Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

S1

Supporting Information

for

Synthesis of trifluoromethyl-substituted 1,2,6-thiadiazine 1-oxides from sulfonimidamides under mechanochemical conditions

Marco Thomas Passia,^a Jan-Hendrik Schöbel,^a Niklas Julian Lentelink,^a Khai-Nghi Truong,^b Kari Rissanen,^b and Carsten Bolm^{*a}

^a Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany

^b Department of Chemistry, University of Jyvaskyla, P.O. Box 35, Survontie 9B, 40014 Jyväskylä, Finland

E-Mail: Carsten.Bolm@oc.rwth-aachen.de

Table of Content

1. General information and ball mill equipment	S2
2. Procedure and analytical data of starting materials 1a-k and 4b-d	S3
2.1. Synthesis of sulfonimidamides (SIAs, 1a-k)	S3
2.2. Synthesis trifluoromethylketones 4b-d	S14
3. Optimization of the synthesis of 1,2,6-thiadiazine 1-oxide 5aa in solution	S17
4. General procedure for the synthesis of 1,2,6-thiadiazine 1-oxides 5 under	
mechanochemical conditions (GP1)	S18
5. Stability investigation of 1,2,6-thiadiazine 1-oxide 5aa	S19
6. Analytical data of products Analytical data of products 5aa-ka , 5ac , 5fc ,	
5kc, 5ad, 7ka, 3ka, and 8	S22
7. Analytical HPLC chromatogram of 5aa	S30
8. X-ray crystallographic studies (compounds 5aa and 8)	S30
9. References	S32
10. NMR spectra	S33

1. General information and ball mill equipment

Unless otherwise noted, all solution-phase reactions were performed in oven-dried glassware under argon atmosphere and magnetic stirring. Anhydrous solvents were purchased from commercial suppliers as extra dry solvents stored over molecular sieves in sealed bottles or were taken from a MBRAUN[®] solvent purification system. Mechanochemical reactions were carried out in a RETSCH Mixer Mill MM400 in stainless steel jars (V = 5 mL or 10 mL; depending on the reaction scale) loaded with two stainless steel balls (d = 7 mm or 10 mm) under argon atmosphere. Sulfonimidamides **1a-k** and trifluoromethyl ketones **4b-d** were synthesized according to literature procedures (section 2). All other reagents were ordered from commercial suppliers und used without further purification.

The reaction progress was monitored by thin layer chromatography (TLC) on silica gel 60 F_{254} covered aluminum sheets from Merck with UV-indicators and detected under UV-light (λ = 254 nm and 365 nm). Products were purified by flash column chromatography (FCC) on Acros Organics silica gel 60 Å (35 – 70 µm) as stationary phase and solvent mixtures as mobile phase. Nuclear magnetic resonance (NMR) spectra were measured at room temperature in Chloroform-d or DMSO-d₆ on a Bruker Avance Neo 400, Bruker Avance Neo 600, Agilent VNMRS 400 or Agilent VNMRS 600. The chemical shift (δ) is given in parts per million (ppm) and spectra are referenced on the residual solvent peaks (Chloroform-*d*: ¹H-NMR δ = 7.26 ppm, ¹³C-NMR δ = 77.16 ppm; DMSO-*d*₆: ¹H-NMR δ = 2.50 ppm, ¹³C-NMR δ = 39.52 ppm). Multiplicities are abbreviated as m (multiplet), s (singlet), d (doublet), dd (doublet of doublet), dt (doublet of triplet), ddt (doublet of doublet of triplet), t (triplet), td (triplet of doublet), q (quartet), p (quintet), or br (broad) and coupling constants (J) are reported in Hertz (Hz). Melting points (m.p.) were recorded on a Büchi B-540 in open-end capillaries with a heating rate of 2 °C/min. High resolution mass (HRMS) spectra were measured on a Thermo Scientific LTQ Orbitrap XL spectrometer with Orbitrap mass analyzer or Bruker maXis II spectrometer with TOF mass analyzer. The atomic mass and mass to charge ratio (m/z) are given as dimensionless values. Infrared (IR) spectra were recorded on a PerkinElmer 100 FT/IR spectrometer in combination with an UATR device Diamond KRS-5.

2. Procedure and analytical data of starting materials 1a-k and 4b-d

2. 1. Synthesis of sulfonimidamides (SIAs, 1a-k)

According to the literature procedure, sulfonimidamides **1a-k** were synthesized in a three-step reaction sequence from the corresponding sulfonamides.^{S1} All analytical data are in full agreement with the published data.^{S1,S2} Unreported sulfonimidamides **1b-j** were obtained following the same methodology. *N-(tert*-Butyldimethylsilyl)-4-methylbenzenesulfonimidamide (**6a**) and 4-methylbenzenesulfonimidamide (**1a**) were taken from an earlier project and used without further purification.^{S2}

N-(*tert*-Butyldimethylsilyl)benzenesulfonamide (1b-precursor)

Following the protocol from literature,^{S1} the TBS-protected sulfonamide **1b precursor** was obtained from benzenesulfonamide (314 mg, 2.00 mmol, 1.0 equiv.), *tert*-butyldimethylsilyl chloride (362 mg, 2.40 mmol, 1.2 equiv.) and triethylamine (405 mg, 0.556 mL, 4.00 mmol, 2.0 equiv.) as a colorless solid (543 mg, 2.00 mmol, quant.). ¹**H NMR** (600 MHz, DMSO-*d*₆): δ = 7.82–7.80 (m, 2H), 7.65 (s, 1H), 7.60–7.54 (m, 3H), 0.86 (s, 9H), 0.09 (s, 6H) ppm; ¹³C{¹H} NMR (151 MHz, DMSO-*d*₆): δ = 144.6, 131.7, 128.9 (2C), 125.4 (2C), 25.7 (3C), 17.4, -4.5 (2C) ppm; **HRMS (ESI)**: *m/z* calcd. for [C₁₂H₂₁O₂NSSiNa]⁺: 294.0954, found: 294.0947; **IR (ATR)**: *v* = 3345, 3250, 2934, 2888, 2861, 2609, 2496, 2189, 2056, 1914, 1585, 1469, 1447, 1401, 1366, 1336, 1283, 1254, 1151, 1095, 1036, 931, 786, 756, 715, 689 cm⁻¹; **m.p.**: 85–87 °C.

N-(*tert*-Butyldimethylsilyl)benzenesulfonimidamide (6b)

O, N-TBS Following the protocol from literature,^{S1} the TBS-protected sulfonimidamide **6b** NH₂ was obtained from *N*-(*tert*-butyldimethylsilyl)benzenesulfonamide (**1b precursor**, 500 mg, 1.84 mmol, 1.0 equiv.), PPh₃ (531 mg, 2.03 mmol, 1.1 equiv.), C₂Cl₆ (480 mg, 2.03 mmol, 1.1 equiv.), ammonia gas and triethylamine (280 mg, 0.384 mL, 2.76 mmol, 1.5 equiv.) after purification by use of column chromatography on silica gel (*n*-pentane:EtOAc 9/1 to 4/1) as a colorless solid (422 mg, 1.56 mmol, 85%). ¹**H NMR** (600 MHz, DMSO-*d*₆): δ = 7.88–7.84 (m, 2H), 7.52–7.48 (m, 3H), 6.63 (s, 2H), 0.87 (s, 9H), 0.01 (s, 3H), 0.00 (s, 3H) ppm; ¹³C{¹H} NMR (151 MHz, DMSO-*d*₆): δ = 148.34, 130.57, 128.38 (2C), 125.33 (2C), 26.02 (3C), 17.83, -2.46, -2.51 ppm; **HRMS (ESI)**: *m*/*z* calcd. for [C₁₂H₂₂ON₂SSiNa]⁺: 293.1114, found: 293.1109; **IR (ATR)**: *v* = 3319, 3233, 3094, 2955, 2930, 2892, 2856, 2634, 2164, 2047, 1997, 1923, 1811, 1553, 1469, 1442, 1407, 1277, 1142, 1090, 1003, 938, 899, 827, 778, 755, 689 cm⁻¹, **m.p.**: 129–131 °C.

Benzenesulfonimidamide (1b)

Following the protocol from literature, ^{S1} benzenesulfonimidamide (**1b**) was obtained after deprotection with 4 N HCl in dioxane (525 mg, 0.500 mL, 2.00 mmol, 2.0 equiv.) from *N*-(*tert*-butyldimethylsilyl)benzenesulfonimidamide (**6b**, 270 mg, 1.00 mmol, 1.0 equiv.) as a colorless solid (72.5 mg, 0.464 mmol, 46%). ¹H NMR (600 MHz, DMSO-*d*₆): δ = 7.95–7.87 (m, 2H), 7.56–7.45 (m, 3H), 6.63 (br s, 2H) ppm [NH-Proton not detected]; ¹³C{¹H} NMR (151 MHz, DMSO-*d*₆): δ = 146.7, 130.9, 128.4 (2C), 125.8 (2C) ppm; HRMS (ESI): *m/z* calcd. for [C₆H₉ON₂S]⁺: 157.0430, found: 157.0428; **IR (ATR)**: *v* = 3747, 3265, 2962, 2677, 2325, 2162, 2095, 1992, 1895, 1809, 1731, 1670, 1577, 1477, 1442, 1324, 1244, 1151, 1090, 1015, 906, 747, 715, 681 cm⁻¹; **m.p.**: 104–106 °C.

N-(tert-Butyldimethylsilyl)-2-methylbenzenesulfonamide (1c-precursor)

Following the protocol from literature,^{S1} the TBS-protected sulfonamide 1cprecursor was obtained from 2-methylbenzenesulfonamide (1.71 g, 10.0 mmol, 1.0 equiv.), *tert*-butyldimethylsilyl chloride (1.81 g, 12.0 mmol, 1.2 equiv.) and triethylamine (2.02 g, 2.78 mL, 20.0 mmol, 2.0 equiv.) as a pale yellow solid (2.76 g, 9.68 mmol, 97%). ¹H NMR (600 MHz, DMSO-*d*₆): δ = 7.83–7.80 (m, 1H), 7.63 (s, 1H), 7.47 (td, *J* = 7.4, 1.4 Hz, 1H), 7.36 (d, *J* = 7.6 Hz, 2H), 2.60 (s, 3H), 0.89 (s, 9H), 0.07 (s, 6H) ppm; ¹³C{¹H} NMR (151 MHz, DMSO-*d*₆): δ = 142.5, 135.8, 132.1, 131.8, 127.0, 125.8, 25.7 (3C), 19.8, 17.5, -4.6 (2C) ppm; HRMS (ESI): *m/z* calcd. for [C₁₃H₂₃O₂NSSiNa]⁺: 308.1111, found: 308.1107; IR (ATR): *v* = 3223, 2932, 2861, 2725, 2649, 2326, 2199, 2108, 2017, 1911, 1571, 1460, 1359, 1286, 1255, 1166, 1110, 1028, 951, 832, 795, 746, 717, 665 cm⁻¹; m.p.: 92–94 °C.

N-(tert-Butyldimethylsilyl)-2-methylbenzenesulfonimidamide (6c)

N-TBS Following the protocol from literature,^{S1} the TBS-protected sulfonimidamide **6c** was obtained from *N*-(*tert*-butyldimethylsilyl)-2-methylbenzenesulfonamide (**1cprecursor**, 2.57 g, 9.00 mmol, 1.0 equiv.), PPh₃ (2.60 g, 9.90 mmol, 1.1 equiv.),

 C_2CI_6 (2.32 g, 9.90 mmol, 1.1 equiv.), ammonia gas and triethylamine (1.37 g, 1.88 mL, 13.5 mmol, 1.5 equiv.) after purification by use of column chromatography on silica gel (*n*-pentane:EtOAc 9/1 to 4/1) as a colorless solid (832 mg, 2.92 mmol, 33%). ¹**H NMR** (600 MHz,

DMSO-*d*₆): δ = 7.95–7.92 (m, 1H), 7.38 (td, *J* = 7.3, 1.4 Hz, 1H), 7.30 (t, *J* = 7.3 Hz, 2H), 6.62 (s, 2H), 2.64 (s, 3H), 0.87 (s, 9H), 0.01 (s, 3H), 0.00 (s, 3H) ppm; ¹³C{¹H} NMR (151 MHz, DMSO-*d*₆): δ = 146.01, 135.33, 131.99, 130.60, 126.51, 125.53, 26.00 (3C), 20.05, 17.81, –2.56, –2.61 ppm; HRMS (ESI): *m*/*z* calcd. for [C₁₃H₂₄ON₂SSiNa]⁺: 307.1271; found: 307.1264; IR (ATR): *v* = 3385, 3268, 3108, 3064, 2929, 2890, 2855, 2328, 2157, 2029, 1982, 1908, 1711, 1548, 1467, 1311, 1249, 1160, 1073, 1045, 1005, 936, 891, 828, 799, 775, 755, 705, 682 cm⁻¹; m.p.: 93–95 °C.

2-Methylbenzenesulfonimidamide (1c)

Following the protocol from literature,^{S1} 2-methylbenzenesulfonimidamide (1c) was 0, ,NH Me obtained after deprotection with formic acid (2.2 mL) and water (0.2 mL) from ΝH₂ N-(tert-butyldimethylsilyl)-2-methylbenzenesulfonimidamide (**6c**. 142 mg, 0.500 mmol, 1.0 equiv.) as a colorless solid (85.0 mg, 0.499 mmol, quant.). ¹H NMR (600 MHz, DMSO- d_6): δ = 7.99–7.90 (m, 1H), 7.40 (td, J = 7.4, 1.4 Hz, 1H), 7.30 (t, J = 6.7 Hz, 2H), 6.09 (br s, 3H), 2.65 (s, 3H) ppm; ${}^{13}C{}^{1}H$ NMR (151 MHz, DMSO- d_6): δ = 144.6, 135.9, 132.0, 130.9, 126.9, 125.6, 20.2 ppm; **HRMS (ESI)**: *m*/*z* calcd. for [C₇H₁₁ON₂S]⁺: 171.0587, found: 171.0584; **IR (ATR)**: *v* = 3867, 3312, 3279, 3177, 2988, 2627, 2323, 2187, 2064, 1982, 1914, 1829, 1720, 1573, 1455, 1381, 1351, 1314, 1244, 1196, 1140, 1110, 1037, 892, 804, 761, 706, 680 cm⁻¹; **m.p.**: 106-108 °C.

