Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Supplementary Material

Synthesis of the TNF inhibitor, flurbiprofen and an *i*-Pr analogue in enantioenriched forms by using the copper-catalyzed propargylic substitution with Grignard reagents

Yuji Takashima,^a Yukari Isogawa,^a Atsuki Tsuboi,^b Narihito Ogawa*^b and Yuichi Kobayashi*^{a,c}

- ^a Department of Biomolecular Engineering, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
- ^b Department of Applied Chemistry, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
- ^c Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan

Table of Contents

1. General information	S2
2. Experimental procedures and characterization data	S2
3. Synthesis of the precursor of the Grignard reagent 8	S15
4. References	S17
5. Calculation of ratios by $^1\mbox{H}$ NMR spectroscopy and HPLC analysis	S18
6. ¹ H, ¹³ C and ¹³ C–APT NMR spectra	S29

1. General information

The ${}^{1}H$, ${}^{13}C$ and ${}^{13}C$ -attached proton test (${}^{13}C$ -APT) NMR spectroscopic data were recorded in CDCl₃ using Me₄Si (δ = 0 ppm) and the centerline of the triplet (δ = 77.1 ppm) as internal standards, respectively. The ${}^{19}F$ NMR data were measured in CDCl₃ with PhCF₃ (δ = -63.72 ppm). Signal patterns are indicated as br s (broad singlet), s (singlet), d (doublet), t (triplet), q (quartet) and m (multiplet). Coupling constants (J) are given in Hertz (Hz). Chemical shifts of carbons are accompanied by ${}^{13}C$ -APT signal patterns as minus (downward for C and CH₂) and plus (upward for CH and CH₃). The solvents that were distilled prior to use are THF (from Na/benzophenone), Et₂O (from Na/benzophenone), and CH₂Cl₂ (from CaH₂). Crude products were purified by column chromatography on silica gel (Merck, silica gel 60 and KANTO, silica gel 60N).

2. Experimental procedures and characterization data

5-(tert-Butyldiphenylsilyloxy)-1-(trimethylsilyl)pent-1-yn-3-ol (rac-7)

To an ice-cold solution of alcohol $9^{S1,S2}$ (1.64 g, 5.21 mmol) in CH₂Cl₂ (10 mL) were added DMSO (1.48 mL, 20.8 mmol) and Et₃N (2.18 mL, 15.6 mmol). The solution was stirred at 0 °C for 1 h, and SO₃·pyridine (1.66 g, 10.4 mmol) was added. The solution was stirred at room temperature for 1 h and diluted with H₂O and brine. The mixture was extracted with EtOAc twice. The combined organic layers were dried over MgSO₄ and concentrated. The residue was passed through a short column of silica gel (hexane/EtOAc) to give aldehyde S1, which was dissolved in THF (5 mL) for the next reaction. Liquid. R_f = 0.59 (hexane/EtOAc = 3:1). ¹H NMR (300 MHz, CDCl₃) δ 1.04 (s, 9 H), 2.61 (dt, J = 2.1, 6.0 Hz, 2 H), 4.02 (t, J = 6.0 Hz, 2 H), 7.32–7.48 (m, 6 H), 7.62–7.69 (m, 4 H), 9.82 (t, J = 2.1 Hz, 1 H). The spectrum was coincident with the reported data. ^{S2}

To the above THF solution cooled to 0 $^{\circ}$ C was added *n*-BuLi (1.60 M in hexane, 4.24 mL, 6.78 mmol) dropwise. The solution was stirred at 0 $^{\circ}$ C for 30 min and cooled to -78

°C. The above aldehyde in THF was added to the solution, which was then stirred at -78 °C for 1 h and poured to a mixture of saturated NH₄Cl and EtOAc with vigorous stirring. The organic phase was separated, and the aqueous phase was extracted with EtOAc twice. The combined organic layers were dried over MgSO₄ and concentrated to afford a residue, which was purified by chromatography on silica gel (hexane/EtOAc) to give alcohol *rac-7* (1.65 g, 77% over two steps). Liquid. $R_f = 0.35$ (hexane/EtOAc = 19:1, two-development) (cf. the above aldehyde, $R_f = 0.43$). IR (neat) 3429, 2170, 1251, 1112, 844 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ 0.17 (s, 9 H), 1.05 (s, 9 H), 1.84–1.97 (m, 1 H), 1.98–2.10 (m, 1 H), 3.28 (d, J = 6.0 Hz, 1 H), 3.83 (ddd, J = 10.5, 6.0, 4.5 Hz, 1 H), 4.05 (ddd, J = 10.5, 7.8, 3.9 Hz, 1 H), 4.70 (dt, J = 4.5, 6.3 Hz, 1 H), 7.36–7.48 (m, 6 H), 7.64–7.72 (m, 4 H). ¹³C NMR (75 MHz, CDCl₃) δ –0.0 (+), 19.1 (–), 26.8 (+), 38.8 (–), 61.8 (–), 61.9 (+), 89.4 (–), 106.3 (–), 127.8 (+), 129.9 (+), 133.00 (–), 133.04 (–), 135.53 (+), 135.56 (+). HRMS (FAB) calcd for C₂₄H₃₅O₂Si₂ [(M+H)⁺] 411.2176, found 411.2172. The ¹H NMR and ¹³C NMR spectrum was updated.

TBDPSO TMS TMS
$$(R)$$
-7

(R)-5-(tert-Butyldiphenylsilyloxy)-1-(trimethylsilyl)pent-1-yn-3-ol [(R)-7]

To an ice-cold solution of rac-7 (1.65 g, 4.02 mmol) in CH₂Cl₂ (16 mL) were added Celite (2.60 g) and PCC (1.30 g, 6.03 mmol). The mixture was stirred at room temperature for 18 h, diluted with hexane and filtered through a pad of Celite with hexane. The filtrate was concentrated and the residue was purified by chromatography on silica gel (hexane/EtOAc) to give ketone **S2** (1.23 g, 75%). Liquid. R_f = 0.57 (hexane/EtOAc = 9:1). IR (neat) 2151, 1681, 1113, 847, 702 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ 0.23 (s, 9 H), 1.03 (s, 9 H), 2.78 (t, J = 6.2 Hz, 2 H), 4.01 (t, J = 6.2 Hz, 2 H), 7.34–7.47 (m, 6 H), 7.62–7.74 (m, 4 H). ¹³C NMR (75 MHz, CDCl₃) δ –0.7 (+), 19.2 (–), 26.8 (+), 48.0 (–), 59.4 (–), 98.2 (–), 102.0 (–), 127.7 (+), 129.8 (+), 133.4 (–), 135.6 (+), 186.2 (–). The ¹H NMR and ¹³C NMR spectral data were coincident with the reported data. ^{S4}

A mixture of RuCl[(*R*,*R*)-TsDPEN](*p*-cymene) (39.6 mg, 0.0622 mmol) and KOH (ca. 7.5 mg, 0.13 mmol) in CH₂Cl₂ (2.5 mL) was stirred at room temperature for 5 min and

washed with H₂O twice. The remaining CH₂Cl₂ layer was transferred to another flask, dried over CaH₂ and concentrated to afford solids, which was dissolved in *i*-PrOH (3 mL) for the next reaction. To an ice-cold solution of the above ketone (254 mg, 0.621 mmol) in *i*-PrOH (3 mL) was added the above *i*-PrOH solution of the catalyst. The solution was stirred at 30 °C for 15 h and diluted with H₂O and saturated NaHCO₃. The product was extracted with EtOAc twice. The combined organic layers were dried over MgSO₄ and concentrated to afford a residue, which was passed through a short column of silica gel (hexane/EtOAc) to give alcohol (*R*)-7 (247 mg, 97%). 97.5% ee by HPLC analysis of the corresponding benzoate (Chiralcel OD-H, hexane/*i*-PrOH = 99.9:0.1, 0.3 mL/min, 25 °C, t_R = 30.9 and 40.7 min for (*R*)-isomer (major) and (*S*)-isomer (minor), respectively. The ¹H and ¹³C NMR spectra were identical with those of the racemic alcohol *rac*-7.

TBDPSO TMS
$$(R)$$
-7 TMS $OPO(OEt)_2$ TBDPSO TMS

(R)-5-(tert-Butyldiphenylsilyloxy)-1-(trimethylsilyl)pent-1-yn-3-yl diethyl phosphate (10)

To a solution of (*R*)-7 (234 mg, 0.570 mmol) in CH₂Cl₂ (2.3 mL) were added *N*-methylimidazole (0.117 mL, 1.48 mmol) and diethyl chlorophosphate (0.205 mL, 1.43 mmol). The solution was stirred at room temperature for 2 h and diluted with 1 N HCl. The mixture was extracted with CH₂Cl₂ twice. The combined organic layers were washed with saturated NaHCO₃ and then with brine. The combined organic layers were dried over MgSO₄ and concentrated to afford a residue, which was purified by chromatography on silica gel (hexane/EtOAc) to give phosphate **10** (266 mg, 85%). Liquid. R_f = 0.21 (hexane/EtOAc = 5:1). [α] α ²⁴ +19 (α 0.24, CHCl₃). IR (neat) 2178, 1112, 1035, 846 cm⁻¹. H NMR (300 MHz, CDCl₃) δ 0.15 (s, 9 H), 1.05 (s, 9 H), 1.32 (dq, J = 0.9, 7.2 Hz, 6 H), 1.94–2.22 (m, 2 H), 3.81 (t, J = 6.2 Hz, 2 H), 4.00–4.21 (m, 4 H), 5.24 (q, J = 7.2 Hz, 1 H), 7.33–7.46 (m, 6 H), 7.60–7.70 (m, 4 H). ¹³C NMR (75 MHz, CDCl₃) δ –0.3 (+), 16.1 (d, J = 7 Hz) (+), 19.2 (–), 26.8 (+), 39.4 (d, J = 6 Hz) (–), 59.6 (–), 63.7 (d, J = 6 Hz) (–), 63.8 (d, J = 6 Hz) (–), 65.7 (d, J = 6 Hz) (+), 91.8 (–), 102.3 (d, J = 3 Hz) (–), 127.7 (+), 129.6 (+), 133.46 (–), 133.49 (–), 135.5 (+). HRMS (FAB) calcd for C₂₈H₄₄O₅PSi₂ [(M+H)⁺] 547.2465, found 547.2449.

(S)-3-[3-(Cyclopentyloxy)-4-methoxyphenyl]pent-4-yn-1-ol (13)

The Grignard reagent 8 in THF was prepared as usual from 4-bromo-2-(cyclopentyloxy)-1methoxybenzene (1.36 g, 5.02 mmol) and Mg (182 mg, 7.49 mmol) in THF (ca. 5 mL), and a part of the solution (0.95 M, 1.01 mL, 0.960 mmol) was added to an ice-cold solution of CuCN (8.6 mg, 0.096 mmol) in THF (2 mL) and DME (2 mL). The solution was stirred at 0 °C for 30 min, and a solution of phosphate 10 (262 mg, 0.479 mmol) in THF (7 mL) was added dropwise. The solution was stirred at 0 °C for 1.5 h and diluted with saturated NH₄Cl and NH₄OH with vigorous stirring. The mixture was extracted with EtOAc twice. The combined organic layers were dried over MgSO₄ and concentrated to afford a residue, which was passed through a short column of silica gel (hexane/EtOAc) to give a mixture of acetylene 11 and the reagent residue, which was diluted with THF (5 mL) for the next reaction. The product 11 was synthesized again and purified by chromatography on silica gel (hexane/EtOAc). Liquid. $R_f = 0.74$ (hexane/EtOAc = 5:1). $\lceil \alpha \rceil_D^{25} + 27$ (c 1.20, CHCl₃). IR (neat) 2169, 1507, 1258, 1112, 843 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ 0.15 (s, 9 H), 1.07 (s, 9 H), 1.50-1.66 (m, 2 H), 1.74-2.02 (m, 8 H), 3.68 (dt, J = 9.9, 6.0 Hz, 1 H), 3.74-1.073.98 (m, 2 H), 3.83 (s, 3 H), 4.66–4.84 (m, 1 H), 6.75–6.97 (m, 3 H), 7.32–7.46 (m, 6 H), 7.61–7.72 (m, 4 H). ¹³C NMR (75 MHz, CDCl₃) δ 0.2 (+), 19.4 (-), 24.1 (-), 27.0 (+), 32.8 (-), 32.9 (-), 34.5 (+), 41.5 (-), 56.2 (+), 61.4 (-), 80.3 (+), 87.0 (-), 108.6 (-), 111.9 (+), 114.4 (+), 119.5 (+), 127.7 (+), 129.6 (+), 133.9 (-), 134.0 (-), 134.1 (-), 135.57 (+),135.62 (+), 147.6 (-), 148.7 (-).

The above THF solution was cooled to 0 °C and mixed with TBAF (1.0 M in THF, 2.90 mL, 2.90 mmol) and AcOH (0.160 mL, 2.81 mmol). The solution was stirred at room temperature for 24 h and diluted with saturated NH₄Cl and EtOAc. The organic phase was separated, and the aqueous phase was extracted with EtOAc twice. The combined organic layers were dried over MgSO₄ and concentrated. The residue was purified by chromatography on silica gel (hexane/EtOAc) to give alcohol **13** (122 mg, 93% over two

steps). Liquid. $R_f = 0.55$ (hexane/EtOAc = 1:1). [α] $_D^{22}$ +13 (c 1.14, CHCl₃). IR (neat) 3400, 3288, 1507, 1259, 1136 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ 1.46–1.69 (m, 3 H), 1.75–2.04 (m, 8 H), 2.31 (d, J = 2.4 Hz, 1 H), 3.69–3.92 (m, 3 H), 3.83 (s, 3 H) 4.74–4.83 (m, 1 H), 6.82 (d, J = 8.4 Hz, 1 H), 6.87–6.93 (m, 2 H). ¹³C NMR (75 MHz, CDCl₃) δ 24.1 (–), 32.7 (–), 32.8 (–), 33.6 (+), 40.8 (–), 56.1 (+), 60.4 (–), 71.3 (–), 80.4 (+), 85.8 (–), 112.0 (+), 114.2 (+), 119.2 (+), 133.3 (–), 147.6 (–), 148.9 (–). HRMS (FAB) calcd for C₁₇H₂₂O₃ (M⁺) 274.1569, found 274.1568.

(R)-3-[3-(Cyclopentyloxy)-4-methoxyphenyl]-5-phenylpent-4-yn-1-ol (14)

To a solution of alcohol **13** (111 mg, 0.405 mmol), PhI (0.090 mL, 0.81 mmol) and t-BuNH₂ (0.43 mL, 4.06 mmol) in benzene (4 mL) were added Pd(PPh₃)₄ (45.0 mg, 0.039 mmol) and CuI (23.1 mg, 0.121 mmol). The mixture was stirred at room temperature for 13 h under dark and diluted with saturated NH₄Cl with vigorous stirring. The product was extracted with EtOAc twice. The combined organic layers were dried over MgSO4 and concentrated to afford a residue, which was purified by chromatography on silica gel (hexane/EtOAc) to afford Ph acetylene 14 (128 mg, 90%). Liquid; $R_f = 0.64$ (hexane/EtOAc = 1:1). 96.9% ee by HPLC analysis (Chiralcel OJ-H, hexane/i-PrOH = 90:10, 0.5 mL/min, 25 °C, t_R = 25.3 and 30.7 min for (S)-isomer (minor) and (R)-isomer (major), respectively. $[\alpha]_D^{24} + 7$ (c 0.27, CHCl₃). IR (neat) 3406, 1513, 1259, 758 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ 1.50–1.72 (m, 3 H), 1.76–2.00 (m, 6 H), 2.02–2.12 (m, 2 H), 3.75-3.96 (m, 2 H), 3.84 (s, 3 H), 4.01 (t, J = 7.4 Hz, 1 H), 4.76-4.84 (m, 1 H), 6.84 (d, J =8.1 Hz, 1 H), 6.93–7.01 (m, 2 H), 7.27–7.33 (m, 3 H), 7.40–7.46 (m, 2 H). ¹³C NMR (75 MHz, CDCl₃) δ 24.1 (-), 32.8 (-), 32.9 (-), 34.5 (+), 41.1 (-), 56.2 (+), 60.8 (-), 80.4 (+), 83.6(-), 91.2(-), 112.0(+), 114.4(+), 119.3(+), 123.5(-), 127.9(+), 128.3(+), 131.6(+), 134.0 (-), 147.7 (-), 148.9 (-). HRMS (FAB) calcd for C₂₃H₂₆O₃ (M⁺) 350.1882, found 350.1884.

(R)-3-[3-(Cyclopentyloxy)-4-methoxyphenyl]-5-phenylpent-4-ynoic acid (4)

To an ice-cold solution of alcohol 14 (128 mg, 0.366 mmol) in CH₂Cl₂ (1.5 mL) were added DMSO (0.104 mL, 1.46 mmol), Et₃N (0.153 mL, 1.10 mmol) and SO₃ pyridine (117 mg, 0.733 mmol). The mixture was stirred at room temperature for 20 h and diluted with H₂O and CH₂Cl₂. The organic phase was separated, and the aqueous phase was extracted with CH₂Cl₂ twice. The combined organic layers were washed sequentially with citratephosphate buffer (pH = 5.0) and brine, dried over MgSO₄ and concentrated. The residue was passed through a short column of silica gel (hexane/EtOAc) to give aldehyde 15, which was dissolved in acetone (1.5 mL) for the next reaction. The aldehyde was synthesized again and purified by chromatography on silica gel (hexane/EtOAc). Liquid. $R_f = 0.52$ (hexane/EtOAc = 2:1). $[\alpha]_D^{24} + 1$ (c 1.02, CHCl₃). IR (neat) 1724, 1512, 1260 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ 1.46–1.70 (m, 2 H), 1.76–2.04 (m, 6 H), 2.89 (ddd, J = 16.8, 6.3, 1.8 Hz, 1 H), 2.98 (ddd, J = 16.8, 7.5, 1.8 Hz, 1 H), 3.84 (s, 3 H), 4.37 (dd, J = 7.5, 6.3 Hz, 1 H), 4.74-4.84 (m, 1 H), 6.84 (d, J = 8.1 Hz, 1 H), 6.94-7.01 (m, 3 H), 7.27-7.34 (m, 3 H), 7.39–7.46 (m, 2 H), 9.86 (t, J = 1.8 Hz, 1 H). ¹³C NMR (75 MHz, CDCl₃) δ 24.1 (–), 32.1 (+), 32.8 (-), 32.9 (-), 51.4 (-), 56.1 (+), 80.4 (+), 84.2 (-), 89.7 (-), 112.1 (+), 114.2 (+), 119.3 (+), 123.1 (-), 128.2 (+), 128.3 (+), 131.7 (+), 132.5 (-), 147.8 (-), 149.2 (-), 200.5 (+).

