Supporting Information

Enantioselective Hydrophosphonylation of *N*-Boc Imines Using Chiral Guanidine-Thiourea Catalysts.

Louis Chassillan,^{a,b} Yasuhiro Yamashita,^b Woo-Jin Yoo,^b Martial Toffano,^a Régis Guillot,^a

Shū Kobayashi,^b* Giang Vo-Thanh^a*

^a LCM - Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay Rue du doyen Georges Poitou 91405 Orsay cedex – France

^b Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan

Université Paris-Saclay/University of Tokyo

Table of content

General information	
Catalyst synthesis and characterization	
Catalyst: X-ray information	
Catalysts NMR spectra	
Polymer data	
Products characterization	
Products NMR spectra	
HPLC data	
X-ray analysis	

General information

¹H and ¹³C NMR spectra were recorded with Bruker 360-WB or JEOL JNM-ECX600 spectrometers in CDCl₃ unless otherwise noted. Proton chemical shifts are reported in ppm (δ) relative to tetramethylsilane as internal reference (TMS, δppm = 0.0) or CDCl₃ solvent peak (δppm = 7.26 for ¹H and δppm = 77.0 for ¹³C). IR spectra were measured with SHIMADZU FT/IR-610 spectrometer. High-performance liquid chromatography was carried out using SHIMADZU LC-20AB (liquid chromatograph), SHIMADZU SPD-MZA (detector). Optical rotation was recorded ANTON-PAAR MCP150 or JASCO P-2100 polarimeters. Column chromatography was conducted on Silica gel Merck (0.04–0.063µm). High-resolution mass spectra were obtained with a MAT95 Thermo-Finnigan spectrometer using electrospray analysis or with a JEOL MS-5414DART ION SENSE using DART analysis. X-ray diffraction analysis of the product was performed using Bruker D8-Venture diffractometer. X-ray diffraction analysis of the catalyst was performed using RIGAKU XtaLAB Synergy-S diffractometer.

All reactions were carried out in Schlenk tubes under an argon atmosphere. All solvents were distilled from appropriate drying agents prior to use, THF and Toluene were purified by Ultimate Solvent System 3S-TSK (Nikko Hansen & co., ltd.) and used directly. Diethyl phosphonate was purchased from Aldrich or Tokyo Chemical Industry Co., Ltd. and used directly. Imines were prepared according to a literature¹. For continuous-flow experiment Imine was synthesized according to another literature², distilled under vacuum and stored in a glove-box.

¹ Faming Zhuanli Shenqing, 110845369, 28 Feb 2020

² Angew. Chem. Int. Ed. 2021, 60, 13671–13676

Catalyst synthesis

C1 and C2 synthesis :

 $di-tert-butyl\ ((1R,1'R,2R,2'R)-(thiocarbonylbis(azanediyl)) bis(cyclohexane-2,1-diyl)) dicarbamate-T1:$

(1R,2R)-trans-N-Boc-1,2-cyclohexanediamine (2.00 g, 9.33 mmol, 2.0 equiv.) was added to a solution of carbon disulfide (0.28 mL, 4.66 mmol, 1.0 equiv.) in ethanol (4.5 mL) at 0°C. The mixture was heated under reflux for 16h. After completion of the reaction, the mixture was allowed to cool down to r.t and a part of the product crystalized. The mixture was filtered through a fritted glass funnel providing the product as white crystals (440 mg). The filtrate was purified over chromatography column (EtOAc-Pentane 4:6). **T1** was obtained as a white solid (1.23 g). (1.67 g, 76%)

¹**H** NMR (360 MHz, CDCl₃) δ = 1.00-1.50 (m, 8H), 1.42 (s, 18H), 1.69 (m, 4H), 1.98 (m, 2H), 2.20 (m, 2H), 3.41 (m, 2H), 4.01 (bs, 2H), 4.86 (bs, 2H), 6.37 (bs, 2H). ¹³**C** NMR (91 MHz, CDCl₃) δ = 24.1, 24.6, 28.4, 31.9, 53.7, 58.6, 79.6, 156.78, 181.53. IR (cm⁻¹) : 951, 1171, 1232, 1288, 1321, 1367, 1452, 1518, 1554, 1690, 2857, 2937, 2979, 3262, 3373. MS (ESI) m/z : Calculated for C₂₃H₄₃N₄O₄S – 471.2990[M+H⁺]. found – 471.3000[M+H⁺]. [*α*] _D (CHCl₃, C 0.01, 20°C) = + 67.0 °. Melting point 238-240 °C. N-(bis(((1*R*,2*R*)-2-((tert-butoxycarbonyl)amino)cyclohexyl)amino)methylene)butan-1-aminium chloride – G1 :

To a solution of **T1** (1.00 g, 2.17 mmol, 1.0 equiv.) in DMF (5 mL) were added triethylamine (0.59 mL, 4.34 mmol, 2.0 equiv.) and N-butylamine (0.64 mL, 6.51 mmol, 3.0 equiv.). Mercury chloride (707 mg, 2.60 mmol, 1.2 equiv.) was added and the mixture was stirred vigorously for 3 days. The reaction was monitored by TLC. After completion of the reaction, the mixture was diluted with ethyl acetate and filtered through a pad of celite. The filtrate was washed with a saturated aq. NH₄Cl solution and dried over MgSO₄. The crude was then purified by chromatography (EtOAc-pentane 1:1 then DCM-MeOH 9:1) providing **G1** as a white powder (864 mg, 73%)

¹**H** NMR (360 MHz, CDCl₃) δ = 0.93 (t, 3H, J = 9.0 Hz),1.18-1.42 (m, 8H), 1.30-1.72 (m, 8H),1.40 (s, 18H), 1.88 (m, 2H), 2.13 (m, 2H), 3.13 (m, 2H), 3.44 (m, 2H), 8.08 (bs, 1H). ¹³**C** NMR (91 MHz, CDCl₃) δ = 13.4, 19.7, 23.3, 24.4, 28.1, 30.5, 31.0, 31.2, 40.8, 53.3, 57.3, 80.3, 152.9, 157.8. IR (cm⁻¹) : 951, 1023, 1173, 1236, 1256, 1323, 1366, 1391, 1452, 1524, 2862, 2934, 3265, 3337. MS (ESI) m/z : Calculated for C₂₇H₅₂N₅O₄- 510.3993 [M+H⁺]. found – 510.4014[M+H⁺]. [*α*] _D (CHCl₃, C 0.01, 20°C) = + 48.0 °. Melting point 219-223 °C.

1-(bis(((1*R*,2*R*)-2-((tert-butoxycarbonyl)amino)cyclohexyl)amino)methylene)pyrrolidin-1-ium chloride – G2 :

G2 was synthesized using same procedure as G1.

¹**H** NMR (360 MHz, CDCl₃) δ = 1.20-1.60 (m, 4H), 1.43 (s, 18H), 1.60-2.15 (m, 16H), 3.40-3.68 (m, 6H), 3.97 (m, 2H), 5.58 (bs, 2H), 6.64 (bs, 2H). ¹³**C** NMR (91 MHz, CDCl₃) δ = 23.8, 24.8, 25.3, 28.3, 30.9, 32.73, 49.9, 53.9, 58.29, 80.1, 154.9, 157.4. **IR** (cm⁻¹) : 857, 988, 1048, 1161, 1246, 1316, 1363, 1389, 1448, 1517, 1623, 1693, 2959, 2932, 2976, 3243. **MS** (ESI) m/z : Calculated for C₂₇H₅₀N₅O₄ – 508,3857 [M+H⁺]. found – 508.3827 [M+H⁺]. [**α**] _D (CHCl₃, C 0.01, 20°C) = + 85.3 °. **Melting point** 134-138 °C.

N-(bis(((1R,2R)-2-(3-(3,5-bis(trifluoromethyl)phenyl)thioureido)cyclohexyl)amino)methylene)butan-1aminiumchloride – <u>C1•HCl</u>:

G1 (700 mg, 1.28 mmol, 1.0 equiv.) was dissolved in a 50/50 V% solution of DCM/TFA (2 mL/2 mL) and the mixture was stirred for 1-2h. The solvent was removed under reduced pressure to provide the diamine salt. The diamine salt was dissolved in DCM (2 mL) and triethylamine (0.71 mL, 5.13 mmol, 4.0 equiv.) and isothiocyanate (0.70 mL, 3.84 mmol, 3.0 equiv.) were added. The mixture was stirred overnight. The product was purified by flash chromatography (Heptane-EtOAc 8:2 then DCM-MeOH 30:1). The product was dissolved in EtOAc and washed with saturated aq. NH₄Cl to perform anion metathesis. **C1**-HCl was obtained as a white powder (375 mg, 33%).

¹**H** NMR (360 MHz, CDCl₃) δ = 0.85 (t, 3H, *J*= 7.5 Hz), 1.02-1.64 (m, 12H), 1.64-1.85 (m, 4H), 1.95-2.19 (m, 4H), 3.08-3.37 (m, 2H), 3.51-3.84 (m, 2H), 4.56-4.79 (m, 2H), 6.52-7.00 (bs, 2H), 7.56 (s, 2H), 8.18 (s, 4H), 10.08-10.50 (bs, 2H). ¹³**C** NMR (91 MHz, CDCl₃) δ = 181.7, 140.5, 131.8, 131.4, 127.6; 124.6; 121.6; 117.9 (q, *J* = 331 Hz), 122.8, 58.8, 55.6, 42.6, 31.9, 30.8, 23.9, 19.8, 13.3. **IR** (cm⁻¹) : 958, 1128, 1174, 1276, 1386, 1474, 1530, 1580, 1611, 2860, 2931, 3248. **MS** (ESI) m/z : Calculated for C₃₅H₄₂F₁₂N₇S₂⁺ - 852.2746 [M+H⁺]. found – 852.2707 [M+H⁺]. [α]_D (CHCl₃, C 0.01, 25°C) = + 125.6°. **Melting point** 127-139 °C.