*N-(tert-*Butyldimethylsilyl)-4-methoxybenzenesulfonamide (1d-precursor)

Following the protocol from literature, ^{S1} the TBS-protected sulfonamide **1d precursor** was obtained from 4-methoxybenzenesulfonamide (1.87 g, 10.0 mmol, 1.0 equiv.), *tert*-butyldimethylsilyl chloride (1.81 g, 12.0 mmol, 1.2 equiv.) and triethylamine (2.02 g, 2.78 mL, 20.0 mmol, 2.0 equiv.) as a colorless solid (2.85 g, 9.45 mmol, 95%). ¹**H NMR** (600 MHz, DMSO-*d*₆): $\delta = 7.73$ (dd, J = 10.3, 3.6 Hz, 2H), 7.51 (s, 1H), 7.08 (dd, J = 10.0, 3.1 Hz, 2H), 3.82 (s, 3H), 0.86 (s, 9H), 0.08 (s, 6H) ppm; ¹³C{¹H} **NMR** (151 MHz, DMSO-*d*₆): $\delta = 161.5$, 136.7, 127.5 (2C), 113.9 (2C), 55.5, 25.7 (3C), 17.4, – 4.5 (2C) ppm; **HRMS (ESI)**: *m/z* calcd. for [C₁₃H₂₃O₃NSSiNa]⁺: 324.1060, found: 324.1059; **IR (ATR)**: v = 3441, 3349, 3199, 2933, 2858, 2697, 2610, 2279, 2211, 2177, 2105, 2059, 1976, 1740, 1645, 1594, 1498, 1466, 1413, 1366, 1333, 1305, 1253, 1186, 1140, 1099, 1025, 935, 832, 784, 675 cm⁻¹; **m.p.**: 68–70 °C.

N-(tert-Butyldimethylsilyl)-4-methoxybenzenesulfonimidamide (6d)

Following the protocol from literature,^{S1} the TBS-protected sulfonimidamide N-TBS 6d was obtained from *N-(tert-*butyldimethylsilyl)-4-methoxybenzene-`NH₂ sulfonamide (**1d-precursor**, 2.71 g, 9.00 mmol, 1.0 equiv.), PPh₃ (2.60 g, MeO 9.90 mmol, 1.1 equiv.), C₂Cl₆ (2.32 g, 9.90 mmol, 1.1 equiv.), ammonia gas and triethylamine (1.37 g, 1.88 mL, 13.5 mmol, 1.5 equiv.) after purification by use of column chromatography on silica gel (n-pentane:EtOAc 9/1 to 7/3) as a colorless solid (1.97 g, 6.55 mmol, 73%). ¹H NMR (400 MHz, DMSO- d_6): δ = 7.81–7.76 (m, 2H), 7.04–6.99 (m, 2H), 6.50 (s, 2H), 3.80 (s, 3H), 0.87 (s, 9H), 0.00 (s, 3H), -0.01 (s, 3H) ppm; ${}^{13}C{}^{1}H$ NMR (101 MHz, DMSO- d_6): δ = 160.80, 140.60, 127.33 (2C), 113.39 (2C), 55.46, 26.03 (3C), 17.82, -2.46, -2.50 ppm; HRMS (ESI): m/z calcd. for [C₁₃H₂₄O₂N₂SSiNa]⁺: 323,1220, found: 323,1218; **IR (ATR)**: v = 3364, 3269, 3008, 2930, 2891, 9854, 2290, 2192, 2138, 2055, 2017, 1992, 1954, 1870, 1731, 1592, 1556, 1496, 1462, 1410, 1357, 1276, 1247, 1158, 1148, 1098, 1069, 1025, 961, 935, 875, 828, 772, 722 cm⁻¹; m.p.: 80-82 °C.

4-Methoxybenzenesulfonimidamide (1d)

NH Following the protocol from literature,^{S1} 4-methoxysulfonimidamide (**1d**) was NH₂ obtained after deprotection with 4 N HCl in dioxane (525 mg, 0.500 mL, 2.00 mmol, 2.0 equiv.) from *N*-(*tert*-butyldimethylsilyl)-4-methoxybenzenesulfonamide (**6d**, 301 mg, 1.00 mmol, 1.0 equiv.) as a pale yellow solid (110 mg, 0.591 mmol, 59%). ¹H NMR (600 MHz, DMSO-*d*₆): δ = 7.86–7.79 (m, 2H), 7.05–7.00 (m, 2H), 3.81 (s, 3H) ppm [NH and NH₂ protons not detected]; ¹³C{¹H} NMR (151 MHz, DMSO-*d*₆): δ = 161.1, 138.7, 127.9 (2C), 113.5 (2C), 55.5 ppm; HRMS (ESI): *m*/*z* calcd. for [C₇H₁₁O₂N₂S]⁺: 187.0536, found: 187.0536; IR (ATR): *v* = 3328, 3282, 2924, 2682, 2303, 2174, 2060, 1911, 1723, 1667, 1589, 1491, 1455, 1411, 1305, 1248, 1125, 1058, 1013, 812, 776 cm⁻¹; m.p.: 106–108 °C.

*N-(tert-*Butyldimethylsilyl)-4-chlorobenzenesulfonamide (1e-precursor)

Following the protocol from literature, ^{S1} the TBS-protected sulfonamide **1e precursor** was obtained from 4-chlorobenzenesulfonamide (1.92 g, 10.0 mmol, 1.0 equiv.), *tert*-butyldimethylsilyl chloride (1.81 g, 12.0 mmol, 1.2 equiv.) and triethylamine (2.02 g, 2.78 mL, 20.0 mmol, 2.0 equiv.) as a colorless solid (2.09 g, 9.48 mmol, 95%). ¹H NMR (600 MHz, DMSO-*d*₆): δ = 7.81 (dd, *J* = 8.9, 2.3 Hz, 2H), 7.67–7.62 (m, 2H), 7.47 (s, 1H), 0.86 (s, 9H), 0.09 (s, 6H) ppm; ¹³C{¹H} NMR (151 MHz, DMSO-*d*₆): δ = 143.5, 136.4, 129.1 (2C), 127.4(2C), 25.6 (3C), 17.4, -4.6 (2C) ppm; **HRMS (ESI)**: m/z calcd. for $[C_{12}H_{20}O_2NCISSiNa]^+:328.0565$, found: 328.0564; **IR (ATR)**: v = 3244, 2937, 2861, 2650, 2563, 2290, 2170, 2030, 1913, 1740, 1644, 1576, 1471, 1396, 1336, 1282, 1149, 1088, 1011, 939, 848, 820, 788, 766, 704, 668 cm⁻¹; **m.p.**: 80–82 °C.

N-(tert-Butyldimethylsilyl)-4-chlorobenzenesulfonimidamide (6e)

Following the protocol from literature, ^{S1} the TBS-protected sulfonimidamide **6e** was obtained from *N-(tert-*butyldimethylsilyl)-4-chlorobenzene-sulfonamide (**1e-precursor**, 2.75 g, 9.00 mmol, 1.0 equiv.), PPh₃ (2.60 g, 9.90 mmol, 1.1 equiv.), C₂Cl₆ (2.32 g, 9.90 mmol, 1.1 equiv.), ammonia gas and triethylamine (1.37 g, 1.88 mL, 13.5 mmol, 1.5 equiv.) after purification by use of column chromatography on silica gel (*n*-pentane:EtOAc 9/1 to 4/1) as a colorless solid (1.98 g, 6.48 mmol, 72%). ¹**H NMR** (600 MHz, DMSO-*d*₆): δ = 7.86 (d, *J* = 8.6 Hz, 2H), 7.58 (d, *J* = 8.5 Hz, 2H), 6.73 (s, 2H), 0.87 (s, 9H), 0.01 (s, 3H), 0.01 (s, 3H) ppm; ¹³C{¹H} NMR (151 MHz, DMSO-*d*₆): δ = 147.3, 135.3, 128.4 (2C), 127.3 (2C), 26.0 (3C), 17.8, -2.5, -2.6 ppm; **HRMS (ESI**): *m/z* calcd. for [C₁₂H₂₁ON₂ClSSiNa]⁺: 237.0725, found: 327.0719; **IR (ATR)**: *v* = 3257, 3088, 2952, 2929, 2885, 2856, 2681, 2162, 1911, 1785, 1651, 1575, 1470, 1393, 1359, 1279, 1176, 1123, 1086, 1010, 938, 902, 823, 755, 692, 955 cm⁻¹; **m.p.**: 121–123 °C.

4-Chlorobenzenesulfonimidamide (1e)

NH Following the protocol from literature, ^{S1} 4-chlorosulfonimidamide (**1e**) was NH₂ obtained after deprotection with 4 N HCl in dioxane (525 mg, 0.500 mL, 2.00 mmol, 2.0 equiv.) from *N*-(*tert*-butyldimethylsilyl)-4-chlorobenzenesulfonamide (**6e**, 305 mg, 1.00 mmol, 1.0 equiv.) as a colorless solid (122 mg, 0.642 mmol, 64%). ¹H NMR (600 MHz, DMSO-*d*₆): δ = 7.92–7.88 (m, 2H), 7.61–7.57 (m, 2H), 6.73 (br s, 2H), 4.02 (br s, 1H) ppm; ¹³C{¹H} NMR (151 MHz, DMSO-*d*₆): δ = 145.8, 135.6, 128.5 (2C), 127.8 (2C) ppm; HRMS (ESI): *m*/*z* calcd. for [C₆H₈ON₂CIS]⁺: 191.0040, found: 191.0040; IR (ATR): *v* = 3838, 3296, 3147, 3090, 3020, 2857, 2652, 2322, 2210, 2158, 2078, 1992, 1917, 1790, 1734, 1662, 1566, 1471, 1392, 1282, 1224, 1128, 1079, 952, 867, 825, 752, 711 cm⁻¹; **m.p.**: 101–103 °C.

*N-(tert-*Butyldimethylsilyl)-4-bromobenzenesulfonamide (1f-precursor)

Following the protocol from literature,^{S1} the TBS-protected sulfonamide **1f**precursor was obtained from 4-bromobenzenesulfonamide (2.36 g, 10.0 mmol, 1.0 equiv.), *tert*-butyldimethylsilyl chloride (1.81 g, 12.0 mmol, 1.2 equiv.) and triethylamine (2.02 g, 2.78 mL, 20.0 mmol, 2.0 equiv.) as a colorless solid (3.46 g, 9.87 mmol, 99%). ¹H NMR (600 MHz, DMSO-*d*₆): δ = 7.78 (dt, *J* = 6.3, 2.3 Hz, 2H), 7.74–7.72 (m, 2H), 7.47 (s, 1H), 0.86 (s, 9H), 0.09 (s, 6H) ppm; ¹³C{¹H} NMR (151 MHz, DMSO-*d*₆): δ = 143.9, 132.0, 127.6 (2C), 125.3 (2C), 25.6 (3C), 17.4, -4.6 (2C) ppm. The estimated NMR-data is in full agreement with the reported data in literature.^{S2}

N-(tert-Butyldimethylsilyl)-4-bromobenzenesulfonimidamide (6f)

Following the protocol from literature, ^{S1} the TBS-protected sulfonimidamide **6f** was obtained from *N-(tert-*butyldimethylsilyl)-4-bromobenzene-sulfonamide (**1f-precursor**, 3.15 g, 9.00 mmol, 1.0 equiv.), PPh₃ (2.60 g, 9.90 mmol, 1.1 equiv.), C₂Cl₆ (2.32 g, 9.90 mmol, 1.1 equiv.), ammonia gas and triethylamine (1.37 g, 1.88 mL, 13.5 mmol, 1.5 equiv.) after purification by use of column chromatography on silica gel (*n*-pentane:EtOAc 9/1 to 4/1) as a colorless solid (2.60 g, 7.43 mmol, 83%). ¹**H NMR** (600 MHz, DMSO-*d*₆): δ = 7.80–7.77 (m, 2H), 7.73–7.71 (m, 2H), 6.73 (s, 2H), 0.87 (s, 9H), 0.01 (s, 3H), 0.00 (s, 3H) ppm; ¹³C{¹H} NMR (151 MHz, DMSO-*d*₆): δ = 147.72, 131.39 (2C), 127.54 (2C), 124.06, 25.98 (3C), 17.80, -2.49, -2.55 ppm. The estimated NMR-data is in full agreement with the reported data in literature.^{S2}

4-Bromobenzenesulfonimidamide (1f)

Following the protocol from literature,^{S1} 4-bromobenzenesulfonimidamide (**1f**) WH₂ was obtained after deprotection with 4 N HCl in dioxane (525 mg, 0.500 mL, 2.00 mmol, 2.0 equiv.) from *N*-(*tert*-butyldimethylsilyl)-4-bromobenzenesulfonamide (**6f**, 349 mg, 1.00 mmol, 1.0 equiv.) as a colorless solid (171 mg, 0.727 mmol, 73%). **¹H NMR** (600 MHz, DMSO-*d*₆): δ = 7.82 (d, *J* = 8.2 Hz, 2H), 7.73 (d, *J* = 8.3 Hz, 2H), 6.73 (br s, 1H) ppm [NH₂-Protons not detected]; ¹³C{¹H} NMR (151 MHz, DMSO-*d*₆): δ = 146.2, 131.4 (2C), 128.0 (2C), 124.4 ppm. The estimated NMR-data is in full agreement with the reported data in literature.^{S2}

*N-(tert-*Butyldimethylsilyl)-4-nitrobenzenesulfonamide (1g-precursor)

Following the protocol from literature, ^{S1} the TBS-protected sulfonamide **1g precursor** was obtained from 4-nitrobenzenesulfonamide (505 mg, 2.50 mmol, 1.0 equiv.), *tert*-butyldimethylsilyl chloride (452 mg, 3.00 mmol, 1.2 equiv.) and triethylamine (506 mg, 0.695 mL, 5.00 mmol, 2.0 equiv.) as a brown solid (777 mg, 2.46 mmol, 98%). ¹H NMR (600 MHz, DMSO-*d*₆): δ = 8.42–8.40 (m, 2H), 8.07–8.04 (m, 2H), 7.74 (s, 1H), 0.87 (s, 9H), 0.11 (s, 6H) ppm; ¹³C{¹H} NMR (151 MHz, DMSO-*d*₆): δ = 149.8, 149.1, 127.1 (2C), 124.5 (2C), 25.6 (3C), 17.4, -4.6 (2C) ppm; HRMS (ESI): *m/z* calcd. for [C₁₂H₂₀O₄N₂SSiNa]⁺: 339.0805, found: 339.0803; IR (ATR): *v* = 3437, 3253, 3110, 2934, 2862, 2576, 2189, 2104, 1996, 1953, 1739, 1643, 1608, 1528, 1471, 1402, 1346, 1289, 1259, 1228, 1094, 1014, 938, 845, 787, 735, 684 cm⁻¹; m.p.: 137–139 °C.