To the above acetone solution cooled to 0 °C was added Jones reagent (10 drops). After being stirred at 0 °C for 10 min, the mixture was diluted with *i*-PrOH and H₂O. The product was extracted with EtOAc twice. The combined organic layers were dried over MgSO₄ and concentrated to afford a residue, which was purified by chromatography on silica gel (hexane/EtOAc) to furnish acid (*R*)-4 (83.1 mg, 62% over two steps). Liquid. $R_f = 0.12$ (hexane/EtOAc = 3:1). [α] $_D^{24}$ –7 (c 0.97, CHCl₃). Cf. lit. S5 [α] $_D^{23}$ –3.5 (c 0.75, CHCl₃). IR (neat) 3000, 1711, 1515, 1260, 1136 cm⁻¹. H NMR (300 MHz, CDCl₃) δ 1.42–1.68 (m, 2 H), 1.72–2.01 (m, 6 H), 2.83 (dd, J = 15.8, 7.2 Hz, 1 H), 2.95 (dd, J = 15.8, 8.4 Hz, 1 H), 3.83 (s, 3 H), 4.31 (t, J = 7.3 Hz, 1 H), 4.72–4.84 (m, 1 H), 6.83 (d, J = 7.8 Hz, 1 H), 6.94–

7.01 (m, 2 H), 7.24–7.33 (m, 3 H), 7.37–7.46 (m, 2 H). 13 C NMR (75 MHz, CDCl₃) δ 24.1 (–), 32.8 (–), 32.9 (–), 34.1 (+), 43.3 (–), 56.1 (+), 80.4 (+), 83.6 (–), 89.9 (–), 112.1 (+), 114.3 (+), 119.4 (+), 123.3 (–), 128.1 (+), 128.3 (+), 131.7 (+), 132.6 (–), 147.7 (–), 149.2 (–), 176.9 (–). HRMS (FAB) calcd for $C_{23}H_{24}O_4Na$ [(M+Na)⁺] 387.1572, found 387.1567. The 1 H NMR spectral data except the undetected COO*H* were consistent with those reported, S5 while the 13 C NMR spectral data were updated. The 13 C–APT NMR spectrum also supported the structure.

5-(tert-Butyldiphenylsilyloxy)-1-phenylpent-1-yn-3-ol (rac-16)

According to the procedure described above, alcohol **9** (2.99 g, 9.51 mmol) was subjected to oxidation with SO₃·pyridine (3.03 g, 19.0 mmol), DMSO (2.70 mL, 38.0 mmol) and Et₃N (4.0 mL, 29 mmol) in CH₂Cl₂ (20 mL) at room temperature overnight to afford aldehyde **S1**, which was passed through a short column of silica gel (hexane/EtOAc) for the next reaction.

To a solution of phenylacetylene (1.67 mL, 15.2 mmol) in THF (10 mL) was added n-BuLi (1.60 M in hexane, 7.73 mL, 12.4 mmol) dropwise at -78 °C. After 30 min at -78 °C, the above aldehyde dissolved in THF (10 mL) was added. The solution was stirred at -78 °C for 1 h and diluted with saturated NH₄Cl. The mixture was extracted with EtOAc twice. The combined organic layers were dried over MgSO₄ and concentrated to afford a residue, which was purified by chromatography on silica gel (hexane/EtOAc) to give alcohol rac-16 (3.13 g, 80% over two steps). Liquid. R_f = 0.13 (hexane/EtOAc = 19:1). IR (neat) 3410, 1428, 1112, 701 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ 1.06 (s, 9 H), 1.93–2.07 (m, 1 H), 2.08–2.21 (m, 1 H), 3.49 (d, J = 5.1 Hz, 1 H), 3.89 (ddd, J = 10.2, 6.0, 4.2 Hz, 1 H), 4.13 (ddd, J = 10.2, 8.0, 4.2 Hz, 1 H), 4.88–4.98 (m, 1 H), 7.26–7.47 (m, 11 H), 7.66–7.75 (m, 4 H). ¹³C NMR (75 MHz, CDCl₃) δ 19.1 (–), 26.8 (+), 38.8 (–), 62.0 (–), 62.2 (+), 85.1 (–), 89.7 (–), 122.8 (–), 127.9 (+), 128.3 (+), 128.4 (+), 129.88 (+), 129.91 (+), 131.8 (+), 132.9 (–), 135.6 (+). HRMS (FAB) calcd for C_{27} H₃₁O₂Si [(M+H)⁺] 415.2093, found 415.2088. The ¹H and ¹³C NMR spectral data and their spectra reported in the literature^{S4} were updated.

(R)-5-(tert-Butyldiphenylsilyloxy)-1-phenylpent-1-yn-3-ol [(R)-16]

To an ice-cold solution of rac-16 (139 mg, 0.335 mmol) in CH₂Cl₂ (3 mL) were added Celite (220 mg) and PCC (108 mg, 0.503 mmol). The mixture was stirred at room temperature for 26 h, diluted with hexane and filtered through a pad of Celite with hexane. The filtrate was concentrated and the residue was purified by chromatography on silica gel (hexane/EtOAc) to give ketone **S3** (94.6 mg, 68%). Liquid. R_f = 0.63 (hexane/EtOAc = 5:1). IR (neat) 2200, 1674, 1112 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ 1.03 (s, 9 H), 2.89 (t, J = 6.1 Hz, 2 H), 4.10 (t, J = 6.1 Hz, 2 H), 7.29–7.57 (m, 11 H), 7.62–7.74 (m, 4 H). ¹³C NMR (75 MHz, CDCl₃) δ 19.2 (–), 26.8 (+), 48.3 (–), 59.5 (–), 87.9 (–), 91.2 (–), 120.0 (–), 127.8 (+), 128.6 (+), 129.8 (+), 130.8 (+), 133.1 (+), 133.4 (–), 135.6 (+), 186.4 (–). The ¹H NMR spectrum was coincident with those reported, while the ¹³C NMR spectral data and spectrum were updated. ^{S4}

A mixture of RuCl[(R,R)-TsDPEN](p-cymene) (31.3 mg, 0.049 mmol) and KOH (ca. 9 mg, 0.16 mmol) in CH₂Cl₂ (1 mL) was stirred at room temperature for 5 min, and washed with H₂O twice. The organic layer was transferred to another flask, dried over CaH₂ and concentrated to afford a residue, which was diluted with i-PrOH (6 mL) for the next reaction. To an ice-cold solution of the above ketone (338 mg, 0.819 mmol) in i-PrOH (1 mL) was added the above i-PrOH solution. The mixture was stirred at 30 °C for 21 h, and diluted with H₂O and saturated NaHCO₃. The mixture was extracted with EtOAc twice. The combined organic layers were dried over MgSO₄ and concentrated to afford a residue, which was passed through a short column of silica gel (hexane/EtOAc) to give alcohol (R)-16 (286 mg, 84%). [α]_D²³ –11 (c 0.524, CHCl₃). The ¹H and ¹³C NMR spectra were identical with those for the racemic alcohol rac-16.

(R)-5-(tert-Butyldiphenylsilyloxy)-1-phenylpent-1-yn-3-yl diethyl phosphate (17)

S9

To a solution of (*R*)-16 (280 mg, 0.675 mmol) in CH₂Cl₂ (2.7 mL) were added *N*-methylimidazole (0.138 mL, 1.75 mmol) and diethyl chlorophosphate (0.243 mL, 1.69 mmol). The solution was stirred at room temperature for 4 h and diluted with 1 N HCl. The mixture was extracted with CH₂Cl₂ twice. The combined organic layers were washed with NaHCO₃ and brine, dried over MgSO₄ and concentrated to afford a residue, which was purified by chromatography on silica gel (hexane/EtOAc) to give phosphate 17 (347 mg, 93%). Liquid. R_f = 0.14 (hexane/EtOAc = 5:1). [α] $_0$ ²⁴ +33 (c 0.56, CHCl₃). IR (neat) 1276, 1112, 1033, 997, 703 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ 1.06 (s, 9 H), 1.28–1.36 (m, 6 H), 2.03–2.18 (m, 1 H), 2.20–2.34 (m, 1 H), 3.88 (t, J = 6.2 Hz, 2 H), 4.03–4.23 (m, 4 H), 5.49 (q, J = 7.0 Hz, 1 H), 7.27–7.45 (m, 11 H), 7.62–7.72 (m, 4 H). ¹³C NMR (75 MHz, CDCl₃) δ 16.1 (d, J = 7 Hz) (+), 19.1 (-), 26.7 (+), 39.5 (d, J = 7 Hz) (-), 59.6 (-), 63.7 (d, J = 6 Hz) (-), 63.8 (d, J = 6 Hz) (-), 66.0 (d, J = 6 Hz) (+), 86.1 (d, J = 3 Hz) (-), 86.8 (-), 122.0 (-), 127.64 (+), 127.65 (+), 128.2 (+), 128.7 (+), 129.60 (+), 129.63 (+), 131.7 (+), 133.4 (-), 135.5 (+). HRMS (FAB) calcd for C₃₁H₄₀O₅PSi [(M+H)⁺] 551.2383, found 551.2376.

(*R*)-tert-Butyl[3-[3-(cyclopentyloxy)-4-methoxyphenyl]-5-phenylpent-4-ynyloxy]diphenylsilane (14)

The Grignard reagent **8** (0.90 M in THF) was prepared by the method described above, and a part of the solution (0.77 mL, 0.69 mmol) was added to an ice-cold solution of CuCN (6.2 mg, 0.069 mmol) in THF (1.4 mL) and DME (1.4 mL). The solution was stirred at 0 °C for 30 min, and phosphate **17** (190 mg, 0.345 mmol) in THF (5 mL) was added dropwise. The mixture was stirred at 0 °C for 1.5 h and diluted with saturated NH₄Cl and EtOAc with vigorous stirring. The organic phase was separated, and the aqueous phase was extracted with EtOAc twice. The combined organic layers were dried over MgSO₄ and concentrated to afford a residue, which was passed through a short column of silica gel (hexane/EtOAc) to afford acetylene **18**, which was dissolved in THF (3.5 mL) for the next reaction. The

product was synthesized again and purified by chromatography on silica gel (hexane/EtOAc). Liquid. $R_{\rm f}=0.65$ (hexane/EtOAc = 5:1). [α] $_{\rm D}^{24}$ +17 (c 1.17, CHCl₃). IR (neat) 1513, 1427, 1260, 1112, 702 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ 1.09 (s, 9 H), 1.50–1.66 (m, 2 H), 1.74–1.97 (m, 6 H), 1.99–2.10 (m, 2 H), 3.76 (dt, J = 10.2, 5.7 Hz, 1 H), 3.84 (s, 3 H), 3.87–3.99 (m, 1 H), 4.14 (t, J = 7.5 Hz, 1 H), 4.73–4.82 (m, 1 H), 6.82 (d, J = 8.4 Hz, 1 H), 6.91–7.01 (m, 3 H), 7.25–7.44 (m, 11 H), 7.64–7.74 (m, 4 H). ¹³C NMR (75 MHz, CDCl₃) δ 19.3 (–), 24.1 (–), 26.9 (+), 32.8 (–), 32.9 (–), 34.1 (+), 41.5 (–), 56.2 (+), 61.4 (–), 80.4 (+), 83.2 (–), 91.7 (–), 112.0 (+), 114.5 (+), 119.5 (+), 123.8 (–), 127.7 (+), 128.2 (+), 129.6 (+), 131.7 (+), 133.8 (–), 133.9 (–), 134.3 (–), 135.59 (+), 135.65 (+), 147.6 (–), 148.8 (–).

To the above THF solution cooled to 0 °C were added TBAF (1.0 M in THF, 1.04 mL, 1.04 mmol) and AcOH (0.059 mL, 1.0 mmol). The solution was stirred at room temperature for 18 h and diluted with saturated NH₄Cl. The product was extracted with EtOAc twice, and the combined organic layers were washed with brine, dried over MgSO₄ and concentrated. The residue was purified by chromatography on silica gel (hexane/EtOAc) to give alcohol **14** (104 mg, 86% over two steps). 95.6% ee by HPLC analysis (Chiralcel OJ-H, hexane/i-PrOH = 90:10, 0.5 mL/min, 25 °C, t_R = 28.1 and 33.4 min for (S)-isomer (minor) and (R)-isomer (major), respectively. The ¹H NMR spectral data of **14** were identical with those synthesized from acetylene **13** by the Sonogashira coupling reaction (vide supra).

(R)-Diethyl 4-(trimethylsilyl)but-3-yn-2-yl phosphate [(R)-20a]

To an ice-cold mixture of alcohol **22** (98.2% ee, S6,S7 503 mg, 7.18 mmol) and *N*-methylimidazole (1.22 mL, 14.3 mmol) in CH₂Cl₂ (20 mL) was added diethyl chlorophosphate (1.53 mL, 10.7 mmol). The mixture was stirred at room temperature for 3 h and poured to brine. The product was extracted with CH₂Cl₂ twice. The combined organic layers were washed with brine, dried over MgSO₄ and concentrated to afford a residual oil, which was purified by chromatography on silica gel (hexane/EtOAc) to obtain phosphate **S4** (1.42 g, 96%). Pale yellow liquid. 1 H NMR (300 MHz, CDCl₃) δ 1.35 (tm, J = 7.2 Hz, 6

H), 1.60 (d, J = 6.6 Hz, 3 H), 2.56 (d, J = 2.4 Hz, 1 H), 4.06–4.22 (m, 4 H), 5.04–5.16 (m, 1 H). ¹³C NMR (75 MHz, CDCl₃) δ 16.1 (d, J = 7 Hz) (+), 23.3 (d, J = 6 Hz) (+), 63.9 (d, J = 5 Hz) (+), 64.0 (d, J = 6 Hz) (-), 74.0 (-), 81.9 (d, J = 5 Hz) (-). The spectral data were in agreement with those reported.^{S8}

To a solution of the above phosphate (1.00 g, 4.85 mmol) in THF (50 mL) was added NaN(TMS)₂ (1.0 M in THF, 6.30 mL, 6.30 mmol) dropwise at -78 °C. After 30 min, a solution of TMSCl (0.86 mL, 6.8 mmol) in THF (10 mL) was added. The solution was stirred at -78 °C for 2 h and poured to saturated NH₄Cl. The resulting mixture was extracted with EtOAc twice. The combined organic layers were washed with brine, dried over MgSO₄ and concentrated to afford a residual oil, which was purified by chromatography on silica gel (hexane/EtOAc) to afford TMS phosphate (*R*)-**20a** (1.19 g, 88%). Liquid. ¹H NMR (300 MHz, CDCl₃) δ 0.17 (s, 9 H), 1.346 (dt, J = 1.0, 7.0 Hz, 3 H), 1.355 (dt, J = 1.0, 7.0 Hz, 3 H), 1.56 (d, J = 6.6 Hz, 3 H), 4.06–4.22 (m, 4 H), 5.09 (dq, J = 7.8, 6.6 Hz, 1 H). ¹³C NMR (75 MHz, CDCl₃) δ –0.3 (+), 16.1 (d, J = 7 Hz) (+), 23.4 (d, J = 6 Hz) (+), 63.8 (d, J = 6 Hz) (-), 63.9 (d, J = 7 Hz) (-), 64.6 (d, J = 5 Hz) (+), 90.6 (-), 103.4 (d, J = 5 Hz) (-). The spectra were consistent with those reported. ⁵⁹

(R)-Flurbiprofen [(R)-5]

To an ice-cold solution of CuBr·Me₂S (14.9 mg, 0.0725 mmol) in THF (1 mL) and DME (1 mL) was added the Grignard reagent **21** (0.90 M in THF, 0.82 mL, 0.74 mmol) dropwise. The resulting mixture was stirred at 0 °C for 30 min and phosphate (R)-**20a** (80.3 mg, 0.288 mmol) in THF (4 mL) was added dropwise. The mixture was stirred at 0 °C for 1 h and diluted with saturated NH₄Cl. The resulting mixture was extracted with EtOAc twice. The combined extracts were dried over MgSO₄ and concentrated to afford an oil, which was purified by chromatography on silica gel (hexane/EtOAc) to afford alkyne **23** (75.4 mg, 88%). Liquid. $R_f = 0.55$ (hexane/EtOAc = 10:1). 98.1% ee by HPLC (Chiralcel OD-H, hexane/i-PrOH = 99.9:0.1, 0.3 mL/min, 25 °C, t_R = 29.9 and 39.1 min for (R)-isomer

(major) and (*S*)-isomer (minor), respectively). [α] $_D^{23}$ –2 (*c* 1.51, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 0.20 (s, 9 H), 1.51 (d, J = 7.2 Hz, 3 H), 3.81 (q, J = 7.2 Hz, 1 H), 7.17–7.57 (m, 8 H). ¹³C NMR (75 MHz, CDCl₃) δ 0.2 (+), 24.4 (+), 32.4 (+), 86.9 (–), 108.6 (–), 114.7 (d, J = 24 Hz) (+), 122.9 (d, J = 3 Hz) (+), 127.3 (d, J = 14 Hz) (–), 127.6 (+), 128.5 (+), 129.0 (d, J = 3 Hz) (+), 130.8 (d, J = 4 Hz) (+), 135.7 (–), 144.7 (d, J = 7 Hz) (–), 159.8 (d, J = 246 Hz) (–). ¹⁹F NMR (376 MHz, CDCl₃) δ 119.0 (s).

To a solution of the above alkyne in MeOH (2 mL) was added K_2CO_3 (53.3 mg, 0.386 mmol). The mixture was stirred at room temperature for 4 h, diluted with Et_2O and filtered through a pad of Celite. The filtrate was concentrated to afford an oil, which was purified by chromatography on silica gel (hexane/EtOAc) to afford acetylene **S5** (41.8 mg, 73%). Liquid. $R_f = 0.45$ (hexane/EtOAc = 10:1).

To an ice-cold solution of the above acetylene in MeCN (1 mL), CCl₄ (1 mL) and H₂O (0.3 mL) were added RuCl₃·nH₂O (ca. 2 mg) and NaIO₄ (106 mg, 0.496 mmol). The mixture was stirred at room temperature for 90 min, diluted with Et₂O and filtered through a pad of Celite. The filtrate was concentrated to afford an oil, which was purified by chromatography on silica gel (hexane/EtOAc) to afford (*R*)-5 (30.0 mg, 66%). $[\alpha]_D^{25}$ –37 (*c* 0.60, CHCl₃). Cf. lit. $[\alpha]_D^{20}$ –29.5 (*c* 1.10, CHCl₃) for (*R*)-isomer of 90% ee (calcd $[\alpha]_D$ –32.8 for 100% ee); $[\alpha]_D^{21}$ –44.0 (*c* 1.00, CHCl₃) for (*R*)-isomer of 97% ee; $[\alpha]_D^{22}$ +33.5 (*c* 1.0, CHCl₃) for (*S*)-isomer of 85% ee (calcd $[\alpha]_D$ +39.4 for 100% ee). $[\alpha]_D^{22}$ +30.5 (*c* 1.0, CHCl₃) δ 1.56 (d, J = 7.2 Hz, 3 H), 3.79 (q, J = 7.2 Hz, 1 H), 7.12–7.20 (m, 2 H), 7.33–7.48 (m, 4 H), 7.50–7.56 (m, 2 H). $[\alpha]_D^{13}$ C NMR (75 MHz, CDCl₃) δ 18.1 (+), 44.9 (+), 115.5 (d, J = 24 Hz) (+), 123.8 (d, J = 3 Hz) (+), 127.8 (+), 128.2 (d, J = 13 Hz) (-), 159.8 (d, J = 247 Hz) (-), 180.1 (-). The $[\alpha]_D^{11}$ NMR spectrum except the undetected COO*H* and the $[\alpha]_D^{13}$ C NMR spectrum were consistent with those reported. $[\alpha]_D^{11}$ The $[\alpha]_D^{11}$ C APT spectrum was coincident with that reported.