1-(bis(((15,25)-2-(3-(3,5) bis(trifluoromethyl)phenyl)thioureido)cyclohexyl)amino)methylene)

pyrrolidin-1-iumchloride – <u>C2•HCl</u> :

C2 was synthesized using same procedure as C1.

¹**H** NMR (360 MHz, CDCl₃) δ = 1.04-2.24 (mbr, 20H), 3.46 (m, 6H), 4.69 (bs, 2H), 6.45 (bs, 2H), 7.54 (s, 2H), 8.14 (s, 4H), 8.39 (bs, 2H), 10.40 (s, 2H). ¹³**C** NMR (91 MHz, CDCl₃) δ = 14.2, 21.1, 24.4, 25.3, 32.0, 50.2, 56.6, 60.4, 117.7, 122.3, 122.6, 124.1, 131.2-131.8 (C_{arom}), 140.8, 181.8 **IR** (cm⁻¹) : 969, 1000, 1128, 1176, 1276, 1332, 1384, 1474, 1535, 1582, 1611, 1678, 1724, 2860, 2931, 3047, 3248. **MS** (ESI) m/z: Calculated for $C_{35}H_{40}F_{12}N_7S_2^+ - 850.2590 [M+H^+]$. found $- 850.2560 [M+H^+]$. [α] $_{D}$ (CHCl₃, C 0.01, 25°C) = + 133.4 °. **Melting point** 130-132 °C.

C3 and C6 synthesis :

For synthesis of T2, see : Organic & Biomolecular Chemistry (2012), 10(20), 4024-4028.

N-((6*R*,7*R*,11*R*,12*R*)-2,2,16,16-tetramethyl-4,14-dioxo-6,7,11,12-tetraphenyl-3,15-dioxa-5,8,10,13-tetraazaheptadecan-9-ylidene)butan-1-aminium chloride - G3 :

To a solution of **T2** (1.00 g, 1.5 mmol, 1.0 equiv.) in DMF (5 mL) were added triethylamine (0.41 mL, 3.0 mmol, 2.0 equiv.) and N-butylamine (0.45 mL, 4.5 mmol, 3.0 equiv.). Mercury chloride (490 mg, 1.8 mmol, 1.2 equiv.) was added and the mixture was stirred vigorously for 3 days. the reaction was monitored by TLC. After completion of the reaction, the mixture was diluted with ethyl acetate and filtered through a pad of celite. The filtrate was washed with a saturated aq. NH₄Cl solution and dried over MgSO₄. The crude was then purified by chromatography (EtOAc-pentane 1:1 then DCM-MeOH 9:1) providing **G3** as a white powder (800 mg, 72%).

¹**H** NMR (360 MHz, CDCl₃) δ = 0.69 (t, 3H), 0.90 (m, 2H), 1.52 (s, 18H), 1.30-1.70 (m, 2H), 3.08 (m, 1H), 3.25 (m, 1H), 4.72 (bs, 4H), 5.49 (bs, 3H), 6.33 (bs, 3H), 6.60-7.60 (m, 20H), 7.94 (bs, 2H), 8.79 (bs, 1H). ¹³**C** NMR (91 MHz, CDCl₃) δ = 13.4, 19.2, 28.4, 30.2, 41.1, 65.1, 62.29, 64.03, 80.9, 82.1, 127.4-128.9 (C_{arom}), 136.8, 137.5, 153.3, 158.4. IR (cm⁻¹) : 1023, 1048, 1167, 1366, 1498, 1522, 1630, 1692, 2978, 3254. MS (ESI) m/z : Calculated for C₄₃H₅₆N₅O₄⁺ – 706.4327 [M+H⁺]. found – 706.4297 [M+H⁺]. [*α*] _D (CHCl₃, C 0.01, 20°C) = +85.3 °. Melting point 138-141 °C. N-((6R,7R,11R,12R)-2,2,16,16-tetramethyl-4,14-dioxo-6,7,11,12-tetraphenyl-3,15-dioxa-5,8,10,13-tetraazaheptadecan-9-ylidene)-1-(4-vinylphenyl)methanaminium chloride - G6 :

G6 was synthesized using same procedure as G3.

¹**H** NMR (360 MHz, CDCl₃) δ = 1.47 (s, 9H), 1.56 (s, 9H), 4.10 (m, 1H), 4.38 (m, 2H), 4.58 (m, 2H), 5.08 (bs, 1H), 5.18 (d, 1H, *J* = 11.0 Hz), 5.38 (bs, 1H), 5.66 (d, 1H, *J* = 17.2 Hz), 6.20-6.31 (m, 5H), 6.43 (d, 2H, *J* = 7.6 Hz), 6.62 (dd, 1H, *J* = 11.0, 17.9 Hz), 6.70 (bs, 1H), 6.84-6.93 (m, 5H), 6.84-7.21 (m, 13H), 7.02 (d, 2H, *J* = 8.2 Hz), 7.67 (bs, 1H), 7.78 (bs, 1H), 9.83 (bs, 1H). ¹³**C** NMR (91 MHz, CDCl₃) δ = 14.0, 21.4, 28.4, 41.7, 43.5, 61.0, 62.5, 64.1, 80.9, 82.3, 113.7, 113.8-129.0 (C_{arom}), 136.1, 136.4, 137.8, 153.1, 158.4, 161.2. **IR** (cm⁻¹) : 1021, 1048, 1161, 1247, 1365, 1457, 1493, 1515, 1619, 1690, 2929, 2974, 3218. **MS** (ESI) m/z : Calculated for C₄₈H₅₆N₅O₄⁺ - 766.4332 [M+H⁺]. found - 766.4334[M+H⁺]. **[a]** _D (CHCl₃, C 0.01, 26°C) = + 161.2°.

N-((3R,4R,8R,9R)-1,11-bis((3,5-bis(trifluoromethyl)phenyl)amino)-3,4,8,9-tetraphenyl-1,11-dithioxo-

2,5,7,10-tetraazaundecan-6-ylidene)butan-1-aminium chloride - C3·HCl :

G3 (770 mg, 1.04 mmol, 1.0 equiv.) was dissolved in a 50/50 V% solution of DCM/TFA (2 mL/2 mL) and the mixture was stirred for 1-2h. The solvent was removed under reduced pressure to provide the diamine salt. The diamine salt was dissolved in DCM (2 mL) and triethylamine (0.42 ml, 4.15 mmol, 4.0 equiv.) and isothiocyanate (0.57 mL, 3.11 mmol, 3.0 equiv.) were added. The mixture was stirred overnight. The product was purified by flash chromatography (Heptane-EtOAc 8:2 then DCM-MeOH 30:1). The TFA guanidinium salt was dissolved in EtOAc and washed with saturated aq. NH₄Cl to perform anion metathesis. **C3**•HCl was obtained as a white powder (536 mg, 48%).

¹**H** NMR (360 MHz, CDCl₃) δ = 0.69 (t, 3H), 0.95 (m, 2H), 1.27 (m, 2H), 3.07 (m, 1H), 3.24 (m, 1H), 4.56 (bs, 1H), 4.68 (bs, 1H), 5.25 (bs, 1H), 5.87 (bs, 1H), 6.35 (bs, 1H), 6.59-7.51 (m, 24H), 7.68 (s, 2H), 8.24 (m, 4H), 8.93 (bs, 1H), 9.50 (bs, 1H), 9.89 (bs, 1H), 10.43 (bs, 1H). ¹³**C** NMR (91 MHz, CDCl₃) δ =13.1, 19.2, 30.2, 42.7, 62.3, 64.2 (bs), 118.3 (bs), 121.6, 122.8 (bs), 124.6, 127.2 (bs), 127.7, 128.5, 128.7, 129.2, 129.4, 131.8 (q, J_{CF} = 34 Hz), 136.1, 140.5 (bs), 154.4, 181.9 (bs). **IR** (cm⁻¹) : 957, 1001, 1032, 1076, 1132, 1176, 1218, 1276, 1347, 1383, 1458, 1473, 1496, 1540, 1623, 2965, 3036, 3207. **MS** (ESI): m/z: Calculated for C₅₁H₄₆F₁₂N₇S₂⁺ – 1048.3059 [M+H⁺]. found – 1048.3000 [M+H⁺]. **[a]** _D (CHCl₃, C 0.01, 20°C) = + 87.0°.

Melting point 201-203 °C.

N-((3R,4R,8R,9R)-1,11-bis((3,5-bis(trifluoromethyl)phenyl)amino)-3,4,8,9-tetraphenyl-1,11-dithioxo-

2,5,7,10-tetraazaundecan-6-ylidene)-1-(4-vinylphenyl)methanaminium chloride – C6•HCl :

Monomer C6 was synthesized using same procedure as C3.