*N-(tert-*Butyldimethylsilyl)-4-nitrobenzenesulfonimidamide (6g)

Following the protocol from literature,^{S1} the TBS-protected sulfonimidamide **6g** was obtained from *N-(tert-*butyldimethylsilyl)-4-nitrobenzene-sulfonamide (**1g-precursor**, 633 mg, 2.00 mmol, 1.0 equiv.), PPh₃ (577 mg, 2.20 mmol, 1.1 equiv.), C₂Cl₆ (521 mg, 2.20 mmol, 1.1 equiv.), ammonia gas and

triethylamine (304 mg, 0.417 mL, 3.00 mmol, 1.5 equiv.) after purification by use of column chromatography on silica gel (*n*-pentane:EtOAc 9/1 to 2/1) as a pale yellow solid (481 mg, 1.52 mmol, 76%). ¹**H NMR** (600 MHz, DMSO-*d*₆): δ = 8.39–8.35 (m, 2H), 8.10–8.06 (m, 2H), 6.98 (s, 2H), 0.87 (s, 9H), 0.03 (s, 3H), 0.02 (s, 3H) ppm; ¹³C{¹H} NMR (151 MHz, DMSO-*d*₆): δ = 153.86, 148.45, 126.83 (2C), 124.06 (2C), 25.96 (3C), 17.81, –2.49, –2.55 ppm; **HRMS (ESI)**: *m/z* calcd. for [C₁₂H₂₂O₃N₃SSi]⁺: 316.1146, found: 316.1139; **IR (ATR)**: *v* = 3398, 3300, 3101, 3070, 2951, 2930, 2891, 2857, 2704, 2302, 2206, 2051, 1983, 1948, 1817, 1699, 1604, 1513, 1469, 1341, 1250, 1171, 1107, 1006, 939, 901, 857, 828, 772, 743, 683 cm⁻¹, **m.p.**: 179–181 °C.

4-Nitrobenzenesulfonimidamide (1g)

Following the protocol from literature, ^{S1} 4-nitrosulfonimidamide (**1g**) was obtained after deprotection with 4 N HCl in dioxane (525 mg, 0.500 mL, 2.00 mmol, 2.0 equiv.) from *N*-(*tert*-butyldimethylsilyl)-4-nitrobenzenesulfonamide (**6g**, 315 mg, 1.00 mmol, 1.0 equiv.) as a yellow solid (174 mg, 0.866 mmol, 87%). ¹H NMR (600 MHz, DMSO-*d*₆): δ = 8.39–8.34 (m, 2H), 8.15–8.10 (m, 2H), 6.97 (br s, 2H) ppm [NH-Proton not detected]; ¹³C{¹H} NMR (151 MHz, DMSO-*d*₆): δ = 152.6, 148.6, 127.3 (2C), 123.9 (2C) ppm; HRMS (ESI): *m/z* calcd. for [C₆H₈O₃N₃S]⁺: 202.0281, found: 202.0280; IR (ATR): *v* = 3789, 3316, 3272, 3094, 3065, 2862, 2641, 2452, 2321, 2158, 2076, 1930, 1793, 1733, 1672, 1605, 1557, 1518, 1438, 1400, 1344, 1245, 1127, 1076, 997, 882, 849, 734, 681 cm⁻¹, **m.p.**: 127–129 °C.

N-(*tert*-Butyldimethylsilyl)-4-(trifluoromethyl)benzenesulfonamide (1h-precursor)

Following the protocol from literature, ^{S1} the TBS-protected sulfonamide **1**h **precursor** was obtained from 4-(trifluoromethyl)benzenesulfonamide (2.25 g, 10.0 mmol, 1.0 equiv.), *tert*-butyldimethylsilyl chloride (1.81 g, 12.0 mmol, 1.2 equiv.) and triethylamine (2.02 g, 2.78 mL, 20.0 mmol, 2.0 equiv.) as a pale yellow solid (3.39 g, 10.0 mmol, quant.). ¹H NMR (600 MHz, DMSO-*d*₆): δ = 8.02 (d, *J* = 8.3 Hz, 2H), 7.97 (d, *J* = 8.3 Hz, 2H), 7.90 (s, 1H), 0.87 (s, 9H), 0.10 (s, 6H) ppm; ¹³C{¹H} NMR (151 MHz, DMSO-*d*₆): δ = 148.2, 131.6 (q, ²*J*_{C-F} = 32.0 Hz), 126.4 (2C), 126.28 (q, ³*J*_{C-F} = 3.8 Hz, 2C), 123.56 (q, ¹*J*_{C-F} = 272.7 Hz). 25.6 (3C), 17.4, -4.6 (2C) ppm; ¹⁹F NMR (564 MHz, DMSO-*d*₆): δ = -61.52 (s, CF₃) ppm; HRMS (ESI): *m*/*z* calcd. for [C₁₃H₂₀O₂NSSiF₃Na]⁺: 362.0828, found: 362.0822; IR (ATR): *v* = 3255, 2955, 2864, 2643, 2169, 2027, 1927, 1799, 1677, 1609, 1471, 1402, 1321, 1284, 1255, 1153, 1099, 1061, 1014, 942, 789, 759, 706, 666 cm⁻¹; m.p.: 112–114 °C.

N-(tert-Butyldimethylsilyl)- 4-(trifluoromethyl)benzenesulfonimidamide (6h)

ο, _N−TBS Following the protocol from literature,^{S1} the TBS-protected sulfonimidamide `NH₂ obtained from *N-(tert-*butyldimethylsilyl)-4-(trifluoromethyl)-6h was benzenesulfonamide (1h-precursor, 3.06 g, 9.00 mmol, 1.0 equiv.), PPh₃ (2.60 g, 9.90 mmol, 1.1 equiv.), C₂Cl₆ (2.32 g, 9.90 mmol, 1.1 equiv.), ammonia gas and triethylamine (1.37 g, 1.88 mL, 13.5 mmol, 1.5 equiv.) after purification by use of column chromatography on silica gel (n-pentane: EtOAc 9/1 to 4/1) as a colorless solid (2.42 g, 7.14 mmol, 79%). ¹**H NMR** (600 MHz, DMSO- d_6): δ = 8.05 (d, J = 8.2 Hz, 2H), 7.91 (d, J = 8.3 Hz, 2H), 6.86 (s, 2H), 0.87 (s, 9H), 0.02 (s, 3H), 0.01 (s, 3H) ppm; ${}^{13}C{}^{1}H$ NMR (151 MHz, DMSO- d_6): δ = 152.1, 130.6 (q, ${}^{2}J_{C-F}$ = 32.0 Hz), 126.2 (2C), 125.7 (q, ${}^{3}J_{C-F}$ = 3.8 Hz, 2C), 123.8 (q, ${}^{1}J_{C-F}$ = 272.4 Hz), 25.9 (3C), 17.8, -2.5, -2.6 ppm; ¹⁹F NMR (564 MHz, DMSO- d_6): δ = -61.25 (s, CF₃) ppm; HRMS (ESI): m/z calcd. for $[C_{13}H_{21}ON_2SSiF_3Na]^+$: 361.0988, found: 361.0981; **IR (ATR)**: v = 3856, 3748,3237, 3102, 2933, 2890, 2859, 2662, 2324, 2255, 2161, 2107, 2071, 2024, 1982, 1911, 1741, 1681, 1608, 1562, 1469, 1401, 1320, 1161, 1128, 1086, 1061, 1011, 938, 893, 832, 778, 713, 688 cm⁻¹; **m.p.**: 94–96 °C.

4-(Trifluoromethyl)benzenesulfonimidamide (1h)

F₃C F = 32.0 Hz, 126.8 (2C), 125.7 (q, ${}^{3}J_{C-F} = 3.7$ Hz, 2C), 123.78 (q, ${}^{1}J_{C-F} = 272.6$ Hz) ppm; ¹⁹F NMR (564 MHz, DMSO-*d*₆): $\delta = -61.32$ (s, CF₃) ppm; HRMS (ESI): *m/z* calcd. for [C₇H₈ON₂SF₃]⁺: 225.0304, found: 225.0299; IR (ATR): v = 3269, 3051, 2973, 2862, 2680, 2161, 1927, 1800, 1673, 1577, 1453, 1401, 1320, 1248, 1159, 1119, 1062, 1009, 868, 833, 708 cm⁻¹; m.p.: 86–88 °C.

4-(tert-Butyl)-N-(tert-butyldimethylsilyl)benzenesulfonamide (1i-precursor)

Me Me

-TBS

Following the protocol from literature,^{S1} the TBS-protected sulfonamide **1iprecursor** was obtained from *4-(tert-*butyl)-benzenesulfonamide (1.07 g, 5.00 mmol, 1.0 equiv.), *tert*-butyldimethylsilyl chloride (0.904 g, 6.00 mmol, 1.2 equiv.) and triethylamine (1.01 g, 1.39 mL, 10.0 mmol, 2.0 equiv.) as a

colorless solid (1.64 g, 5.00 mmol, quant.). ¹H NMR (600 MHz, DMSO-*d₆*): $\delta = 7.73$ (d, J = 8.5 Hz, 2H), 7.57 (d, J = 8.5 Hz, 2H), 7.27 (s, 1H), 1.29 (s, 9H), 0.88 (s, 9H), 0.10 (s, 6H) ppm; ¹³C{¹H} NMR (151 MHz, DMSO-*d₆*): $\delta = 154.5$, 141.8, 125.6 (2C), 125.4 (2C), 34.7, 30.9 (3C), 25.7 (3C), 17.4, -4.5 (2C) ppm; HRMS (ESI): *m/z* calcd. for [C₁₆H₂₉O₂NSSiK]⁺: 366.1320, found: 366.1319; IR (ATR): v = 3317, 3218, 2956, 2865, 2715, 2222, 2182, 2112, 2010, 1926, 1779, 1699, 1596, 1516, 1468, 1398, 1362, 1331, 1279, 1256, 1199, 1150, 1112, 1012, 935, 831, 785, 668 cm⁻¹; m.p.: 69–71 °C.

4-(tert-Butyl)-N-(tert-butyldimethylsilyl)benzenesulfonimidamide (6i)

Following the protocol from literature,^{S1} the TBS-protected sulfonimidamide **6i** was obtained from *4-(tert-*butyl)-*N-(tert-*butyldimethylsilyl)benzenesulfonamide (**1i-precursor**, 1.47 g, 4.50 mmol, 1.0 equiv.), PPh₃ (1.30 g, 4.75 mmol, 1.1 equiv.), C_2Cl_6 (1.16 g, 4.75 mmol, 1.1 equiv.),

ammonia gas and triethylamine (683 mg, 0.938 mL, 6.75 mmol, 1.5 equiv.) after purification by use of column chromatography on silica gel (*n*-pentane:EtOAc 9/1 to 4/1) as a colorless solid

(985 mg, 3.02 mmol, 67%). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.79 (d, *J* = 8.5 Hz, 2H), 7.51 (d, *J* = 8.5 Hz, 2H), 6.53 (s, 2H), 1.29 (s, 9H), 0.88 (s, 9H), 0.02 (s, 3H), 0.01 (s, 3H) ppm; ¹³C{¹H} NMR (101 MHz, DMSO-*d*₆): δ = 153.4, 145.5, 125.3 (2C), 125.1 (2C), 34.6, 30.9 (3C), 26.0 (3C), 17.8, -2.4, -2.5 ppm; HRMS (ESI): *m*/*z* calcd. for [C₁₆H₃₁ON₂SSi]⁺: 327.1921, found: 327.1922; IR (ATR): *v* = 3728, 3396, 3235, 3065, 2956, 2890, 2856, 2322, 2173, 2112, 2018, 1923, 1594, 1532, 1493, 1465, 1392, 1358, 1296, 1246, 1164, 1117, 1088, 1008, 936, 865, 832, 808, 775, 709, 665 cm⁻¹; **m.p.**: 114–116 °C.

4-(tert-Butyl)-benzenesulfonimidamide (1i)

Following the protocol from literature, ^{S1} 4-(*tert*-butyl)-benzenesulfonimidamide (**1i**) was obtained after deprotection with 4 N HCl in dioxane (525 mg, 0.500 mL, 2.00 mmol, 2.0 equiv.) from 4-(*tert*-butyl)-*N*-(*tert*-butyldimethylsilyl)benzenesulfonimidamide (**6i**, 327 mg, 1.00 mmol, 1.0 equiv.) as a colorless solid (196 mg, 0.925 mmol, 93%). ¹H NMR (600 MHz, DMSO-*d*₆): δ = 7.84–7.81 (m, 2H), 7.53– 7.51 (m, 2H), 1.30 (s, 9H) ppm [NH and NH₂ protons not detected]; ¹³C{¹H} NMR (151 MHz, DMSO-*d*₆): δ = 153.7, 143.9, 125.8 (2C), 125.2 (2C), 34.6, 30.9 (3C) ppm; HRMS (ESI): *m/z* calcd. for [C₁₀H₁₇ON₂S]⁺: 213.1056, found: 213.1056; **IR (ATR)**: *v* = 3269, 3072, 2958, 2868, 2662, 2325, 2175, 2079, 1897, 1663, 1596, 1564, 1469, 1395, 1362, 1228, 1143, 1100, 863, 830, 754 cm⁻¹; **m.p.**: 112–114 °C.

*N-(tert-*Butyldimethylsilyl)-6-methylpyridine-3-sulfonamide (1j-precursor)

Following the protocol from literature, ^{S1} the TBS-protected sulfonamide **1**j **precursor** was obtained from 6-methylpyridine-3-sulfonamide (861 mg, 5.00 mmol, 1.0 equiv.), *tert*-butyldimethylsilyl chloride (904 mg, 6.00 mmol, 1.2 equiv) and triethylamine (1.01 g, 1.39 mL, 10.0 mmol, 2.0 equiv.) as a colorless solid (1.42 g, 4.96 mmol, 99%). ¹H NMR (600 MHz, DMSO- d_6): $\delta = 8.53$ (d, J = 2.0 Hz, 1H), 7.86–7.83 (m, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.64 (s, 1H), 2.38 (s, 3H), 0.86 (s, 9H), 0.09 (s, 6H) ppm; ¹³C{¹H} NMR (151 MHz, DMSO- d_6): $\delta = 157.6$, 149.7, 138.2, 136.4, 120.0, 25.7(3C), 17.8, 17.5, -4.5 (2C) ppm; HRMS (ESI): m/z calcd. for [C₁₂H₂₂O₂N₂SSiNa]⁺: 309.1064, found: 309.1063; IR (ATR): v = 3223, 2932, 2861, 2725, 2649, 2326, 2199, 2108, 2017, 1911, 1571, 1460, 1359, 1286, 1255, 1166, 1110, 1228, 951, 832, 795, 746, 717, 665 cm⁻¹; m.p.: 92–94 °C.