(S)-[3-(2-Fluoro-[1,1'-biphenyl]-4-yl)-4-methylpent-1-yn-1-yl]trimethylsilane (25)

To an ice-cold solution of CuBr·Me₂S (7.9 mg, 0.038 mmol) in THF (0.5 mL) and DME (0.5 mL) was added the Grignard reagent 21 (0.90 M in THF, 0.41 mL, 0.37 mmol) dropwise. The solution was stirred at 0 °C for 1 h and phosphate (S)-20b^{S12} (96.6% ee, 46.0 mg, 0.150 mmol) in THF (2 mL) was added dropwise. After 1 h at 0 °C, the reaction was quenched by addition of saturated NH₄Cl. The resulting mixture was extracted with EtOAc twice. The combined extracts were dried over MgSO₄ and concentrated to afford an oil, which was purified by chromatography on silica gel (hexane/EtOAc) to afford alkyne 25 (40.5 mg, 83%). Liquid. $R_f = 0.83$ (hexane/EtOAc = 3:1). 96.8% ee by HPLC (Chiralcel OD-H, hexane/i-PrOH = 99.9:0.1, 0.3 mL/min, 25 °C, t_R = 22.6 and 27.1 min for (R)isomer (minor) and (S)-isomer (major), respectively). $[\alpha]_D^{25} + 6$ (c 0.81, CHCl₃). ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta 0.21 \text{ (s, 9 H)}, 0.94 \text{ (d, } J = 6.8 \text{ Hz, 3 H)}, 1.02 \text{ (d, } J = 6.8 \text{ Hz, 3 H)},$ 1.93-2.06 (m, 1 H), 3.58 (d, J = 5.7 Hz, 1 H), 7.15 (d, J = 10.5 Hz, 2 H), 7.31-7.48 (m, 4 H), 7.52–7.58 (m, 2 H). 13 C NMR (75 MHz, CDCl₃) δ 0.2 (+), 18.4 (+), 21.2 (+), 35.0 (+), 45.6 (+), 89.0 (-), 106.1 (-), 115.9 (d, J = 23 Hz) (+), 124.2 (d, J = 3 Hz) (+), 127.2 (d, J14 Hz) (-), 127.6 (+), 128.5 (+), 129.0 (d, J = 3 Hz) (+), 130.4 (d, J = 4 Hz) (+), 135.8 (-), 142.4 (d, J = 7 Hz) (-), 159.6 (d, J = 246 Hz) (-). ¹⁹F NMR (376 MHz, CDCl₃) δ 119.5 (s). HRMS (FD) calcd for C₂₁H₂₅FSi [M⁺] 324.17095, found 324.17018.

(S)-2-(2-Fluoro-[1,1'-biphenyl]-4-yl)-3-methylbutanoic acid [(S)-6]

A mixture of alkyne **25** (40.1 mg, 0.124 mmol) and K_2CO_3 (24.4 mg, 0.177 mmol) in MeOH (1 mL) was stirred at room temperature for 3 h, diluted with Et₂O and filtered through a pad of Celite. The filtrate was concentrated to afford an oil, which was purified by chromatography on silica gel (hexane/EtOAc) to afford acetylene **S6** (29.3 mg, 94%). Liquid. $R_f = 0.63$ (hexane/EtOAc = 20:1) (cf. **25**, $R_f = 0.76$).

To an ice-cold solution of the above acetylene in MeCN (0.7 mL), CCl₄ (0.7 mL) and H_2O (0.25 mL) were added RuCl₃·nH₂O (ca. 1 mg) and NaIO₄ (66.9 mg, 0.313 mmol). The

mixture was stirred at room temperature for 1.5 h, diluted with Et₂O and filtered through a pad of Celite. The filtrate was concentrated to afford an oil, which was purified by chromatography on silica gel (hexane/EtOAc) to afford acid (*S*)-**6** (17.1 mg, 51% from **25**). Solids. Mp 158–160 °C. $R_f = 0.12$ (hexane/EtOAc = 3:1). [α] α ²⁰ +38 (α 0.266, CHCl₃). ¹H NMR (400 MHz, CDCl₃) α 0.79 (d, α = 6.8 Hz, 3 H), 1.11 (d, α = 6.8 Hz, 3 H), 2.26–2.42 (m, 1 H), 3.21 (d, α = 10.4 Hz, 1 H), 7.15–7.21 (m, 2 H), 7.33–7.47 (m, 4 H), 7.50–7.56 (m, 2 H). ¹³C NMR (100 MHz, CDCl₃) α 20.2 (+), 21.5 (+), 31.9 (+), 59.3 (+), 116.2 (d, α = 24 Hz) (+), 124.8 (+), 127.8 (+), 128.3 (d, α = 13 Hz) (-), 128.5 (+), 129.0 (+), 130.8 (d, α = 3 Hz) (+), 135.5 (-), 139.1 (d, α = 8 Hz) (-), 159.7 (d, α = 248 Hz) (-), 178.6 (-). HRMS (FD) calcd for C₁₇H₁₇FO₂ (M⁺) 272.12126, found 272.12146. The carboxylic proton (COO*H*) was not observed in the ¹H NMR spectrum.

3. Synthesis of the precursor of the Grignard reagent 8

The following synthesis of the precursor **S11** of the reagent **8** was carried out according to the published procedure ^{S13} with modification to step a. The spectral data were identical with the reported data. ^{S13} Conversion of **S11** to the Grignard reagent **8** was described in the propargylic substitution mentioned above.

4-Bromo-2-(cyclopentyloxy)-1-methoxybenzene (S11)

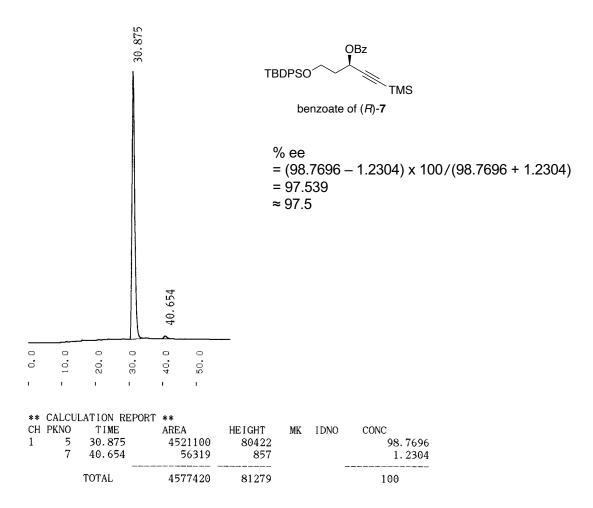
Step a. A solution of the commercially available alcohol \$7 (5.02 g, 40.4 mmol) and Ac₂O (5.68 mL, 60.4 mmol) in pyridine (9.7 mL, 120 mmol) was stirred at room temperature for 18 h and diluted with saturated NaHCO₃ with vigorous stirring. The mixture was extracted with EtOAc three times. The combined organic layers were washed successively with 1 N HCl and brine, dried over MgSO₄ and concentrated to afford a residue, which was purified by chromatography on silica gel (hexane/EtOAc) to give acetate \$8 (6.69 g, 100%). Liquid.

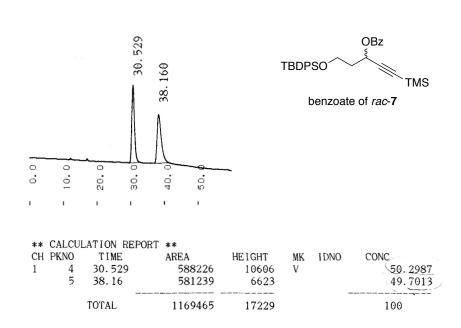
 $R_{\rm f} = 0.37$ (hexane/EtOAc = 5:1). ¹H NMR (300 MHz, CDCl₃) δ 2.32 (s, 3 H), 3.83 (s, 3 H), 6.91–7.00 (m, 2 H), 7.04 (dd, J = 8.0, 2.0 Hz, 1 H), 7.21 (ddd, J = 8.4, 7.2, 1.8 Hz, 1 H).

Step b. A solution of **S8** (1.08 g, 6.50 mmol) and NBS (1.27 g, 7.14 mmol) in MeCN (13 mL) was heated at 60 °C overnight under nitrogen, cooled to room temperature and diluted with Na₂SO₃ solution. The product was extracted with EtOAc twice. The combined organic extracts were washed with brine, dried over MgSO₄ and concentrated to give a residue, which was purified by column chromatography on silica gel (hexane/EtOAc) to afford bromide **S9** (1.54 g, 97%). Liquid. $R_f = 0.37$ (hexane/EtOAc = 5:1). ¹H NMR (300 MHz, CDCl₃) δ 2.31 (s, 3 H), 3.82 (s, 3 H), 6.84 (d, J = 8.8 Hz, 1 H), 7.19 (d, J = 2.5 Hz, 1 H), 7.31 (dd, J = 8.8, 2.5 Hz, 1 H).

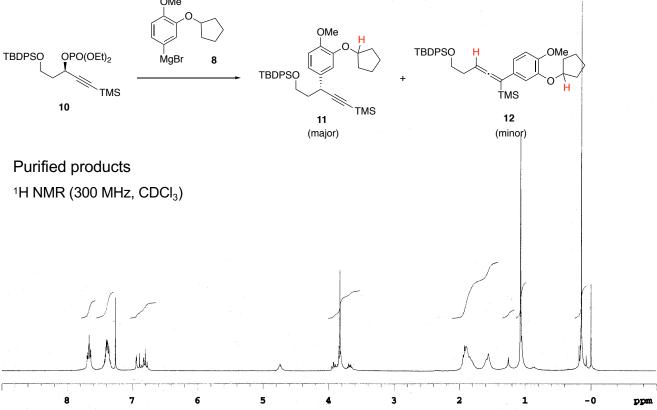
Step c. A mixture of acetate **S9** (1.54 g, 6.28 mmol) and NaHCO₃ (789 mg, 9.39 mmol) in MeOH (6 mL) and H₂O (8 mL) was heated for 4 h under reflux, cooled to room temperature and extracted with EtOAc several times. The combined organic extracts were washed with brine and concentrated to give crude phenol **S10** (1.27 g), which was used for the next reaction without further purification. Liquid. $R_f = 0.26$ (hexane/EtOAc = 5:1). ¹H NMR (300 MHz, CDCl₃) δ 3.87 (s, 3 H), 5.65 (s, 1 H), 6.71 (d, J = 8.4 Hz, 1 H), 6.96 (dd, J = 8.4, 2.4 Hz, 1 H), 7.06 (d, J = 2.4 Hz, 1 H).

Step d. A mixture of the above phenol, cyclopentyl bromide (1.01 mL, 9.42 mmol) and K_2CO_3 (1.73 g, 12.5 mmol) in DMF (25 mL) was heated to 50 °C for 14 h with vigorous stirring, coolded to room temperature and diluted with brine. The product was extracted with EtOAc twice. The combined organic extracts were washed with brine, dried over MgSO₄ and concentrated to give a residue, which was purified by column chromatography on silica gel (hexane/EtOAc) to afford ether **S11** (1.62 g, 95% over two steps). Liquid. R_f = 0.57 (hexane/EtOAc = 5:1). ¹H NMR (300 MHz, CDCl₃) δ 1.52–1.69 (m, 2 H), 1.75–2.02 (m, 6 H), 3.82 (s, 3 H), 4.70–4.77 (m, 1 H), 6.73 (d, J = 8.4 Hz, 1 H), 6.96–7.02 (m, 2 H).


4. References


- S1 N. Ogawa, T. Amano and Y. Kobayashi, Synlett, 2021, 32, 295.
- S2 (a) L. Ferrié, L. Boulard, F. Pradaux, S. Bouzbouz, S. Reymond, P. Capdevielle and J. Cossy, J. Org. Chem., 2008, 73, 1864; (b) A. B. Holmes, A. B. Hughes and A. L. Smith, J. Chem. Soc., Perkin Trans. 1, 1993, 633.
- S3 S. Raghavan and P. K. Samanta, Synlett, 2013 24, 1983.
- S4 R. A. Bauer, C. M. DiBlasi and D. S. Tan, Org. Lett., 2010, 12, 2084.
- S5 A. J. Oelke, J. Sun and G. C. Fu, J. Am. Chem. Soc., 2012, 134, 2966.
- S6 This alcohol used herein was previously prepared with 98.2% ee. See ref. S7, the Supporting Information, pages S6 and S24.
- S7 H. Kawashima, N. Ogawa, R. Saeki and Y. Kobayashi, Chem. Commun., 2016, 52, 4918.
- S8 Y. Imada, M. Yuasa, I. Nakamura and S. Murahashi, *J. Org. Chem.*, 1994, **59**, 2282.
- S9 (a) Ref. S7, page S6; (b) C. F. Bender, C. L. Paradise, V. M. Lynch, F. K. Yoshimoto and J. F. De Brabander, *Tetrahedron*, 2018, 74, 909.
- S10 (a) K. Dong, Y. Li, Z. Wang and K. Ding, Org. Chem. Front., 2014, 1, 155; (b) S.-F.
 Zhu, Y.-B. Yu, S. Li, L.-X. Wang and Q.-L. Zhou, Angew. Chem. Int. Ed., 2012, 51, 8872; (c) C. E. Stivala and A. Zakarian, J. Am. Chem. Soc., 2011, 133, 11936.
- S11 (a) H. Zhong, M. Shevlin and P. J. Chirik, J. Am. Chem. Soc., 2020, 142, 5272; (b) B. Li, T. Li, M. A. Aliyu, Z. H. Li and W. Tang, Angew. Chem. Int. Ed., 2019, 58, 11355; (c) L. Huang, L. K. Ackerman, K. Kang, A. M. Parsons and D. J. Weix, J. Am. Chem. Soc., 2019, 141, 10978; (d) G. J. Harkness and M. L. Clarke, Eur. J. Org. Chem., 2017, 4859; (e) R. Shang, D.-S. Ji, L. Chu, Y. Fu and L. Liu, Angew. Chem. Int. Ed., 2011, 50, 4470; (f) I. Shiina, K. Nakata, K. Ono, Y. Onda, M. Itagaki, J. Am. Chem. Soc., 2010, 132, 11629.
- S12 This phosphate was previously prepared with 96.6% ee in: Y. Kobayashi, Y. Takashima, Y. Motoyama, Y. Isogawa, K. Katagiri, A. Tsuboi and N. Ogawa, *Chem. Eur. J.*, 2021, **27**, 3779 (the Supporting Information, pages S8–S9 and S47).
- S13 A. S. Paraskar and A. Sudalai, Tetrahedron, 2006, 62, 4907.

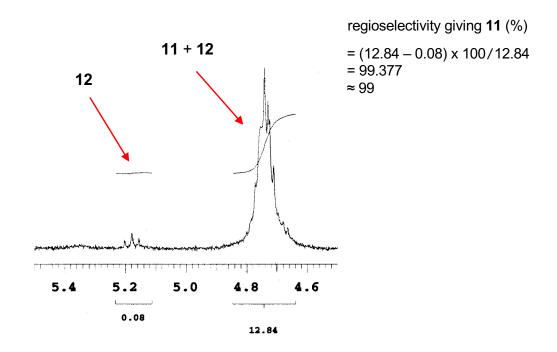
5. Calculation of ratios by ¹H NMR spectroscopy and HPLC analysis


Enantiomeric excess of (R)-7

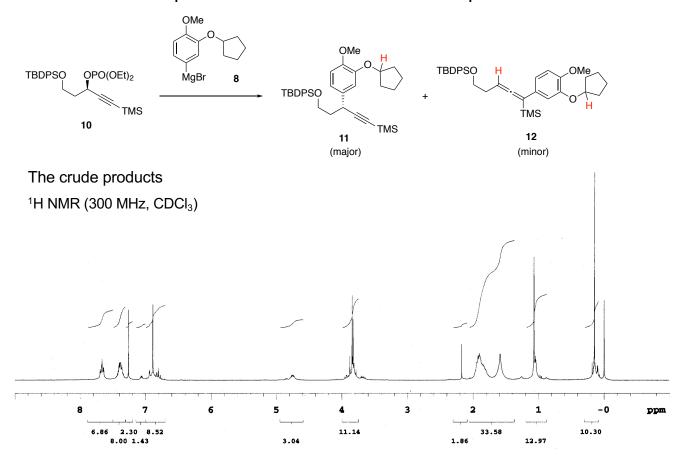
Chiralcel OD-H; hexane/i-PrOH 99.9:0.1; flow 0.3 mL/min; temp. 25 °C

Regioselectivity producing acetylene 11 over allene 12

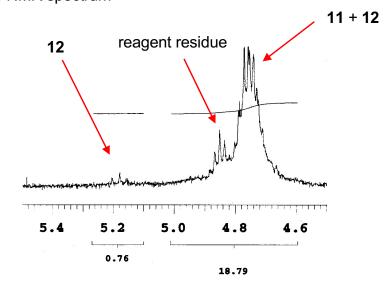
12.17


1.82

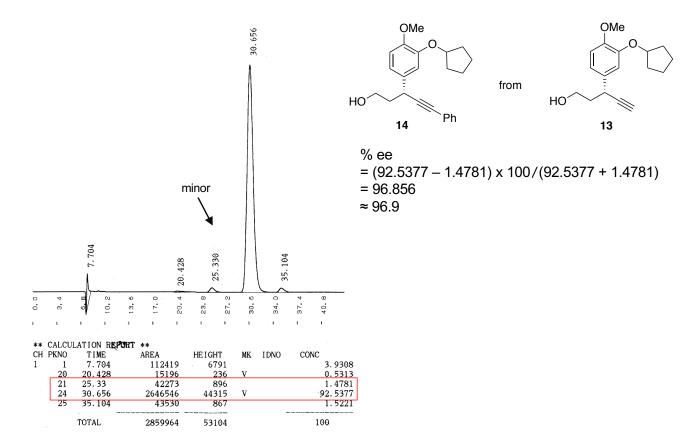
3.84 16.15

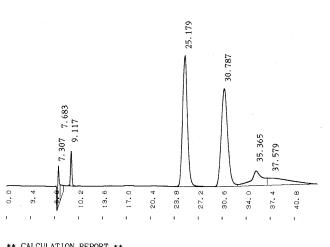

25.01

14.62

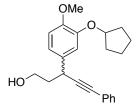

Expansion of the above NMR spectrum

Cf. the ¹H NMR spectrum of the crude substitution products

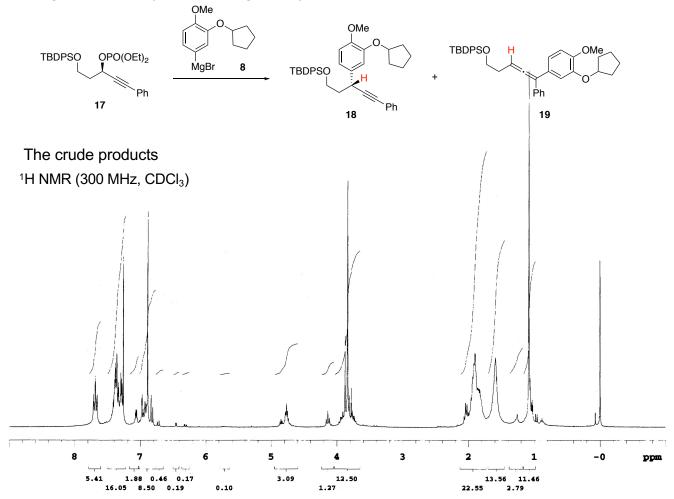

Expansion of the above NMR spectrum



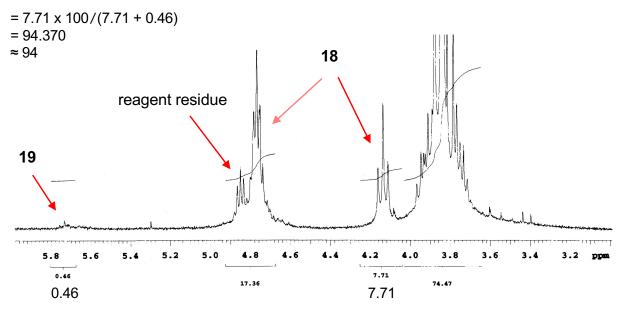
Calculation of 11/12: see the previous page


