mg; white solid; mp: 148-150 °C. 1 H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.3 Hz, 1H), 7.56 (d, J = 8.3 Hz, 1H), 7.52 (s, 1H), 3.72 (s, 3H), 2.61 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 161.1, 154.8, 134.2, 133.2, 131.1 (q, J_{C-F} = 33.3 Hz), 130.1, 123.6 (q, J_{C-F} = 273.7 Hz), 120.1 (q, J_{C-F} = 4.0 Hz), 111.0 (q, J_{C-F} = 4.0 Hz), 29.2, 21.8; 19 F NMR (376 MHz, CDCl₃) δ -62.3.

1,3-dimethyl-6-(trifluoromethyl)quinoxalin-2(1H)-one (3ra)2

Purified by using a flash column chromatography; isolated yield = 95%, 69.0 mg; white solid; mp: 135-137 °C. 1 H NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.73 (dd, J = 8.7, 1.8 Hz, 1H), 7.38 (d, J = 8.7 Hz, 1H), 3.71 (s, 3H), 2.60 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 160.1, 155.0, 135.5, 132.0, 126.9 (q, J_{C-F} = 4.0 Hz), 125.7, 123.7 (q, J_{C-F} = 272.7 Hz), 114.2, 29.3, 21.6; 19 F NMR (376 MHz, CDCl₃) δ -62.0.

6-benzoyl-1,3-dimethylquinoxalin-2(1H)-one (3sa)2

Purified by using a flash column chromatography; isolated yield = 90%, 75.1 mg; white solid; mp: 176-178 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 1.9 Hz, 1H), 8.09 (dd, J = 8.7, 1.9 Hz, 1H), 7.80 (d, J = 7.0 Hz, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 7.6 Hz, 2H), 7.42 (d, J = 8.7 Hz, 1H), 3.75 (s, 3H), 2.60 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 195.0, 159.5, 155.1, 137.3, 136.3, 132.6, 132.5, 132.2, 131.5, 130.8, 129.8, 128.4, 114.0, 29.4, 21.6.

7-benzoyl-1,3-dimethylquinoxalin-2(1H)-one (3ta)8

Purified by using a flash column chromatography; isolated yield = 87%, 72.5 mg; white solid; mp: 167-169 °C. 1 H NMR (400 MHz, CDCl₃) δ 7.89 – 7.79 (m, 4H), 7.70 – 7.61 (m, 2H), 7.52 (t, J = 7.6 Hz, 2H), 3.74 (s, 3H), 2.64 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 195.6, 161.0, 155.0, 138.0, 137.0, 134.9, 133.3, 132.9, 130.1, 129.1, 128.5, 125.2, 115.4, 29.3.

methyl 1,3-dimethyl-2-oxo-1,2-dihydroquinoxaline-6-carboxylate (3ua)²

Purified by using a flash column chromatography; isolated yield = 84%, 58.5 mg; white solid; mp: 154-156 °C. 1 H NMR (400 MHz, CDCl₃) δ 8.48 (d, J = 1.9 Hz, 1H), 8.17 (dd, J = 8.7, 1.9 Hz, 1H), 7.33 (d, J = 8.8 Hz, 1H), 3.95 (s, 3H), 3.72 (s, 3H), 2.60 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 166.1, 159.4, 155.1, 136.5, 131.9, 131.2, 130.4, 125.5, 113.7, 52.4, 29.3, 21.7.

1,3,6,7-tetramethylquinoxalin-2(1H)-one (3va)⁶

Purified by using a flash column chromatography; isolated yield = 83%, 50.3 mg; white solid; mp: 140-142 °C. 1 H NMR (400 MHz, CDCl₃) δ 7.54 (s, 1H), 7.05 (s, 1H), 3.67 (s, 3H), 2.56 (s, 3H), 2.39 (s, 3H), 2.33 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 156.9, 155.2, 139.3, 132.5, 131.2, 130.9, 129.4, 114.2, 29.0, 21.5, 20.5, 19.2.

6,7-difluoro-1,3-dimethylquinoxalin-2(1H)-one (3wa)6

Purified by using a flash column chromatography; isolated yield = 74%, 46.6 mg; white solid; mp: 205-207 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (dd, J = 10.2, 8.2 Hz, 1H), 7.09 (dd, J = 11.3, 7.1 Hz, 1H), 3.65 (s, 3H), 2.56 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 159.0 (d, J_{C-F} = 4.0 Hz), 154.7, 150.9 (dd, J_{C-F} = 14.1 Hz, J_{C-F} = 253.5 Hz), 146.6 (dd, J_{C-F} = 14.1 Hz, J_{C-F} = 247.5 Hz), 130.3 (dd, J_{C-F} = 2.0 Hz, J_{C-F} = 9.1 Hz), 128.8 (dd, J_{C-F} = 3.0 Hz, J_{C-F} = 9.1 Hz), 117.1 (dd, J_{C-F} = 2.0 Hz, J_{C-F} = 18.2 Hz), 102.2 (d, J_{C-F} = 23.2 Hz), 29.6, 21.6; 19 F NMR (376 MHz, CDCl₃) δ -131.8 (d, J_{F-F} = 22.6 Hz), -142.2 (d, J_{F-F} = 22.6 Hz).

6,7-dichloro-1,3-dimethylquinoxalin-2(1H)-one (3xa)³

Purified by using a flash column chromatography; isolated yield = 86%, 62.4 mg; white solid; mp: 217-219 °C. 1 H NMR (400 MHz, CDCl₃) δ 7.86 (s, 1H), 7.37 (s, 1H), 3.65 (s, 3H), 2.57 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 160.0, 154.6, 133.6, 132.6, 131.7, 130.3, 115.2, 29.4, 21.7.

1,3-dimethyl-5-phenylpyrazin-2(1H)-one (3ya)9

Purified by using a flash column chromatography; isolated yield = 34%, 20.4 mg; yellow solid; mp: 103-105 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.74 (d, J = 7.5 Hz, 2H), 7.47 – 7.38 (m, 3H), 7.32 (t, J = 7.3 Hz, 1H), 3.60 (s, 3H), 2.56 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 157.1, 156.0, 135.9, 132.4, 128.8, 127.8, 125.0, 124.0, 37.6, 21.1.

3-ethyl-1-methylquinoxalin-2(1H)-one (3ab)10

Purified by using a flash column chromatography; isolated yield = 82%, 46.2 mg; white solid; mp: 95-97 °C. 1 H NMR (400 MHz, CDCl₃) δ 7.83 (dd, J = 8.0, 1.4 Hz, 1H), 7.54 – 7.48 (m, 1H), 7.35 – 7.27 (m, 2H), 3.69 (s, 3H), 2.97 (q, J = 7.4 Hz, 2H), 1.33 (t, J = 7.4 Hz, 3H); 13 C NMR (101 MHz, CDCl₃) δ 161.9, 154.8, 133.0, 132.7, 129.6, 129.5, 123.5, 113.5, 29.0, 27.5, 10.8.

methyl-3-propylquinoxalin-2(1H)-one (3ac)11

Purified by using a flash column chromatography; isolated yield = 76%, 46.1 mg; white solid; mp: 79-81 °C. 1 H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 9.2 Hz, 1H), 7.50 (t, J = 8.5 Hz, 1H), 7.36 – 7.25 (m, 2H), 3.68 (s, 3H), 3.01 – 2.84 (m, 2H), 1.87 – 1.77 (m, 2H), 1.04 (t, J = 7.4 Hz, 3H); 13 C NMR (101 MHz, CDCl₃) δ 161.1, 154.9, 133.0, 132.6, 129.5, 129.5, 123.5, 113.5, 36.2, 29.0, 20.2, 14.0.