N-(tert-Butyldimethylsilyl)-6-methylpyridine-3-sulfonimidamide (6j)

Following the protocol from literature, ^{S1} the TBS-protected sulfonimidamide **6** *i* was obtained from *N*-(*tert*-butyldimethylsilyl)-6-methylpyridine-3-sulfonamide (**1***j*-precursor, 1.29 g, 4.50 mmol, 1.0 equiv.), PPh₃ (1.30 g, 4.95 mmol, 1.1 equiv.), C₂Cl₆ (1.17 g, 4.95 mmol, 1.1 equiv.), ammonia gas and triethylamine (683 mg, 0.938 mL, 6.75 mmol, 1.5 equiv.) after purification by use of column chromatography on silica gel (*n*-pentane:EtOAc 9/1 to 2/1) as a colorless solid (1.06 g, 3.70 mmol, 82 %). ¹H NMR (600 MHz, DMSO-*d*₆): δ = 8.47 (dt, *J* = 2.0, 0.9 Hz, 1H), 7.85–7.77 (m, 2H), 6.57 (s, 2H), 2.36 (s, 3H), 0.86 (s, 9H), -0.01 (s, 3H), -0.04 (s, 3H) ppm; ¹³C{¹H} NMR (151 MHz, DMSO-*d*₆): δ = 160.8, 148.9, 137.9, 135.2, 119.3, 26.0 (3C), 17.7, -2.5, -2.6 ppm; HRMS (ESI): *m*/z calcd. for [C₁₂H₂₃ON₃SSiNa]⁺: 308.1223, found: 308.1218; IR (ATR): *v* = 3280, 3090, 2997, 2950, 2930, 2891, 2855, 2659, 2502, 2187, 2042, 1983, 1805, 1571, 1464, 1335, 1249, 1172, 1094, 1030, 1006, 940, 893, 830, 777, 696 cm⁻¹; m.p.: 109–111 °C.

6-Methylpyridine-3-sulfonimidamide (1j)

Following the protocol from literature, ^{S1} 6-methylpyridine-3-sulfonimidamide (**1j**) was obtained after deprotection with formic acid (2.2 mL) and water (0.2 mL) from *N*-(*tert*-butyldimethylsilyl)-6-methylpyridine-3-sulfonimidamide (**6j**, 143 mg, 0.500 mmol, 1.0 equiv.) as a colorless solid (85.5 mg, 0.499 mmol, quant.). ¹**H NMR** (600 MHz, DMSO-*d*₆): δ = 8.48–8.47 (m, 1H), 7.90 (d, *J* = 8.0 Hz, 1H), 7.81 (d, *J* = 7.3 Hz, 1H), 5.95 (s, 3H, NH₂), 2.37 (s, 3H) ppm [NH- proton not detected]; ¹³C{¹H} NMR (151 MHz, DMSO-*d*₆): δ = 159.7, 148.9, 138.0, 135.5, 119.7, 17.7 ppm; **HRMS (ESI**): *m/z* calcd. for [C₆H₉ON₃SNa]⁺: 194.0359, found: 194.0354; **IR (ATR)**: *v* = 3834, 3281, 3182, 3038, 2650, 2507, 2233, 2196, 2157, 2046, 1947, 1906, 1738, 1673, 1553, 1452, 1376, 1325, 1238, 1098, 1019, 908, 841, 690 cm⁻¹; **m.p.**: 108–110 °C.

*N-(tert-*Butyldimethylsilyl)-methanesulfonamide (1k-precursor)

Following the protocol from literature,^{S1} the TBS-protected sulfonamide **1k**-Me^{N-TBS} $\stackrel{N-TBS}{H}$ Following the protocol from literature,^{S1} the TBS-protected sulfonamide **1k**precursor was obtained from methanesulfonamide (4.76 g, 50.0 mmol, 1.0 equiv.), *tert*-butyldimethylsilyl chloride (9.04 g, 60.0 mmol, 1.2 equiv.) and triethylamine (10.1 g, 13.9 mL, 100 mmol, 2.0 equiv.) as a colorless solid (9.09 g, 43.4 mmol, 87%). ¹H NMR (600 MHz, Chloroform-*d*): δ = 4.82 (s, 1H), 2.99 (s, 3H), 0.92 (s, 9H), 0.26 (s, 6H) ppm; ¹³C{¹H} NMR (151 MHz, Chloroform-*d*): δ = 44.2, 25.6 (3C), 17.1, –4.5 (2C) ppm. The estimated NMR-data is in full agreement with the reported data in literature.^{S1}

N-(tert-Butyldimethylsilyl)-methanesulfonimidamide (6k)

 O_{N-TBS} Following the protocol from literature,^{S1} the TBS-protected sulfonimidamide **6k** was Me[−] NH₂ obtained from *N-(tert-*Butyldimethylsilyl)methanesulfonamide (**1k-precursor**, 1.88 g, 9.00 mmol, 1.0 equiv.), PPh₃ (2.60 g, 9.90 mmol, 1.1 equiv.), C₂Cl₆ (2.32 g, 9.90 mmol, 1.1 equiv.), ammonia gas and triethylamine (1.37 g, 1.88 mL, 13.5 mmol, 1.5 equiv.) after purification by use of column chromatography on silica gel (*n*-pentane:EtOAc 4/1 to 1/1) as a colorless solid (1.37 g, 6.54 mmol, 73%). ¹H NMR (600 MHz, DMSO-*d*₆): δ = 6.17 (s, 2H), 2.93 (s, 3H), 0.85 (s, 9H), 0.01 (s, 3H), 0.01 (s, 3H) ppm; ¹³C{¹H} NMR (151 MHz, DMSO-*d*₆): δ = 48.30, 26.06 (3C), 17.72, -2.35, -2.41 ppm. The estimated NMR-data is in full agreement with the reported data in literature.^{S1}

Methanesulfonimidamide (1k)

 O_{K} NH Following the protocol from literature,^{S1} methanesulfonimidamide (**1k**) was obtained Me⁻NH₂ after deprotection with formic acid (2.2 mL) and water (0.2 mL) from *N*-(*tert*butyldimethylsilyl)methanesulfonimidamide (**6k**, 104 mg, 0.500 mmol, 1.0 equiv.) as a colorless solid (46.9 mg, 0.498 mmol, quant.). ¹H NMR (600 MHz, DMSO-*d*₆): δ = 5.18 (br s, 3H), 2.09 (s, 3H) ppm; ¹³C{¹H} NMR (151 MHz, DMSO-*d*₆): δ = 45.6 ppm. The estimated NMR-data is in full agreement with the reported data in literature.^{S1}

2. 2. Synthesis of Trifluoromethylketones 4b-d

(*E*)-4-Ethoxy-1,1,1-trifluoro-but-3-en-2-one (**4a**, ETFBO) was purchased from Sigma Aldrich. Methyl-substituted derivatives **4b** and **4c** as well as cyclic enone **4d** were synthesized according a procedure from literature.^{S3} 1,3-Diphenylprop-2-yn-1-one (**2a**) was taken from an earlier project and used without further purification.^{S2}

Note: Due to progressing decomposition of trifluoromethylketones **4b** and **4c**, improved yields were obtained with freshly prepared substrates. These enones should be stored under argon atmosphere at reduced temperatures (-18° C) and used as soon as possible.

(E)-4-Ethoxy-1,1,1-trifluoropent-3-en-2-one (4b)

Following the protocol from literature, ^{S3} (*E*)-4-ethoxy-1,1,1-trifluoropent-3-en- F_{3C} 2-one (**4b**) was obtained from 2-ethoxy-1-propene (258 mg, 3.00 mmol, 1.0 equiv.), pyridine (285 mg, 3.60 mmol, 1.2 equiv.) and trifluoroacetic anhydride (945 mg, 4.50 mmol, 1.5 equiv.) as a pale orange liquid (450 mg, 2.47 mmol, 82%). ¹H NMR (600 MHz, Chloroform-*d*): δ = 5.66 (s, 1H), 4.00 (q, *J* = 7.0 Hz, 2H), 2.41 (s, 3H), 1.41 (t, *J* = 7.0 Hz, 3H); ¹³C{¹H} NMR (151 MHz, Chloroform-*d*): δ = 180.8, 178.9 (q, ²*J*_{C-*F*} = 33.4 Hz), 116.7 (q, ¹*J*_{C-*F*} = 292.3 Hz), 91.9, 65.4, 21.4, 13.9 ppm; ¹⁹F NMR (564 MHz, Chloroform-*d*): δ = -78.41 (s, CF₃) ppm; HRMS (ESI): *m/z* calcd. for [C₇H₉O₂F₃Na]⁺: 205.0447, found: 205.0445; IR (ATR): *v* = 3402, 2991, 2947, 2513, 2084, 1997, 1783, 1702, 1570, 1475, 1445, 1411, 1362, 1316, 1258, 1194, 1139, 1099, 1050, 915, 868, 829, 801, 725 cm⁻¹.

(E)-4-Ethoxy-1,1,1-trifluoro-3-methylbut-3-en-2-one (4c)

Following the protocol from literature,^{S3} (*E*)-4-ethoxy-1,1,1-trifluoro-3methylbut-3-en-2-one (**4c**) was obtained from ethyl propenyl ether (258 mg, 3.00 mmol, 1.0 equiv.), pyridine (285 mg, 3.60 mmol, 1.2 equiv.) and trifluoroacetic anhydride (945 mg, 4.50 mmol, 1.5 equiv.) as a pale yellow liquid (452 mg, 2.48 mmol, 83%). ¹H NMR (600 MHz, Chloroform-*d*): δ = 7.53 (s, 1H), 4.21 (q, *J* = 7.1 Hz, 2H), 1.80 (s, 3H), 1.40 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (151 MHz, Chloroform-*d*): δ = 180.0 (q, ²*J*_{C-F} = 33.6 Hz), 164.1, 117.9 (q, ¹*J*_{C-F} = 293.4 Hz) 112.0, 71.5, 15.3, 8.1 ppm; ¹⁹F NMR (564 MHz, Chloroform-*d*): δ = -69.28 (s, CF₃) ppm; HRMS (ESI): *m*/z calcd. for [C₇H₁₀O₂F₃]⁺: 183.0627, found: 183.0624; IR (ATR): *v* = 3860, 3438, 3082, 2988, 2938, 2703, 2476, 2270, 2161, 2034, 2005, 1908, 1740, 1681, 1625, 1478, 1449, 1390, 1305, 1214, 1136, 1018, 921, 890, 808, 759, 706 cm⁻¹. The estimated NMRdata is in full agreement with the reported data in literature.^{S4}

1-(3,4-Dihydro-2H-pyran-5-yl)-2,2,2-trifluoroethan-1-one (4d)

Following the protocol from literature,^{S3} 1-(3,4-dihydro-2H-pyran-5-yl)-2,2,2trifluoroethan-1-one (**4d**) was obtained from 3,4-dihydro-2H-pyran (421 mg, 5.00 mmol, 1.0 equiv.), pyridine (593 mg, 7.50 mmol, 1.5 equiv.) and trifluoroacetic anhydride (1.58 g, 7.50 mmol, 1.5 equiv.) as a pale orange liquid (778 mg, 4.32 mmol, 86%). ¹H NMR (600 MHz, Chloroform-*d*): δ = 7.82 (s, 1H), 4.21 – 4.18 (m, 2H), 2.33 (t, *J* = 6.4 Hz, 2H), 1.95 (dt, *J* = 12.2, 6.0 Hz, 2H); ¹³C{¹H} NMR (151 MHz, Chloroform-*d*): δ = 179.34 (q, ²*J*_{C-F} = 34.0 Hz), 162.47 (q, ³*J*_{C-F} = 5.3 Hz), 116.92 (q, ¹*J*_{C-F} = 291.0 Hz), 111.5, 68.0, 20.7, 18.1 ppm; ¹⁹**F NMR** (564 MHz, Chloroform-*d*): $\delta = -69.89$ (s, CF₃) ppm; **HRMS** (**ESI**): *m/z* calcd. for $[C_7H_8O_2F_3]^+$: 181.0471, found: 181.0474; **IR (ATR)**: *v* = 3900, 3355, 3207, 3956, 2897, 2861, 2324, 2087, 1991, 1919, 1682, 1605, 1471, 1445, 1354, 1326, 1273, 1235, 1180, 1135, 1089, 1052, 997, 940, 893, 875, 844, 755, 723 cm⁻¹. The estimated NMR-data is in full agreement with the reported data in literature.^{S4}

3. Optimization of the synthesis of 1,2,6-thiadiazine 1-oxide 5aa in solution

An oven-dried Schlenk-tube equipped with magnetic stirring bar and septum cap was charged with sulfonimidamide (**1a**, 0.1 mmol, 1.0 equiv.), MS 4 Å (80 mg \cdot 1 mmol⁻¹ of **1a**) and base (if solid) and subsequently evacuated and flushed with argon. Evacuating and flushing with argon was repeated three times, before the solvent (5.0 mL \cdot 1 mmol⁻¹) and base (if liquid) was added by syringe. The reaction mixture was stirred for 15 minutes at ambient temperature and then, ETFBO (**4a**) dissolved in solvent (5.0 mL \cdot 1 mmol⁻¹) was added dropwise by syringe. The reaction mixture was stirred for 15 minutes at ambient temperature and then, ETFBO (**4a**) dissolved in solvent (5.0 mL \cdot 1 mmol⁻¹) was added dropwise by syringe. The reaction mixture was stirred for 3 h to 24 h at ambient temperature under argon. After completion of the reaction, a saturated NaHCO₃ solution (50 mL \cdot 1 mmol⁻¹) was added. Then, the mixture was extracted with EtOAc (3 x 50 mL \cdot 1 mmol⁻¹). The organic layers were collected, dried over anhydrous MgSO₄, and the volatiles were removed under reduced pressure. The product was purified by column chromatography on silica gel and dried under high vacuum for several hours.

Entry	Base (equiv.)	4a (equiv.)	Solvent	<i>t</i> [h]	Yield of 5aa (%)
1	Cs ₂ CO ₃ (2.1)	1.50	DMSO	3	67
2	Cs ₂ CO ₃ (1.2)	1.50	DMSO	3	31
3	Cs ₂ CO ₃ (2.5)	1.50	DMSO	3	57
7	Cs ₂ CO ₃ (2.1)	1.05	DMSO	3	76
8	Cs ₂ CO ₃ (2.1)	1.20	DMSO	3	58
19	Cs ₂ CO ₃ (2.1)	2.50	DMSO	3	16
10 ^a	Cs ₂ CO ₃ (2.1)	1.00	DMSO	3	33
11 ^b	Cs ₂ CO ₃ (2.1)	1.00	DMSO	3	60
12	Cs ₂ CO ₃ (2.1)	1.05	DMF	24	Trace
13	Cs ₂ CO ₃ (2.1)	1.05	MeCN	24	35
14	Cs ₂ CO ₃ (2.1)	1.05	HFIP	3	33
15	Cs ₂ CO ₃ (2.1)	1.05	TFE	3	70 (72) ^c
16	K ₂ CO ₃ (2.1)	1.05	DMSO	4	Trace
17	K ₃ PO ₄ (2.1)	1.05	DMSO	4	9
18	KO <i>t</i> -Bu (2.1)	1.05	DMSO	4	4
19	NaH (2.1)	1.05	DMSO	24	Trace
20	DBU (2.1)	1.05	DMSO	24	37
21	Et ₃ N (2.1)	1.05	DMSO	3	72

Table S1: Optimization of reaction parameters in solution.

^a **1a** (0.1 mmol), **4a** (1.2 equiv.), else as described above; ^b **1a** (0.1 mmol), **4a** (1.5 equiv.), else as described above; ^c performed with 1.5 equiv. of **1a** (*t* = 5 h).