¹**H** NMR (360 MHz, CDCl₃) δ = 4.43 (m, 2H), 5.26 (d, 1H, *J* = 11 Hz), 5.41 (bs, 2H), 5.71 (d, 1H, *J* = 18 Hz), 5.84 (m, 2H), 6.48 (d, 2H, *J* = 7.5 Hz), 6.50 (bs, 2H), 6.64 (dd, 1H, *J* = 11.0, 18.0 Hz), 6.85-7.53 (H_{arom}, 24H), 7.10 (d, 2H, *J* = 7.5 Hz) 7.54 (bs, 2H), 7.82 (NH, 2H), 8.09 (bs, 2H), 8.29 (bs, 2H), 9.52 (NH, 2H), 10,79 (NH, 1H). ¹³**C** NMR (91 MHz, CDCl₃) δ = 63.9, 70.2, 114.5, 117.5, 119.8, 122.7, 126.2-129.1 (C_{arom}), 131.8 (q, *J*_{CF} = 42 Hz), 136.1,137.3, 138.7, 153.8, 181.6. **IR** (cm⁻¹) : 957, 1133, 1171, 1229, 1380, 1472, 1538, 1615, 2962, 3037, 3184. **MS** (ESI) m/z: Calculated for C₅₆H₄₆F₁₂N₇S₂⁺ – 1108.3059 [M+H⁺]. found – 1108.3016 [M+H⁺]. [*α*] _D (CHCl₃, C 0.01, 20°C) = + 84.2 °. **Melting point** 135-137 °C.

C4 synthesis :

di-tert-butyl 2,2'-((thiocarbonylbis(azanediyl))bis(methylene))(2*S*,2'*S*)-bis(pyrrolidine-1-carboxylate) – T3 :

L-N-Boc-amino proline (840 mg, 4.19 mmol, 2.0 equiv.) was added to a solution of carbon disulfide (0.25 mL, 1.42 mmol, 1.0 equiv.) in ethanol (20 mL). The mixture was heated under reflux (80°C) for 16h.The solvent was removed under vacuo and the crude was purified by chromatography (pentane-EtOAc 8:2). The product was obtained as a clear oil (780 mg, 84%).

¹**H** NMR (360 MHz, CDCl₃) δ = 1.45 (s, 18H), 1.52-2.10 (m, 12H), 3.20-3.85 (m, 8H), 4.08 (bs, 2H). ¹³**C** NMR (91 MHz, CDCl₃) δ = 22.9, 23.9, 28.5, 29.4, 29.7, 47.06 (t, *J* = 60.7 Hz), 56.0, 80.4, 156.7, 181.2 IR (cm⁻¹) : 1062, 1166, 1255, 1396, 1550, 1667, 1691, 2812, 1974, 3281. MS (ESI) m/z : Calculated for C₂₁H₃₉N₄O₄S – 443.2687 [M+H⁺]. found – 443.2667 [M+H⁺]. [*α*] _D (CHCl₃, C 0.01, 20°C) = - 35.0 °.

N-(bis((((S)-1-(tert-butoxycarbonyl)pyrrolidin-2-yl)methyl)amino)methylene)butan-1-aminium chloride – G4 :

To a solution of **T3** (750 mg, 1.69 mmol, 1.0 equiv.) in DMF (5mL) were added triethylamine (0.46 mL, 3.39 mmol, 2.0 equiv.) and N-butylamine (0.50 mL, 5.08 mmol, 3.0 equiv.). Mercury chloride (552 mg, 2.03 mmol, 1.2 equiv.) was added and the mixture was stirred vigorously for 1 day. the reaction was monitored by TLC. After completion of the reaction, the mixture was diluted with ethyl acetate and filtered through a pad of celite. The filtrate was washed with a saturated aq. NH₄Cl solution and dried over MgSO₄. The crude was then purified by chromatography (EtOAc-pentane 7:3) providing **G4** as a white powder (642 mg, 88%).

¹**H** NMR (360 MHz, CDCl₃) δ = 0.93 (t, 3H), 1.63 (m, 2H), 1.64 (s, 18H), 1.69 (m, 2H), 1.70-2.10 (m, 10H), 3.00-3.96 (m, 8H), 7.85 (bs, 1H). ¹³**C** NMR (91 MHz, CDCl₃) δ = 13.5, 19.9, 23.8, 28.3, 29.7, 30.2, 42.0, 46.9, 57.0, 80.5, 154.6, 156.3. **IR** (cm⁻¹) : 1111, 1167, 1259, 1366, 1403, 1621, 1668, 2878, 2972, 3079. **MS** (ESI) m/z : Calculated for C₂₅H₄₈N₅O₄⁺ – 482.3701 [M+H⁺]. found – 482, 3684 [M+H⁺]. [*α*] _D (CHCl₃, C 0.01, 20°C) = - 6.1 °.

N-(bis((((*S*)-1-((3,5-bis(trifluoromethyl)phenyl)carbamothioyl)pyrrolidin-2-yl)methyl)amino)methylene)butan-1-aminium chloride – <u>C4•HCl</u> :

G4 (550 mg, 1.15 mmol, 1.0 equiv.) was dissolved in a 50/50 V% solution of DCM/TFA (2 mL/2 mL) and the mixture was stirred for 1-2h. The solvent was removed under reduced pressure to provide the diamine salt. The diamine salt was dissolved in DCM (2 mL) and triethylamine (0.64 ml, 4.57 mmol, 4.0 equiv.) and isothiocyanate (0.63 mL, 3.43 mmol, 3.0 equiv.) were added. The mixture was stirred overnight. The product was purified by flash chromatography (DCM-MeOH 19:1). The product was dissolved in EtOAc and washed with saturated aq. NH₄Cl to perform anion metathesis. **C4**•HCl was obtained as a white powder (323 mg, 34%).

¹**H** NMR (360 MHz, CDCl₃) δ = 0.83 (t, 3H, J = 7.3 Hz), 1.30 (m, 2H), 1.54 (m, 2H), 1.70 (bs, 2H), 1.89-2.47 (mbr, 8H), 3.00-3.40 (mbr, 4H), 3.56-4.07 (mbr, 6H), 4.62 (bs, 2H), 7.49 (bs, 1H), 7.66 (s, 2H), 8.02 (s, 4H). ¹³**C** NMR (91 MHz, CDCl₃) δ = 13.4, 20.0, 23.6, 28.0, 30.6, 42.7, 49.7, 60.4, 61.5, 118.6, 119.2, 121.6, 124.6, 126.44, 131.4 (q, *J* = 33 Hz), 140.7, 154.8, 178.6. **IR** (cm⁻¹) : 887, 913, 982, 1013, 1127, 1172, 1226, 1276, 1358, 1374, 1454, 1471, 1535, 1546, 1564, 1628, 2969, 3090, 3190. **MS** (ESI): m/z: Calculated for C₃₃H₃₈F₁₂N₇S₂⁺ – 824.2433 [M+H⁺]. found – 824.2394 [M+H⁺]. **[α]** _D (CHCl₃, C 0.01, 20°C) = + 17.0°.

For synthesis of C5, full procedure reported in: Angew. Chem. Int. Ed., 2010, 49, 7299-7303

C5 Ssynthesis :

N-((6*R*,14*R*)-2,2,6,14,18,18-hexamethyl-4,16-dioxo-3,17-dioxa-5,9,11,15-tetraazanonadecan-10-ylidene)butan-1-aminium chloride – G5 :

To a solution of **T4** (200 mg, 0.48 mmol, 1.0 equiv.) in DMF (5 mL) were added triethylamine (133 μ L, 0.96 mmol, 2.0 equiv.) and N-butylamine (141 μ L, 1.44 mmol, 3.0 equiv.). Mercury chloride (195 mg, 0.57 mmol, 1.2 equiv.) was added and the mixture was stirred at 80°C for 16h. the reaction was monitored by TLC. After completion of the reaction, the mixture was diluted with ethyl acetate and filtered through a pad of celite. The filtrate was washed with a saturated aq. NH₄Cl solution and dried over MgSO₄. The crude was then purified by chromatography (DCM-MeOH 19:1) providing **G5** as a white powder (150 mg, 70%).

¹**H** NMR (600 MHz, CDCl₃) δ = 0.86 (t, 3H, *J* = 6.2 Hz), 1.13 (m, 6H), 1.36 (s, 18H), 1.59 (m, 4H), 1.84 (bs, 2H), 3.12 (bs, 2H), 3.25 (bs, 2H), 3.58 (bs, 2H), 3.67 (bs, 2H), 4.89 (bs, 2H), 7.41 (bs, 2H), 7.97 (bs, 1H). ¹³**C** NMR (151 MHz, CDCl₃) δ = 13.7, 20.0, 21.6, 28.4, 31.1, 37.3, 39.1, 41.7, 44.2, 79.7, 154.2, 156.8. IR (cm⁻¹) : 1074, 1161, 1210, 1250, 1364, 1457, 1490, 1594, 1617, 1695, 2979, 3300. MS (ESI) m/z : Calculated for C₂₃H₄₈N₅O₄⁺ – 458.3701 [M+H⁺]. found – 458.3705 [M+H⁺]. [**a**] _{**b**} (CHCl₃, C 0.01, 24°C) = + 92.7 °. Melting point : 67-70 °C.

N-((*3R*,11*R*)-1,13-bis((*3*,5-bis(trifluoromethyl)phenyl)amino)-3,11-dimethyl-1,13-dithioxo-2,6,8,12tetraazatridecan-7-ylidene)butan-1-aminium chloride – <u>G5•HCl</u>:

G5 (147 mg, 1.04 mmol, 1.0 equiv.) was dissolved in a 50/50 V% solution of DCM/TFA (1 mL/1 mL) and the mixture was stirred for 1-2h. The solvent was removed under reduced pressure to provide the diamine salt. The diamine salt was dissolved in DCM (2 mL) and triethylamine (0.18 mL, 4.15 mmol, 4.0 equiv.) and isothiocyanate (0.18 mL, 3.11 mmol, 3.0 equiv.) were added. The mixture was stirred overnight. The product was purified by flash chromatography (DCM-MeOH 19:1). The TFA guanidinium salt was dissolved in EtOAc and washed with saturated aq. NH₄Cl to perform anion metathesis. **C3**•HCl was obtained as a white powder (168 mg, 67%).