3-butyl-1-methylquinoxalin-2(1H)-one (3ad)12

Purified by using a flash column chromatography; isolated yield = 65%, 42.1 mg; white solid; mp: 56-58 °C. 1 H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 7.9 Hz, 1H), 7.52 (t, J = 7.8 Hz, 1H), 7.38 – 7.27 (m, 2H), 3.70 (s, 3H), 2.99 – 2.89 (m, 2H), 1.77 (p, J = 7.7 Hz, 2H), 1.51 – 1.43 (m, 2H), 0.97 (t, J = 7.3 Hz, 3H); 13 C NMR (101 MHz, CDCl₃) δ 161.4, 154.9, 133.1, 132.7, 129.6, 129.5, 123.5, 113.5, 34.1, 29.0, 29.0, 22.7, 14.0.

methyl-3-pentylquinoxalin-2(1H)-one (3ae)10

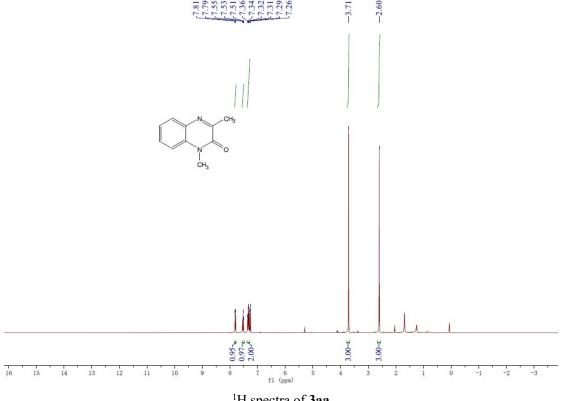
Purified by using a flash column chromatography; isolated yield = 26%, 17.9 mg; white solid; mp: 58-60 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (dd, J = 8.0, 1.3 Hz, 1H), 7.55 – 7.48 (m, 1H), 7.37 – 7.27 (m, 2H), 3.70 (s, 3H), 3.00 - 2.89 (m, 2H), 1.85 - 1.74 (m, 2H), 1.40 (dq, J = 12.9, 6.9 Hz, 4H), 0.91 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 161.4, 154.9, 133.1, 132.7, 129.6, 129.5, 123.5, 113.5, 34.3, 31.8, 29.0, 26.6, 22.5, 14.0.

3-cyclopropyl-1-methylquinoxalin-2(1H)-one (3af)²

Purified by using a flash column chromatography; isolated yield = 46%, 27.6 mg; white solid; mp: 66-68 °C. 1 H NMR (400 MHz, Chloroform-d) δ 7.71 (d, J = 7.9 Hz, 1H), 7.51 – 7.42 (m, 1H), 7.32 – 7.25 (m, 2H), 3.71 (s, 3H), 2.83 (ddd, J = 13.1, 8.2, 4.9 Hz, 1H), 1.21 (dt, J = 7.9, 3.7 Hz, 2H), 1.09 (dq, J = 7.1, 3.6 Hz, 2H); 13 C NMR (101 MHz, Chloroform-d) δ 161.5, 155.2, 132.9, 132.4, 129.2, 128.8, 123.4, 113.4, 29.1, 12.4, 11.1.

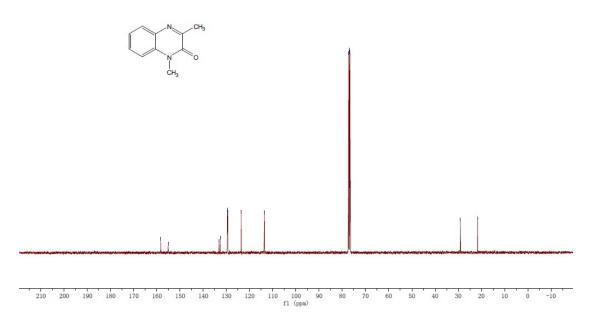
ethyl 2-(6-bromo-3-methyl-2-oxoquinoxalin-1(2H)-yl)acetate (4ca)13

Purified by using a flash column chromatography; isolated yield = 96%, 93.3 mg; white solid; mp: 125-127 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 2.2 Hz, 1H), 7.57 (dd, J = 8.9, 2.2 Hz, 1H), 6.92 (d, J = 8.9 Hz, 1H), 4.98 (s, 2H), 4.24 (q, J = 7.1 Hz, 2H), 2.60 (s, 3H), 1.28 (t, J = 7.1 Hz, 3H); 13 C NMR (101 MHz, CDCl₃) δ 166.8, 159.6, 154.3, 133.5, 132.4, 132.2, 131.5, 116.4, 114.5, 62.2, 43.5, 21.6, 14.1.

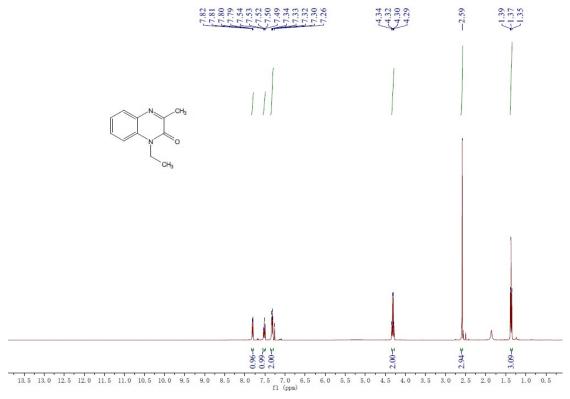

4. Reference

- 1. N. Hamanaka, S. Kosuge and S. Iguchi, *Synlett*, 1990, **1990**, 139-140.
- 2. L.-Y. Xie, L.-L. Jiang, J.-X. Tan, Y. Wang, X.-Q. Xu, B. Zhang, Z. Cao and W.-M. He, *ACS Sustainable Chem. Eng.*, 2019, **7**, 14153-14160.
- 3. S. Jin, H. Yao, S. Lin, X. You, Y. Yang and Z. Yan, Org. Biomol. Chem., 2020, 18, 205-210.
- 4. L. Wang, J. Zhao, Y. Sun, H.-Y. Zhang and Y. Zhang, Eur. J. Org. Chem., 2019, 2019, 6935-6944.
- 5. X. Rong, L. Jin, Y. Gu, G. Liang and Q. Xia, Asian J. Org. Chem., 2020, 9, 185-188.
- 6. W. Xue, Y. Su, K.-H. Wang, R. Zhang, Y. Feng, L. Cao, D. Huang and Y. Hu, *Org. Biomol. Chem.*, 2019, **17**, 6654-6661.
- 7. M. K. Mehra, M. P. Tantak, V. Arun, I. Kumar and D. Kumar, *Org. Biomol. Chem.*, 2017, **15**, 4956-4961.
- 8. M. M. Ali, M. M. F. Ismail, M. S. A. El-Gaby, M. A. Zahran and Y. A. Ammar, *Molecules*, 2000, **5**, 864-873.
- 9. P. Ghosh, N. Y. Kwon, S. Kim, S. Han, S. H. Lee, W. An, N. K. Mishra, S. B. Han and I. S. Kim, Angew.

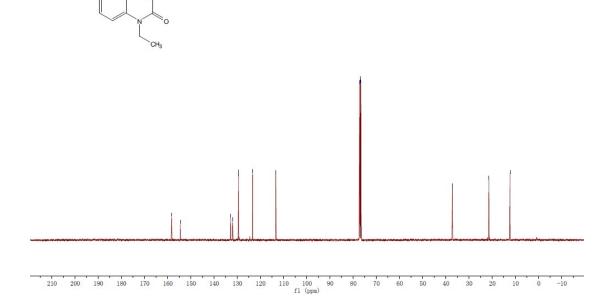
Chem. Int. Ed., 2021, 60, 191-196.