4. General procedure for the synthesis of 1,2,6-thiadiazine 1-oxides 5 under mechanochemical conditions (GP1)

A ball milling container (stainless steel, V = 5.0 mL or 10 mL) equipped with two milling balls (stainless steel, d = 7.0 mm or 10 mm) was charged with ETFBO (**4a**, 1.5 equiv.) or its derivatives (**4b-d**, 1.5 equiv.), silica (1.0 mg per 1.0 mg of all reactants), sulfonimidamide (**1a-k**, 1.0 equiv.) and pyridine (2.1 equiv.) and flushed with argon for 30 s before closing. The reaction mixture was milled at 25 Hz for 1 h. After completion of the reaction, the solid powdery crude mixture was directly put on a column loaded with silica gel, and the product was purified by column chromatography. Then, the product was dried under high vacuum for several hours.

Entry	Base (equiv.)	4a (equiv.)	Additive	Yield of 5aa (%)
1	Cs ₂ CO ₃ (2.1)	1.50		55
2	Cs ₂ CO ₃ (2.1)	1.50	LaCl ₃ ª	58
3	Cs ₂ CO ₃ (2.1)	1.50	Silica (110 mg), LaCl ₃ ª	58
4	Cs ₂ CO ₃ (2.1)	1.50	LAG: DMSO (55 µL)	18
5	Cs ₂ CO ₃ (2.1)	1.50	Sand (110 mg)	33
6	Cs ₂ CO ₃ (2.1)	1.50	Neutral Al ₂ O ₃ (110 mg)	26
7	Cs ₂ CO ₃ (2.1)	1.50	Silica (110 mg)	78
8	Cs ₂ CO ₃ (2.1)	1.50	Silica (110 mg), 30 Hz	62
9	Cs ₂ CO ₃ (2.1)	1.50	Silica (55 mg), 30 Hz	65
10 ^ь	Cs ₂ CO ₃ (2.1)	1.00	Silica (110 mg)	58
11	Cs ₂ CO ₃ (2.1)	1.05	Silica (105 mg)	58
12	Cs ₂ CO ₃ (2.1)	2.00	Silica (120 mg)	66
13	Cs ₂ CO ₃ (2.1)	2.50	Silica (125 mg)	59
14	Cs ₂ CO ₃ (2.5)	1.50	Silica (125 mg)	59
15	Et ₃ N (2.1)	1.50	Silica (65 mg)	72
16	DMAP (2.1)	1.50	Silica (70 mg)	74
17	TMPDA (2.1)	1.50	Silica (65 mg)	68
18	DIPEA (2.1)	1.50	Silica (70 mg)	49
19	Pyridine (2.1)	1.50	Silica (60 mg)	84
20	Collidine (2.1)	1.50	Silica (70 mg)	76
21	Cy ₂ NEt (2.1)	1.50	Silica (85 mg)	61
22	DABCO (2.1)	1.50	Silica (65 mg)	31

Table S2: Optimization of reaction parameters in ball mill reactor (for the reaction providing 5aa).

^a Use of 0.1 equiv. of LaCl₃; ^b Use of 0.1 mmol of **1a** and 1.5 equiv. of **4a**, else as described above.

5. Stability investigation of 1,2,6-thiadiazine 1-oxide 5aa

For the determination of the stability under aqueous acidic or basic conditions, compound **5aa** (0.05 mmol) was dissolved in acetone- d_6 (0.3 mL) and threated with aqueous HCl or NaOH solutions (0.3 mL) with pH-values = 0, 2, 5, 7, 9, 12 and 14. These solutions and fluorobenzene as internal standard were added to NMR-tubes and the relative amount of possible degradation of heterocycle **5aa** was examined. The mixture was homogenized by shaking twice per day and ¹H- and ¹⁹F-NMR measurements were performed daily (first 7 days) and weekly for 28 days to observe potential decomposition of the product.

Figure S1. Degradation of 5aa – pH dependence.

For determination of oxidation stability, product **5aa** (0.05 mmol) was stored at various conditions (1. air at room temperature, 2. air at 50 °C, 3. and O₂ at 50 °C) for 28 days, and potential decomposition was monitored weekly by ¹H- and ¹⁹F-NMR measurements (2-3 mg of **5aa** dissolved in 0.7 mL chloroform-*d*). The stability investigation under oxygen atmosphere was carried out in a glass-container, sealed with alumina septum cap, then evacuated under high vacuum and flushed with pure oxygen after each sample-picking. Containers of reactions at 50 °C were placed in an alumina block as heating source.

10.0 5.8 5.4 5.4 5.2 5.0 8.8 0.6 8.4 5.2 8.0 7.8 7.4 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 12 (corr.)

Figure S2. Degradation of 5aa – oxidative conditions.

S22

6. Analytical data of products 5aa-ka, 5ac, 5fc, 5kc, 5ad, 7ka, 3ka, and 8

1-(p-Tolyl)-3-(trifluoromethyl)-1,2,6-thiadiazine 1-oxide (5aa)

Following GP1, the title compound was obtained from 4-methylbenzenesulfonimidamide (1a, 34.0 mg, 0.200 mmol), ETFBO (4a, 50.4 mg, 42.7 $\mu L,~0.300$ mmol) and pyridine (33.2 mg, 34.0 $\mu L,~0.420$ mmol) in presence of silica (120 mg) after purification by column chromatography (n-pentane/EtOAc: 98/2 to 9/1) as a pale yellow solid (48.6 mg, 0.177 mmol, 89%). Furthermore, the product was obtained on a reaction scale of 1.00 mmol from 4-methylbenzenesulfonimidamide (1a, 170 mg, 1.00 mmol) yield of 85% (233 mg, 0.850 mmol) and from *N*-(*tert*-butyldimethylsilyl)in а 4-methylbenzenesulfonimidamide (6a, 285 mg, 1.00 mmol) in a yield of 84% (229 mg, 0.836 mmol). ¹**H NMR** (600 MHz, Chloroform-*d*): δ = 8.27 (d, J = 5.6 Hz, 1H), 7.76–7.71 (m, 2H), 7.42–7.36 (m, 2H), 6.47 (d, J = 5.6 Hz, 1H), 2.47 (s, 3H) ppm; ¹³C{¹H} NMR (151 MHz, Chloroformd): δ = 161.4, 156.0 (q, ²J_{C-F} = 36.4 Hz), 145.9, 135.7, 129.8 (2C), 128.5 (2C), 119.8 (q, ¹J_{C-F} = 277.1 Hz), 97.9 (q, ${}^{3}J_{C-F}$ = 3.0 Hz), 21.8 ppm; 19 **F NMR** (564 MHz, Chloroform-*d*): δ = -71.53 (s, CF₃) ppm; **HRMS (ESI)**: *m*/z calcd. for [C₁₁H₉ON₂SF₃Na]⁺: 297.0280, found: 297.0284; **IR (ATR)**: *v* = 3119, 2967, 2595, 2193, 2161, 1927, 1727, 1654, 1561, 1512, 1450, 1381, 1313, 1274, 1239, 1188, 1140, 1103, 1080, 972, 815, 748, 663 cm⁻¹; **m.p.**: 59–61 °C.

1-Phenyl-3-(trifluoromethyl)-1,2,6-thiadiazine 1-oxide (5ba)

Following GP1, the title compound was obtained from benzenesulfonimidamide (**1b**, 31.2 mg, 0.200 mmol), ETFBO (**4a**, 50.4 mg, 42.7 μ L, 0.300 mmol) and pyridine (33.2 mg, 34.0 μ L, 0.420 mmol) in presence of silica (115 mg) after

purification by column chromatography (*n*-pentane/EtOAc: 98/2 to 9/1) as a pale yellow solid (46.8 mg, 0.180 mmol, 90%). ¹**H NMR** (600 MHz, Chloroform-*d*): δ = 8.30 (d, *J* = 5.6 Hz, 1H), 7.90–7.85 (m, 2H), 7.73–7.68 (m, 1H), 7.63–7.58 (m, 2H), 6.50 (d, *J* = 5.6 Hz, 1H) ppm; ¹³C{¹H} NMR (151 MHz, Chloroform-*d*): δ = 161.6, 156.2 (q, ²*J*_{C-F} = 36.6 Hz), 138.6, 134.5, 129.2 (2C), 128.5 (2C), 119.8 (q, ¹*J*_{C-F} = 277.2 Hz), 98.1 (q, ³*J*_{C-F} = 3.1 Hz) ppm; ¹⁹F NMR (564 MHz, Chloroform-*d*): δ = -71.53 (s, CF₃) ppm; **HRMS (ESI)**: *m/z* calcd. for [C₁₀H₇ON₂SF₃Na]⁺: 283.0123, found: 283.0122; **IR (ATR)**: *v* = 3188, 3036, 2321, 2162, 2073, 1911, 1663, 1561, 1516, 1449, 1384, 1316, 1280, 1246, 1191, 1158, 1104, 1081, 969, 817, 752, 680 cm⁻¹; **m.p.**: 74–76 °C.

1-(o-Tolyl)-3-(trifluoromethyl)-1,2,6-thiadiazine 1-oxide (5ca)

Following GP1, the title compound was obtained from 2-methylbenzenesulfonimidamide (**1c**, 34.0 mg, 0.200 mmol), ETFBO (**4a**, 50.4 mg, 42.7 μ L, 0.300 mmol) and pyridine (33.2 mg, 34.0 μ L, 0.420 mmol) in presence of silica

(120 mg) after purification by column chromatography (*n*-pentane/EtOAc: 98/2 to 9/1) as a pale yellow solid (36.6 mg, 0.133 mmol, 67%). ¹H NMR (600 MHz, Chloroform-*d*): δ = 8.30 (d, *J* = 5.6 Hz, 1H), 8.16 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.59 (td, *J* = 7.5, 1.4 Hz, 1H), 7.45 (t, *J* = 7.7 Hz, 1H), 7.36 (d, *J* = 7.6 Hz, 1H), 6.48 (d, *J* = 5.6 Hz, 1H), 2.22 (s, 3H) ppm; ¹³C{¹H} NMR (151 MHz, Chloroform-*d*): δ = 161.9, 156.6 (q, ²*J*_{C-F} = 36.5 Hz), 139.9, 135.9, 135.0, 133.2, 129.2, 126.5, 119.8 (q, ¹*J*_{C-F} = 277. Hz), 97.74 (q, ³*J*_{C-F} = 3.0 Hz), 20.2 ppm; ¹⁹F NMR (564 MHz, Chloroform-*d*): δ = -71.64 (s, CF₃) ppm; HRMS (ESI): *m/z* calcd. for [C₁₁H₉ON₂SF₃Na]⁺: 297.0278, found: 297.0277; IR (ATR): *v* = 3108, 3067, 2928, 2163, 1949, 1712, 1642, 1563, 1511, 1467, 1379, 1313, 1275, 1245, 1188, 1141, 1078, 971, 911, 872, 828, 798, 758, 703, 683 cm⁻¹; m.p.: 36–38 °C.

1-(4-Methoxyphenyl)-3-(trifluoromethyl)-1,2,6-thiadiazine 1-oxide (5da)

Following GP1, the title compound was obtained from 4-methoxybenzene-sulfonimidamide (1d, 37.2 mg, 0.200 mmol), ETFBO (4a, 50.4 mg, 42.7 μL,
^{F3} 0.300 mmol) and pyridine (33.2 mg, 34.0 μL, 0.420 mmol) in presence of

silica (120 mg) after purification by column chromatography (*n*-pentane/EtOAc: 98/2 to 4/1) as a yellow solid (42.2 mg, 0.145 mmol, 73%). ¹H NMR (600 MHz, Chloroform-*d*): δ = 8.26 (d, *J* = 5.6 Hz, 1H), 7.80–7.75 (m, 2H), 7.07–7.02 (m, 2H), 6.46 (d, *J* = 5.6 Hz, 1H), 3.90 (s, 3H) ppm; ¹³C{¹H} NMR (151 MHz, Chloroform-*d*): δ = 164.5, 161.3, 156.0 (q, ²*J*_{C-F} = 36.5 Hz), 130.9 (2C), 130.0, 119.84 (q, ¹*J*_{C-F} = 277.3 Hz), 114.4 (2C), 97.7 (q, ³*J*_{C-F} = 2.9 Hz) 56.0 ppm; ¹⁹F NMR (564 MHz, Chloroform-*d*): δ = -71.50 (s, CF₃) ppm; HRMS (ESI): *m*/*z* calcd. for [C₁₁H₉O₂N₂SF₃Na]⁺: 313.0229, found: 313.0225; IR (ATR): *v* = 3108, 3031, 2977, 2947, 2848, 2635, 2165, 2074, 1904, 1770, 1563, 1497, 1448, 1418, 1388, 1313, 1246, 1200, 1151, 1102, 1017, 972, 825, 798, 745, 663 cm⁻¹; m.p.: 72–74 °C.

1-(4-Chlorophenyl)-3-(trifluoromethyl)-1,2,6-thiadiazine 1-oxide (5ea)

Following GP1, the title compound was obtained from 4-chlorobenzenesulfonimidamide (**1e**, 38.1 mg, 0.200 mmol), ETFBO (**4a**, 50.4 mg, 42.7 μ L, 0.300 mmol) and pyridine (33.2 mg, 34.0 μ L, 0.420 mmol) in presence of silica (120 mg) after purification by column chromatography (*n*-pentane/EtOAc: 98/2 to 9/1) as a pale yellow solid (51.1 mg, 0.173 mmol, 87%). ¹**H NMR** (600 MHz, Chloroform-*d*): δ = 8.30 (d, *J* = 5.6 Hz, 1H), 7.81 (d, *J* = 8.6 Hz, 2H), 7.58 (d, *J* = 8.6 Hz, 2H), 6.51 (d, *J* = 5.6 Hz, 1H) ppm; ¹³C{¹H} NMR (151 MHz, Chloroform-*d*): δ = 161.8, 156.4 (q, ²*J*_{C-F} = 36.7 Hz), 141.6, 137.0, 129.8 (2C), 129.6 (2C), 119.7 (q, ¹*J*_{C-F} = 277.4 Hz), 98.3 (q, ³*J*_{C-F} = 3.0 Hz) ppm; ¹⁹F NMR (564 MHz, Chloroform-*d*): δ = -71.54 (s, CF₃) ppm; HRMS (ESI): *m/z* calcd. for [C₁₀H₆ON₂SF₃Na]⁺: 316.9734, found: 316.9735; IR (ATR): *v* = 3096, 3040, 2166, 2024, 1917, 1782, 1649, 1566, 1517, 1478, 1391, 1318, 1254, 1197, 1158, 1127, 1086, 1012, 973, 824, 777 cm⁻¹; m.p.: 57–59 °C.

