Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Supporting Information

For

Direct access to various C3-substituted sialyl glycal derivatives from 3iodo-sialyl glycal

Qingjiang Li, Jiatong Guo, and Zhongwu Guo*

Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States

* Corresponding author E-mail: zguo@chem.ufl.edu

Table of Contents

I. Experimental Procedures	S2
II. NMR and HRMS Spectra of New Compounds	S9

I. Experimental Procedures

General procedures

Chemicals and materials were purchased from commercial sources and were used as received without further purification unless noted otherwise. Analytical TLC was carried out on silica gel 60Å F_{254} plates with detection by a UV detector and/or by charring with 10% (v/v) H_2SO_4 in ethanol. Flash column chromatography was performed on CombiFlash[®] instruments with prepacked silica gel columns. NMR spectra were acquired on a 600 MHz spectrometer with chemical shifts reported in ppm (δ) referenced to CD₃OD (¹H NMR: δ 3.31 ppm; ¹³C NMR: δ 49.0) or DHO (¹H NMR: δ 4.75 ppm) when D₂O was used as solvent. Peak and coupling constant assignments are based on ¹H NMR, ¹H-¹H COSY, ¹H-¹³C HMBC, and ¹H-¹³C HSQC experiments.

Synthesis of methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-2,6-anhydro-3,5-dideoxy-3-iodo-β-D-glycero-D-galacto-non-2-enonate (10)

To a mixture of glycal 1 (1 g, 2.4 mmol), *N*-iodosuccinimide (0.65 g, 2.8 mmol), and silver nitrate (205 mg, 1.2 mmol) in a round bottom flask was added acetonitrile (20 mL) under N₂ atmosphere. The reaction mixture was heated to 80 °C in oil bath with vigorous stirring and monitored with TLC (hexanes/acetone = 1/1). Upon completion of reaction, the off-white solid was filtered, and the solvent was removed under vacuum. The residue was dissolved in ethyl acetate (20 mL) and washed with water (5 mL), brine (5 mL) before dried over Na₂SO₄. The solvent was removed under vacuum to afford the crude product, which was further purified by flash chromatography (65-85% EA in Hex) to give **10** as a white solid (857 mg, 66%). Its NMR data matched that reported in reference 14b (main text).

Synthesis of methyl 5-acetamido-5-deoxy-3-iodo-β-D-glycero-D-galacto-non-2-enonate (8)

To a solution of compound 10 (857 mg, 1.43 mmol) in MeOH (5 mL) was added dropwise freshly made NaOMe in MeOH at 0 °C until pH = 10. The mixture was allowed to warm to rt and kept at this temperature for 1 h, when TLC indicated completion of reaction. The

reaction mixture was neutralized with Amberlyst[®] 15 resin. The resin was removed by filtration, and the solvent was evaporated under vacuum to give **8** (615 mg, 99%), which was essentially pure and directly used in subsequent reactions without further purification. ¹H NMR (600 MHz, CD₃OD): δ 4.58 (br, 1H), 4.32 (dd, *J* = 10.6, 1.3 Hz, 1H), 4.24 (d, *J* = 8.4 Hz, 1H), 4.16 (dd, *J* = 10.6, 8.4 Hz, 1H), 3.80 (s, 4H), 3.77 (dq, *J* = 8.2, 2.9, 2.5 Hz, 2H), 3.68 – 3.61 (m, 1H), 3.60 – 3.55 (m, 1H), 2.03 (s, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 174.7, 164.6, 147.5, 81.3, 78.9, 73.6, 71.0, 70.0, 64.8, 53.0, 52.8, 22.6. HR MS [M - H]⁻ m/z: calcd for C₁₂H₁₇INO₈⁻: 430.0004; found: 430.0007.

General procedure for Suzuki-Miyaura coupling reaction

Vinyl iodide 8 (10.4 mg, 0.025 mmol), a boronic acid or borate substrate (0.05 mmol), palladium tetrakis(triphenylphosphine) (1.5 mg, 0.00125 mmol), and K₂CO₃ (8.6 mg, 0.0625 mmol) were mixed in dioxane and H₂O (v/v = 2/1, 1 mL, degassed by bubbling nitrogen for 0.5 h). The reaction mixture was flushed with nitrogen, heated to 70 °C on an aluminum block, and stirred overnight. The reaction was monitored with TLC (8: $R_f = 0.4$ in DCM/MeOH/H₂O 5/1/0.1). Upon complete consumption of 8, the solvent was removed under vacuum, and the product was purified by flash chromatography (20-35% MeOH/H₂O/AcOH 5/1/0.1 in EA).