- 10. K. Niu, L. Song, Y. Hao, Y. Liu and Q. Wang, *Chem. Commun.*, 2020, **56**, 11673-11676.
- 11. Z. Yan, B. Sun, X. Zhang, X. Zhuang, J. Yang, W. Su and C. Jin, *Chem. Asian. J*, 2019, **14**, 3344-3349.
- 12. H. Zhang, J. Xu, M. Zhou, J. Zhao, P. Zhang and W. Li, *Org. Biomol. Chem.*, 2019, **17**, 10201-10208.
- 13. H.-A. S. Abbas, A. R. Al-Marhabi, S. I. Eissa and Y. A. Ammar, *Bioorg. Med. Chem.*, 2015, **23**, 6560-6572.

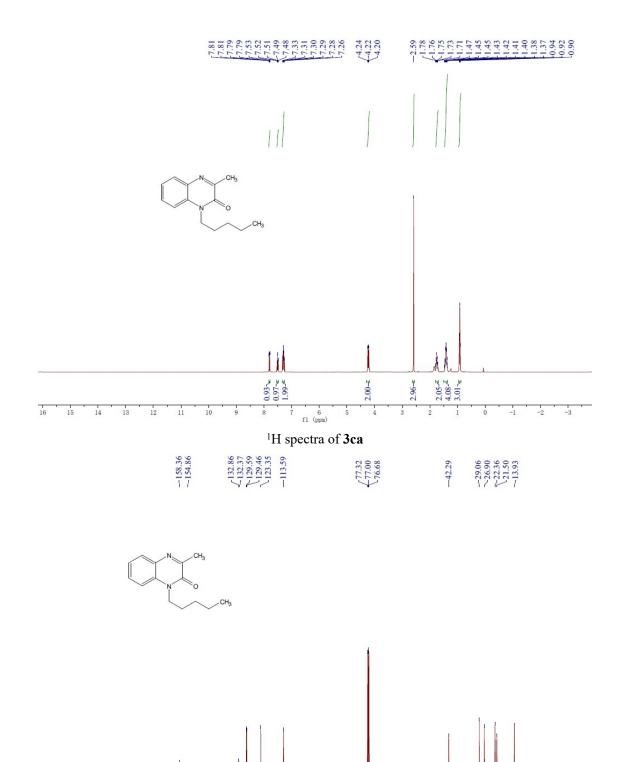
5. ¹H and ¹³C NMR spectra of products



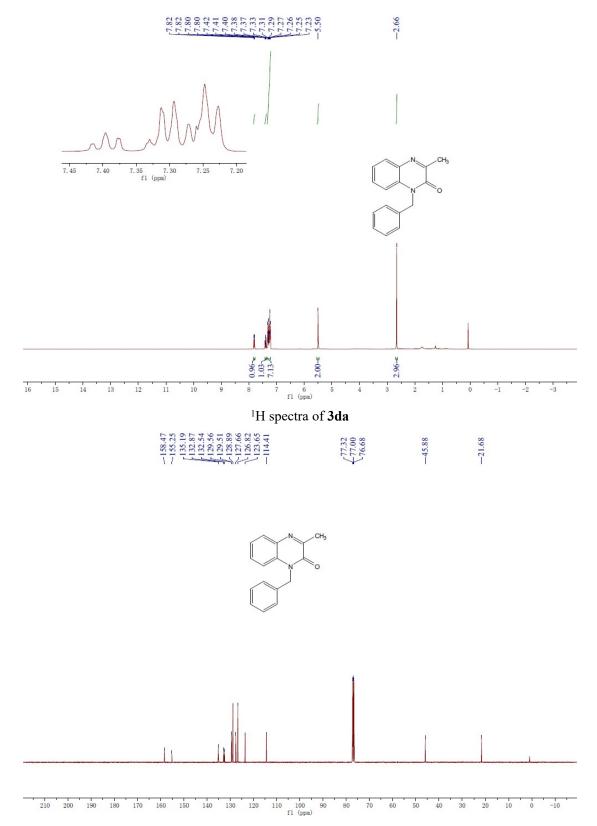
¹H spectra of **3aa**



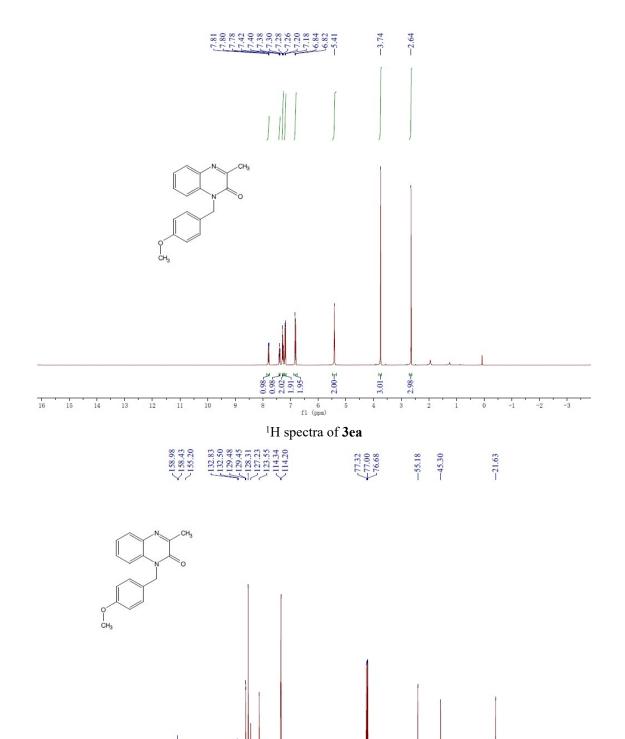
¹³C spectra of **3aa**



¹H spectra of **3ba**

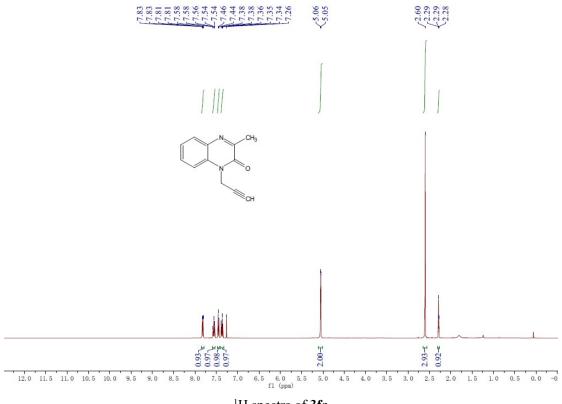


¹³C spectra of **3ba**

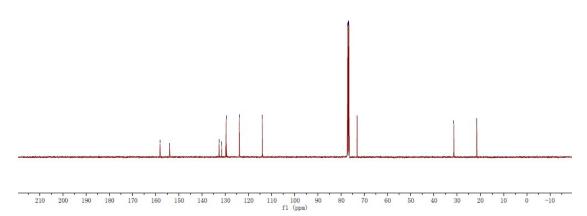


¹³C spectra of **3ca**

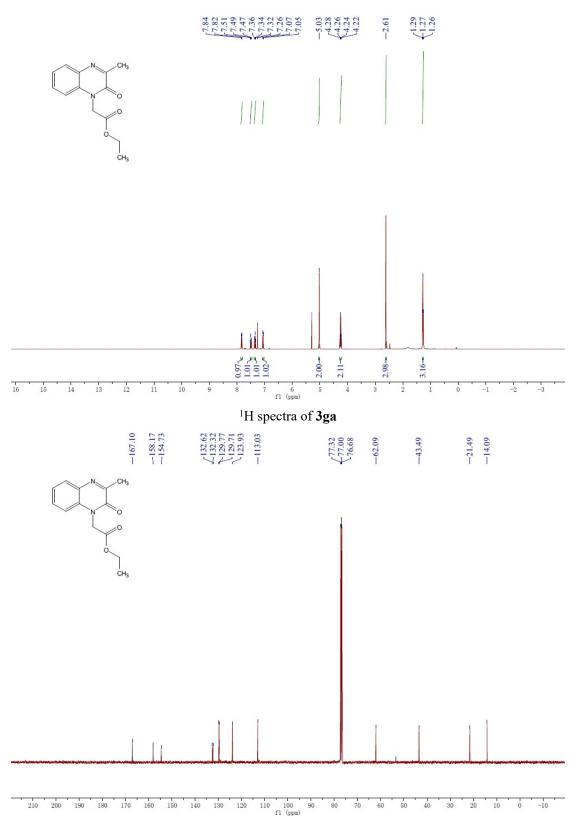
210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 fl (ppm)