1-(4-Bromophenyl)-3-(trifluoromethyl)-1,2,6-thiadiazine 1-oxide (5fa)

Following GP1, the title compound was obtained from 4bromobenzenesulfonimidamide (**1f**, 47.0 mg, 0.200 mmol), ETFBO (**4a**, 50.4 mg, 42.7 µL, 0.300 mmol) and pyridine (33.2 mg, 34.0 µL, 0.420 mmol) in presence of silica (130 mg) after purification by column chromatography (*n*-pentane/EtOAc: 98/2 to 9/1) as a pale yellow solid (61.2 mg, 0.182 mmol, 90%). ¹H NMR (600 MHz, Chloroform*d*): $\delta = 8.30$ (d, J = 5.6 Hz, 1H), 7.77–7.69 (m, 4H), 6.51 (d, J = 5.6 Hz, 1H) ppm; ¹³C{¹H} NMR (151 MHz, Chloroform-*d*): $\delta = 161.8$, 156.3 (q, ²J_{C-F} = 36.8 Hz), 137.6, 132.6 (2C), 130.2, 129.8 (2C), 119.7 (q, ¹J_{C-F} = 277.3 Hz), 98.3 (q, ³J_{C-F} = 3.0 Hz) ppm; ¹⁹F NMR (564 MHz, Chloroform-*d*): $\delta = -71.54$ (s, CF₃) ppm; HRMS (ESI): *m*/z calcd. for [C₁₀H₇ON₂SF₃Br]⁺: 338.9409, found: 338.9411; IR (ATR): *v* = 3095, 3038, 2293, 2196, 2025, 1916, 1785, 1647, 1566, 1516, 1476, 1389, 1318, 1253, 1196, 1156, 1097, 1068, 1009, 972, 821, 797, 772 cm⁻¹; m.p.: 83–85 °C.

1-(4-Nitrophenyl)-3-(trifluoromethyl)-1,2,6-thiadiazine 1-oxide (5ga)

Following GP1, the title compound was obtained from 4-nitrobenzenesulfonimidamide (**1g**, 40.2 mg, 0.200 mmol), ETFBO (**4a**, 50.4 mg, 42.7 μ L, 0.300 mmol) and pyridine (33.2 mg, 34.0 μ L, 0.420 mmol) in presence of

silica (125 mg) after purification by column chromatography (*n*-pentane/EtOAc: 98/2 to 9/1) as a colorless solid (55.1 mg, 0.181 mmol, 90%).¹**H NMR** (600 MHz, Chloroform-*d*): δ = 8.48–8.41 (m, 2H), 8.36 (d, *J* = 5.6 Hz, 1H), 8.13–8.07 (m, 2H), 6.58 (d, *J* = 5.6 Hz, 1H) ppm; ¹³C{¹H} NMR (151 MHz, Chloroform-*d*): δ = 162.5, 156.8 (q, ²*J*_{C-F} = 37.0 Hz), 151.0, 143.8, 129.6 (2C), 124.4 (2C), 119.6 (q, ¹*J*_{C-F} = 277.1 Hz), 99.0 (q, ³*J*_{C-F} = 3.0 Hz) ppm; ¹⁹F NMR (564 MHz, Chloroform-*d*): δ = – 71.56 (s, CF₃) ppm; **HRMS (ESI)**: *m/z* calcd. for [C₁₀H₇O₃N₃SF₃]⁺: 306.0155, found: 306.0153; **IR (ATR)**: *v* = 3112, 3073, 2881, 2638, 2288, 2165, 2072, 1994, 1938, 1804, 1693, 1647, 1609,

1563, 1534, 1354, 1315, 1268, 1188, 1144, 1103, 1018, 972, 856, 823, 771, 741, 676 cm⁻¹; **m.p.**: 100–102 °C.

3-(Trifluoromethyl)-1-[4-(trifluoromethyl)phenyl]-1,2,6-thiadiazine 1-oxide (5ha)

Following GP1, the title compound was obtained from 4-(trifluoromethyl)benzenesulfonimidamide (**1h**, 44.8 mg, 0.200 mmol), ETFBO (**4a**, 50.4 mg, 42.7 μL, 0.300 mmol) and pyridine (33.2 mg, 34.0 μL, 0.420 mmol) in presence of silica (130 mg) after purification by column chromatography (*n*-pentane/EtOAc: 98/2 to 9/1) as a pale yellow solid (54.2 mg, 0.165 mmol, 83%). ¹H NMR (600 MHz, Chloroform-*d*): δ = 8.33 (d, *J* = 5.6 Hz, 1H), 8.03 (d, *J* = 8.3 Hz, 2H), 7.88 (d, *J* = 8.3 Hz, 2H), 6.55 (d, *J* = 5.6 Hz, 1H) ppm; ¹³C{¹H} NMR (151 MHz, Chloroform-*d*): δ = 162.2, 156.6 (q, ²*J*_{C-F} = 37.1, 36.7 Hz), 141.9, 136.1 (q, ²*J*_{C-F} = 33.3 Hz), 128.9 (2C), 126.4 (q, ³*J*_{C-F} = 3.7 Hz, 2C), 121.4 (q, ¹*J*_{C-F} = 241.8 Hz), 117.8 (q, ¹*J*_{C-F} = 277.3 Hz) 98.7 (q, ³*J*_{C-F} = 3.0 Hz) ppm; ¹⁹F NMR (564 MHz, Chloroform-*d*): δ = -63.34 (s, C₆H₄-CF₃), -71.51 (s, CF₃) ppm; HRMS (ESI): *m*/z calcd. for [C₁₁H₇ON₂SF₆]⁺: 329.0178, found: 329.0176; IR (ATR): *v* = 3109, 3060, 2170, 1931, 1804, 1673, 1567, 1516, 1405, 1385, 1319, 1279, 1256, 1184, 1115, 1058, 1017, 972, 835, 788, 746, 700 cm⁻¹; m.p.: 86–88 °C.

1-[4-(tert-Butyl)phenyl]-3-(trifluoromethyl)-1,2,6-thiadiazine 1-oxide (5ia)

Following GP1, the title compound was obtained from 4-(*tert*-butyl)benzenesulfonimidamide (**1i**, 42.5 mg, 0.200 mmol), ETFBO (**4a**, 50.4 mg, 42.7 μ L, 0.300 mmol) and pyridine (33.2 mg, 34.0 μ L, 0.420 mmol) in presence of silica (125 mg) after purification by column chromatography (*n*-pentane/EtOAc: 98/2 to 9/1) as a pale yellow solid (53.0 mg, 0.168 mmol, 84%). ¹H NMR (600 MHz, Chloroform-*d*): δ = 8.26 (d, *J* = 5.6 Hz, 1H), 7.80–7.75 (m, 2H), 7.07–7.02 (m, 2H), 6.46 (d, *J* = 5.6 Hz, 1H), 3.90 (s, 3H) ppm; ¹³C{¹H} NMR (151 MHz, Chloroform-*d*): δ = 161.6, 159.0, 156.3 (q, ²*J*_{C-F} = 36.5 Hz), 135.7, 128.6 (2C), 126.5 (2C), 120.0 (q, ¹*J*_{C-F} = 277.1 Hz), 98.1 (q, ³*J*_{C-F} = 3.0 Hz), 35.8, 31.4 (3C) ppm; ¹⁹F NMR (564 MHz, Chloroform-*d*): δ = -71.51 (s, CF₃) ppm; HRMS (ESI): *m*/z calcd. for [C₁₄H₁₅ON₂SF₃Na]⁺: 339.0749, found: 339.0750; IR (ATR): *v* = 3460, 3121, 2966, 2873, 2296, 2170, 2106, 2007, 1925, 1741, 1636, 1560, 1516, 1392, 1313, 1276, 1251, 1196, 1143, 1088, 972, 819, 782, 728 cm⁻¹; m.p.: 66–68 °C.

S26

1-(6-Methylpyridin-3-yl)-3-(trifluoromethyl)-1,2,6-thiadiazine 1-oxide (5ja)

Following GP1, the title compound was obtained from 6-methylpyridine-3sulfonimidamide (**1j**, 34.2 mg, 0.200 mmol), ETFBO (**4a**, 50.4 mg, 42.7 μ L, 0.300 mmol) and pyridine (33.2 mg, 34.0 μ L, 0.420 mmol) in presence of

silica (120 mg) after purification by column chromatography (*n*-pentane/EtOAc: 98/2 to 2/1) as a pale yellow solid (46.1 mg, 0.167 mmol, 84%).¹**H NMR** (600 MHz, Chloroform-*d*): δ = 8.62 (dd, *J* = 2.0, 1.0 Hz, 1H), 8.37 (d, *J* = 5.6 Hz, 1H), 8.17 (d, *J* = 8.0 Hz, 1H), 7.81 (ddt, *J* = 8.1, 2.0, 1.0 Hz, 1H), 6.48 (dd, *J* = 5.6, 0.9 Hz, 1H), 2.49 (s, 3H) ppm; ¹³C{¹H} NMR (151 MHz, Chloroform-*d*): δ = 162.7, 156.8 (q, ²*J*_{C-F} = 36.6 Hz), 153.0, 151.5, 139.3, 138.2, 123.1, 119.70 (q, ¹*J*_{C-F} = 277.2 Hz), 97.8 (q, ³*J*_{C-F} = 3.0 Hz) ppm; ¹⁹F NMR (564 MHz, Chloroform-*d*): δ = -71.63 (s, CF₃) ppm; **HRMS (ESI)**: *m*/*z* calcd. for [C₁₀H₉ON₃SF₃]⁺: 276.0413, found: 276.0413; **IR (ATR)**: *v* = 3858, 3118, 2925, 2695, 2273, 2168, 2062, 2005, 1940, 1736, 1661, 1569, 1517, 1458, 1376, 1311, 1251, 1197, 1125, 1087, 974, 832, 794, 746, 662 cm⁻¹; **m.p.**: 107–109 °C.

1-Methyl-3-(trifluoromethyl)-1,2,6-thiadiazine 1-oxide (5ka)

Following GP1, the title compound was obtained from methanesulfonimidamide $Me^{S}_{N=CF_3}$ Following GP1, the title compound was obtained from methanesulfonimidamide (1k, 18.8 mg, 0.200 mmol), ETFBO (4a, 50.4 mg, 42.7 µL, 0.300 mmol) and pyridine (33.2 mg, 34.0 µL, 0.420 mmol) in presence of silica (100 mg) after purification by column chromatography (*n*-pentane/EtOAc: 98/2 to 2/1) as a yellow solid (21.7 mg, 0.110 mmol, 55%). ¹H NMR (600 MHz, Chloroform-*d*): δ = 8.16 (d, *J* = 5.6 Hz, 1H), 6.39 (d, *J* = 5.6 Hz, 1H), 3.49 (s, 3H) ppm; ¹³C{¹H} NMR (151 MHz, Chloroform-*d*): δ = 161.9, 156.3 (q, ²*J*_{C-F} = 36.5 Hz), 119.7 (q, ¹*J*_{C-F} = 276.8 Hz), 98.6 (q, ³*J*_{C-F} = 3.0 Hz), 44.4 ppm; ¹⁹F NMR (564 MHz, Chloroform-*d*): δ = -71.69 (s, CF₃) ppm; HRMS (ESI): *m*/z calcd. for [C₅H₆ON₂SF₃]⁺: 199.0148, found: 199.0142; IR (ATR): *v* = 3127, 3034, 2944, 2162, 1985, 1704, 1567, 1516, 1384, 1318, 1268, 1233, 1179, 1134, 1083, 983, 845, 792, 742, 702 cm⁻¹; m.p.: 65–67 °C.

4-Methyl-1-(*p*-tolyl)-3-(trifluoromethyl)-1,2,6-thiadiazine 1-oxide (5ac)

Following GP1, the title compound was obtained from 4-methylbenzenesulfonimidamide (**1a**, 34.0 mg, 0.200 mmol), (*E*)-4-Ethoxy-1,1,1-trifluoro-3-methylbut-3-en-2-one (**4c**, 54.6 mg, 0.300 mmol) and pyridine (33.2 mg,

34.0 µL, 0.420 mmol) in presence of silica (120 mg) after purification by column chromatography (*n*-pentane/EtOAc: 98/2 to 9/1) as a pale yellow oil (15.7 mg, 0.0545 mmol, 27%). ¹**H NMR** (600 MHz, Chloroform-*d*): δ = 8.07 (s, 1H), 7.75 (d, *J* = 8.4 Hz, 2H), 7.37 (d, *J* = 8.1 Hz, 2H), 2.46 (s,

3H), 2.18 (q, J = 2.1 Hz, 3H) ppm; ¹³C{¹H} NMR (151 MHz, Chloroform-d): $\delta = 163.2$, 153.1 (q, ${}^{2}J_{C-F} = 35.0$ Hz), 145.6, 135.5, 129.8 (2C), 128.7 (2C), 120.6 (q, ${}^{1}J_{C-F} = 278.7$ Hz), 107.9, 21.8, 14.5 (q, ${}^{3}J_{C-F} = 2.5$ Hz) ppm; ¹⁹F NMR (564 MHz, Chloroform-d): $\delta = -67.93$ (s, CF₃) ppm; HRMS (ESI): m/z calcd. for [C₁₂H₁₂ON₂SF₃]⁺: 289.0617, found: 289.0615; IR (ATR): v = 2934, 2701, 2325, 2081, 1924, 1742, 1576, 1487, 1402, 1363, 1268, 1189, 1139, 1051, 942, 870, 812, 765, 742, 706 cm⁻¹.

4-Methyl-1-(4-Bromobenzene)-3-(trifluoromethyl)-1,2,6-thiadiazine 1-oxide (5fc)

Following GP1, the title compound was obtained from 4-bromobenzenesulfonimidamide (**1f**, 47.0 mg, 0.200 mmol), (*E*)-4-Ethoxy-1,1,1-trifluoro-3methylbut-3-en-2-one (**4c**, 54.6 mg, 0.300 mmol) and pyridine (33.2 mg,

34.0 µL, 0.420 mmol) in presence of silica (135 mg) after purification by column chromatography (*n*-pentane/EtOAc: 98/2 to 9/1) as a pale yellow oil (14.2 mg, 0.0402 mmol, 20%). ¹**H NMR** (600 MHz, Chloroform-*d*): δ = 8.10 (s, 1H), 7.73 (s, 4H), 2.19 (q, *J* = 2.2 Hz, 3H) ppm; ¹³C{¹H} **NMR** (151 MHz, Chloroform-*d*): δ = 163.6, 153.4 (q, ²*J*_{C-F} = 35.0 Hz), 132.5 (2C), 130.0 (2C), 120.49 (q, ¹*J*_{C-F} = 278.7 Hz), 108.5, 14.5 (q, ³*J*_{C-F} = 2.7 Hz) ppm; ¹⁹F **NMR** (564 MHz, Chloroform-*d*): δ = - 67.96 (s, CF₃) ppm; **HRMS (ESI)**: *m*/*z* calcd. for [C₁₁H₉ON₂SF₃Br]⁺: 352.9566, found: 352.9563; **IR (ATR)**: *v* = 3092, 2940, 2293, 2111, 1917, 1736, 1574, 1479, 1388, 1363, 1266, 1189, 1140, 1104, 1054, 1010, 943, 868, 822, 781, 741 cm⁻¹.