Enantiomeric excess of 14 derived from 13

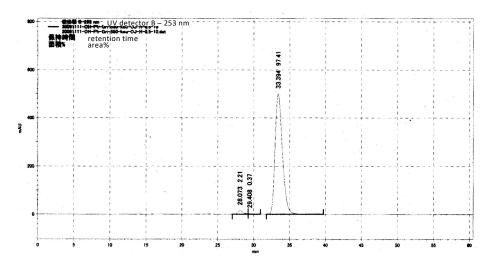
Chiralcel OJ-H; hexane/i-PrOH 90:10; flow 0.5 mL/min; temp. 25 °C

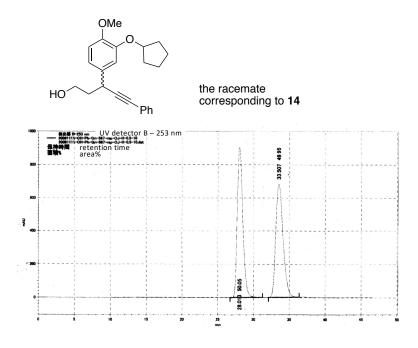


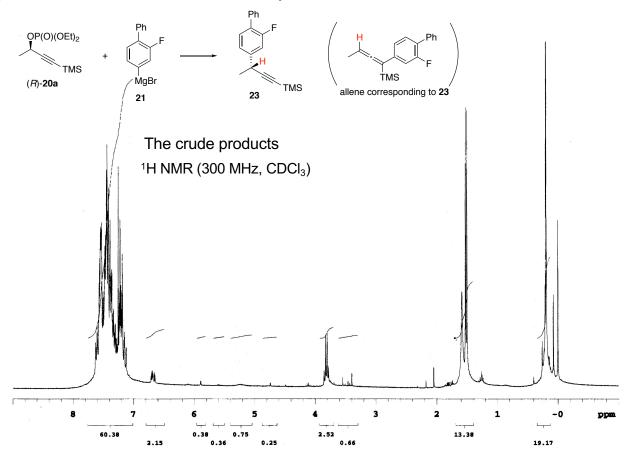
**	CALCU	LATION REPU	11 **					
CH	PKNO	TIME	AREA	HE I GHT	MK	IDNO	CONC	
1	2	7.307	124467	7976			3.7513	
	3	7.683	60208	2800	V		1.8146	
	7_	9.117	92561	6834	V		2.7897	
	37	25.179	1220759	25529			36. 7919	
	38	30.787	1202571	19044			36. 2438	
	39	35.365	323554	2832	V		9. 7515	
	40	37.579	293887	1355	V		8.8573	
		TOTAL	3318008	66370		-	100	

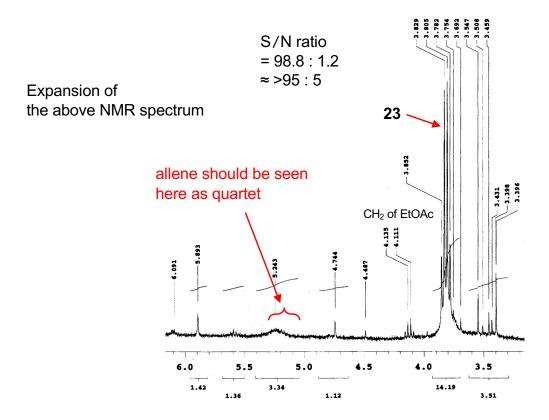

the racemate corresponding to 14

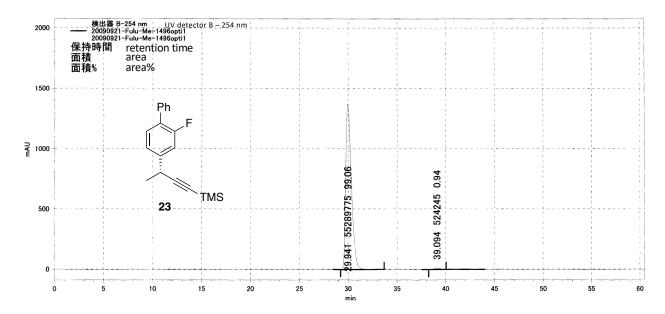
Regioselectivity producing acetylene 18 over allene 19

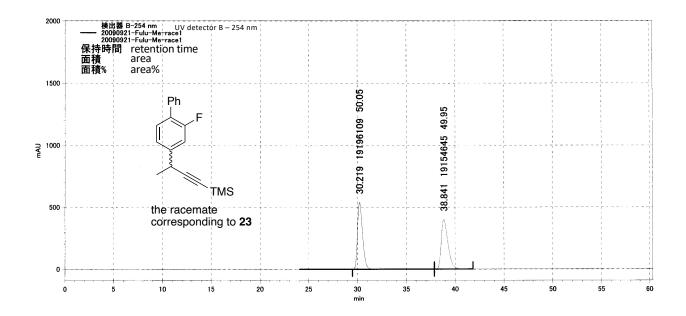

Expansion of the above NMR spectrum

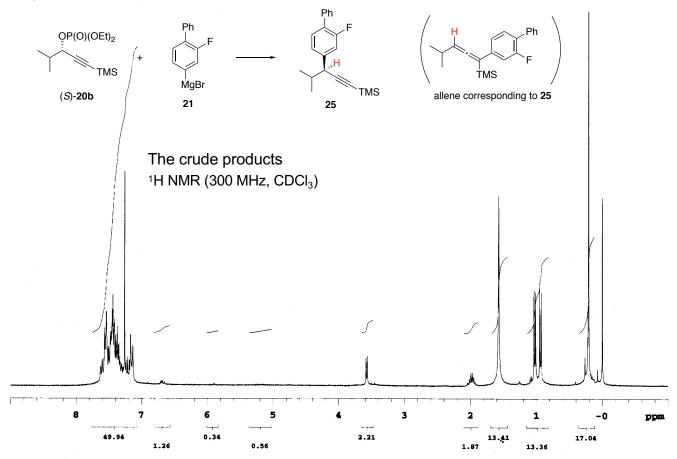

regioselectivity giving 18 (%)

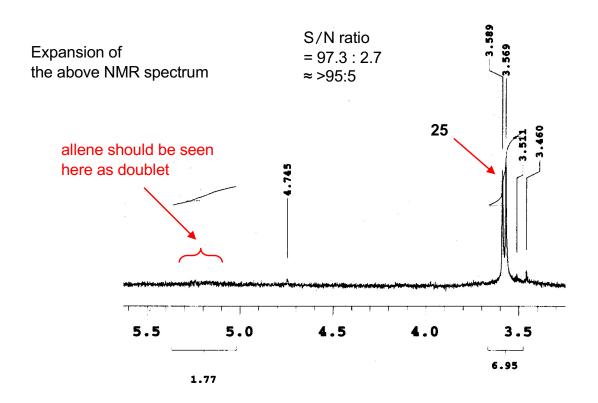

Enantiomeric excess of 14 derived from 18

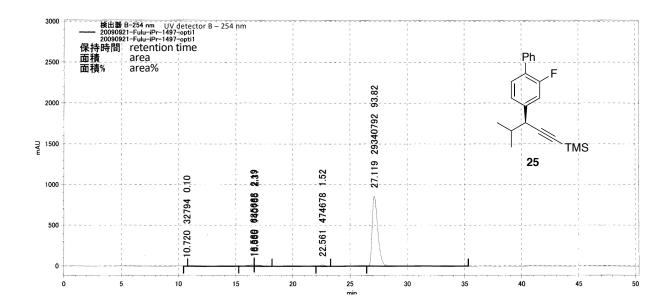

Chiralcel OJ-H; hexane/i-PrOH 90:10; flow 0.5 mL/min; temp. 25 °C

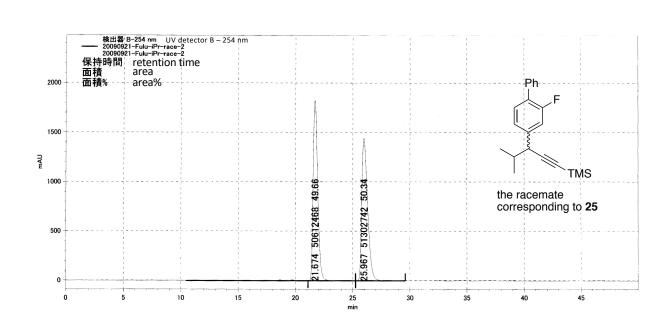

Regioisomeric purity of **23** over the allene by the S/N ratio of the ¹H NMR spectrum of **23**

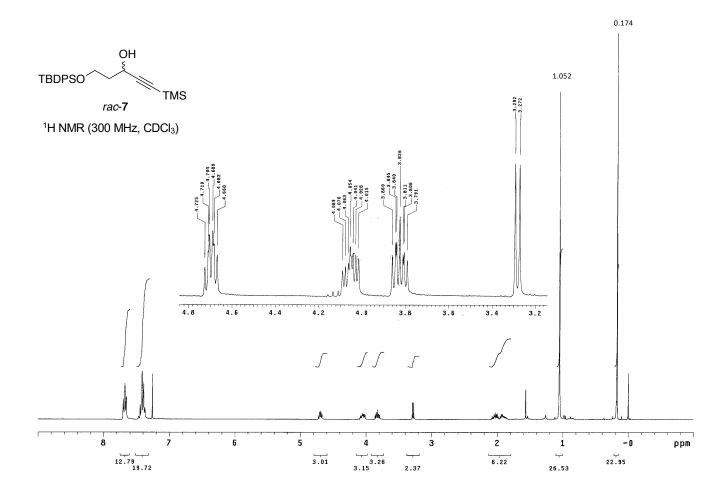


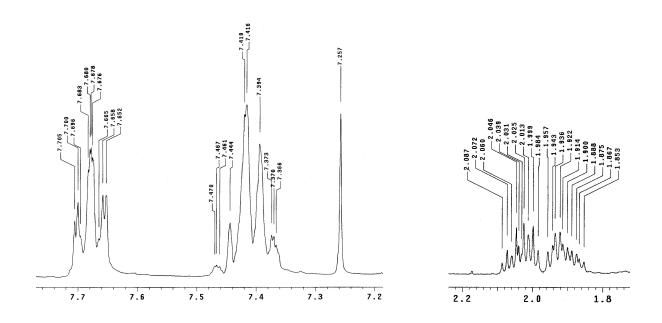

Enantiomeric excess of 23

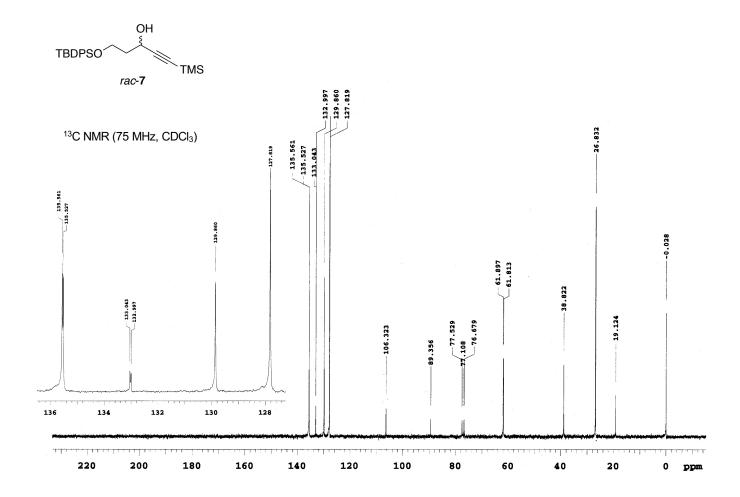

Chiralcel OD-H; hexane/i-PrOH 99.9:0.1; flow 0.3 mL/min; temp. 25 °C

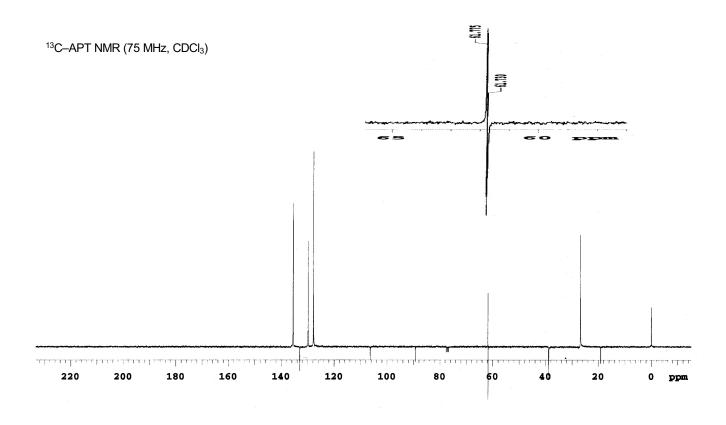

Regioisomeric purity of **25** over the allene by the S/N ratio of the ¹H NMR spectrum of **25**