¹**H** NMR (600 MHz, MeOD) δ = 0.81 (t, 3H, *J* = 7.5 Hz), 1.93 (m, 6H), 1.26 (m, 3H), 1.50 (m, 2H), 1.79 (m, 4H), 3.15 (m, 2H), 4.54 (bs, 2H), 7.50 (s, 2H), 8.15 (s, 4H). ¹³**C** NMR (151 MHz, MeOD) δ = 14.0, 20.8 (d, *J* = 55 Hz), 21.0, 32.1, 36.6, 39.8, 42.8, 117.7, 123.6, 124.7 (q, *J* = 272 Hz), 132.2-132.9 (C_{arom}), 143.1, 155.7, 182.1. IR (cm⁻¹) : 883, 945, 1001, 1122, 1169, 1274, 1378, 1428, 1474, 1581, 2362, 12879, 2935, 2968. MS (ESI) m/z : Calculated for C₃₁H₃₈F₁₂N₇S₂⁺- 800.2433 [M+H⁺]. found – 800.2425 [M+H⁺]. [*α*] _D (MeOH, C 0.01, 25°C) = + 7.8°. Melting point : 109-110 °C.

Conversion of Guanidinium chloride to free-base guanidine:

To a solution of guanidinium chloride (C1•HCl – C6•HCl) in DCM (0.1M) was added K_2CO_3 (10 equiv.) and the mixture was stirred overnight at room temperature. The mixture was filtered and the filtrate was concentrated under reduced pressure to provide the guanidine free-base (C1 – C6).

C3 catalyst X-ray diffraction :

X-ray structure of catalyst **C3**•HCl salt was obtained by mono crystal X-ray diffraction.

Absolute configuration of the catalyst was confirmed to be (3R,4R,3'R,4'R)-C3.

Heterogenization :

Polymerization procedure:

In a 10 mL two-neck schlenk tube was prepared a solution of 12 mg PVA (MW = 2000) in 0.8 mL in water at 60°C. After 15 minutes, argon was bubbled in the hot solution for 15 minutes and it was allowed to cool down at room temperature. Styrene (0.239 uL, 2.17 mmol) and DVB (30 uL, 0.11 mmol) were added to the PVA solution. A solution of monomer (120 mg, 0.11 mmol) and V601 (18 mg) in 0.4 mL of toluene was prepared and also added to the schlenk. The resulting biphasic mixture was degassed under sonication and stirred at 60°C for 24h. The reaction mixture was filtered and the polymer beads were successively washed with water, EtOH, Toluene and DCM then dried under vacuum for 1h then crushed using a mortar and the resulting powder was finally dried at 40 °C for 16 h.

Deprotonation procedure :

The dried polymer (240 mg) was placed in a schlenk tube with a magnetic stirrer under argon. DCM (2 mL) and 1M aqueous K_2CO_3 solution (2 mL) was added. The resulting biphasic mixture was stirred vigourously for 16h. The polymer was washed weveral times with water, EtOH and Toluene then dried under vauum at 40°C for 16h and stored in glove box.

Elemental analysis :

Mass (mg)	C (%)	H (%)	N (%)	S (%)	Cat. Load. (N%)	Cat. Load. (S%)
1.4901	84.17	6.94	1.75	1.17	0.179 mmol/g	0.182 mmol/g

Typical procedure A:

The imine (21 mg, 0.10 mmol, 1.0 equiv.) and the catalyst (5.0 mg, 5.0 x 10^{-3} mmol, 5 mol%) were placed in a flame-dried Schlenk-tube. 1 mL of Solvent was added and the phosphonate (15 μ L, 0.12 mmol, 1.2 equiv.) was added dropwise. The reaction was stirred at rt for 2 h. The reaction mixture was purified by column chromatography to obtain the desired product.

tert-butyl ((diethoxyphosphoryl)(phenyl)methyl)carbamate - <u>3aa</u>: ¹

Synthesized according to typical procedure **A**. The reaction mixture was purified by column chromatography (7/3 – pentane/EtOAc). The product was obtained as a white solid (76% yield, 87% ee). **HPLC** Chiralpak AD-H – 95/5 Hex-IPA, 20 °C, 215 nm, 0.8 mL/min – tr₁ : 22.5 min (*S*), tr₂ : 32.2 min (*R*). ¹**H NMR** (360 MHz, CDCl₃) $\delta = 1.12$ (t, J = 7.1 Hz, 3H), 1.30 (t, J = 7.0 Hz, 3H), 1.42 (s, 9H), 3.75 (m, 1H), 3.94 (m, 1H), 4.12 (m, 2H), 5.12 (dd, J = 9.3, 22.0 Hz, 1H), 5.51 (bs, 1H), 7.27-7.42 (m, 5H). ¹³**C NMR** (91 MHz, CDCl₃) $\delta = 16.1$ (d, J = 5.6 Hz), 16.4 (d, J = 5.6 Hz), 28.3, 51.9 (d, J = 157.0 Hz), 63.0 (d, J = 6.9 Hz), 63.2 (d, J = 6.7 Hz), 80.3, 127.8, 128.0 (d, J = 5.7 Hz), 128.5 (d, J = 2.5 Hz), 135.5, 154.9. **IR** (cm⁻¹) 975, 1027, 1064, 1159, 1251, 1531, 1704, 2976, 3265. **MS** (IE): m/z: 344.16 [M]⁺, 366.14 [M-Na]⁺. **Melting point** 122 °C.

${\bf Benzyl} (({\bf diethoxy phosphoryl}) ({\bf phenyl}) {\bf methyl}) {\bf carba mate} - \underline{{\bf 4aa}}; {}^2$

Synthesized according to typical procedure **A**. The reaction mixture was purified by column chromatography (7/3 – pentane/EtOAc). The product was obtained as a white solid (82% yield, 70% ee). **HPLC** Chiralcel OD-H – 95/5 Hex-IPA, 20 °C, 254 nm, 1.1 mL/min – tr₁ : 11.9 min (minor), tr₂ : 32.6 min (major).

¹**H** NMR (360 MHz, CDCl₃) δ = 1.09 (t, *J* = 6.8 Hz, 3H), 1.26 (t, *J* = 6.8 Hz, 3H), 1.42 (s, 9H), 3.71 (m, 1H), 3.92 (m, 1H), 4.11 (m, 2H), 5.10 (m, 1H), 5.76 (bs, 1H), 7.25-7.41 (m, 12H).

¹³**C** NMR (91 MHz, CDCl₃) δ = 16.1 (d, *J* = 5.8 Hz), 16.3 (d, *J* = 5.7 Hz), 52.5 (d, *J* = 144.5 Hz), 63.1 (d, *J* = 6.8 Hz), 63.3 (d, *J* = 6.8 Hz), 67.3, 127.8, 127.9, 128.1, 128.5, 128.6, 135.2, 136.1, 155.6.

IR (cm⁻¹) 973, 1028, 1057, 1159, 1232, 1252, 1548, 1715, 2929, 3061, 3236.

MS (IE): m/z: calc. C₁₉H₂₅NO₅P 378.1465 [M]⁺, C₁₉H₂₄NNaO₅PS 400.1284 [M+Na]⁺; found 378.1448 [M]⁺, 400.1267 [M-Na]⁺.

Melting point 117 °C.

Diethyl(4-methylphenylsulfonamido)(phenyl)methylphosphonate - 5aa: ³

Synthesized according to typical procedure **A**. The reaction mixture was purified by column chromatography (7/3 – pentane/EtOAc). The product was obtained as a white solid (83% yield, 26% ee). **HPLC** Chiralpak IA – 50/50 Hex-EtOH, 25 °C, 220 nm, 0.7 mL/min – tr₁ : 9.5 min (minor), tr₂ : 11.6 min (major). ¹**H NMR** (360 MHz, CDCl₃) δ = 1.03 (t, *J* = 7.2 Hz, 3H), 1.36 (t, *J* = 7.2 Hz, 3H), 2.28 (s, 3H), 3.57-3.66 (m, 1H), 3.82-3.91 (m, 1H), 4.19-4.27 (m, 2H), 4.80 (dd, *J* = 10.1, 25.2 Hz, 1H), 6.75 (m, 1H), 7.04 (d, *J* =

7.2 Hz, 2H), 7.09-7.15 (m, 3H), 7.22-7.19 (m, 2H), 7.45 (d, *J* = 7.2 Hz, 2H).

¹³**C** NMR (91 MHz, CDCl₃) δ = 16.0 (d, *J* = 5.6 Hz), 16.4 (d, *J* = 5.6 Hz), 21.3, 55.2 (d, *J* = 157.0 Hz), 63.5 (d, *J* = 6.9 Hz), 64.0 (d, *J* = 6.7 Hz), 127.0, 127.8, 128.2, 129.0, 129.6, 133.6, 137.8, 142.8.

IR (cm⁻¹) 979, 1016, 1044, 1066, 1091, 1236, 1327, 1462, 2883, 2929, 3127.

MS (IE) m/z: calc. C₁₈H₂₅NO₅PS 398.1186 [M]⁺, C₁₈H₂₄NNaO₅PS 420.1005 [M+Na]⁺; found 398.1176. [M]⁺, 420.0997 [M-Na]⁺.