1,4-Dimethyl-3-(trifluoromethyl)-1,2,6-thiadiazine 1-oxide (5kc)

Following GP1, the title compound was obtained from methanesulfonimidamide (**1k**, 18.8 mg, 0.200 mmol), (*E*)-4-Ethoxy-1,1,1-trifluoro-3-methylbut-3-en-2-one (**4c**, 54.6 mg, 0.300 mmol) and pyridine (33.2 mg, 34.0 μ L, 0.420 mmol) in

presence of silica (110 mg) after purification by column chromatography (*n*-pentane/EtOAc: 98/2 to 4/1) as a colorless solid (20.9 mg, 0.0985 mmol, 49%). ¹**H NMR** (600 MHz, Chloroform-*d*): δ = 7.96 (s, 1H), 3.48 (s, 3H), 2.11 (q, *J* = 2.1 Hz, 3H) ppm; ¹³C{¹H} NMR (151 MHz, Chloroform-*d*): δ = 163.6, 153.4 (q, ²*J*_{C-F} = 35.1 Hz), 120.51 (q, ¹*J*_{C-F} = 278.3 Hz), 108.7, 44.4, 14.4 (q, ³*J*_{C-F} = 2.9 Hz) ppm; ¹⁹F NMR (564 MHz, Chloroform-*d*): δ = -68.10 (s, CF₃) ppm; **HRMS (ESI)**: *m/z* calcd. for [C₆H₈ON₂SF₃]⁺: 213.0304, found: 213.0304; **IR (ATR)**: *v* = 3035, 2979, 2944, 2653, 2440, 2269, 2195, 2161, 2082, 2047, 1972, 1906, 1851, 1739, 1581, 1489, 1453, 1408, 1367, 1335, 1267, 1221, 1189, 1137, 1052, 974, 896, 807, 738, 712 cm⁻¹; **m.p.**: 81–83 °C.

Using slightly modified reaction conditions from a previously

4-(3-Hydroxypropyl)-1-(p-tolyl)-3-(trifluoromethyl)-1,2,6-thiadiazine 1-oxide (5ad)

reported protocol,^{S2} the title compound was obtained from 4-methylbenzenesulfonimidamide (1a, 34.0 mg, 0.200 mmol), 1-(3,4-dihydro-2H-pyran-5-yl)-2,2,2-trifluoroethan-1-one (4d, 54.0 mg, 0.300 mmol, 1.5 equiv.) and Cs₂CO₃ (137 mg, 0.420 mmol, 2.1 equiv.) after purification by column chromatography (n-pentane/EtOAc: 3/1 to 1/1) as a yellow oil (25.3 mg, 0.0761 mmol, 38%). ¹H NMR (400 MHz, Chloroform-*d*): δ = 8.16 (s, 1H), 7.75 (d, J = 8.5 Hz, 2H), 7.38 (d, J = 8.2 Hz, 2H), 3.73–3.66 (m, 2H), 2.77-2.67 (m, 1H), 2.61-2.51 (m, 1H), 2.46 (s, 3H), 1.90-1.69 (m, 2H) ppm [OH-proton not detected]; ${}^{13}C{}^{1}H, {}^{19}F{} NMR$ (101 MHz, Chloroform-*d*): $\delta = 163.6, 152.6, 145.7, 135.4, 129.8$ (2C), 128.7 (2C), 120.7, 112.4, 61.7, 34.3, 25.2, 21.8 ppm; ¹⁹F NMR (376 MHz, Chloroform-d): $\delta = -$ 66.4 (s, CF₃) ppm; **HRMS (ESI)**: *m*/*z* calcd. for [C₁₄H₁₅O₂N₂SF₃Na]⁺: 355.0694, found: 355.0670; **IR (ATR)**: *v* = 3407, 2932, 2878, 2167, 1919, 1709, 1572, 1469, 1404, 1362, 1252, 1187, 1139, 1106, 1043, 954, 877, 811, 761, 703, 661 cm⁻¹.

N-(tert-Butyldimethylsilyl)-N'-(3-oxo-1,3-diphenylprop-1-en-1-yl) methanesulfonimidamide

(7ka) Using slightly modified reaction conditions (without Al₂O₃ as grinding auxiliary) from a previously reported protocol,^{S5} the title compound was obtained N-(tert-butyldimethylsilyl)-methanesulfonimidamide (**6k**, 31.3 mg. 0.150 mmol), 1,3-diphenylprop-2-yn-1-one (2a, 46.4 mg, 0.225 mmol), Cs₂CO₃

(103 mg, 0.315 mmol, 2.1 equiv.), LaCl₃ (3.7 mg, 0.015 mmol, 0.10 equiv.), and molecular sieves (MS 4 Å, 5 mg) after purification by column chromatography (n-pentane/EtOAc: 98/2 to 4/1) as a yellow oil (56.1 mg, 0.135 mmol, 90%). ¹H NMR (600 MHz, Chloroform-d): δ = 12.14 (s, 1H), 8.05– 7.87 (m, 2H), 7.66–7.57 (m, 2H), 7.57–7.52 (m, 1H), 7.50–7.41 (m, 5H), 6.28 (s, 1H), 2.97 (s, 3H), 0.91 (s, 9H), 0.13 (s, 3H), 0.12 (s, 3H) ppm; ${}^{13}C{}^{1}H$ NMR (151 MHz, Chloroform-*d*): δ =191.3, 158.8, 138.7, 135.5, 132.7, 130.5, 129.0 (2C), 128.7 (2C), 128.2 (2C), 127.9 (2C), 103.8, 48.1, 26.0 (3C), 18.0, -2.7 (2C) ppm; **HRMS (ESI)**: *m/z* calcd. for [C₂₂H₃₀O₂N₂SSiNa]⁺: 437.1690, found: 437.1670; **IR (ATR)**: *v* = 3061, 2930, 2855, 2323, 2086, 1899, 1814, 1611, 1559, 1489, 1452, 1407, 1312, 1250, 1223, 1174, 1103, 1043, 1019, 962, 935, 827, 765, 730, 692 cm⁻¹.

1-Methyl-3,5-diphenyl-1,2,6-thiadiazine 1-oxide (3ka)

Using slightly modified reaction conditions (performing the reaction at 100 °C instead of room temperature) from a previously reported protocol,^{S2} the title compound was synthesized from *N*-(*tert*-butyldimethylsilyl)-methanesulfonimidamide (**6k**, 41.7 mg, 0.200 mmol), 1,3-diphenylprop-2-yn-1-one (2a, 61.9 mg, 0.300 mmol), Cs₂CO₃ (137 mg, 0.420 mmol), LaCl₃ (4.9 mg, 0.020 mmol, 0.1 equiv.) and molecular sieves (MS 4 Å, 5 mg) in dry DMSO (3 mL) for 12 h at 100°C. The product **3ka** was obtained after purification by column chromatography (n-pentane/EtOAc: 98/2 to 4/1) as a yellow solid (53.0 mg, 0.188 mmol, 94%). ¹H NMR (600 MHz, Chloroform-*d*): *δ* =8.09–7.99 (m, 4H), 7.57–7.46 (m, 6H), 7.04 (s, 1H),

3.51 (s, 3H) ppm; ${}^{13}C{}^{1}H$ NMR (151 MHz, Chloroform-*d*): δ =166.6 (2C), 137.0 (2C), 131.7 (2C), 128.8 (4C), 127.6 (4C), 95.9, 44.8 ppm. The observed NMR data are in full agreement with the reported data in the literature.^{S2}

4-Bromo-1-(p-tolyl)-3-(trifluoromethyl)-1,2,6-thiadiazine 1-oxide (8)

Under an atmosphere of argon, 1-(p-tolyl)-3-(trifluoromethyl)-1,2,6thiadiazine 1-oxide (5aa, 54.9 mg, 0.200 mmol) was loaded in an ovendried Schlenk-tube, equipped with magnetic stirring bar and septum and dissolved in dry 1,4-dioxane (5 mL \cdot 1 mmol⁻¹). Bromine (0.031 mL, 95.9 mg, 0.600 mmol, 3.0 equiv.) was added dropwise by syringe within 10 minutes, and the reaction mixture was stirred for 3 h at ambient temperature. After completion of the reaction (monitored by TLC), a Na₂S₂O₃ solution (1 M, 10 mL · 1 mmol⁻¹) was added and the reaction mixture was extracted with DCM (3 x 10 ml \cdot 1 mmol⁻¹). The combined organic phases were washed with brine and dried over MgSO₄. The solvent was removed at reduced pressure and dried on high vacuum for several hours. Title compound 8 was obtained as a pale yellow solid (69.3 mg, 0.196 mmol, 98%) without further purification. ¹**H NMR** (600 MHz, Chloroform-*d*): δ = 8.34 (s, 1H), 7.76 (d, *J* = 8.3 Hz, 2H), 7.41 (d, J = 8.2 Hz, 2H), 2.48 (s, 3H) ppm; ¹³C{¹H} NMR (151 MHz, Chloroform-*d*): $\delta = 163.4$, 152.6 (g, ²J_c- $_{F}$ = 35.8 Hz), 119.5 (q, $^{1}J_{C-F}$ = 278.6 Hz) 146.4, 134.3, 130.0 (2C), 128.7 (2C), 93.1, 21.9 ppm; ¹⁹**F NMR** (564 MHz, Chloroform-*d*): δ = -68.50 (s, CF₃) ppm; **HRMS** (ESI): *m*/*z* calcd. for $[C_{11}H_9ON_2SBrF_3]^+$: 352.9566, found: 352.9557; **IR (ATR)**: v = 2923, 2853, 2311, 2201, 2113, 1920,1739, 1652, 1591, 1551, 1492, 1454, 1376, 1252, 1196, 1155, 1100, 990, 835, 809, 757, 730, 702, 667 cm⁻¹; **m.p.**: 98–99 °C.

7. Analytical HPLC chromatogram of 5aa

Figure S3. HPLC trace of compound 5aa.

8. X-ray crystallographic studies (compounds 5aa and 8)

Single crystal X-ray data of **5aa** and **8** were measured using a dual-source Rigaku SuperNova diffractometer equipped with an Atlas detector and an Oxford Cryostream cooling system using mirror-monochromated Mo-K_{α} radiation ($\lambda = 0.71073$ Å). Data collection and reduction for both compounds were performed using the program *CrysAlisPro*^{S6} and Gaussian face-index absorption correction method was applied.^{S6} The structures were solved with Direct Methods (*SHELXS*)^{S7} and refined by full-matrix least-squares based on *F*² using *SHELXL*-2015.^{S7} Non-hydrogen atoms were assigned anisotropic displacement parameters unless stated otherwise. Hydrogen atoms were placed in idealized positions and included as riding. Isotropic displacement parameters for all H atoms were constrained to multiples of the equivalent displacement parameters of their parent atoms with U_{iso}(H) = 1.2 U_{eq}(parent atom). The X-ray single crystal data and experimental details as well as CCDC numbers are given below.

Crystal data for **5aa** (obtained *via* slow evaporation from MeOH): CCDC-2109331, $C_{11}H_9F_3N_2OS$, M = 274.26 g·mol⁻¹, colourless plate, 0.29 × 0.18 × 0.04 mm³, orthorhombic, space group *Pbca* (No. 61), a = 8.3925(6) Å, b = 11.7050(9) Å, c = 23.1584(19) Å, α = 90°, β = 90°, γ = 90°, V = 2274.9(3) Å³, Z = 8, D_{calc} = 1.602 g·cm⁻³, F(000) = 1120, μ = 0.313 mm⁻¹, T = 120(2) K, θ_{max} = 22.01°, 5469 total reflections, 1262 with $I_0 > 2\sigma(I_0)$, R_{int} = 0.0857, 2291 data, 164 parameters, no restraints, GooF = 0.997, R_1 = 0.0724 and w R_2 = 0.0811 [$I_0 > 2\sigma(I_0)$], R_1 = 0.1370 and w R_2 = 0.1043 (all reflections), 0.406 < d $\Delta\rho$ < -0.384 eÅ⁻³.

Crystal data for **8** (obtained *via* slow evaporation from MeOH): CCDC-2109381, $C_{11}H_8BrF_3N_2OS$, M = 353.16 g•mol⁻¹, colourless plate, 0.28 × 0.20 × 0.06 mm³, triclinic, space group *P*-1 (No. 2), a = 7.6104(12) Å, b = 7.8056(14) Å, c = 12.0015(19) Å, α = 90.867(2)°, β = 102.061(2)°, γ = 115.696(3)°, V = 623.71(18) Å³, Z = 2, D_{calc} = 1.880 g•cm⁻³, F(000) = 348, μ = 3.492 mm⁻¹, T = 120(2) K, θ_{max} = 26.37°, 4226 total reflections, 1815 with I_o > 2 σ (I_o), R_{int} = 0.0406, 2261 data, 173 parameters, no restraints, GooF = 1.071, R₁ = 0.0527 and wR₂ = 0.1167 [I_o > 2 σ (I_o)], R₁ = 0.0693 and wR₂ = 0.1262 (all reflections), 1.236 < d $\Delta\rho$ < -0.622 eÅ⁻³.

Figure S4 Ball-and-stick model of 5aa.

Figure S5 Ball-and-stick model of 5aa showing the three-dimensional arrangement around the sulfur atom.

Figure S6 Ball-and-stick model of 8 showing the three-dimensional arrangement around the sulfur atom.

9. References

- S1. Y. Chen and J. Gibson, A convenient synthetic route to sulfonimidamides from sulfonamides, *RSC Adv.*, 2015, **5**, 4171-4174.
- S2. J.-H. Schöbel, M. T. Passia, N. A. Wolter, R. Puttreddy, K. Rissanen and C. Bolm, 1,2,6-Thiadiazine 1-Oxides: Unsaturated Three-Dimensional *S*,*N*-Heterocycles from Sulfonimidamides, *Org. Lett.*, 2020, **22**, 2702-2706.
- S3.I. I. Gerus, M. G. Gorbunova and V. P. Kukhar, β-Ethoxyvinyl polyfluoroalkyl ketones versatile synthones in fluoroorganic chemistry, *J. Fluor. Chem.*, 1994, **69**, 195-198.
- S4. M. A. P. Martins, E. A. Guarda, C. P. Frizzo, E. Scapin, P. Beck, A. C. da Costa, N. Zanatta and H. G. Bonacorso, Synthesis of 1,1,1-trichloro[fluoro]-3-alken-2-ones using ionic liquids, *J. Mol. Catal. A Chem.*, 2007, **266**, 100-103.
- S5. J.-H. Schöbel, W. Liang, D. Wöll and C. Bolm, Mechanochemical Synthesis of 1,2,6-Thiadiazine 1-Oxides from Sulfonimidamides and the Fluorescence Properties of the Products, *J. Org. Chem.*, 2020, **85**, 15760-15766.
- S6. Rigaku Oxford Diffraction, 2017, *CrysAlisPro* software system, version 38.46, Rigaku Corporation, Oxford, UK.
- S7. a) G. M. Sheldrick, A short history of *ShelX. Acta Cryst.*, 2008, A64, 112-122. (b) G. M. Sheldrick, SHELXL13. Program package for crystal structure determination from single crystal diffraction data, University of Göttingen, Germany, 2013. (c) G. M. Sheldrick, Crystal structure refinement with *ShelXL. Acta Cryst.*, 2015, C71, 3-8.