5-Acetamido-5-deoxy-3-phenyl-β-D-glycero-D-galacto-non-2-enonic acid (9a). Obtained as a white solid (7.5 mg, 82%). ¹H NMR (600 MHz, CD₃OD): δ 7.37 (d, 2H, *J* = 7.6 Hz, ArH), 7.24 (t, 2H, *J* = 7.6 Hz, ArH), 7.16 (t, 2H, *J* = 7.6 Hz, ArH), 4.38 (dd, 1H, *J* = 2.2, 4.9 Hz, H-4), 4.33 – 4.30 (m, 2H, H-5, H-6), 3.87 – 3.85 (m, 1H, H-8), 3.83 (dd, 1H, *J* = 2.9, 11.2 Hz, H-9a), 3.69 (dd, 1H, *J* = 5.3, 11.2 Hz, H-9b), 3.66 (d, 1H, *J* = 8.9 Hz, H-7), 2.03 (s, 3H, Ac). ¹³C NMR (150 MHz, CD₃OD): δ 177.1 (Ac), 150.7(CO₂H), 138.8, 130.5 (Ar), 128.7, 127.4, 112.3 (C=), 77.2 (C-6), 71.9 (C-7), 71.2 (C-8), 70.0 (C-4), 64.8 (C-9), 52.7 (C-5), 22.7 (CH₃). HR MS [M - H]⁻ m/z: calcd for C₁₇H₂₀NO₈: 366.1194; found: 366.1186.

5-Acetamido-5-deoxy-3-(4-O-tert-butyldimethylsilyl-phenyl)-β-D-glycero-D-galacto-non-2-enonic acid (9b). Obtained as a white solid (10.1 mg, 81%). ¹H NMR (600 MHz, CD₃OD): δ 7.18 (d, 2H, *J* = 7.4 Hz), 6.76 (d, 2H, *J* = 7.4 Hz), 4.38 (d, 1H, *J* = 7.0 Hz), 4.31 – 4.25 (m, 2H), 3.88 – 3.85 (m, 1H), 3.83 (dd, 1H, *J* = 2.9, 11.2 Hz), 3.68 (dd, 1H, *J* = 5.4, 11.3 Hz), 3.64 (d, 1H, *J* = 9.0 Hz), 2.03 (s, 3H), 0.99 (s, 9H), 0.19 (s, 6H). ¹³C

NMR (150 MHz, CD₃OD): *δ* 174.4, 155.9, 131.7, 131.1, 120.4, 77.6, 71.3, 71.2, 70.7, 64.8, 52.8, 26.2, 22.6, 20.8, 19.0, 4.3. HR MS [M-H]⁻ m/z: calcd for C₂₃H₃₄Si NO₉⁻ 496.2008, found: 496.2013.

5-Acetamido-5-deoxy-3-(4-methoxy-2-methylphenyl)-β-D-glycero-D-galacto-non-2-enonic acid (9c). Obtained as a white solid (8.5 mg, 83%). ¹H NMR (600 MHz, CD₃OD): δ 7.09 (s, 1H), 6.69 (d, J = 2.6 Hz, 1H), 6.65 (d, J = 8.4 Hz, 1H), 4.33 (d, J = 8.3 Hz, 1H), 4.30 – 4.22 (m, 2H), 3.91 – 3.81 (m, 2H), 3.74 (s, 3H), 3.67 (dd, J = 11.4, 5.5 Hz, 1H), 3.62 (s, 1H), 2.29 (s, 3H), 2.03 (s, 3H). ¹³C NMR (150 MHz, CD₃OD): δ 174.5, 160.29, 138.8, 134.1, 116.0, 111.4, 77.5, 71.0, 70.0, 64.8, 55.5, 52.8, 22.7. HR MS [M - H]⁻ m/z: calcd for C₁₉H₂₄NO₉⁻: 410.1457, found: 410.1455.