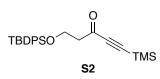


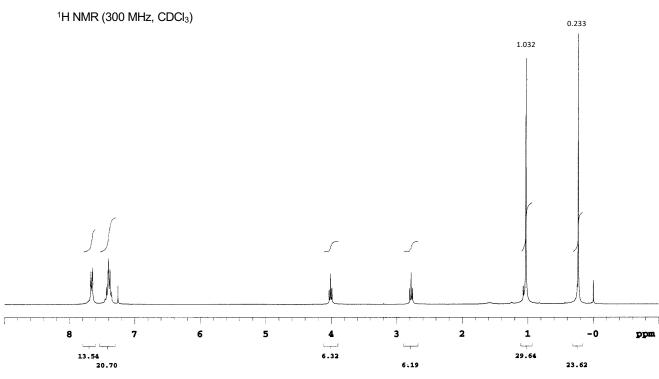

Enantiomeric excess of 25

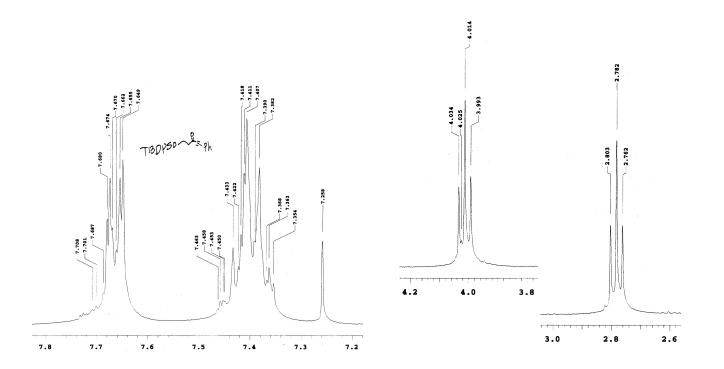

Chiralcel OD-H; hexane/i-PrOH 99.9:0.1; flow 0.3 mL/min; temp. 25 °C

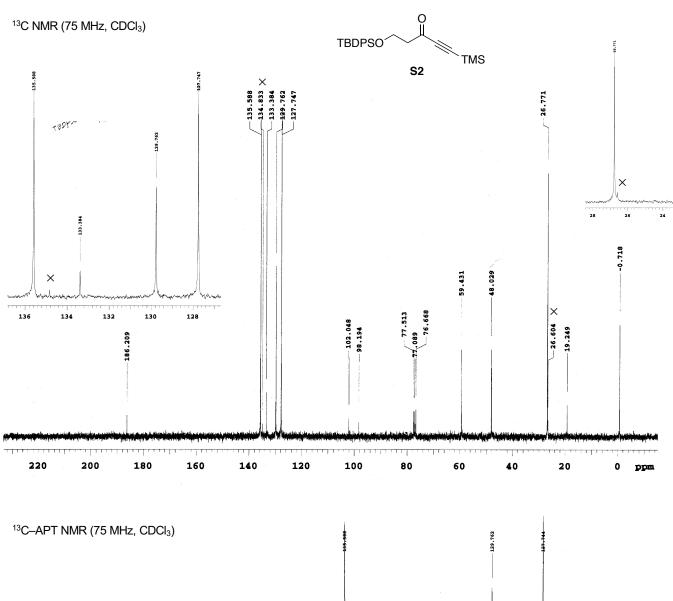


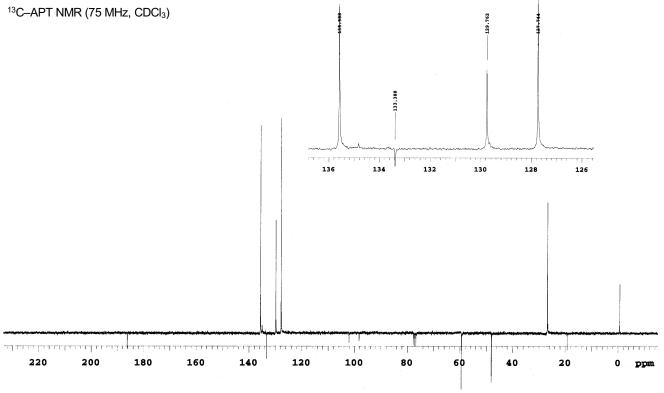


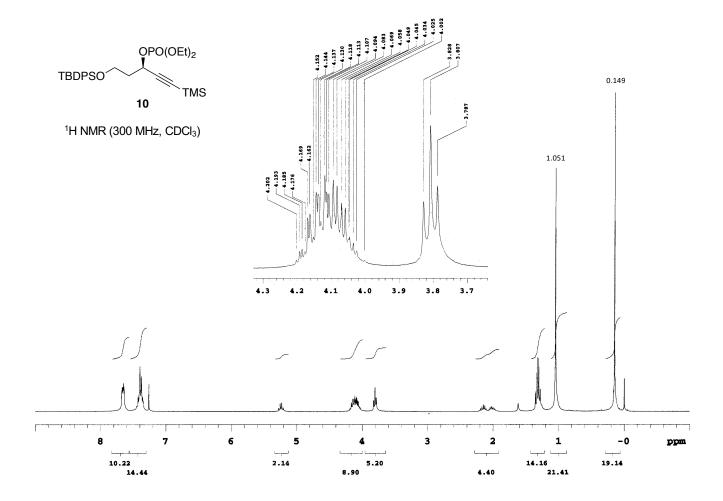

6. ¹H, ¹³C and ¹³C-APT NMR spectra

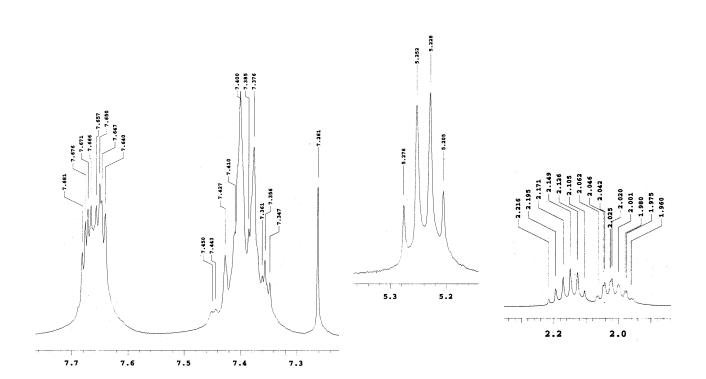


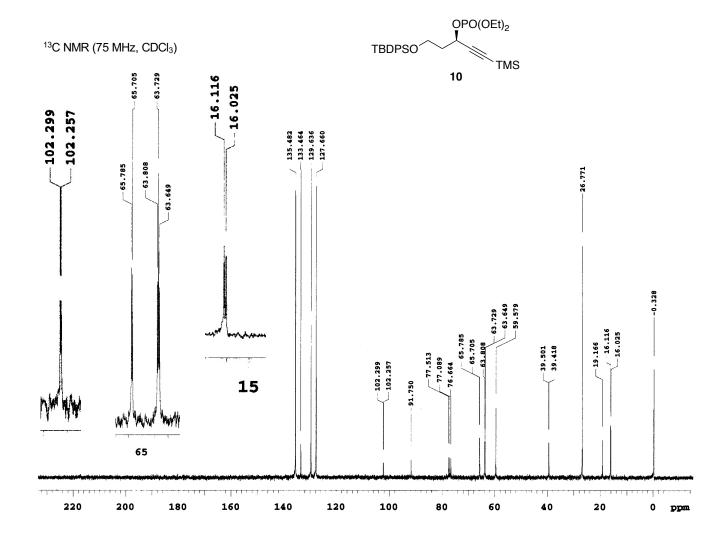


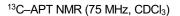


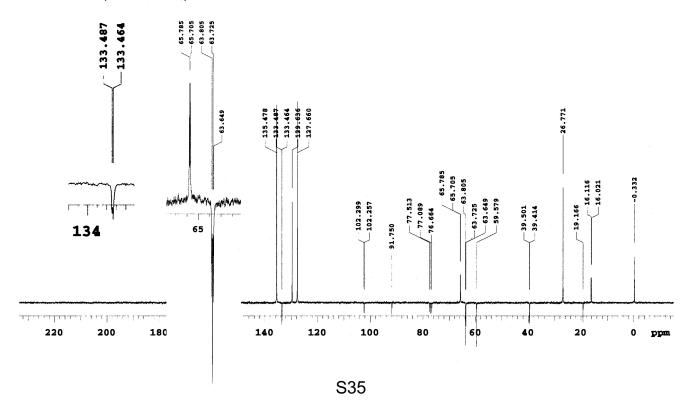


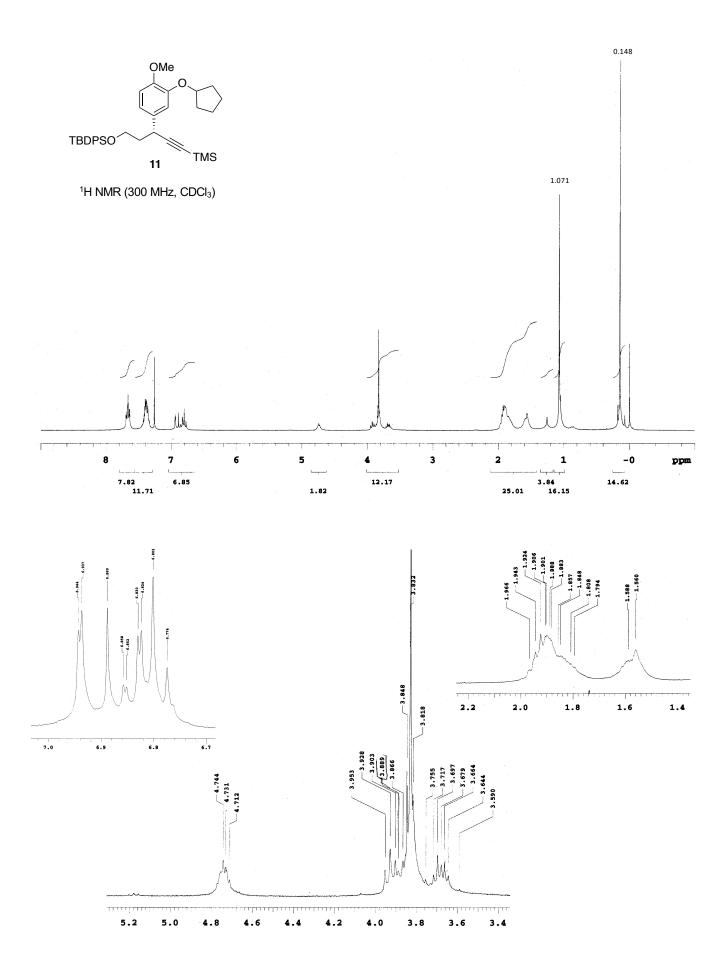


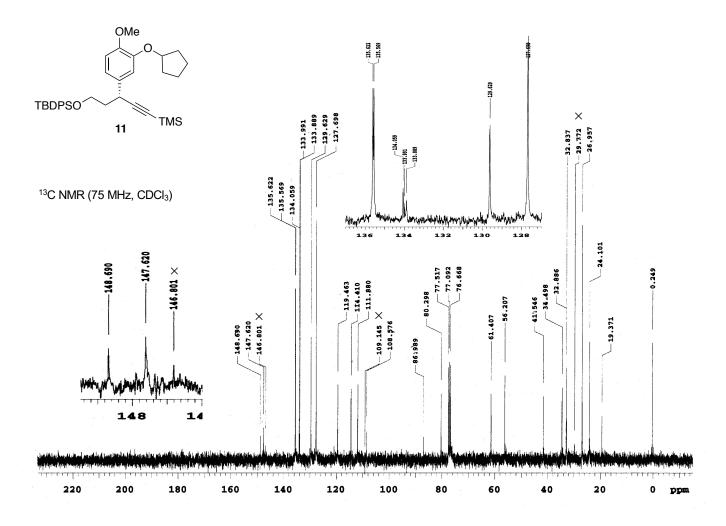


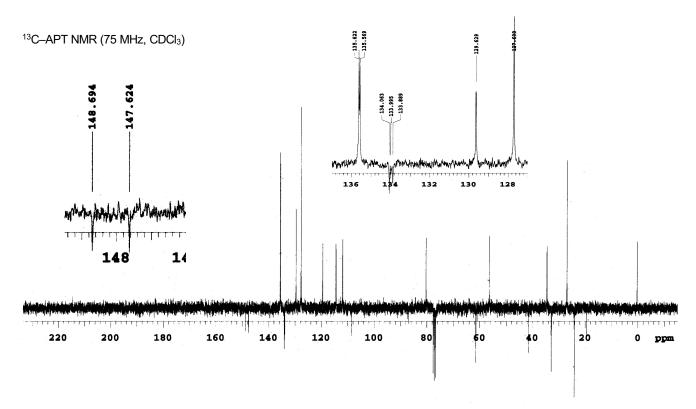


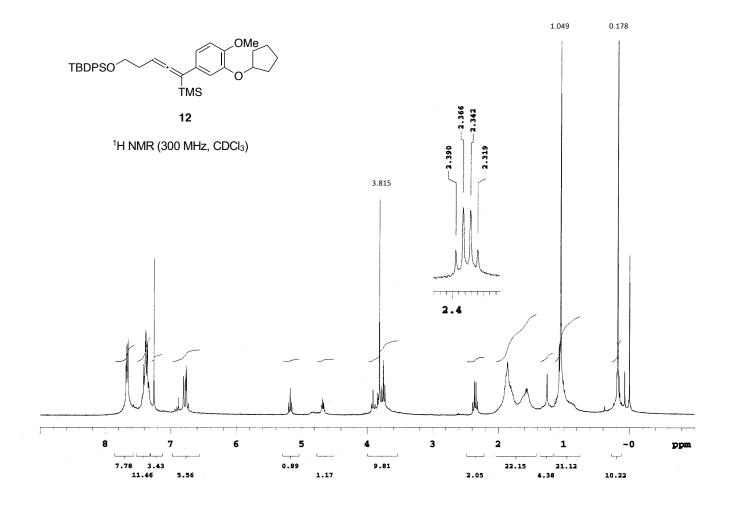


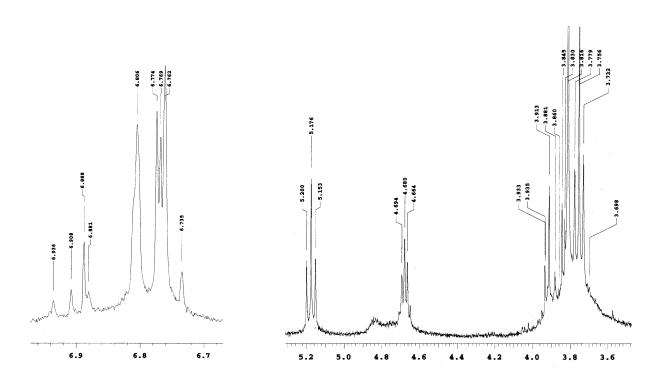


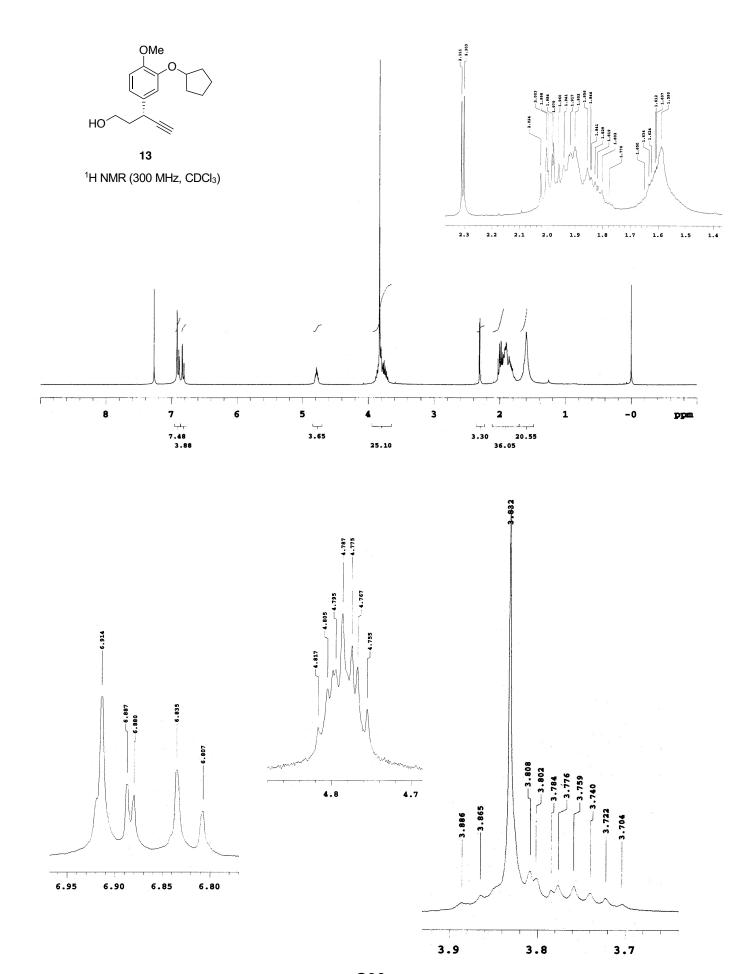