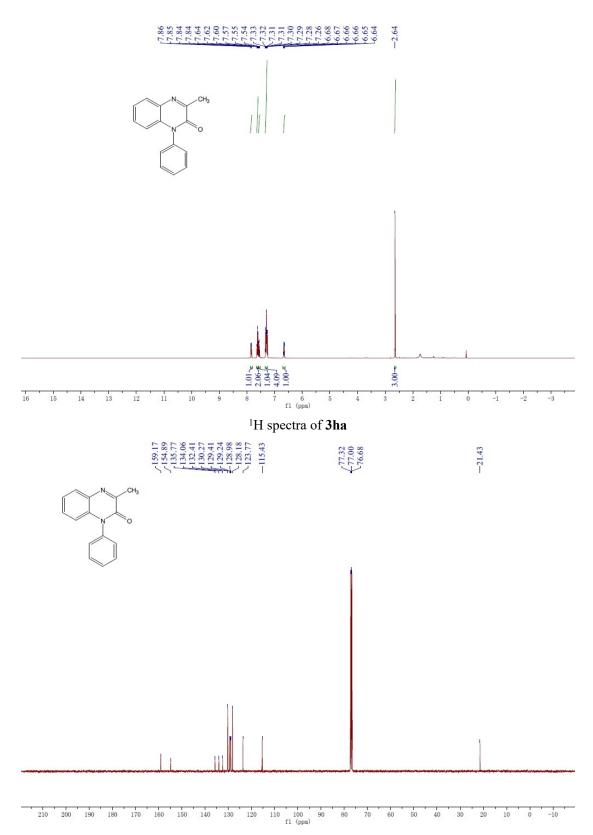
¹³C spectra of **3da**

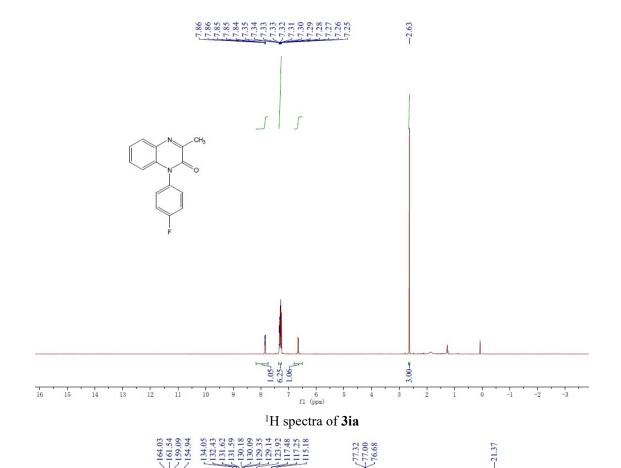

¹³C spectra of **3ea**

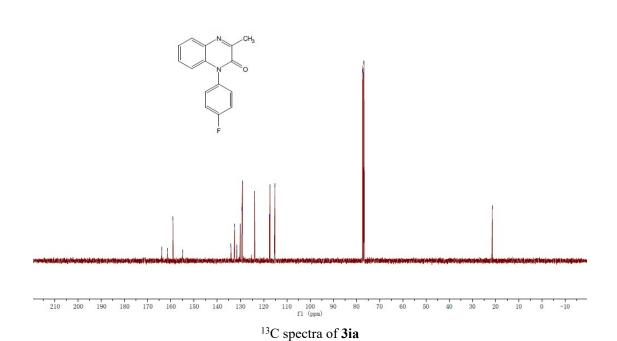
210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 fl (ppm)