Melting point 124-125 °C.

tert-butyl ((diisopropoxyphosphoryl)(phenyl)methyl)carbamate - 3ab: 4

Synthesized according to typical procedure A. The reaction mixture was purified by column

chromatography (7/3 – pentane/EtOAc). The product was obtained as a white solid (76% yield, 80% ee). **HPLC** Chiralpak AD-H – 95/5 Hex-IPA, 20 °C, 215 nm, 1.0 mL/min – tr₁ : 11.2 min (minor), tr₂ : 18.2 min (major).

¹**H** NMR (360 MHz, CDCl₃) δ = 0.91 (d, *J* = 6.3 Hz, 3H), 1,24 (t, *J* = 5.9 Hz, 8H), 1.32 (d, *J* = 6.3 Hz, 3H), 1.40 (s, 9H), 4.44 (m, 1H),4.68 (m, 1H), 5.03 (dd, *J* = 9.9, 22.0 Hz, 1H), 5.21 (bs, 1H), 7.22-7.45 (m,5H). ¹³**C** NMR (91 MHz, CDCl₃) δ = 23.2 (d, *J* = 5.5 Hz), 23.8 (d, *J* = 5.5 Hz), 24.1 (d, *J* = 3.2 Hz), 24.2 (d, *J* = 3.2 Hz), 28.3, 52.4 (d, *J* = 155.8 Hz), 71.7 (d, *J* = 7.5 Hz), 72.0 (d, *J* = 7.3 Hz), 80.2, 127.8, 127.9, 128.0, 128.0, 128.4, 136.0, 154.9 (d, *J* = 11.0 Hz).

IR (cm⁻¹) 699 761, 879, 991, 1014, 1044, 1164, 1231, 1250, 1285, 1531, 1711, 2928, 2978, 3250. **MS** (IE) m/z: 372.19 [M]⁺, 394.18 [M-Na]⁺. **Molting point** 102, 104 °C

Melting point 102-104 °C.

tert-butyl ((dibenzoxyphosphoryl)(phenyl)methyl)carbamate - <u>3ac</u>:⁵

Synthesized according to typical procedure **A**. The reaction mixture was purified by column chromatography (7/3 – pentane/EtOAc). The product was obtained as a white solid (75% yield, 68% ee). **HPLC :** Chiralpak AD-H – 80/20 Hex-IPA, 20 °C, 215 nm, 0.8 mL/min – tr₁ : 25.5 min (minor), tr₂ : 27.4 min (major).

¹**H** NMR (360 MHz, CDCl₃) δ = 1.39 (s, 9H), 4.63 (dd, *J* = 8.0, 11.80 Hz, 1H), 4.86 (dd, *J* = 7.20, 11.50 Hz, 1H), 5.00 (d, *J* = 8.0 Hz, 2H), 5.23 (d, *J* = 9.8, 21.7 Hz, 1H), 5.50 (bs, 1H), 7.05-7.49 (m, 15H). ¹³**C** NMR (91 MHz, CDCl₃) δ = 28.3, 52.0 (d, *J* = 153.8 Hz), 65.1, 68.3 (d, *J* = 7.3 Hz), 68.5 (d, *J* = 6.9 Hz), 80.4, 126.9, 127.5, 127.8-128.7 (C_{arom}), 135.2, 135.8 (d, *J* = 6.2 Hz)136.0 (d, *J* = 6.1 Hz), 141.2, 154.9 (d, *J* = 9.9 Hz). **IR** (cm⁻¹) 696, 737, 759, 863, 883, 1021, 1078, 1167, 1250, 1288, 1365, 1533, 1707, 2978, 3033, 3231. **MS** (IE) m/z: 468.19 [M]⁺, 490.18 [M-Na]⁺. **Melting point** 95-96 °C.

tert-butyl ((diphenoxyphosphoryl)(phenyl)methyl)carbamate - <u>3ae</u>:⁶

Synthesized according to typical procedure **A**. The reaction mixture was purified by column chromatography (8/2 – pentane/EtOAc). The product was obtained as a white solid (61% yield, 50% ee). **HPLC** Chiralpak AD-H – 60/40 Hex-IPA, 20 °C, 215 nm, 1.0 mL/min – tr₁ : 10.7 min (minor), tr₂ : 28.8 min (major). ¹**H NMR** (360 MHz, CDCl₃) $\delta = 1.40$ (s, 9H), 5.52 (m, 1H), 5.81 (m, 1H), 6.82 (m, 2H), 7.02–7.32 (m, 11H) 7.45 (m, 2H). ¹³**C NMR** (91 MHz, CDCl₃) $\delta = 28.2$, 52.2 (d, J = 157.5 Hz), 80.6, 115.4, 119.7, 120.4 (t, J = 4.3 Hz), 125.3, 125.7, 128.2-129.7 (C_{arom}), 134.5, 150.0, 154.7, 156.5. **IR** (cm⁻¹) : 1006, 1074, 1160, 1210, 1258, 1362, 1455, 1490, 1592, 1695, 2980, 3069, 3297. **MS** (DART+) m/z: 440.1518 [M+H⁺].

Melting point 154-156 °C.

tert-butyl ((diethoxyphosphoryl)(4-methoxyphenyl)methyl) carbamate - <u>3ba</u>:¹

Synthesized according to typical procedure **A**. The reaction mixture was purified by column

chromatography (7/3 – pentane/EtOAc). The product was obtained as a white solid (68% yield, 76% ee).

HPLC Chiralpak AD-H – 90/10 Hex-IPA, 20 °C, 215 nm, 1 mL/min – tr₁ : 17.2 min (minor), tr₂ : 35.1 min (major).

¹**H** NMR (360 MHz, CDCl3) δ = 1.12 (t, *J* = 7.1 Hz, 3H), 1.30 (t, *J* = 7.0 Hz, 3H), 1.41 (s, 9H), 3.75 (m, 1H), 3.79 (s, 3H), 3.94 (m, 1H), 4.11 (m, 2H), 5.04 (dd, *J* = 10.5, 21.4 Hz, 1H), 5.42 (bs, 1H), 6.83-6.92 (m, 2H), 7.27-7.37 (m, 2H).

¹³**C** NMR (91 MHz, CDCl3) δ = 16.2 (d, *J* = 5.5 Hz), 16.4 (d, *J* = 5.4 Hz) 28.3, 51.1 (d, *J* = 156.5) 55.3, 63.1 (d, *J* = 7.0 Hz), 63.2 (d, *J* = 7.2 Hz), 80.4, 114.0, 129.1, 159.5.

IR (cm⁻¹) 977, 1026, 1164, 1235, 1284, 1513, 1702, 2980, 3251.

MS (IE) m/z: 374.17 [M]⁺, 396.15 [M-Na]⁺.

Melting point 79-80 °C.

tert-butyl ((diethoxyphosphoryl)(3-methoxyphenyl)methyl) carbamate - 3ca :

Synthesized according to typical procedure **A**. The reaction mixture was purified by column chromatography (7/3 – pentane/EtOAc). The product was obtained as a white solid (81% yield, 81% ee). **HPLC** Chiralpak AD-H – 80/20 Hex-IPA, 20 °C, 215 nm, 0.8 mL/min – tr₁ : 7.7 min (minor), tr₂ : 9.1 min (major).

¹**H** NMR (360 MHz, CDCl₃) δ = 1.13 (t, *J* = 7.0 Hz, 3H), 1.29 (t, *J* = 7.1 Hz, 3H), 1.41 (s, 9H), 3.77 (m, 1H), 3.79 (s, 3H), 3.94 (m, 1H), 4.11 (m, 2H), 5.07 (dd, *J* = 9.7, 21.8 Hz, 1H), 5.50 (bs, 1H), 6.80-6.85 (m, 1H), 6.91-7.01 (m, 2H), 7.21-7.27 (m, 2H).

¹³**C** NMR (91 MHz, CDCl₃) δ = 16.4, 28.2, 51.8 (d, *J* = 154.2 Hz), 55.3, 61.8 (d, *J* = 5.5 Hz), 63.1 (d, *J* = 7.1 Hz), 63.3 (d, *J* = 6.5 Hz), 80.3, 113.3, 113.7, 120.1 (d, *J* = 5.6 Hz), 129.6, 137.0, 154.8 (d, *J* = 9.8 Hz), 159.7,

IR (cm⁻¹) 977, 1032, 1165, 1251, 1537, 1697, 2980, 3252.

MS (IE) m/z: calc. $C_{17}H_{29}NO_6P$ 374.1727 [M]⁺, $C_{17}H_{28}NNaO_6P$ 396.1546 [M+Na]⁺; found 374.1710 [M] ⁺, 396.1531 [M-Na]⁺.

Melting point 128-129 °C.

$tert-butyl\ ((diethoxyphosphoryl)(2-methoxyphenyl)methyl)\ carbamate-\underline{3da}:$

Synthesized according to typical procedure **A**. The reaction mixture was purified by column chromatography (7/3 – pentane/EtOAc). The product was obtained as a white solid (70% yield, 74% ee). **HPLC** Chiralpak AD-H – 90/10 Hex-IPA, 20 °C, 215 nm, 1 mL/min – tr₁ : 16.5 min (minor), tr₂ : 19.9 min (major).