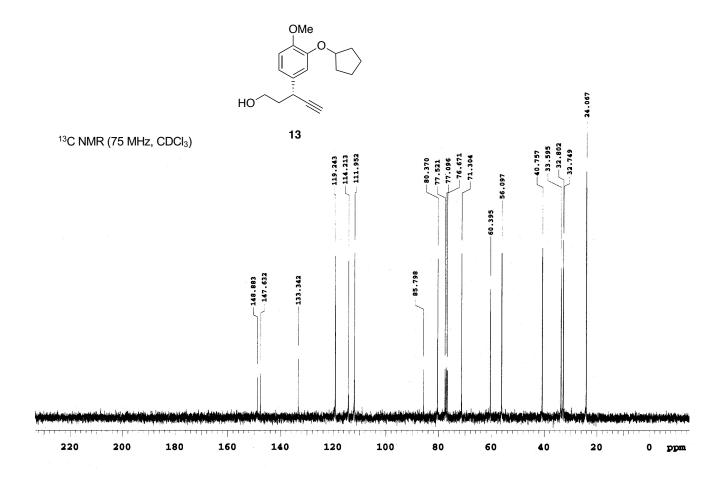


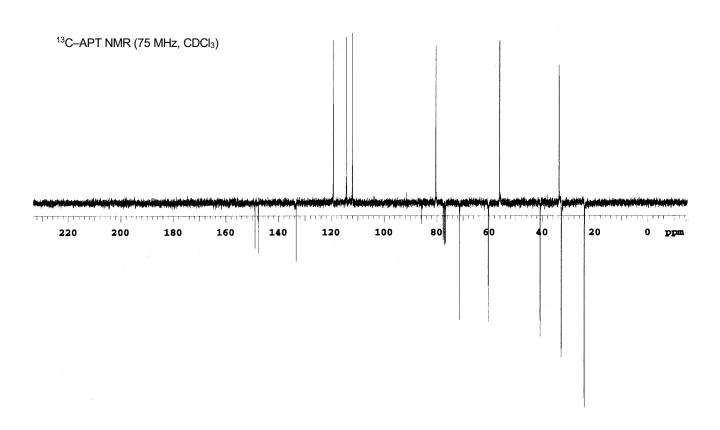


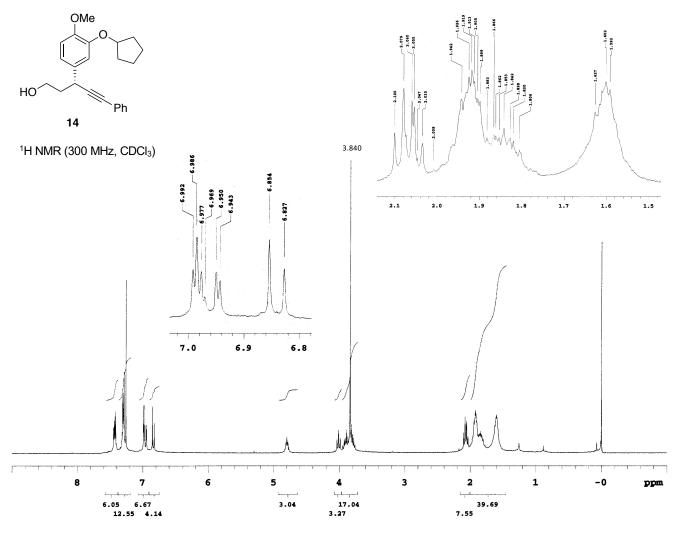


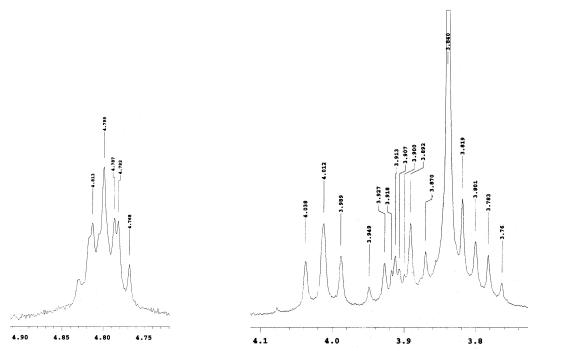


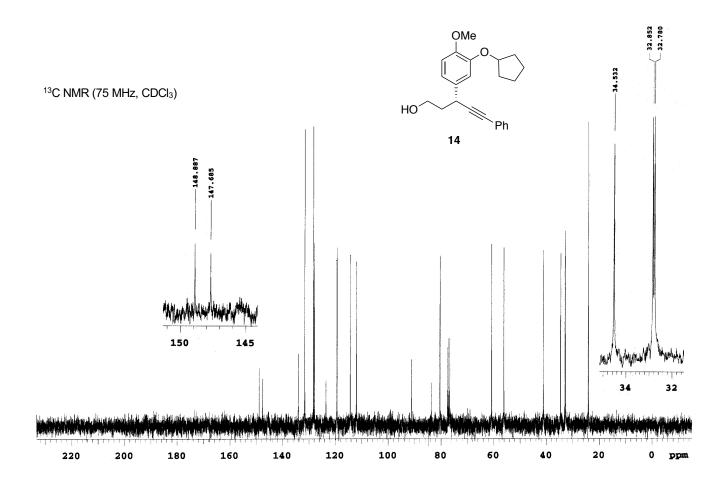


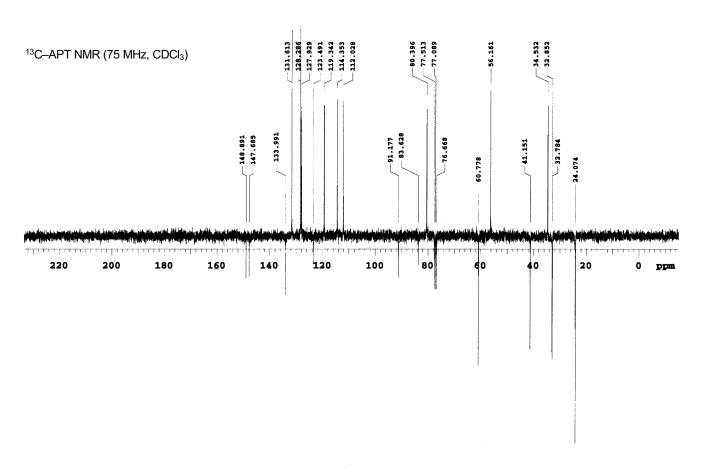


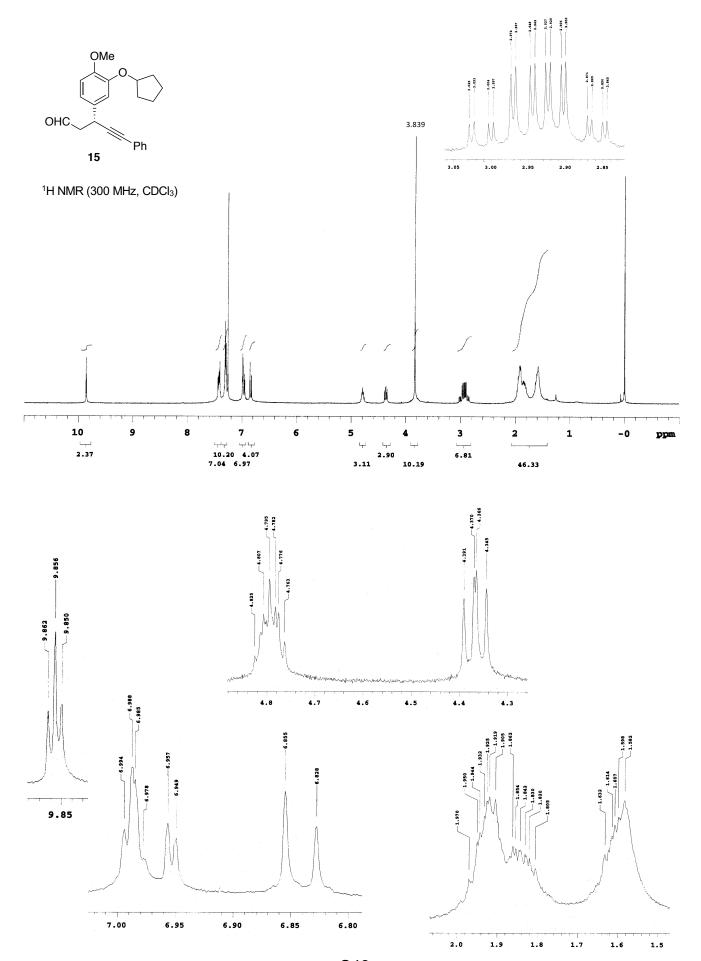


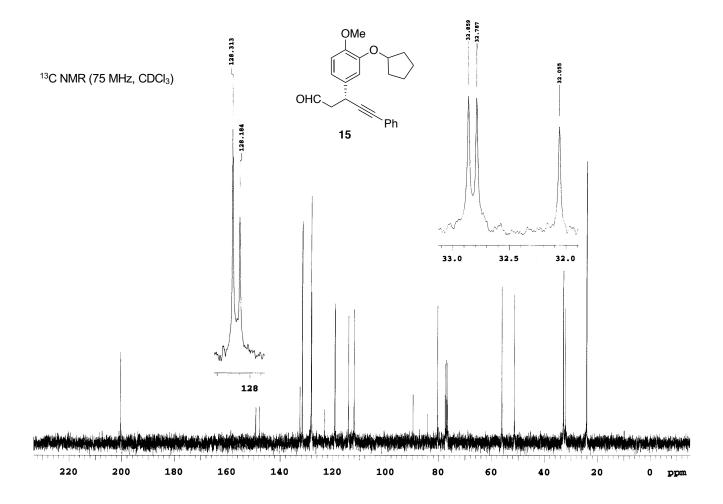


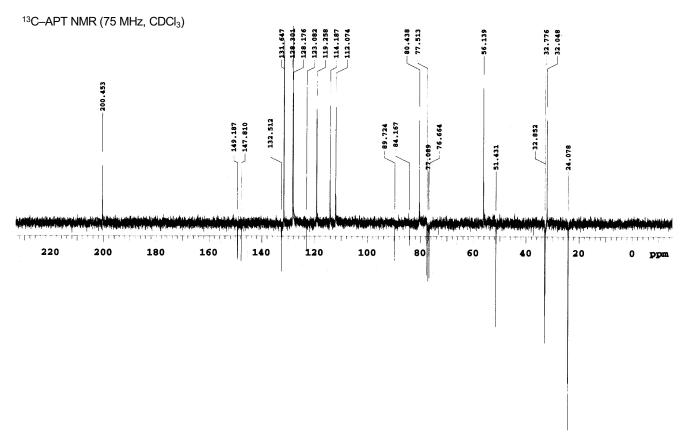


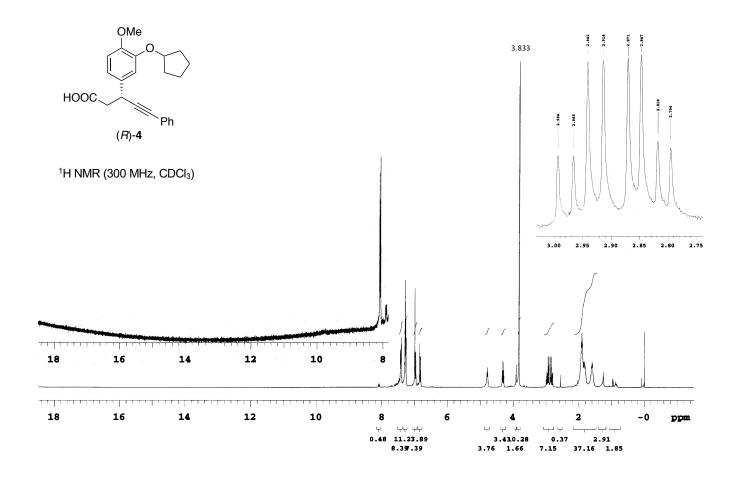


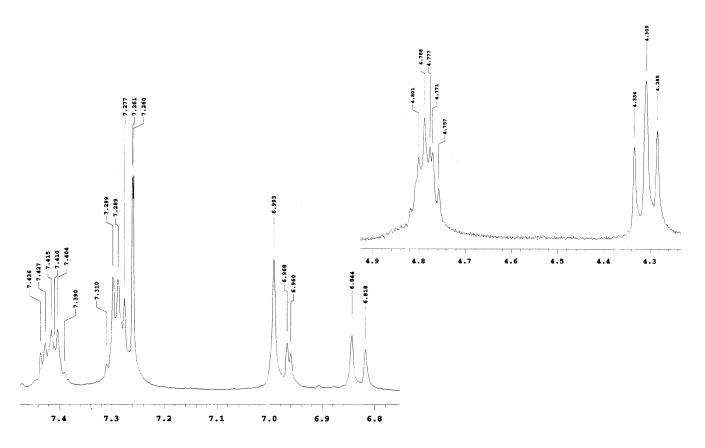


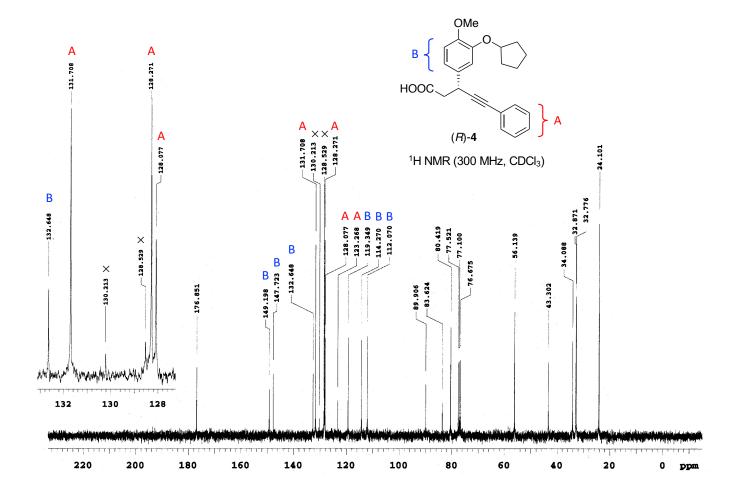


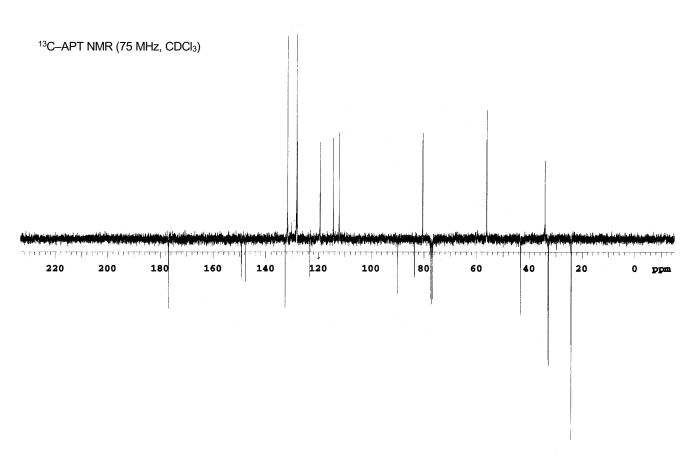


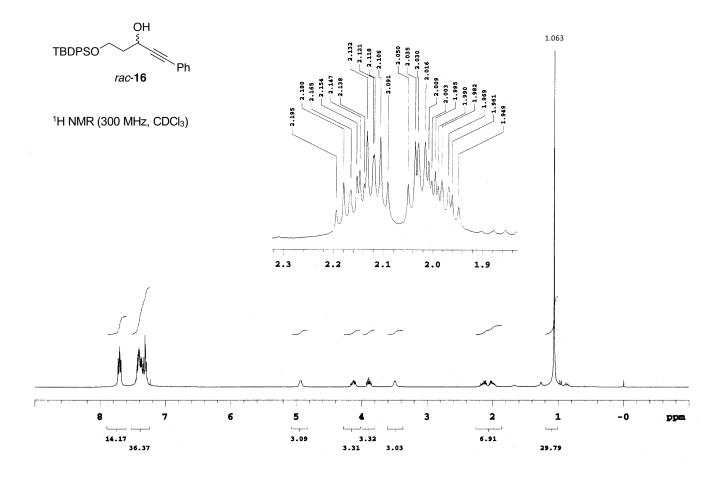


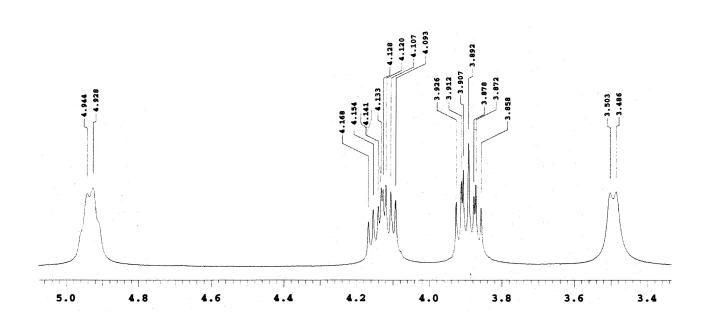


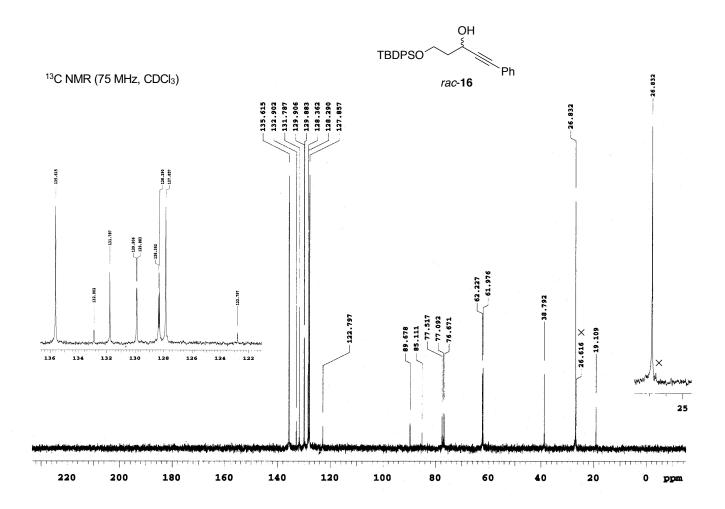


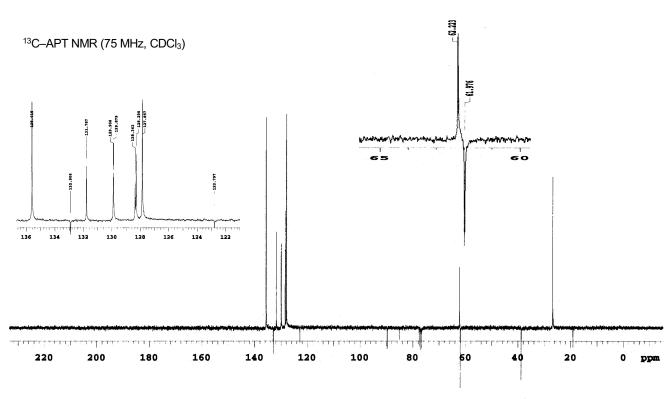


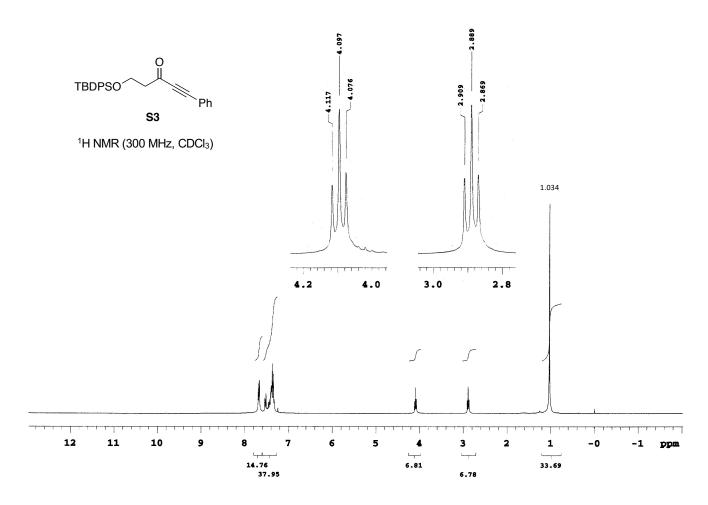


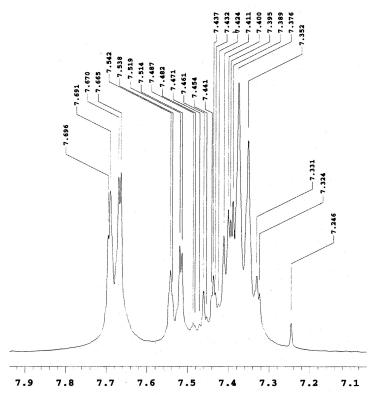