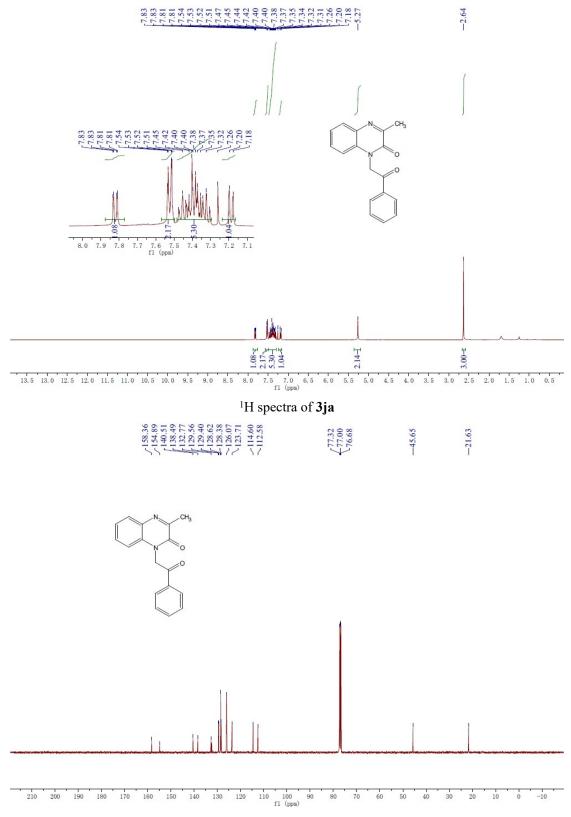


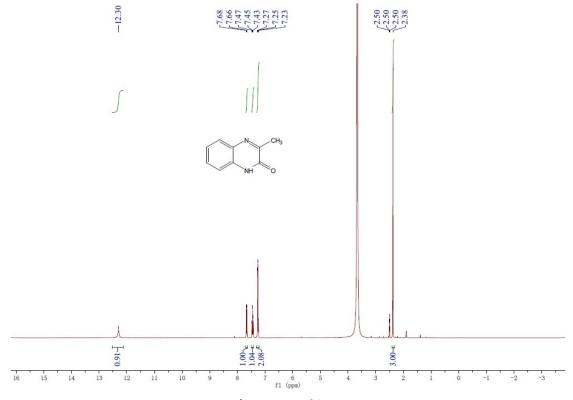
¹H spectra of **3fa**

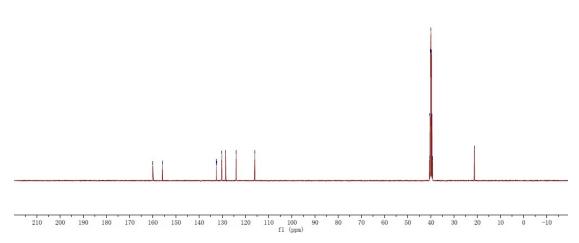


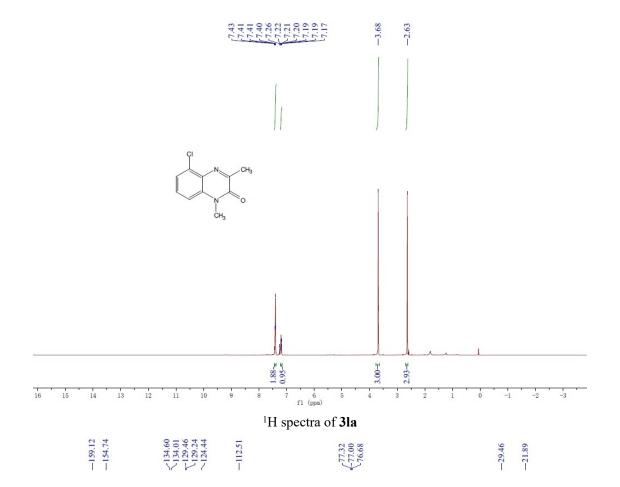

¹H spectra of **3fa**

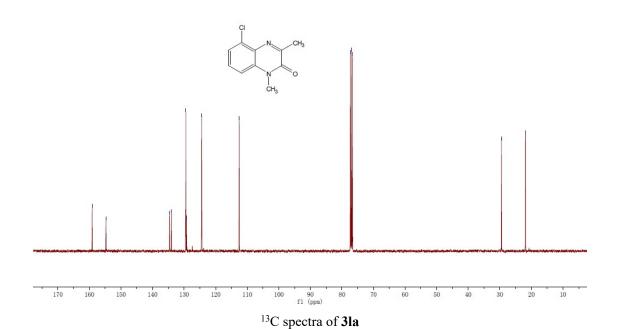


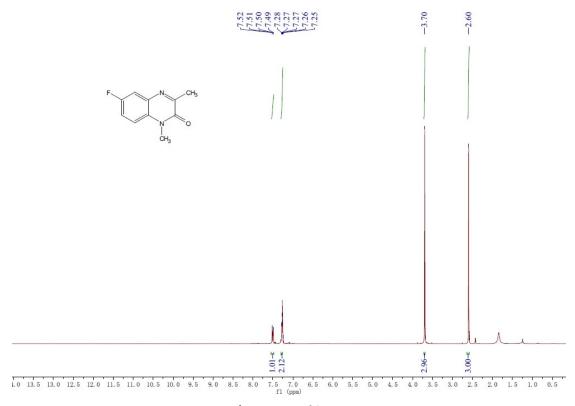

¹³C spectra of **3ga**

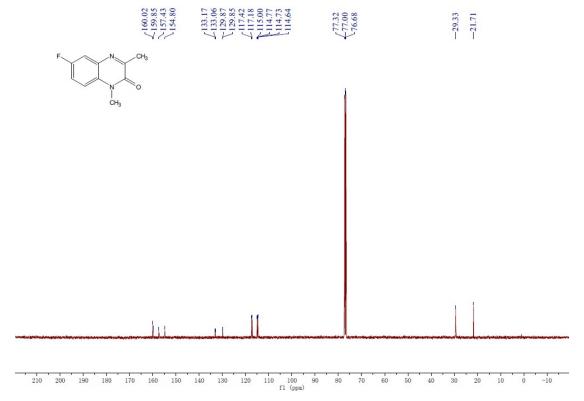

¹³C spectra of **3ha**

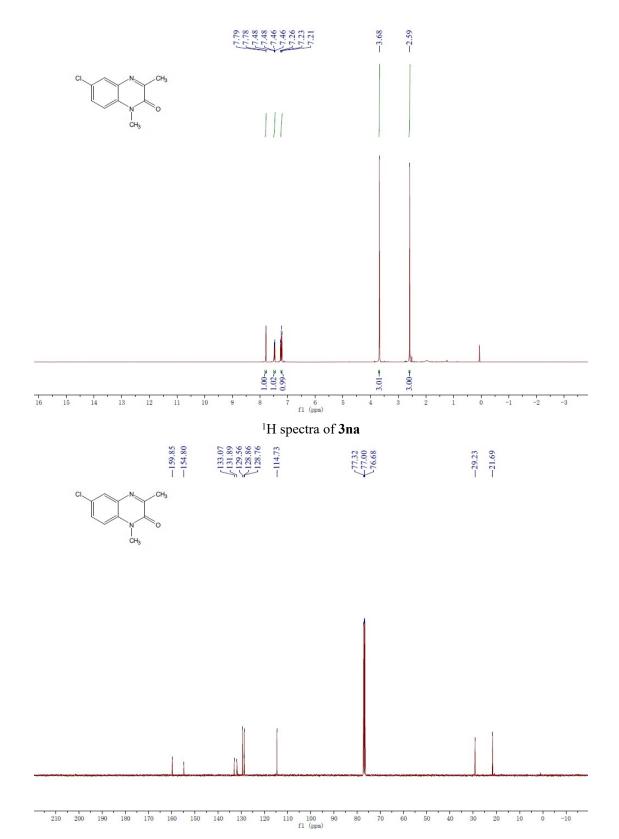

¹³C spectra of **3ja**

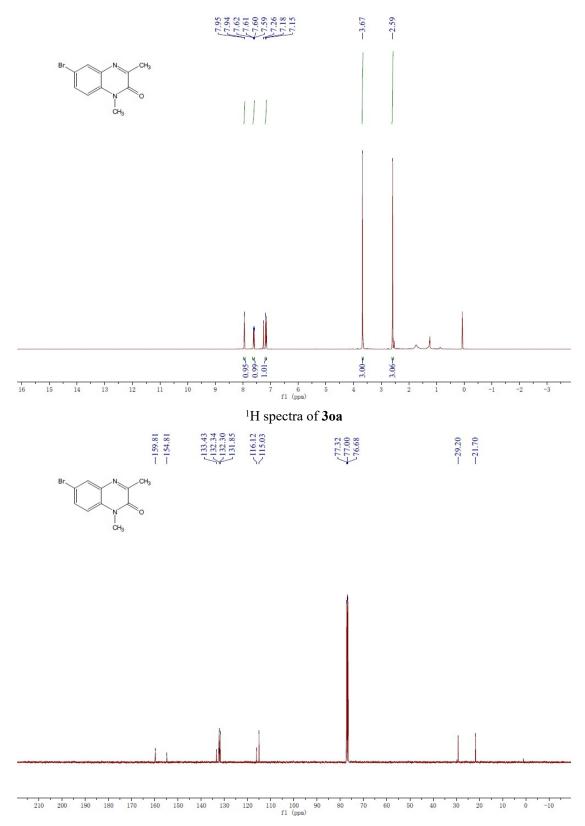

¹H spectra of **3ka**

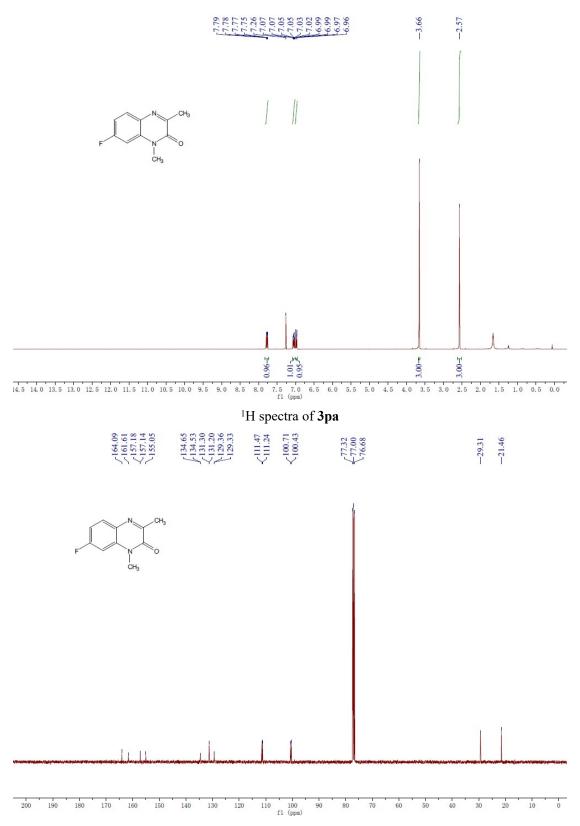


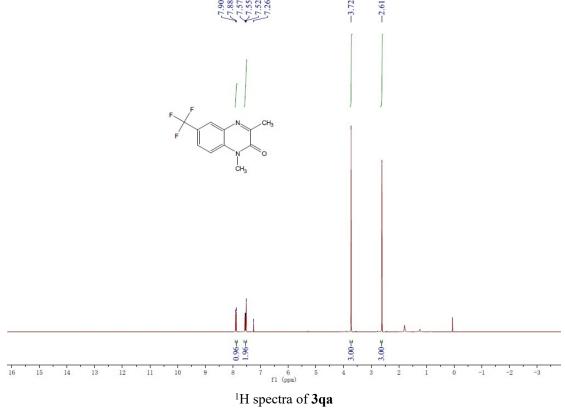


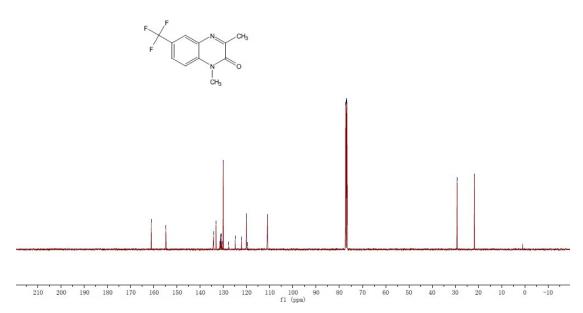

¹³C spectra of **3ka**