5-Acetamido-5-deoxy-3-(4-diphenylaminophenyl)-β-D-glycero-D-galacto-non-2-enonic acid (9d). Obtained as a white solid (10.4mg, 78%). ¹H NMR (600 MHz, CD₃OD): δ 7.28 (d, J = 8.6 Hz, 2H), 7.22 (t, J = 7.8 Hz, 4H), 7.03 – 7.02 (m, 4H), 6.97 (t, J = 7.3 Hz, 2H), 7.28 (d, J = 8.6 Hz, 2H), 4.58 (br, 1H), 4.34 – 4.32 (m, 2H), 3.87 – 3.82 (m, 2H), 3.68 – 3.64 (m, 2H), 2.03 (s, 3H). ¹³C NMR (150 MHz, CD₃OD): δ 149.4, 147.6, 133.3, 131.3, 130.2, 125.2, 124.5, 123.7, 77.2, 72.0, 71.2, 70.0, 64.8, 52.8, 22.7. HR MS [M - H]⁻ m/z: calcd for C₂₉H₂₉N₂O₈⁻: 533.1929, found: 533.1926.

5-Acetamido-5-deoxy-3-(4-carbamoylphenyl)-β-D-glycero-D-galacto-non-2-enonic acid (9e). Obtained as a white solid (7.4 mg, 72%). ¹H NMR (600 MHz, CD₃OD): δ 7.78 (d, J = 8.0 Hz, 2H), 7.46 (d, J = 8.1 Hz, 2H), 4.49 (d, J = 6.1 Hz, 1H), 4.31 (d, J = 6.8 Hz, 2H), 3.88 – 3.80 (m, 2H), 3.70 (dd, J = 11.3, 5.2 Hz, 1H), 3.66 (d, J = 8.8 Hz, 1H), 2.03 (s, 3H). ¹³C NMR (150 MHz, CD₃OD:) δ 174.1, 172.4, 151.1, 143.0, 132.5, 130.5, 128.1, 112.2, 77.2, 71.4, 71.2, 69.8, 64.7, 52.5, 22.7. HR MS [M - H]⁻ m/z: calcd for C₁₈H₂₁N₂O₉⁻: 409.1253, found: 409.1244.

5-Acetamido-5-deoxy-3-(4-bromophenyl)-β-D-glycero-D-galacto-non-2-enonic acid (9f). Obtained as a white solid (8.9 mg, 80%). ¹H NMR (600 MHz, CD₃OD): δ ¹H NMR (600 MHz, MeOD) δ 7.38 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 8.4 Hz, 2H), 4.37 (dd, J = 5.0, 2.3 Hz, 1H), 4.30 (d, J = 5.1 Hz, 2H), 3.87 – 3.79 (m, 2H), 3.71 – 3.65 (m, 1H), 3.63 (d, J = 8.9 Hz, 1H), 2.03 (s, 3H). ¹³C NMR (150 MHz, CD₃OD): δ 174.0,

151.1, 138.1, 132.5, 131.7, 121.2, 111.5, 77.3, 71.58, 71.2, 69.9, 64.8, 52.6, 24.2, 22.7. HR MS [M - H]⁻ m/z: calcd for C₁₇H₁₉BrNO₈⁻: 444.0300, found: 444.0303.

5-Acetamido-5-deoxy-3-(4-nitrophenyl)-β-D-glycero-D-galacto-non-2-enonic acid (9g). Obtained as an offwhite solid (7.7 mg, 75%). ¹H NMR (600 MHz, CD₃OD): δ 8.11 (d, J = 8.8 Hz, 1H), 7.58 (d, J = 8.8 Hz, 1H), 4.49 (d, J = 6.7 Hz, 1H), 4.37 (d, J = 8.1 Hz, 0H), 4.32 (dd, J = 8.4, 6.7 Hz, 1H), 3.88 – 3.81 (m, 1H), 3.71 – 3.63 (m, 1H), 2.03 (s, 2H). ¹³C NMR (150 MHz, CD₃OD): δ 174.0, 152.2, 147.6, 146.8, 131.2, 123.7, 111.4, 77.4, 71.6, 71.3, 69.6, 64.8, 52.6, 22.70. HR MS [M-H]⁻ m/z: calcd for C₁₇H₁₉N₂O₁₀⁻ 411.1045, found: 411.1042.