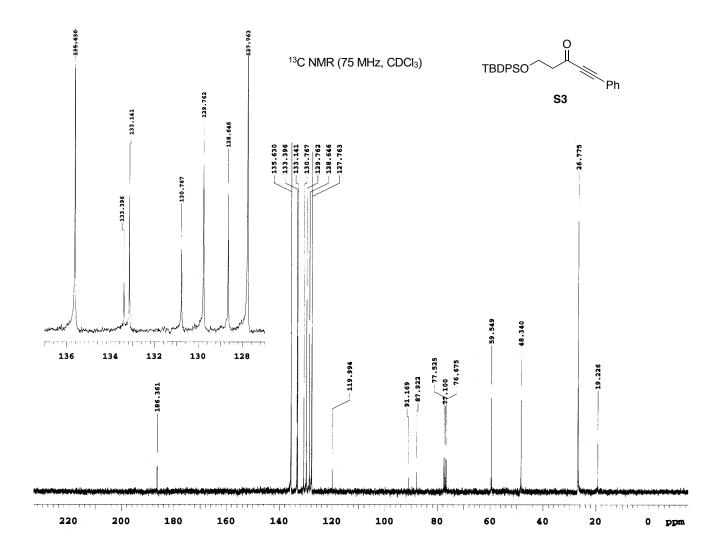


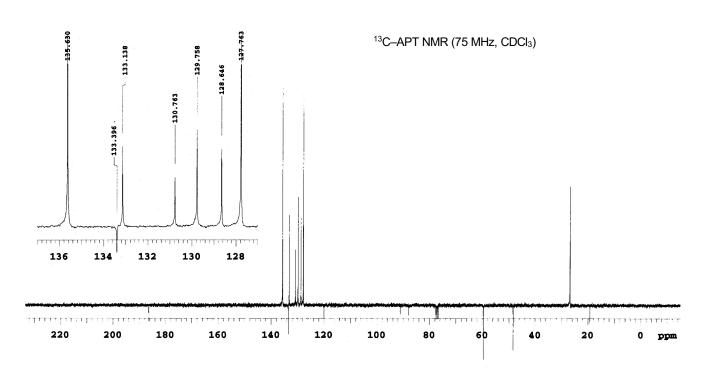


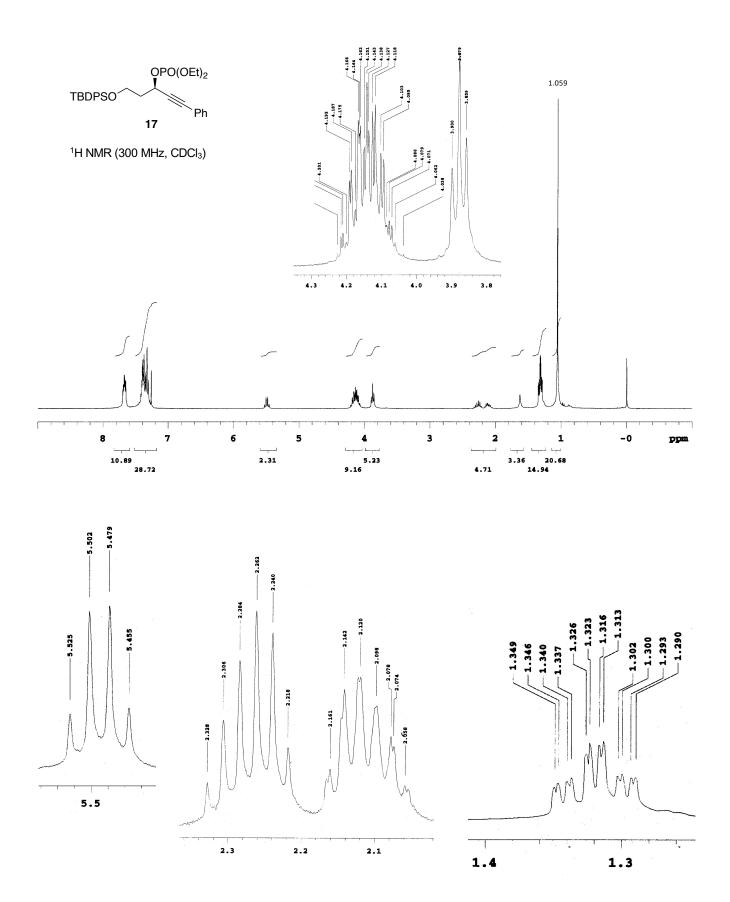


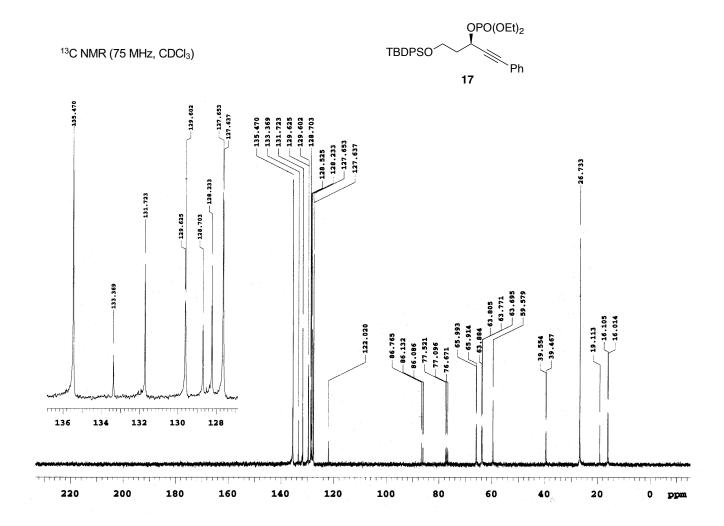


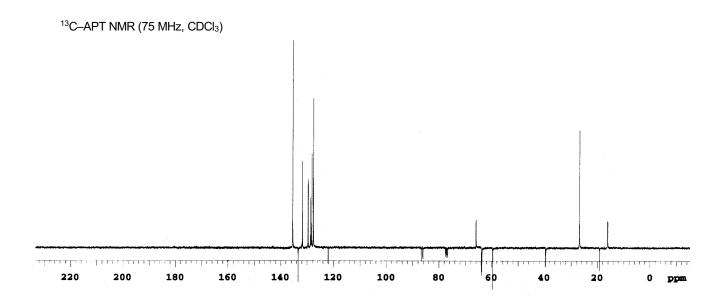


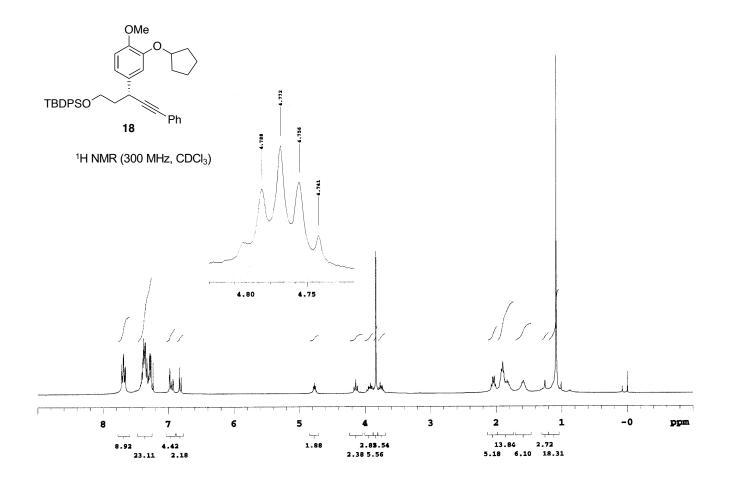


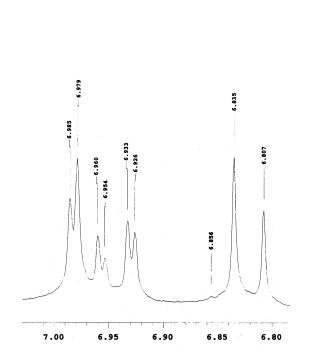


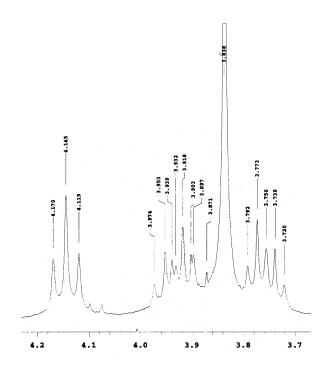


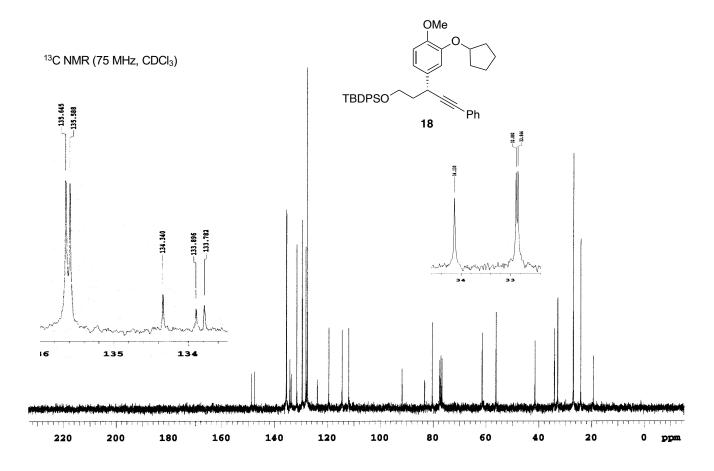


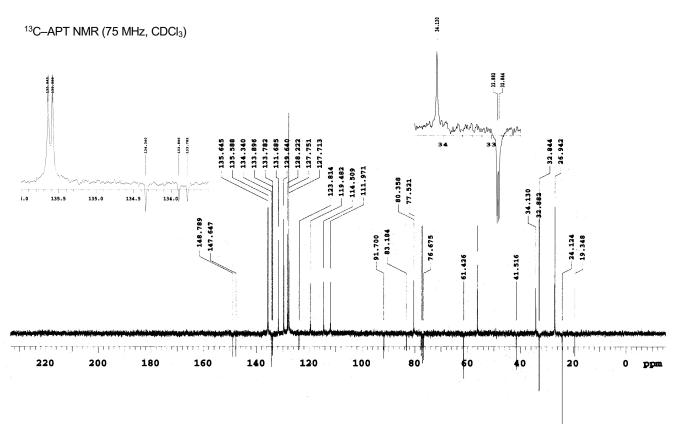


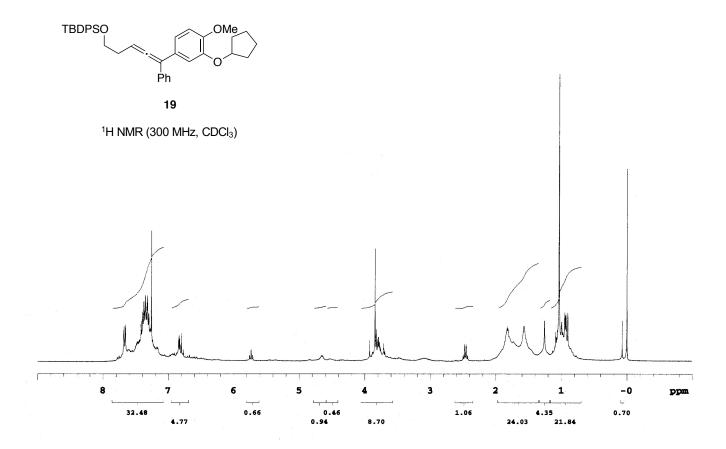


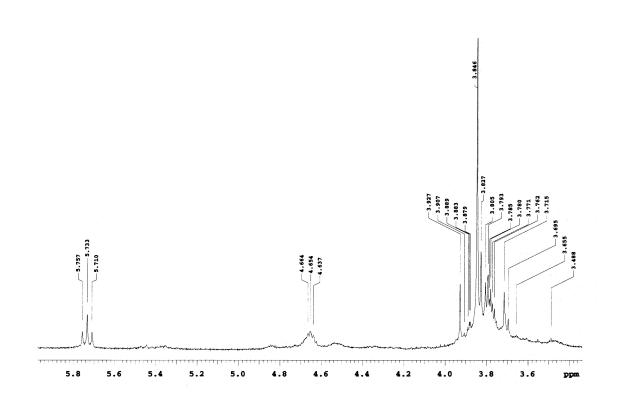


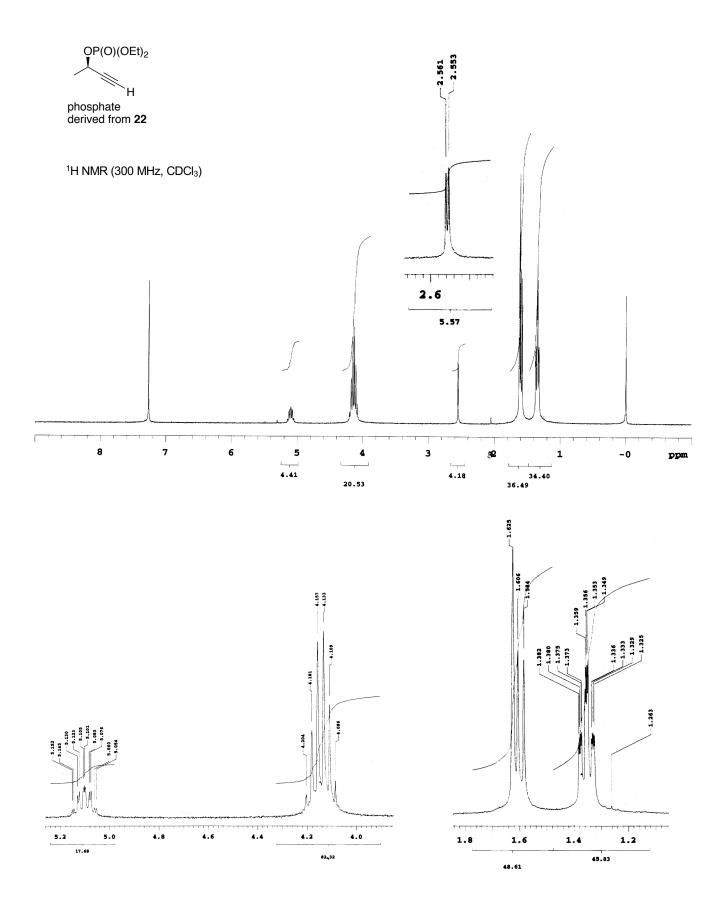


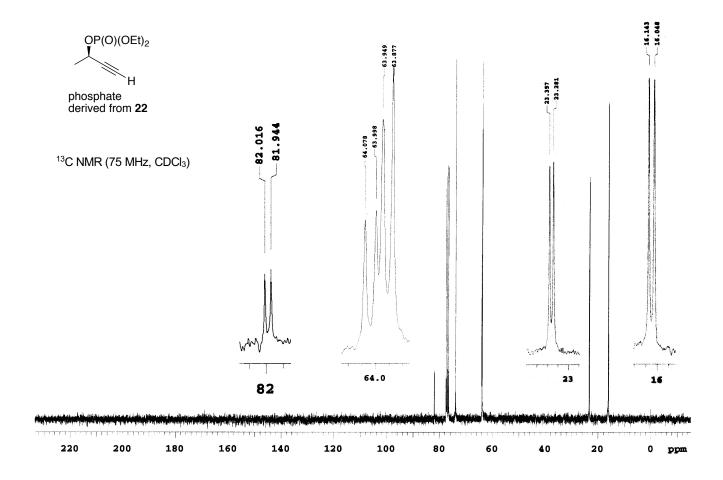


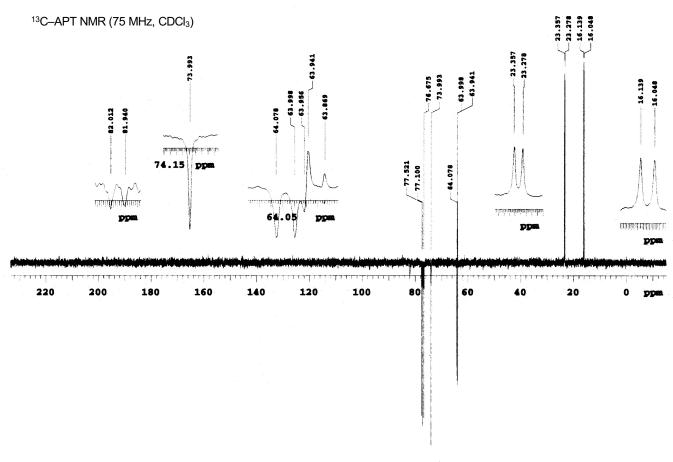


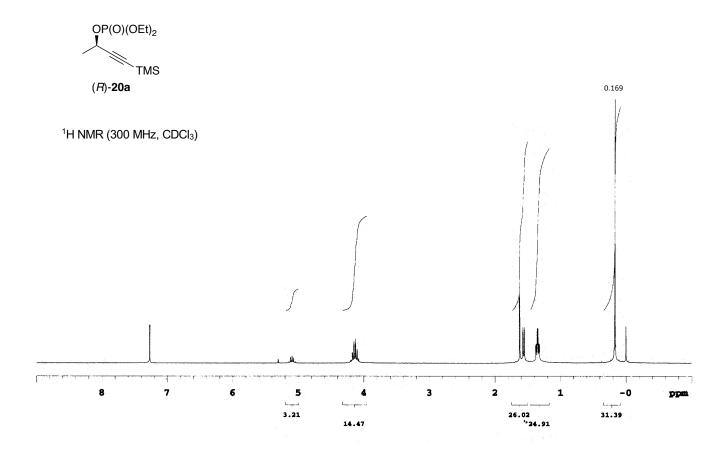


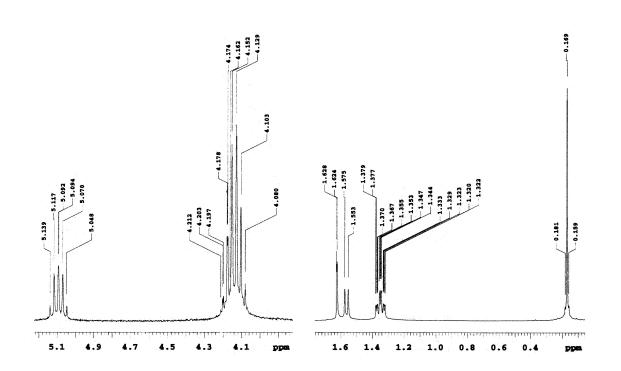


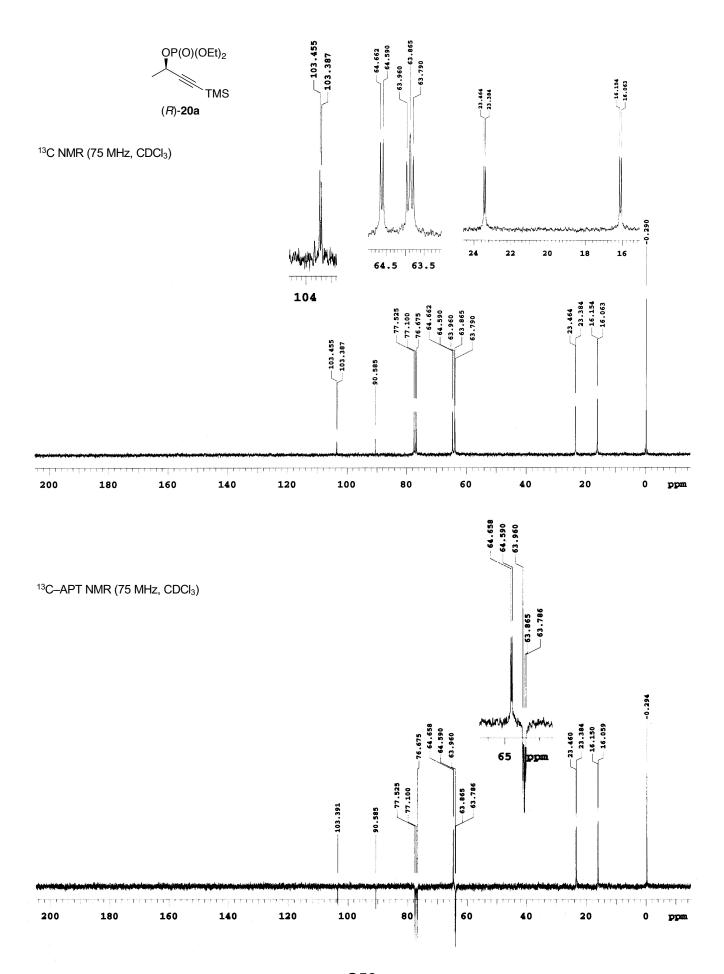


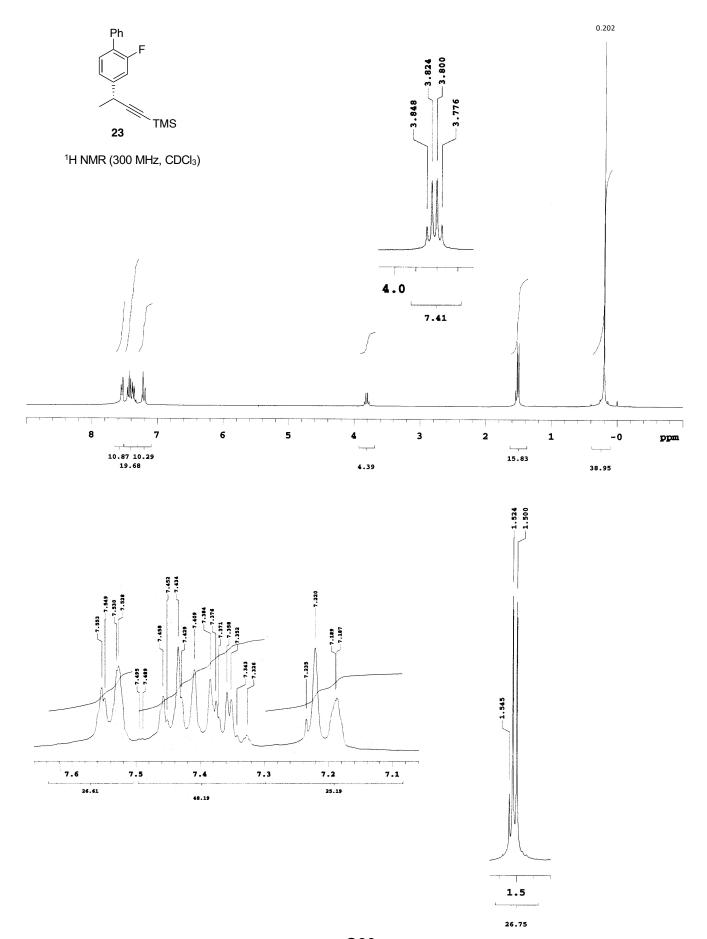