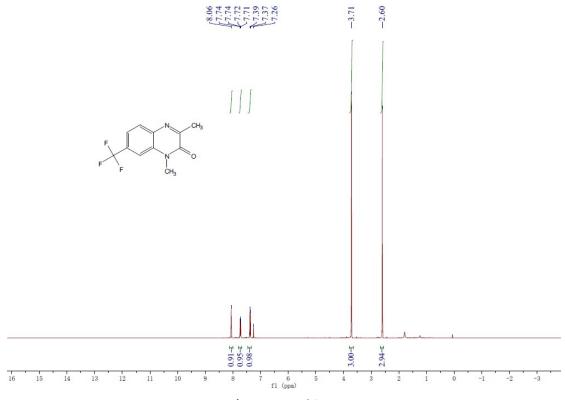


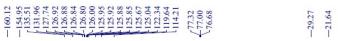

¹H spectra of **3ma**

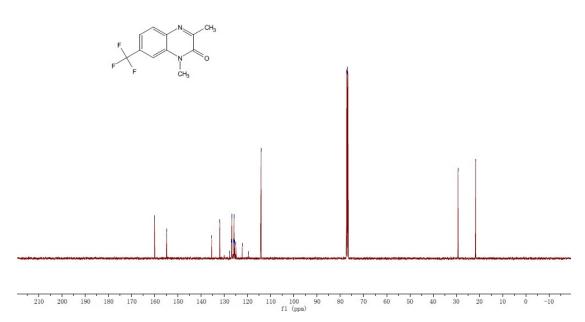

¹³C spectra of **3ma**


¹³C spectra of **3na**

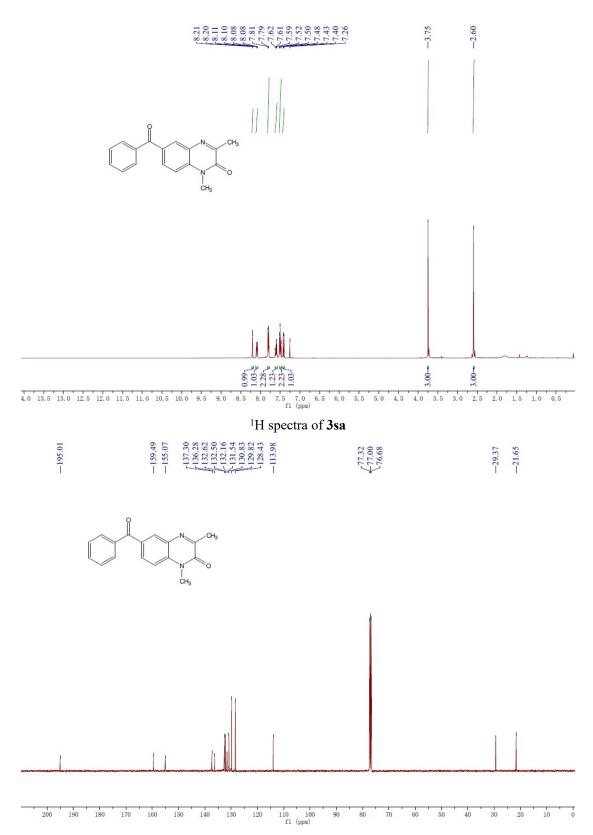

¹³C spectra of **30a**


¹³C spectra of **3pa**

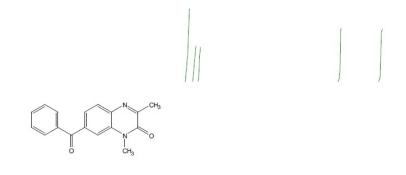


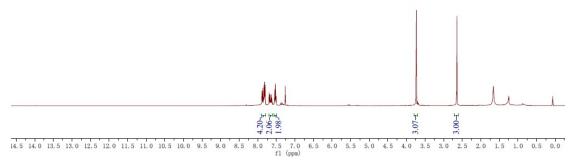


¹³C spectra of **3qa**

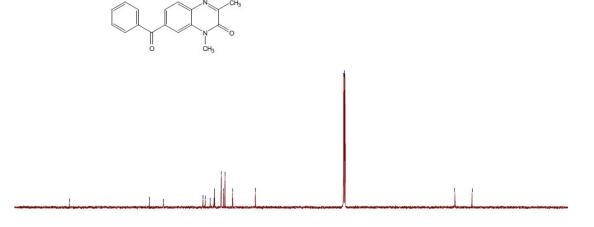


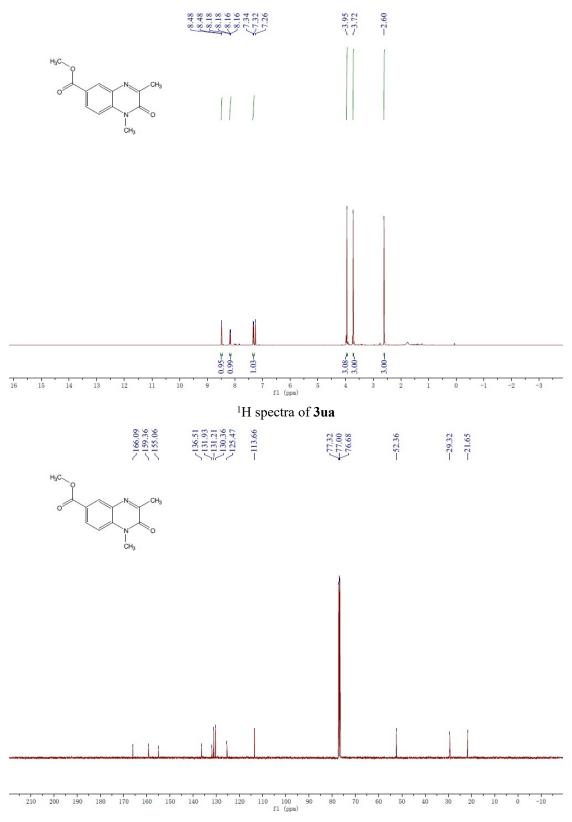
¹H spectra of **3ra**

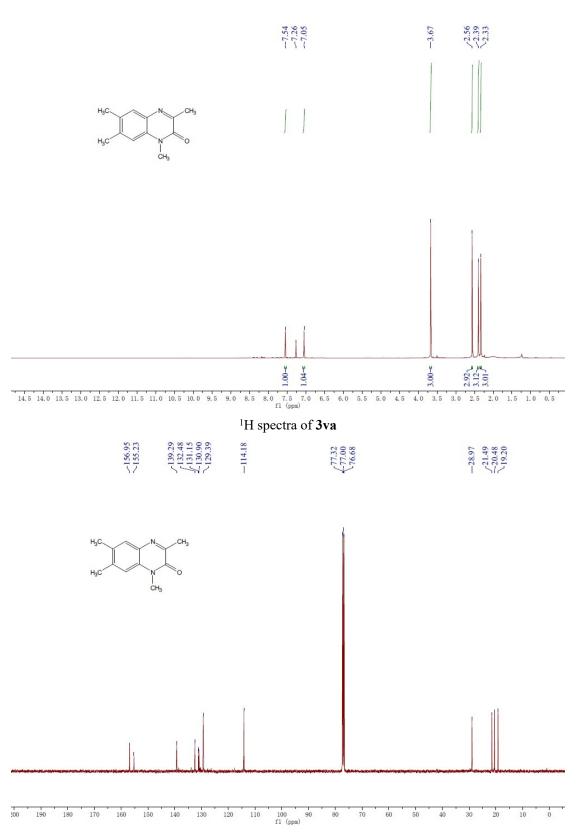




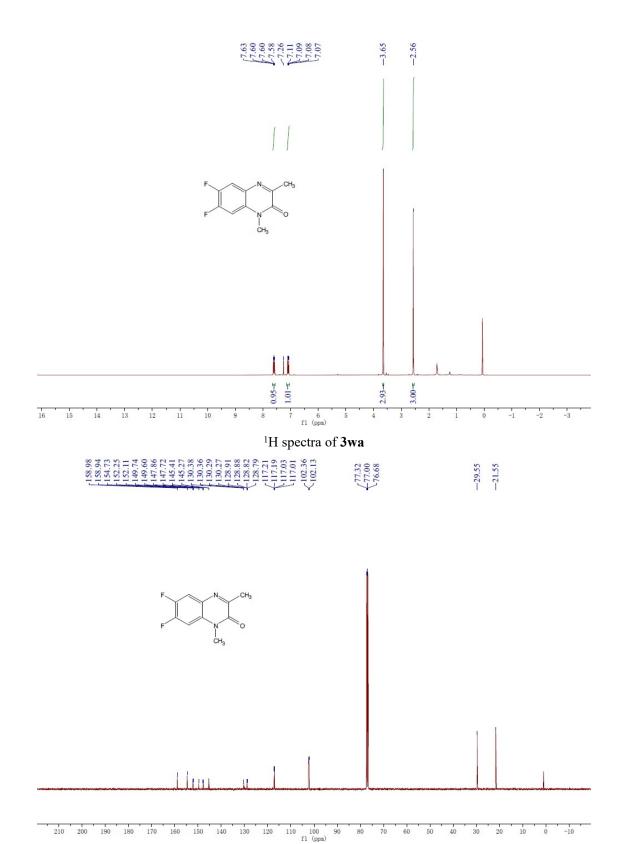
¹³C spectra of **3ra**


¹³C spectra of **3sa**

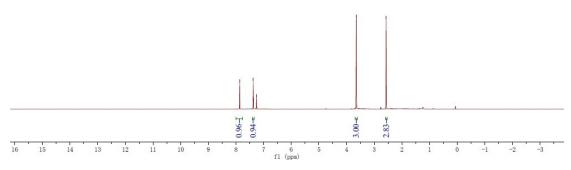