¹**H** NMR (360 MHz, CDCl₃) δ = 1.06 (t, *J* = 6.9 Hz, 3H), 1.31 (t, *J* = 7.2 Hz, 3H), 1.41 (s, 9H), 3.70 (m, 1H), 3.87 (s, 3H), 3.89 (m, 1H), 4.14 (m, 2H), 5.50-5.80 (m, 2H), 6.81-7.02 (m, 2H), 7.18-7.39 (m, 2H). ¹³C NMR (91 MHz, CDCl₃) δ = 16.2 (d, *J* = 5.9 Hz), 28.3, 46.5 (d, *J* = 5.9 Hz), 55.7, 62.9 (t, *J* = 8.1 Hz), 80.0, 111.0, 124.1, 128.8, 129.2, 154.7, 157.0.

IR (cm⁻¹) 977, 1022, 1049, 1164, 1227, 1247, 1289, 1528, 1705, 2982, 3251.

 $\label{eq:MS} \textbf{MS} (IE) \ \textbf{m/z: calc.} \ C_{17}H_{29}NO_6P \ \ 374.1727 \ [M]^+, \ C_{17}H_{28}NNaO_6P \ \ 396.1546 \ [M+Na]^+; \ found \ \ 374.1714 \ [M]^+, \ \ 396.1531 \ [M-Na]^+.$

Melting point 142-144 °C.

tert-butyl ((diethoxyphosphoryl)(naphthalen-2-yl)methyl) carbamate – <u>3ea</u>:¹

Synthesized according to typical procedure **A**. The reaction mixture was stirred for 48h instead of 2h. The crude was purified by column chromatography (7/3 – pentane/EtOAc). The product was obtained as a white solid (41% yield, 84% ee).

HPLC Chiralpak AD-H – 80/20 Hex-IPA, 20 °C, 215 nm, 0.8 mL/min – tr₁ : 11.6 min (minor), tr₂ : 15.1 min (major). ¹**H** NMR (360 MHz, CDCl₃) $\delta = 1.08$ (t, J = 7.0 Hz, 3H), 1.31 (t, J = 7.0 Hz, 3H), 1.42 (s, 9H), 3.72 (m, 1H), 3.93 (m, 1H), 4.13 (m, 2H), 5.27 (dd, J = 9.9, 22.1 Hz, 1H), 5.62 (bs, 1H), 7.41-7.57 (m, 3H), 7.77-7.91 (m, 4H). ¹³**C** NMR (91 MHz, CDCl₃) $\delta = 16.1$ (d, J = 5.8 Hz), 16.4 (d, J = 5.8 Hz), 28.3, 52.00 (d, J = 154.0 Hz), 63.1 (d, J = 7.1 Hz), 63.3 (d, J = 6.7 Hz), 80.4, 125.6, 125.6, 126.2, 126.3, 126.9, 127.7, 128.0, 128.3, 133.0, 133.2, 155.1. **IR** (cm⁻¹) 938, 976, 1010, 1027, 1133, 1240, 1356, 1696, 2927, 2977, 3260. **MS** (IE) m/z: 394.18 [M]⁺, 416.16 [M-Na]⁺.

Melting point 133-134 °C.

tert-butyl ((diethoxyphosphoryl)(furan-2-yl)methyl)carbamate -<u>3fa</u>:

Synthesized according to typical procedure **A**. The reaction mixture was purified by column chromatography (7/3 – pentane/EtOAc). The product was obtained has a white solid (91% yield, 64% ee). **HPLC** Chiralpak AD-H – 80/20 Hex-IPA, 20 °C, 215 nm, 0.8 mL/min – tr₁ : 8.2 min (minor), tr₂ : 9.5min (major).

¹**H** NMR (360 MHz, CDCl₃) δ = 1.23 (t, *J* = 7.4 Hz, 3H), 1.34 (t, *J* = 7.0 Hz, 3H), 1.45 (s, 9H), 3.96 (m, 1H), 4.08 (m, 1H), 4.17 (m, 2H), 5.19-5.43 (m, 2H), 6.34-6.44(m, 2H), 7.41 (s, 1H).

¹³**C** NMR (91 MHz, CDCl₃) δ = 16.2 (d, *J* = 5.8 Hz), 16.4 (d, *J* = 6.1 Hz), 28.2, 47.4 (d, *J* = 160.5 Hz), 63.3 (d, *J* = 6.5 Hz), 80.5, 108.7, 110.7, 142.7, 148.4, 154.7.

IR (cm⁻¹) 976, 1023, 1051, 1163, 1229, 1532, 1710, 2982, 3230.

Melting point 89-90°C.

tert-butyl ((diethoxyphosphoryl)(2-thiophene)methyl)carbamate - 3ga:

Synthesized according to typical procedure **A**. The reaction mixture was purified by column chromatography (7/3 – pentane/EtOAc). The product was obtained as a white solid (64% yield, 62% ee). **HPLC** Chiralpak AD-H – 80/20 Hex-IPA, 20 °C, 215 nm, 0.8 mL/min – tr₁ : 7.6 min (minor), tr₂ : 10.01 min (major).

¹**H** NMR (360 MHz, CDCl₃) δ = 1.23 (t, *J* = 7.4 Hz, 3H), 1.34 (t, *J* = 7.0 Hz, 3H), 1.45 (s, 9H), 3.96 (m, 1H), 4.08 (m, 1H), 4.15 (m, 2H), 5.19-5.50 (m, 2H), 7.00 (dd, *J* = 1.2; 3.7 Hz, 2H), 7.24-7.29 (m, 1H). ¹³**C** NMR (91 MHz, CDCl₃) δ = 16.2 (d, *J* = 5.8 Hz), 16.4 (d, *J* = 6.1 Hz), 28.2, 47.4 (d, *J* = 160.5 Hz), 63.4 (d, *J* = 6.5 Hz), 80.5, 125.4, 126.6, 126.7, 127.1, 138.1, 154.7 (d, *J* = 7.7 Hz).

IR (cm⁻¹) 976, 1022, 1159, 1218, 1255, 1367, 1391, 1526, 1539, 1699, 2982, 3233.

MS (IE) m/z: calc. $C_{14}H_{25}NO_5PS$ 350.1186 [M]⁺, $C_{14}H_{24}NNaO_5PS$ 372.1005 [M+Na]⁺; found 350.1181 [M]⁺, 372.1000 [M-Na]⁺.

Melting point 103-106 °C.

Synthesized according to typical procedure **A**. The reaction mixture was purified by column chromatography (7/3 - pentane/EtOAc). The product was obtained as a white solid (59% yield, 77% ee).

HPLC Chiralpak AD-H – 90/10 Hex-IPA, 20 °C, 215 nm, 0.8 mL/min – tr₁ : 13.0 min (minor), tr₂ : 14.4 min (major).

¹**H** NMR (360 MHz, CDCl₃) $\delta = 1.12$ (t, J = 6.9 Hz, 3H), 1.30 (t, J = 6.9 Hz, 3H), 1.43 (s, 9H), 3.95 (m, 1H), 4.03 (m, 1H), 4.14 (m, 2H), 5.21 (dd, J = 8.6, 22.5 Hz, 1H), 5.67 (bs, 1H), 7.47-7.60 (m, 1H), 7.72-7.82 (m, 1H), 8.12-8.21 (m, 1H), 8.24-8.31 (m, 1H).

¹³**C** NMR (91 MHz, CDCl₃) δ = 16.2 (d, *J* = 5.5 Hz), 16.4 (d, *J* = 5.5 Hz), 28.2, 51.8 (d, *J* = 152.9 Hz), 63.5 (d, *J* = 7.9 Hz), 81.0, 122.4 (d, *J* = 5.5 Hz), 122.9 (d, *J* = 2.7 Hz), 133.9, 138.2, 148.3, 154.9.

IR (cm⁻¹) 976, 1022, 1047, 1232, 1254, 1350, 1532, 1707, 2980, 3223.

 $\begin{array}{l} \textbf{MS} \ (IE) \ m/z: \ calc. \ C_{16}H_{26}N_2O_7P \ \ 389.1472 \ [M]^+, \ C_{16}H_{25}N_2NaO_7P \ 411.1292 \ [M+Na]^+; \ found \ 389.1458 \ [M] \ ^+, \ 411.1291 \ [M-Na]^+. \end{array}$

Melting point 112-113 °C.

tert-butyl ((diethoxyphosphoryl)(4-chlorophenyl)methyl) carbamate - <u>3ia</u>: ¹

Synthesized according to typical procedure **A**. The reaction mixture was purified by column chromatography (7/3 – pentane/EtOAc). The product was obtained as a white solid (89% yield, 79% ee). **HPLC** Chiralpak AD-H – 80/20 Hex-IPA, 20 °C, 215 nm, 0.8 mL/min – tr₁ : 9.1 min (minor), tr₂ : 11.5 min (major).

¹**H** NMR (360 MHz, CDCl₃) $\delta = 1.14$ (t, J = 7.2 Hz, 3H), 1.29 (t, J = 6.7 Hz, 3H), 1.41 (s, 9H), 3.81 (m, 1H), 3.97 (m, 1H), 4.11 (m, 2H), 5.09 (dd, J = 9.9, 22.1 Hz, 1H), 5.53 (bs, 1H), 7.27-7.38 (m, 4H).

¹³**C** NMR (91 MHz, CDCl₃) δ = 16.2 (d, *J* = 5.5 Hz), 16.4 (d, *J* = 5.5 Hz), 28.2, 51.3 (d, *J* = 154.2 Hz), 63.3 (t, *J* = 7.0 Hz), 80.6, 128.7, 129.1 (d, *J* = 5.2 Hz), 133.9, 134.2, 154.9.