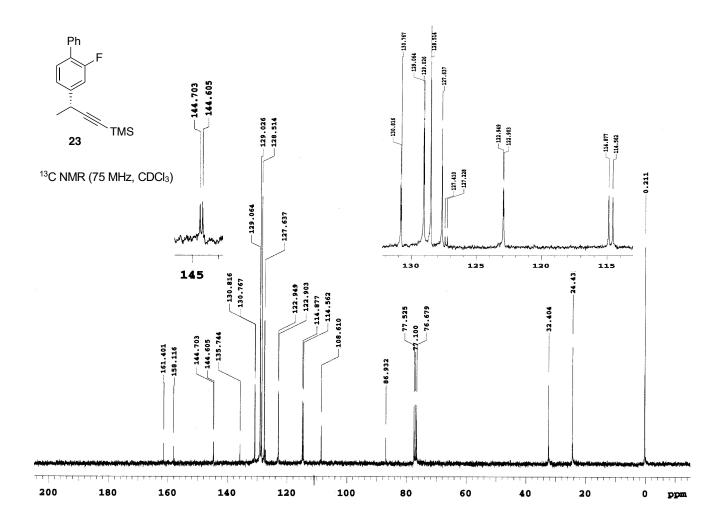


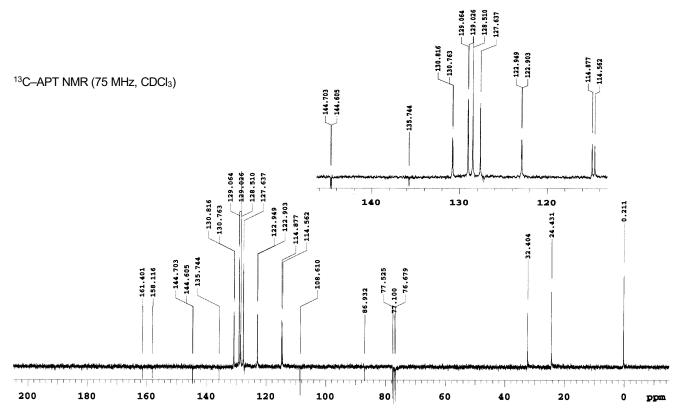


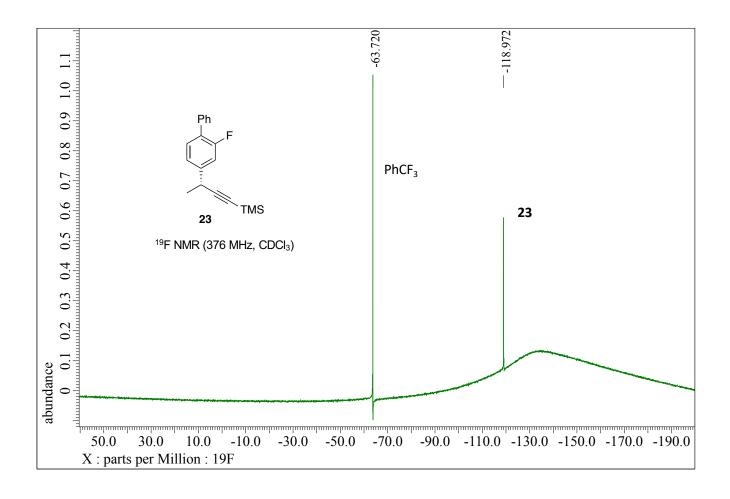


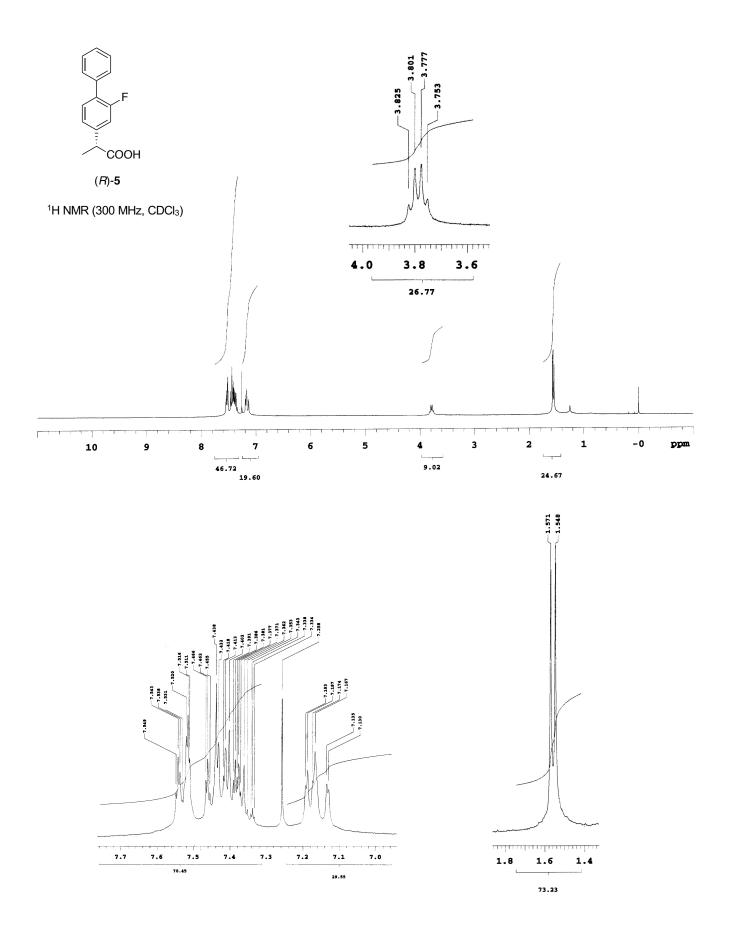


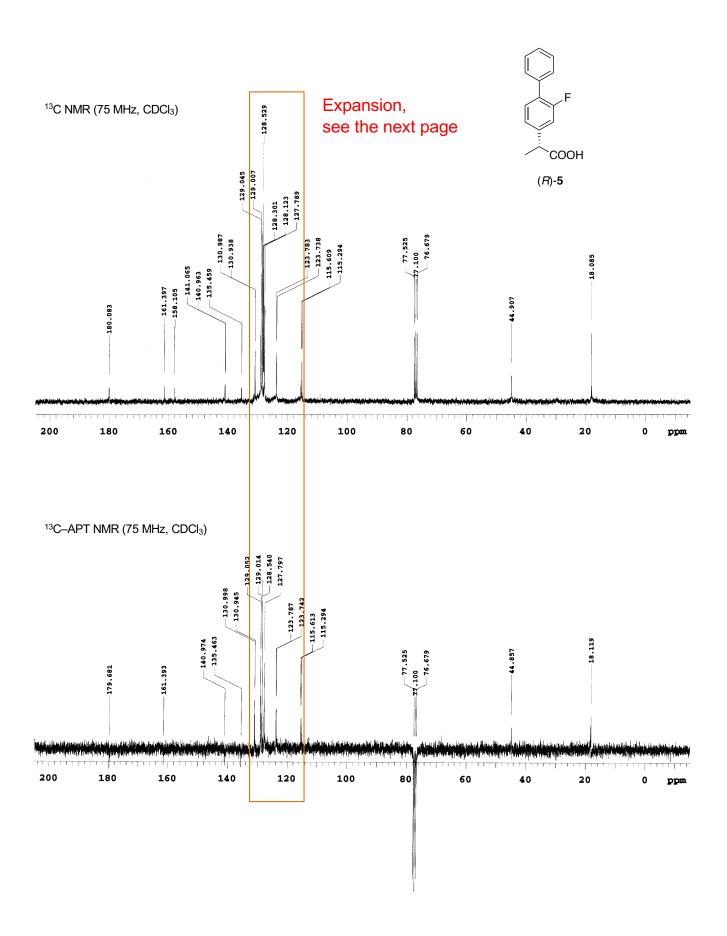


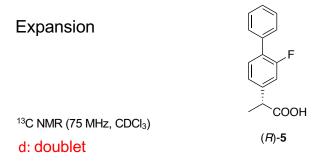


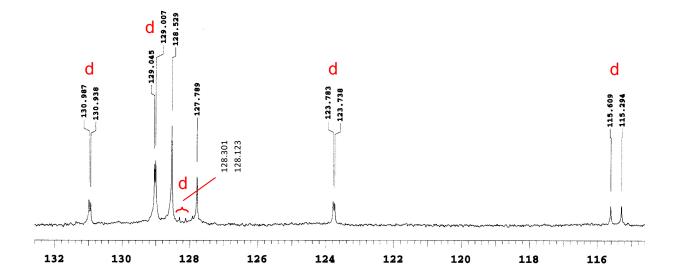


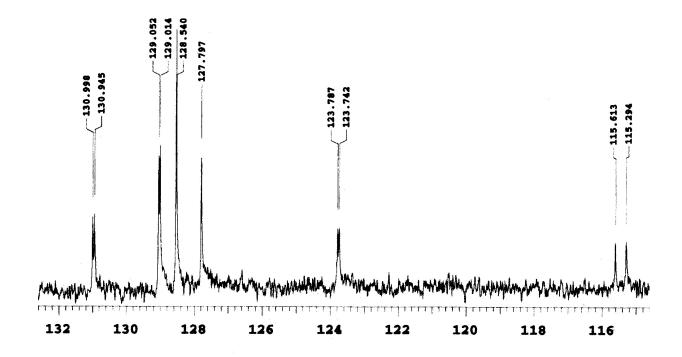


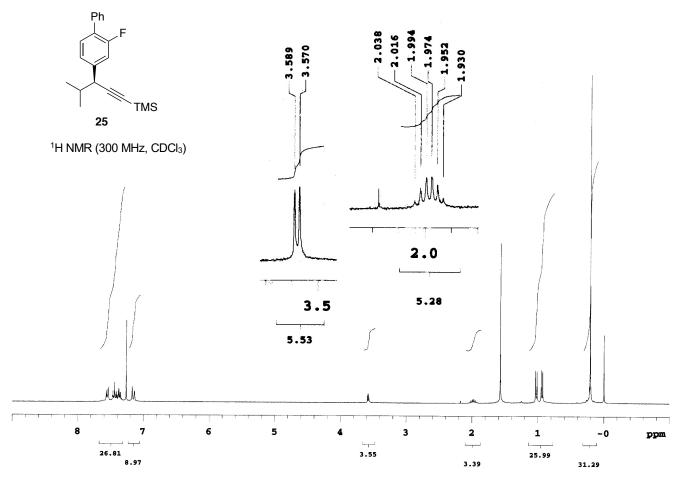


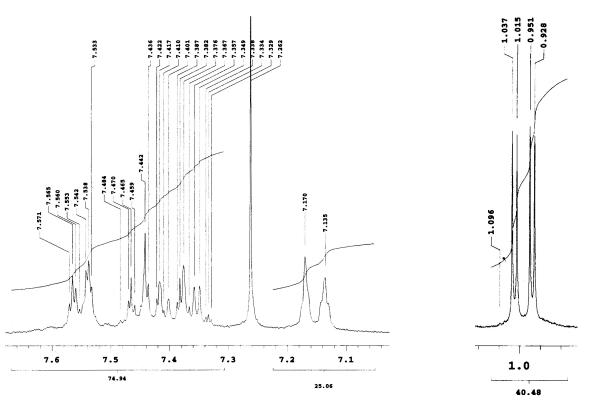


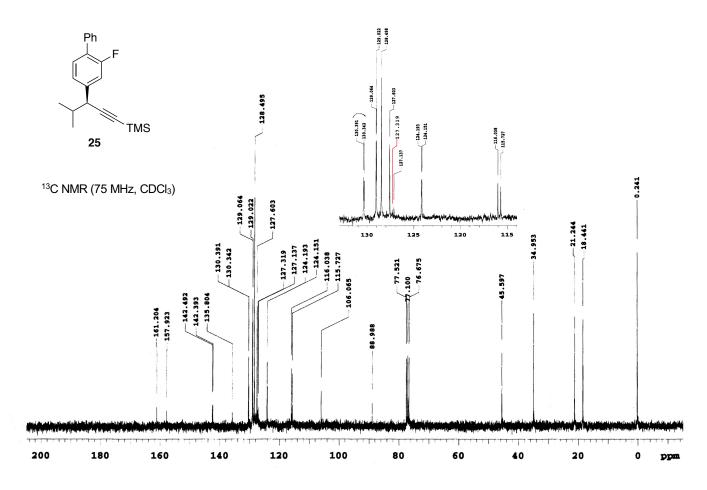


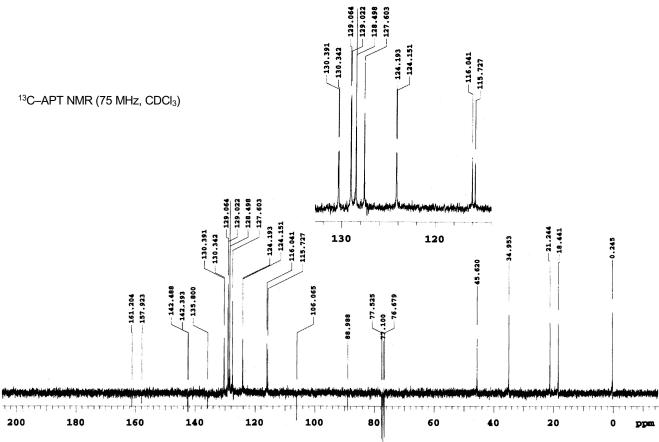


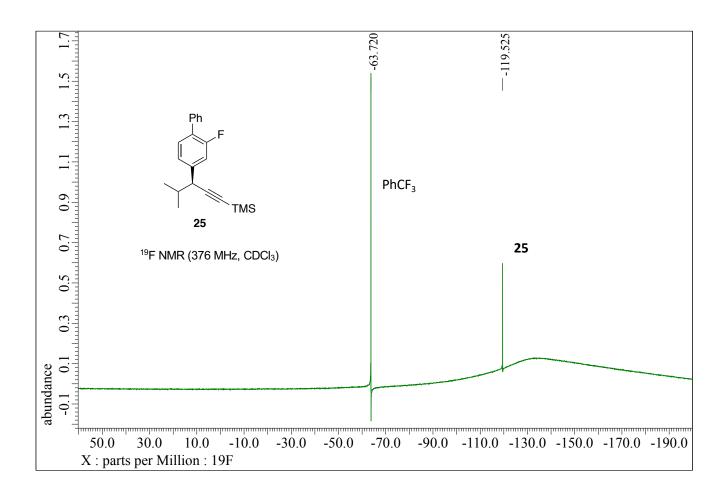


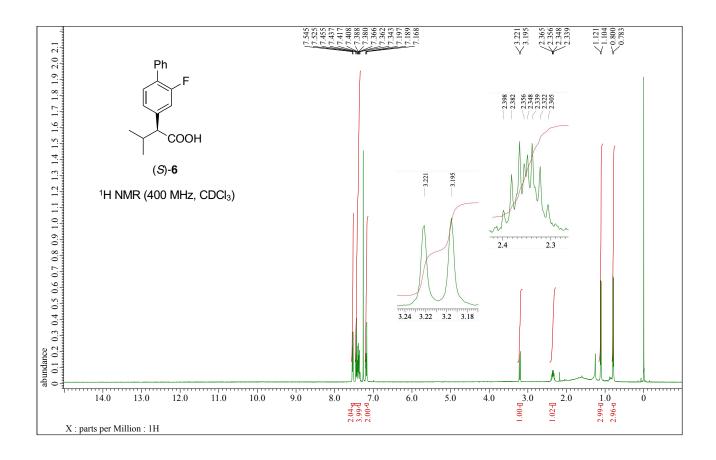


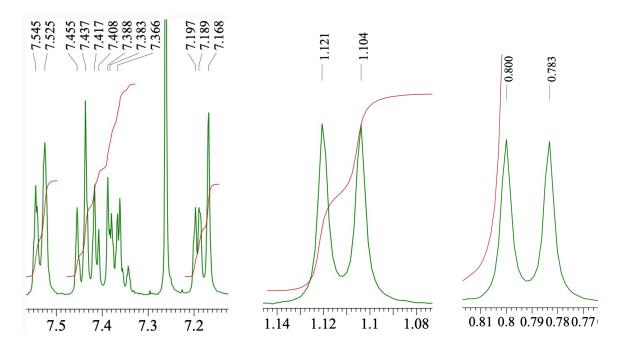


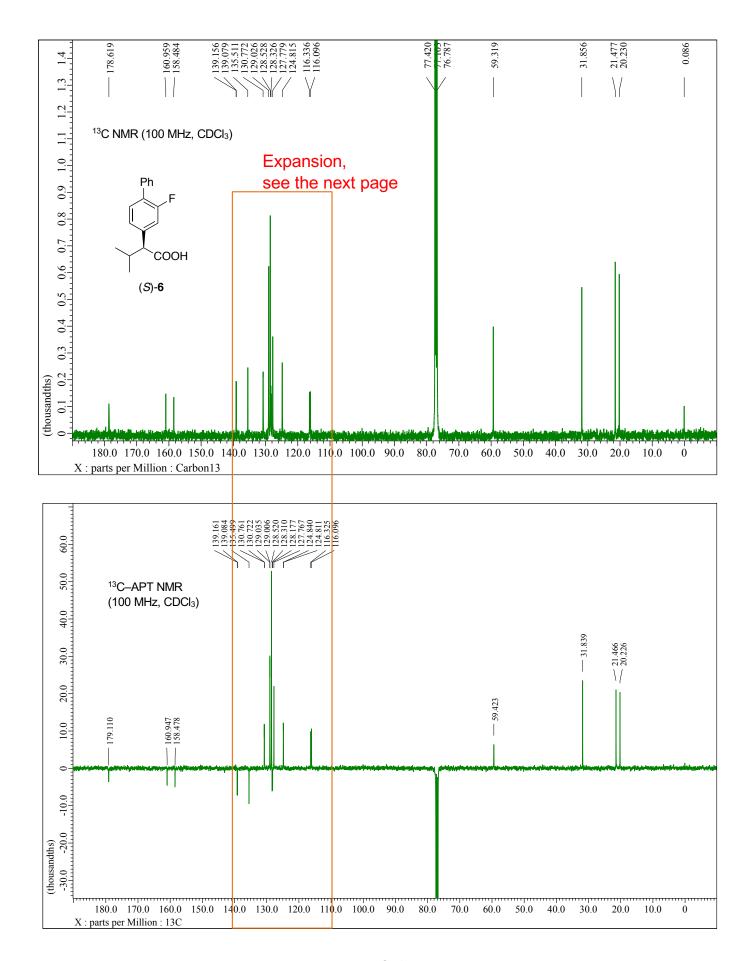


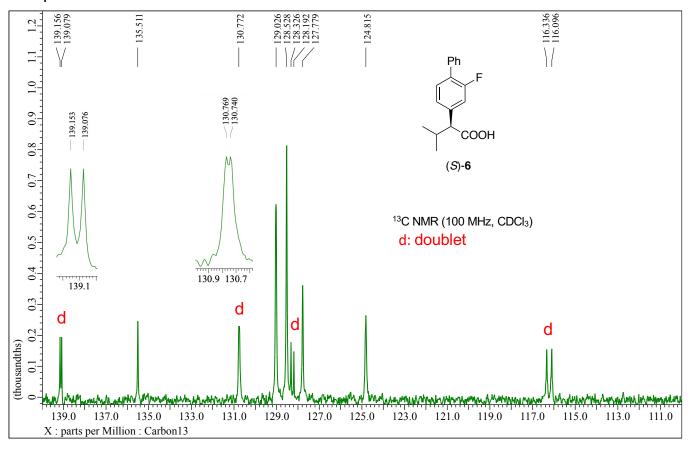

¹³C-APT NMR (75 MHz, CDCl₃)

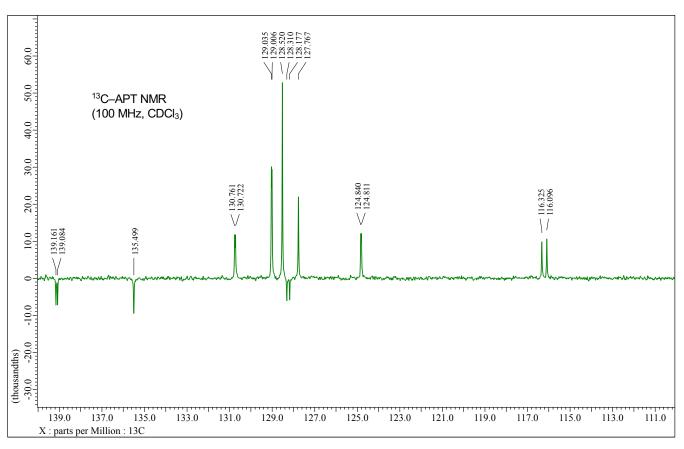












Expansion