¹H spectra of **3ta**



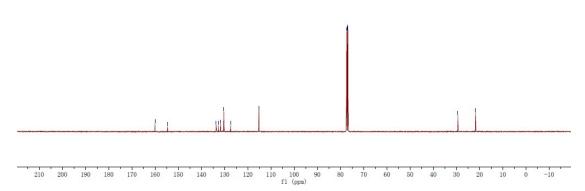
¹³C spectra of **3ta**

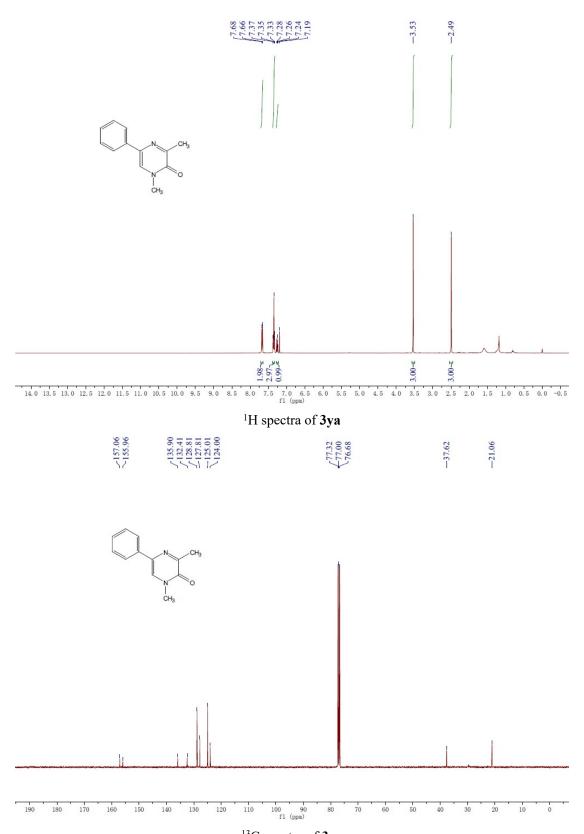

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 fl (ppm)

¹³C spectra of **3ua**

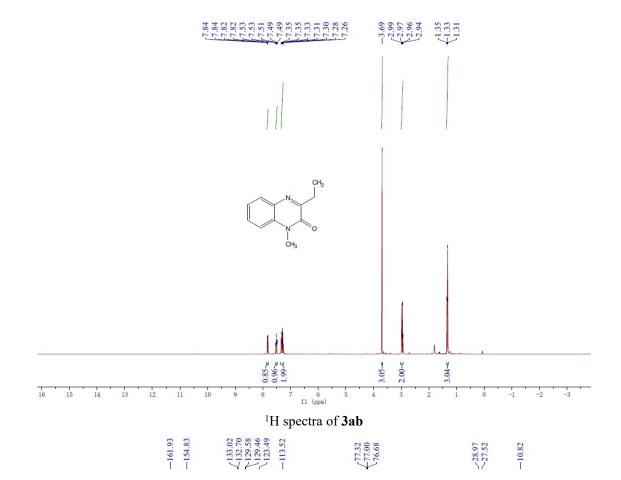


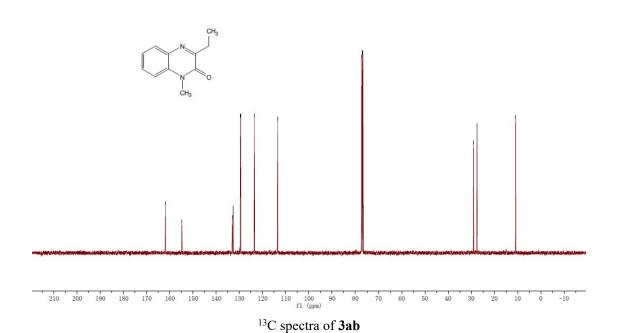
¹³C spectra of **3va**

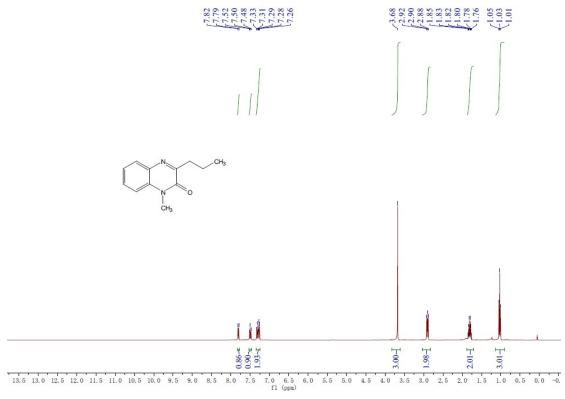

¹H spectra of **3wa**



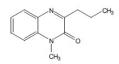
¹H spectra of **3xa**

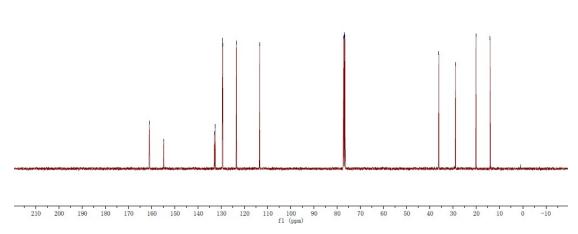

-160.01 -154.60	133.62 132.64 131.70 130.30 127.35 —115.15	77.37 77.05	9.3	-21.73
--------------------	---	---------------------------	-----	--------