10. NMR spectra

¹H NMR spectrum (DMSO-*d*₆, 600 MHz) of compound **1b-precursor**

¹H NMR spectrum (DMSO-*d*₆, 600 MHz) of compound **6b**

S34

¹H NMR spectrum (DMSO-*d*₆, 600 MHz) of compound **1b**

S35

¹H NMR spectrum (DMSO-*d*₆, 600 MHz) of compound **1c-precursor**

Stacked ¹³C{¹H} DEPT NMR spectra (DMSO-*d*₆, 151 MHz) of compound **1c-precursor**

¹H NMR spectrum (DMSO-*d*₆, 600 MHz) of compound **6c**

Stacked ¹³C{¹H} DEPT NMR spectra (DMSO-*d*₆, 151 MHz) of compound **6c**

¹H NMR spectrum (DMSO-*d*₆, 600 MHz) of compound **1c**

Stacked ¹³C{¹H} DEPT NMR spectra (DMSO-*d*₆, 151 MHz) of compound **1c**

¹H NMR spectrum (DMSO-*d*₆, 600 MHz) of compound **1d-precursor**

¹H NMR spectrum (DMSO-*d*₆, 400 MHz) of compound **6d**

¹H NMR spectrum (DMSO-*d*₆, 600 MHz) of compound **1d**

¹H NMR spectrum (DMSO-*d*₆, 600 MHz) of compound **1e-precursor**

S42

¹H NMR spectrum (DMSO-*d*₆, 600 MHz) of compound **6e**

¹H NMR spectrum (DMSO-*d*₆, 600 MHz) of compound **1e**

Stacked ¹³C{¹H} DEPT NMR spectra (DMSO-*d*₆, 151 MHz) of compound **1e**

¹H NMR spectrum (DMSO-*d*₆, 600 MHz) of compound **1f-precursor**

¹H NMR spectrum (DMSO-*d*₆, 600 MHz) of compound **1f**

Stacked ¹³C{¹H} DEPT NMR spectra (DMSO-*d*₆, 151 MHz) of compound **1f**

¹H NMR spectrum (DMSO-*d*₆, 600 MHz) of compound **1g-precursor**

¹H NMR spectrum (DMSO-*d*₆, 600 MHz) of compound **6g**

-1900000 -1800000 -1700000 -1500000 ,NH -1400000 ΝH₂ -1100000 O_2N -0 200-€ -02:1 --200000 1.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 f1 (ppm) 1.0 0.5 0.0 -0.5 -1.0

Stacked ¹³C{¹H} DEPT NMR spectra (DMSO-*d*₆, 151 MHz) of compound **1g**

-6.97

-3.32 H2O

-2300000

2200000 2100000 2000000

1600000

1300000 1200000

-100000

-7500000

¹H NMR spectrum (DMSO-*d*₆, 600 MHz) of compound **1h-precursor**

80 70 60 50 40 30

130 120

180 170 160 150 140

90

0

--100

-10

20 10 0

N-твs Н F₃C 30 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm) 10 0 20 ¹H NMR spectrum (DMSO-*d*₆, 600 MHz) of compound **6h** -2.50 DM50 -3.32 H2O Z806 7,92 7,92 -6,86 C0.02 [] 1

¹⁹F NMR spectrum (DMSO- d_6 , 564 MHz) of compound **1h-precursor**

S52

-90000 -85000 -75000 -70000 -65000 -55000

50000

-45000 -35000 -35000 -25000 -20000 -15000 -5000 -0 -5000

20000000

-19000000

Stacked ¹³C{¹H} DEPT NMR spectra (DMSO-*d*₆, 151 MHz) of compound **6h**

¹H NMR spectrum (DMSO-*d*₆, 600 MHz) of compound **1h**

800 ,NΗ NH₂ -700 -600 F₃C -500 400 -300 -200 -100 0 -100 100 90 80 f1 (ppm) 110 20 -10 180 170 160 150 140 130 120 70 60 50 40 30 10 Ó 90

 $^{19}\mathsf{F}$ NMR spectrum (DMSO- $d_6,\,564$ MHz) of compound 1h

¹H NMR spectrum (DMSO-*d*₆, 600 MHz) of compound **1i-precursor**

Stacked ¹³C{¹H} DEPT NMR spectra (DMSO-*d*₆, 151 MHz) of compound **1i-precursor**

Stacked ¹³C{¹H} DEPT NMR spectra (DMSO-*d*₆, 101 MHz) of compound **6i**

-6000000 / 138.2 -120.0 -149.7 - 157.6 C17.8 -22.7 14 -5500000 -5000000 4500000 4000000 -твs -3500000 -3000000 Me 2500000 -2000000 1500000 1000000 500000 -0 -500000 140 130 120 110 100 90 80 f1 (ppm) 90 60 40 -10 180 170 150 70 50 30 20 160 10 0 ¹H NMR spectrum (DMSO-*d*₆, 600 MHz) of compound **6**j -3.31 H2O 14000000 C-0.01 13000000 12000000 1 1 -11000000 10000000 N-TBS 9000000 NH₂ 8000000 Me 7000000 6000000 -5000000 4000000 3000000 2000000 1000000 -0 2.16-1 2.10-# - 26:0 3,001 8.79-# 291 --1000000 1.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 fl (ppm)

Stacked ¹³C{¹H} DEPT NMR spectra (DMSO-*d*₆, 151 MHz) of compound **1j-precursor**

Stacked ¹³C{¹H} DEPT NMR spectra (DMSO-*d*₆, 151 MHz) of compound **6**j

Stacked ¹³C{¹H} DEPT NMR spectra (DMSO-*d*₆, 151 MHz) of compound **1**j

Stacked ¹³C{¹H} DEPT NMR spectra (Chloroform-*d*, 151 MHz) of compound **1k-precursor**

-39.52 DMSC -7000000 -48.30 -17.72 -26,06 C235 6500000 6000000 -5500000 -5000000 ,N−TBS 0, 4500000 Me ΝH₂ 4000000 -3500000 -3000000 2500000 2000000 1500000 1000000 500000 -0 -500000 100 90 80 f1 (ppm) 90 110 60 -10 180 170 50 40 20 160 150 140 130 120 70 30 10 0 ¹H NMR spectrum (DMSO-*d*₆, 600 MHz) of compound **1k** ->>000000 -2.50 DMSO 2.09 5000000 4500000 4000000 -3500000 Ο, _NH Me NH₂ -3000000 -2500000 2000000 -1500000 1000000 -500000 -0 352-1000 -500000 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 f1 (ppm) 10.5 10.0 9.5 9.0

Stacked ¹³C{¹H} DEPT NMR spectra (DMSO-*d*₆, 151 MHz) of compound **6k**

-45.6 6000000 -5500000 5000000 4500000 ,ΝΗ 4000000 ,⊃**`**NH₂ Me 3500000 3000000 2500000 2000000 1500000 1000000 -500000 -0 --500000 0 90 160 110 100 90 f1 (ppm) 50 30 20 180 170 140 120 80 70 60 40 10 150 130 ¹H NMR spectrum (Chloroform-*d*, 600 MHz) of compound **4b** -7.26 00 03 -5.30 DOM -5.30 DOM 4.001 3.99 -3000 1.42 1.42 1.40 2.41 -2800 -2600 -2400 -2200 -2000 F₃C Me -1800 -1600 -1400 -1200 -1000 -800

1,00-#

1.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 f1 (ppm)

7394

3/66-4

3.19-#

-600 -400 -200 -0

-200

Stacked ¹³C{¹H} DEPT NMR spectra (DMSO-*d*₆, 151 MHz) of compound **1k**

Stacked ¹³C{¹H} DEPT NMR spectra (Chloroform-*d*, 151 MHz) of compound **4b**

¹H NMR spectrum (Chloroform-*d*, 600 MHz) of compound **4c**

¹⁹F NMR spectrum (Chloroform-*d*, 564 MHz) of compound **4c**

Stacked ¹³C{¹H} DEPT NMR spectra (Chloroform-*d*, 151 MHz) of compound **4d**

¹H NMR spectrum (Chloroform-*d*, 600 MHz) of compound **5aa**

Stacked ¹³C{¹H} DEPT NMR spectra (Chloroform-d, 151 MHz) of compound **5aa**

¹⁹F NMR spectrum (Chloroform-*d*, 564 MHz) of compound **5aa**

-0300 -77.2 (2) 033 -138.6 -134.5 -128.5 -128.5 -117.0 -117.0 -161.6 156.5 156.3 156.1 155.8 1.86 6000 -5500 5000 4500 4000 -3500 3000 -2500 -2000 -1500 1000 -500 -0 -500 ó 90 110 100 90 f1 (ppm) 180 160 70 50 170 150 140 130 120 80 60 40 30 20 10 ¹⁹F NMR spectrum (Chloroform-*d*, 564 MHz) of compound **5ba** --71.53 -190000 -180000 -170000 160000 -150000 -140000 130000 -120000 -110000 100000 90000 -80000 70000 60000 -50000 40000 30000 -20000 10000 -0 -10000 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm) -10 30 20 10 0

Stacked ¹³C{¹H} DEPT NMR spectra (Chloroform-*d*, 151 MHz) of compound **5ba**

¹H NMR spectrum (Chloroform-*d*, 600 MHz) of compound 5ca
¹⁹F NMR spectrum (Chloroform-*d*, 564 MHz) of compound **5ca**

Stacked ¹³C{¹H} DEPT NMR spectra (Chloroform-d, 151 MHz) of compound 5da

¹H NMR spectrum (Chloroform-*d*, 600 MHz) of compound **5ea**

¹⁹F NMR spectrum (Chloroform-*d*, 564 MHz) of compound **5ea**

-77.2 0003 -7500 -137.6 2130.2 202.2 202.6 212.5 2016.9 2016.9 2016.9 2016.9 2016.9 98.4 98.3 98.3 98.3 -1618 1567 1565 1562 1560 7000 -6500 6000 -5500 5000 4500 Br 4000 -3500 3000 -2500 2000 1500 1000 500 -0 -500 0 90 110 100 90 f1 (ppm) 180 160 140 130 170 150 120 80 70 60 50 40 30 20 10 ¹⁹F NMR spectrum (Chloroform-*d*, 564 MHz) of compound 5fa --71.54 -170000 -160000 150000 140000 -130000 120000 -110000 100000 -90000 80000 70000 -60000 -50000 40000 30000 20000 10000 -0 -10000 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm) 30 20 10 0 -10

Stacked ¹³C{¹H} DEPT NMR spectra (Chloroform-d, 151 MHz) of compound 5fa

110

190

180

170 160

150

140

130 120

100 90 f1 (ppm) 80

70 60

50

40

30 20

0

ò

10

¹H NMR spectrum (Chloroform-*d*, 600 MHz) of compound 5ga

¹⁹F NMR spectrum (Chloroform-*d*, 564 MHz) of compound 5ga

-77.2 0003 -4500 136.4 136.2 136.5 137.5 136.5 137.5 136.5 137.5 136.5 137.5 136.5 137.5 136.5 137.5 136.5 137.5 136.5 137.5 136.5 137.5 136.5 137.5 136.5 137.5 136.5 137.5 136.5 137.5 136.5 137.5 136.5 137.5 136.5 137.5 136.5 137.5 1 -162.2 157.0 -156.7 -156.7 F₃C -1500 -0 100 90 f1 (ppm) ¹⁹F NMR spectrum (Chloroform-*d*, 564 MHz) of compound **5ha**

¹H NMR spectrum (Chloroform-*d*, 600 MHz) of compound 5ia

S82

¹⁹F NMR spectrum (Chloroform-*d*, 564 MHz) of compound **5ia**

Stacked ¹³C{¹H} DEPT NMR spectra (Chloroform-*d*, 151 MHz) of compound **5**ja

¹H NMR spectrum (Chloroform-*d*, 600 MHz) of compound 5ka

¹⁹F NMR spectrum (Chloroform-*d*, 564 MHz) of compound **5ka**

¹H NMR spectrum (Chloroform-*d*, 600 MHz) of compound **5ac**

Stacked ¹³C{¹H} DEPT NMR spectra (Chloroform-d, 151 MHz) of compound **5ac**

¹H NMR spectrum (Chloroform-*d*, 600 MHz) of compound 5fc

Stacked ¹³C{¹H} DEPT NMR spectra (Chloroform-*d*, 151 MHz) of compound **5fc**

¹⁹F NMR spectrum (Chloroform-*d*, 564 MHz) of compound 5fc

-5000000 -77.2 0003 -108.7 1233 1196 1177 -163.6 153.5 -44.1 14.4 14.4 14.3 4500000 4000000 у—Ме -3500000 Me 3000000 -2500000 2000000 1500000 1000000 500000 -0 0 90 100 90 f1 (ppm) 180 160 110 170 150 140 130 120 80 70 60 50 40 30 20 10 ¹⁹F NMR spectrum (Chloroform-*d*, 564 MHz) of compound **5kc** --68.10 -21000000 -20000000 19000000 18000000 17000000 16000000 -15000000 -14000000 -Me Me -13000000 -12000000 -11000000 10000000 -9000000 -8000000 7000000 -6000000 -5000000 4000000 3000000 2000000 1000000 0 -1000000 -2000000 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

Stacked ¹³C{¹H} DEPT NMR spectra (Chloroform-*d*, 151 MHz) of compound 5kc

¹H NMR spectrum (Chloroform-*d*, 400 MHz) of compound **5ad**

50000 45000 40000 OH -35000 30000 °CF₃ Ме -25000 -20000 -15000 10000 -5000 -0 20 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -50 -50 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm) ¹H NMR spectrum (Chloroform-*d*, 600 MHz) of compound **7ka** 1.1.1.2 1 -900 -12.14 -2.97 A0.13 -850 -800 -750 -700 | |, 650 1 1 -600 -550 Me、 TBS~N -500 450 400 350 300 -250 200 150 -100 50 -0 ¥-860 200-= 1197 十名で 1.03-# ₹565 * 80 -50 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 f1 (ppm)

¹⁹F NMR spectrum (Chloroform-*d*, 376 MHz) of compound **5ad**

¹³C{¹H} NMR spectrum (Chloroform-*d*, 151 MHz) of compound 7ka

¹³C{¹H} NMR spectrum (Chloroform-*d*, 151 MHz) of compound **3ka**

Stacked ¹³C{¹H} DEPT NMR spectra (Chloroform-*d*, 151 MHz) of compound 8

HMBC 2D NMR spectra of 8