IR (cm⁻¹) 974, 1029, 1046, 1164, 1234, 1250, 1534, 1706, 2982, 3251.

MS (IE): m/z: 378.12 [M]⁺, 400.10 [M-Na]⁺.

Melting point 97-98 °C.

tert-butyl ((diethoxyphosphoryl)(4-Fluorophenyl)methyl) carbamate - <u>3ja</u>:

Synthesized according to typical procedure **A**. The reaction mixture was purified by column chromatography (7/3 – pentane/EtOAc). The product was obtained as a white solid (97% yield, 73% ee). **HPLC** Chiralpak AD-H – 80/20 Hex-IPA, 20 °C, 215 nm, 0.8 mL/min – tr₁ : 7.6 min (minor), tr₂ : 8.5 min (major).

¹**H** NMR (360 MHz, CDCl₃) δ = 1.07 (t, J = 7.2 Hz, 3H), 1.23 (t, J = 7.2 Hz, 3H), 1.34 (s, 9H), 3.72 (m, 1H), 3.88 (m, 1H), 4.04 (m, 2H), 5.00 (dd, J = 9.9, 22.1 Hz, 1H), 5.46 (bs, 1H), 6.96 (t, J = 8.5 Hz, 2H), 7.26-7.36 (m, 2H). ¹³**C** NMR (91 MHz, CDCl₃) δ = 16.2 (d, J = 5.8 Hz), 16.4 (d, J = 5.5 Hz), 28.2, 51.2 (d, J = 154.5 Hz), 63.2 (t, J = 7.1 Hz), 80.5, 115.5 (d, J = 21.3 Hz), 129.5, 131.5, 154.9 (d, J = 10.0 Hz), 160.9, 164.1. **IR** (cm⁻¹) 965, 978, 1028, 1160, 1225, 1252, 1534, 1606, 1710, 2981, 3256. **MS** (IE) m/z: calc. C₁₆H₂₆FNO₅P 362.1527 [M]⁺, C₁₆H₂₅FNNaO₅P 384.1347 [M+Na]⁺; found 362.1512 [M]⁺, 384.1336 [M-Na]⁺. **Melting point** 103-104 °C.

tert-butyl ((diethoxyphosphoryl)(4-trifluoromethyl phenyl) carbamate - <u>3ka</u>:

Synthesized according to typical procedure A. The reaction mixture was purified by column

chromatography (7/3 - pentane/EtOAc). The product was obtained as a white solid (68% yield, 75% ee).

HPLC Lux cellulose 2 - 75/25 Hex-IPA, 20 °C, 215 nm, 1.0 mL/min – tr₁ : 3.4 min (major), tr₂ : 4.0 min (minor).

¹**H NMR** (360 MHz, CDCl₃) $\delta = 1.09$ (t, J = 6.9 Hz, 3H), 1.23 (t, J = 6.9 Hz, 3H), 1.35 (s, 9H), 3.78 (m, 1H), 3.93 (m, 1H), 4.05 (m, 2H), 5.10 (dd, J = 8.8, 22.0 Hz, 1H), 5.56 (bs, 1H), 7.45-7.56 (m, 4H).

¹³**C** NMR (91 MHz, CDCl₃) δ = 16.2 (d, *J* = 5.7 Hz), 16.3 (d, *J* = 4.5 Hz), 28.2, 51.7 (d, *J* = 154.6 Hz), 63.3 (t, *J* = 7.3 Hz), 80.7, 123.1, 124.9, 125.4, 126.4, 128.1, 130.1, 139.8, 154.9.

IR (cm⁻¹) 974, 1029, 1046, 1164, 1234, 1250, 1534, 1706, 2982, 3251.

MS (DART+) m/z: calc. $C_{17}H_{26}F_3NO_5P$ 412.1495; found 412.1501 [M-H⁺]. **Melting point** 146-148 °C.

tert-butyl ((diethoxyphosphoryl)(1,3 benzodioxole)methyl)carbamate - <u>3la</u>:

Synthesized according to typical procedure A. The reaction mixture was purified by column

chromatography (7/3 – pentane/EtOAc). The product was obtained has a white solid (52% yield, 83% ee). **HPLC** Chiralpak AD-H – 80/20 Hex-IPA, 20 °C, 215 nm, 0.8 mL/min – tr₁ : 9.7 min (minor), tr₂ : 14.7 min (major).

¹**H NMR** (360 MHz, CDCl₃) δ = 1.14 (t, *J* = 7.0 Hz, 3H), 1.29 (t, *J* = 7.0 Hz, 3H), 1.40 (s, 9H), 3.79 (m,

1H), 3.96 (m, 1H), 4.11 (m, 2H), 4.99 (dd, 1H), 5.49 (bs, 1H), 5.92 (s, 2H) 6.71-6.93 (m, 3H).

¹³**C NMR** (91 MHz, CDCl₃) δ = 15.2 (d, *J* = 6.1Hz), 15.4 (d, *J* = 5.9 Hz), 27.2, 50.5 (d, *J* = 155.0 Hz), 62.1 (dd, *J* = 7.3, 16.2 Hz), 79.3, 100.1, 107.3, 120.4 (d, *J* = 6.7Hz), 128.3, 146.4, 146.4, 146.8, 153.8 (d, *J* = 10.6 Hz).

IR (cm⁻¹) 977, 1026, 1047, 1173, 1234, 1302, 1449, 1533, 1707, 2977, 3277.

MS (IE) m/z: $C_{17}H_{27}NO_7P$ 388.1520 [M]⁺, $C_{17}H_{26}NNaO_7PS$ 410.1339 [M+Na]⁺; found 388.1503 [M]⁺, 410.1326 [M-Na]⁺.

Melting point 132-134 °C.

Synthesized according to typical procedure **A**. The reaction mixture was purified by column chromatography (7/3 – pentane/EtOAc). The product was obtained as a white solid (67% yield, 74% ee). **HPLC :** Chiralpak AD-H – 80/20 Hex-IPA, 20 °C, 215 nm, 0.8 mL/min – tr₁ : 8.4 min (minor), tr₂ : 16.5 min (major). ¹**H NMR** (360 MHz, CDCl₃) $\delta = 1.13$ (t, J = 7.1 Hz, 3H), 1.30 (t, J = 7.4 Hz, 3H), 1.41 (s, 9H), 2.33 (s, 3H), 3.75 (m, 1H), 3.94 (m, 1H), 4.11 (m, 2H), 5.07 (dd, J = 9.6, 21.0 Hz, 1H), 5.45 (bs, 1H), 7.14 (d, J = 7.7 Hz, 2H) 7.29 (d, J = 6.8 Hz, 2H). ¹³**C NMR** (91 MHz, CDCl₃) $\delta = 16.2$ (d, J = 5.7 Hz), 16.4 (d, J = 5.6 Hz), 21.1, 28.3, 51.5 (d, J = 153.8 Hz), 63.0 (d, J = 6.9 Hz), 63.2 (d, J = 6.9 Hz), 80.3, 127.7, 129.3, 132.4, 137.5, 154.9. **IR** (cm⁻¹) 970, 1034, 1166, 1255, 1290, 1539, 1693, 2980, 3247. **MS** (IE) m/z: 358.17 [M]⁺, 380.16 [M-Na]⁺. **Melting point** 87-88 °C.

Procedure for the synthesis of aliphatic α -amino phosphonate **B**:

The α -amino sulfone (90 mg, 0.30 mmol, 1 equiv.), the guanidinium hydrochloride catalyst (65 mg, 0.06 mmol, 20 mol%) and cesium carbonate (117 mg, 0.36 mmol, 1.2 equiv.) were placed in a flame-dried Schlenk-tube. 3 mL of Solvent was added and the phosphonate (46 μ L, 0.36 mmol, 1.2 equiv.) was added dropwise. The reaction was stirred at 0°C for 20 h. The reaction mixture was purified by column chromatography to obtain the desired product.

tert-butyl (diethoxyphosphoryl)propylcarbamate - <u>3na</u>:

Synthesized according to typical procedure **B**. The reaction mixture was purified by column chromatography (1/9 - pentane/EtOAc). The product was obtained has a clear oil (19% yield, 37% ee).

The product was derivatized to determine the ee by HPLC. The Boc was deprotected and replaced by Cbz following already reported procedure.⁷

HPLC (**Cbz derivatized product**): Chiralpak AD-H – 80/20 Hex-IPA, 20 °C, 215 nm, 0.8 mL/min – tr₁ : 7.4 min (major), tr₂ : 9.2 min (minor).

¹**H** NMR (360 MHz, CDCl₃) δ = 1.00 (t, 3H, *J* = 7.5 Hz), 1.30 (t, 3H, *J* = 7.5 Hz), 1.42 (s, 9H), 1.53 (m, 1H), 1.88 (m, 1H), 3.92 (m, 1H), 4.06 (m, 4H), 4.62 (m, 1H).

¹³**C** NMR (91 MHz, CDCl₃) δ = 10.4, 16.3, 23.3, 28.2, 48.3 (d, *J* = 156.0 Hz), 62.2, 62.4, 79.8, 155.4.

IR (cm⁻¹) 965, 1020, 1097, 1164, 1234, 1284, 1365, 1391, 1457, 1527, 1709, 2933, 2978, 3256.