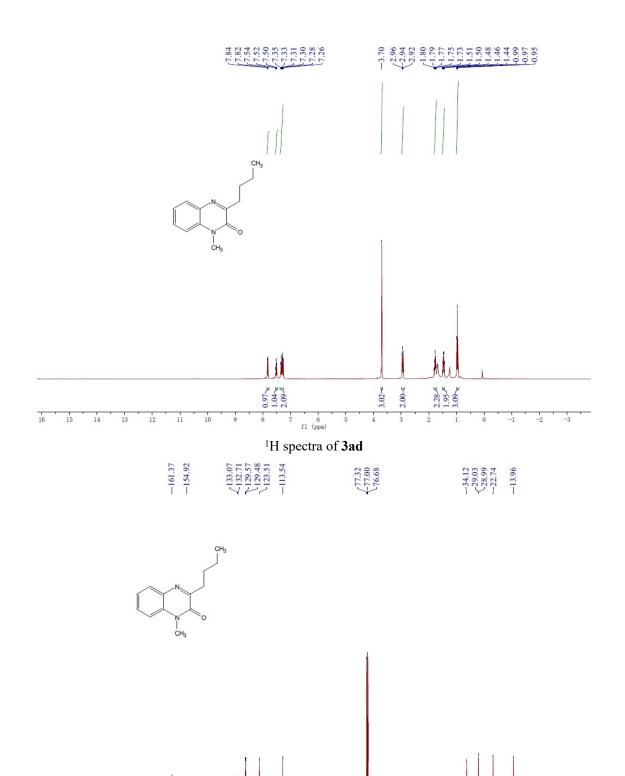



¹³C spectra of **3xa**

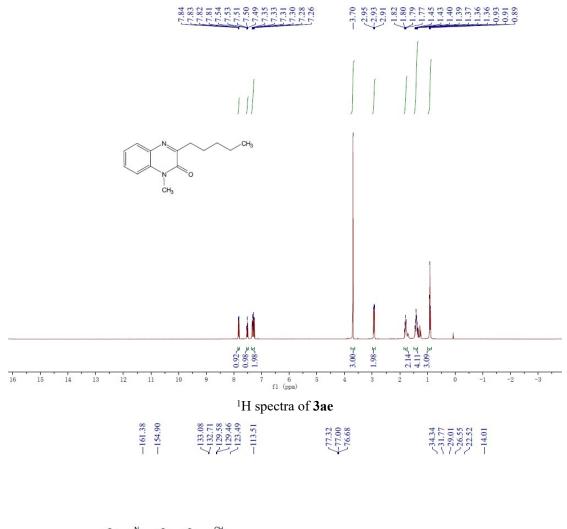
¹³C spectra of **3ya**

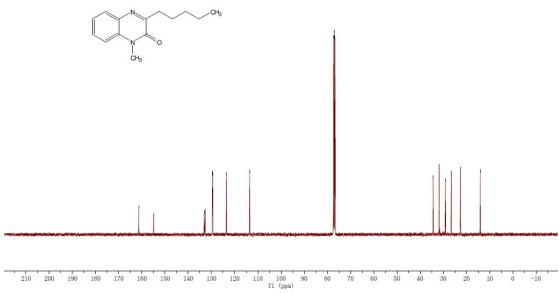


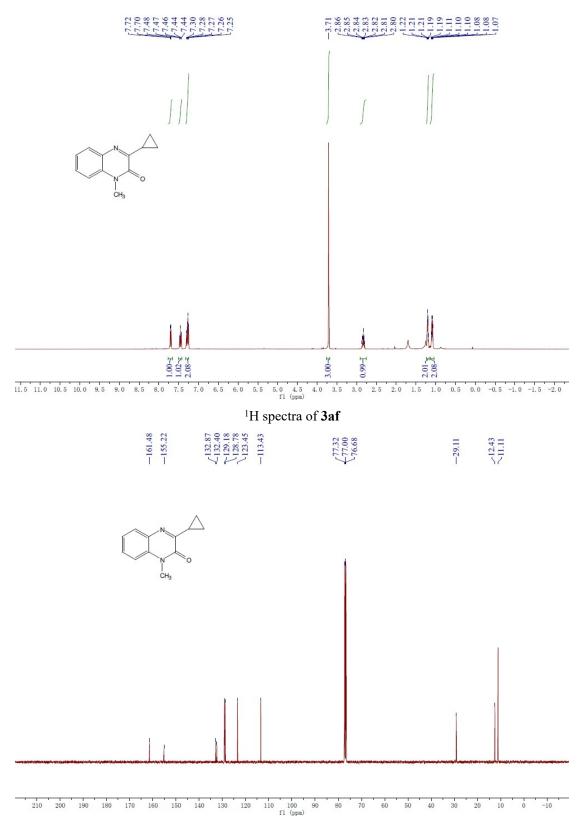



¹H spectra of **3ac**

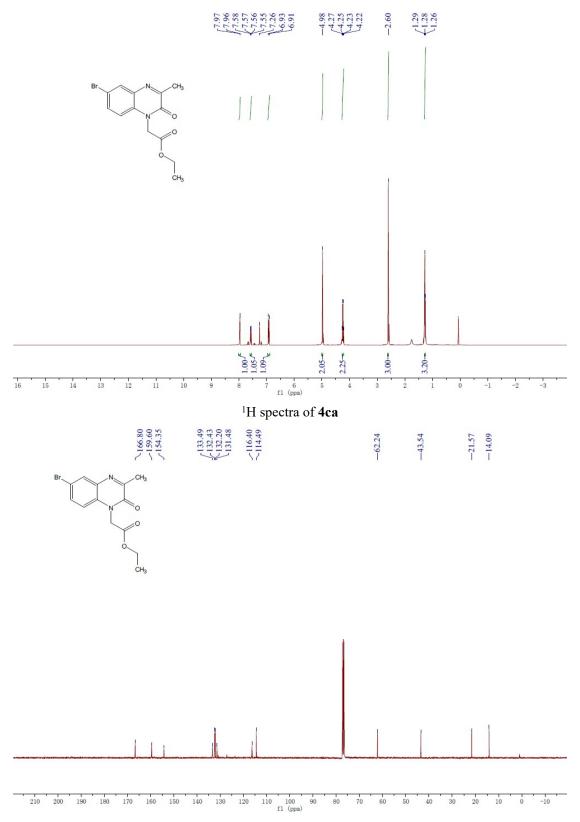
61.10		33.03 32.65 29.54 29.46 23.46 13.49	7.32	.6.20 .8.98 .0.19
_	_			E 2 2 -
		727	—	




¹³C spectra of **3ac**


¹³Cspectra of **3ad**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 fl (ppm)



¹³C spectra of **3ae**

¹³C spectra of **3af**

¹³C spectra of **4ca**