 $\label{eq:MS} \textbf{MS} \ (DART+) \ m/z: \ Calculated \ for \ C_{12}H_{27}N_1O_5P_1 - 296.1621 \ [M+H^+]. \ found - 296.1618 \ [M+H^+].$

¹ A.Alfredo J. Org. Chem. 2006, 71, 6269-6272

- ² P.Kaur, W.Wever, T.Rajale, G.Li Chem Biol Drug Des 2010; 76: 314–319
- ³ Z. Yan, B. Wu, X. Gao, MW. Chen, and YG. Zhou Org. Lett. 2016, 18, 4, 692–695
- ⁴ B.List, Angew. Chem. Int. Ed. 2015, 45, 355-358.
- ⁵ M. Hoffmann, Journal fur Praktische Chemie, 1988, 5, 820-824
- ⁶ Synthesis 2005, No. 4, 634–638
- ⁷ Chem. Commun., 2008, 4345-4347

ррм, полиции 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0

Peak#	Ret. Time	Area	Height	Mark	Cono
	19.582	854517	33889		6.070
2	25.566	11406268	315206		0.370
lotal		12260785	348595		100.000

Peak#	Ret. Time	Area	Height	Mark	Conc.
	19.351	758942	29176		49.981
2	26.070	759506	20804		50.019
Total		1518448	49980		100.000

		intégration (LC-207	-2 2 - UV)			
#	Nom du pic	Tr.	Aire	% Aire	Asymétrie (USP, EP)	Plateaux (EP)
1		5,69	49,21	12,20	1,30	9099,22
2		7,46	354,01	87,80	1,17	5279,37
SOMME			403,22	100.00		

Peak#	Ret. Time	Area	Height	Mark	AreaX
1	10.694	64655689	2106365	M	52.802
2	28.775	57794211	671012	M	47.198
Total		122449900	2777377		100.000

Peak#	Ret Time	Area	Height	Mark	Area
1	10.644	2156411	85961	M	25.133
2	29149	6423580	63597	M	74.867
Total		8579991	149558		100.000

SOMME	237,58	100,00

		Résultats	d'intégration	(LC-227	- UV
--	--	-----------	---------------	---------	------

#	Nom du pic	Tr.	Aire	% Aire	Asymétrie (USP, EP)	Plateaux (EP)
1		16,53	152,36	13,10	1,14	5270,17
2		19,85	1011,00	86,90	1,11	3567,42
SOMME			1163.36	100.00		

Résultats d'intég	ration (LC-	1-naphtyl-NBo	c-diethylphosp	ohonate-racemic	- UV))

#	Nom du pic	Tr.	Aire	% Aire	Asymétrie (USP, EP)	Plateaux (EP)
1		22,75	1494,15	49,40	1,27	7682,44
2		31,73	1530,52	50,60	1,23	6895,47
SOMME			3024,67	100,00		

Résultats d'intégration (LC-furane-2 3 - UV)

#	Nom du pic	Tr.	Aire	% Aire	Asymétrie (USP, EP)	Plateaux (EP)
1		8,04	184,32	50,52	1,29	7991,12
2		9,37	180,52	49,48	1,23	7127,59
SOMME			364,84	100,00		

Résultats d'intégration (LC-3-NO2-NHBoc-diethylphosphonate-racemic-2 - UV)

#	Nom du pic	Tr.	Aire	% Aire	Asymétrie (USP, EP)	Plateaux (EP)
1		12,86	138,94	49,99	1,28	9800,65
2		14,30	139,02	50,01	1,29	9373,80
SOMME			277,96	100,00		

#	1 12	Resultats d Integration (LC-243 - UV)								
	Nom du pic	Tr.	Aire	% Aire	Asymétrie (USP, EP)	Plateaux (EP)				
1		9,06	84,82	10,36	1,41	7425,50				
2		11,50	734,07	89,64	1,25	6558,09				
SOMME			818,88	100,00						

Résultats d'intégration (LC-243 - UV)

Résultats d'intégration (LC-piperonal-NHBoc-diethylphosphonate-racemic - UV)

#	Nom du pic	Tr.	Aire	% Aire	Asymétrie (USP, EP)	Plateaux (EP)
1		9,43	334,66	48,68	1,30	5755,00
2		14,43	352,87	51,32	1,28	5560,58
SOMME			687.53	100.00		

Résultats d'intégratio	n (LC-4-Me-phenyl-NBoc-dieti	hylphosphonate-racemic - UV)
------------------------	------------------------------	------------------------------

#	Nom du pic	Tr.	Aire	% Aire	Asymétrie (USP, EP)	Plateaux (EP)
1		15,15	1351,38	49,69	1,36	7964,19
2		35,85	1368,42	50,31	1,40	7466,09
SOMME			2719,80	100,00		

Peak#	Ret. Time	Area	Height	Mark	Area X
	7 432	16884433	974954	M	49.721
2	9194	17073618	1043418	M	50.279
Total		33958050	2018372		100.000

Peakt	Ret Time	Area	Height	Mark	Area%	
1 7697		21675360	1283398	M	68.300	
0	9.391	10060356	583255	M	31.700	
4 Total		31735716	1866653		100.000	

Resultats	d integration	(LC-163-2 2 - UV

#	Nom du pic	Tr.	Aire	% Aire	Asymétrie (USP, EP)	Plateaux (EP)
1		11,85	21,00	15,30	1,26	2014,17
2		29,69	116,33	84,70	1,35	1869,64
SOMME			137.33	100.00		

Résultats d'intégration (LC-105 - HPLC)								
#	Nom du pic	Tr.	Aire	% Aire	Hauteur	Largeur (50%)	Plateaux (EP)	
1		9,53	89,63	36,91	6,98	0,20	13131,27	
2		11,68	153,19	63,09	9,63	0,24	12818,25	
OMME			242.82	100.00	16.60			

X-ray analysis

Crystals suitable of **3aa** for X-ray analysis could be successfully grown by slow diffusion of n-hexane in isopropanol solution.

Fig.01. An ORTEP drawing of compound **3aa**. Thermal ellipsoids are shown at the 30% level.

X-ray diffraction data for compound **3aa** were collected by using a VENTURE PHOTON100 CMOS Bruker diffractometer with Micro-focus IµS source CuK_{α} radiation (λ =1.54178 Å). Crystals were mounted on a CryoLoop (Hampton Research) with Paratone-N (Hampton Research) as cryoprotectant and then flashfrozen in a nitrogen-gas stream at 100K. The temperature of the crystal was maintained at the selected value by means of a 700+ series Cryostream cooling device to within an accuracy of ±1K. The data were corrected for Lorentz polarization, and absorption effects. The structures were solved by direct methods using SHELXS-97¹ and refined against F^2 by full-matrix least-squares techniques using SHELXL-2018² with anisotropic displacement parameters for all non-hydrogen atoms. Hydrogen atoms were located on a difference Fourier map and introduced into the calculations as a riding model with isotropic thermal parameters. All calculations were performed by using the Crystal Structure crystallographic software package WINGX³.

The crystal data collection and refinement parameters are given in Table S1.Absolute configuration of compound **3aa** has been established by anomalous-dispersion effects in diffraction measurements on the crystal (using a large number of Friedel's pairs). CCDC 2109370 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/Community/. Absolute configuration of the other products was determined by analogy to **3aa**.

Compound	3aa		
CCDC	2109370		
Empirical Formula	C ₁₆ H ₂₆ N O ₅ P		
M_r	343.35		
Crystal size, mm ³	0.18 x 0.16 x 0.10		
Crystal system	orthorhombic		
Space group	P 21 21 21		
a, Å	9.3576(3)		
b, Å	9.4918(3)		
c, Å	20.6459(7)		
α, °	90		
β, °	90		
γ, °	90		
Cell volume, Å ³	1833.78(10)		
Z ; Z'	4;2		
Т, К	100(1)		
Radiation type ; wavelength Å	CuKa ; 1.54178		
F000	736		
μ , mm ⁻¹	1.533		
range, °	4.283 - 68.330		
Reflection collected	23 674		
Reflections unique	3 363		
R _{int}	0.0297		
GOF	1.091		
Refl. obs. (<i>I</i> >2(<i>I</i>))	3 332		
Parameters	213		
wR ₂ (all data)	0.0622		
R value (<i>I</i> >2(<i>I</i>))	0.0243		
Flack parameter ⁴	0.031(4)		
Largest diff. peak and hole (eÅ ⁻³)	0.191 ; -0.313		

Table S1. Crystallographic data and structure refinement details 3aa.

1) Sheldrick, G. M. SHELXS-97, Program for Crystal Structure Solution, University of Göttingen, Göttingen, Germany, 1997.

- 2) G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112-122
- 3) Farrugia, L. J. J. Appl. Cryst., 1999, 32, 837.
- 4) G. Bernardinelli and H. D. Flack, Acta Crystallogr., Sect. A: Found. Crystallogr., 1985, 41, 500-511.

X-ray diffraction data for compound C3•HCl were collected by using Rigaku XtaLab Synergy-S using a CuK_{α} radiation source. Crystals were flashfrozen in a nitrogen-gas stream at 100K. The structure was solved by using the Crystal Structure crystallographic software package Olex2.

The crystal data collection and refinement parameters are given in Table S2. CCDC 2108751 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/Community/.

Compound	C3
CCDC	2108751
Empirical Formula	$C_{51}H_{46}F_{12}N_7S_2Cl$
Crystal system	Triclinic
Space group	P 1
a, Å	9.28710(10)
b, Å	14.25610(10)
c, Å	22.5780(2)
α, °	105.5400(10)
β, °	90.7230(10)
γ, °	90.9620(10)
Cell volume, Å ³	2879.14
Z; Z'	2;0
Т, К	100.15

Table S2. Crystallographic data C3.