5-Acetamido-5-deoxy-3-(1-naphthalenyl)-β-D-glycero-D-galacto-non-2-enonic acid (9h). Obtained as a white solid (8.1 mg, 78%). This compound have axial chirality, so its NMR spectra are complicated compared to others. ¹H NMR (600 MHz, CD₃OD): δ ¹H NMR (600 MHz, MeOD) δ 8.06 – 7.98 (m, 1H), 7.88 – 7.71 (m, 2H), 7.50 – 7.39 (m, 3H), 7.33 (ddd, J = 20.8, 7.1, 1.2 Hz, 1H), 4.62 – 4.44 (m, 2H), 4.43 – 4.28 (m, 1H), 3.96 (ddd, J = 8.7, 5.4, 3.0 Hz, 1H), 3.88 (dd, J = 11.5, 3.0 Hz, 1H), 3.77 – 3.66 (m, 2H), 2.05 (s, 3H). ¹³C NMR (150 MHz, CD₃OD): δ ¹³C NMR (151 MHz, MeOD) δ 175.23, 174.72, 145.39, 136.65, 135.26, 135.22, 135.00, 134.26, 133.32, 129.86, 129.45, 128.74, 128.52, 128.38, 127.81, 126.86, 126.58, 126.46, 126.42, 126.26, 126.18, 125.77, 77.98, 77.80, 73.06, 71.39, 71.23, 70.97, 70.87, 70.54, 64.89, 64.86, 52.88, 52.45, 22.65, 20.74. HR MS [M - H]⁻ m/z: calcd for C₂₁H₂₂NO₈⁻: 416.1351, found: 416.1348.

5-Acetamido-5-deoxy-3-(pyridin-4-yl)-β-D-glycero-D-galacto-non-2-enonic acid (9i). Obtained as a white solid (6.9 mg, 75%). ¹H NMR (600 MHz, CD₃OD): δ 8.45 – 8.30 (m, 2H), 7.56 – 7.37 (m, 2H), 4.49 (d, *J* = 6.7 Hz, 1H), 4.39 (dd, *J* = 8.1, 1.6 Hz, 1H), 4.32 (dd, *J* = 8.2, 6.6 Hz, 1H), 3.88 – 3.80 (m, 2H), 3.71 – 3.62 (m, 2H), 3.35 (s, 1H), 2.03 (s, 3H). ¹³C NMR (150 MHz, CD₃OD): δ 174.0, 171.1, 153.0, 149.4, 148.7, 125.8, 110.0, 77.6, 71.6, 71.2, 69.0, 64.8, 52.5, 22.7. HR MS [M - H]⁻ m/z: calcd for C₁₆H₁₉N₂O₈⁻: 367.1147, found: 367.1156.

5-Acetamido-5-deoxy-3-[(E)-phenylprop-1-en-1-yl]-β-D-glycero-D-galacto-non-2-enonic acid (9j). Obtained as a white solid (6.9 mg, 68%). ¹H NMR (600 MHz, CD₃OD): δ 7.30 – 7.15 (m, 4H), 7.12 (t, *J* = 7.2 Hz, 1H), 6.70 (dd, *J* = 15.8, 1.7 Hz, 1H), 5.94 (dt, *J* = 15.7, 7.1 Hz, 1H), 4.39 (d, *J* = 6.4 Hz, 1H), 4.21 (dd, *J* = 8.0, 6.3

5

Hz, 1H), 4.11 (dd, J = 8.1, 1.8 Hz, 1H), 3.85 – 3.76 (m, 2H), 3.68 (t, J = 5.5 Hz, 1H), 3.63 (dd, J = 8.4, 1.8 Hz, 1H), 3.48 – 3.36 (m, 2H), 2.00 (s, 3H). ¹³C NMR (150 MHz, CD₃OD): δ 174.2, 151.1, 142.4, 129.5, 129.3, 129.3, 128.3, 127.6, 126.8, 112.3, 77.3, 71.5, 71.3, 67.4, 64.5, 53.6, 41.0, 22.7. HR MS [M - H]⁻ m/z: calcd for C₂₀H₂₄NO₈⁻: 406.1507, found: 406.1491.

5-Acetamido-5-deoxy-3-(cyclohex-1-en-1-yl)-β-D-glycero-D-galacto-non-2-enonic acid (9k). Obtained as a white solid (6.7 mg, 72%). ¹H NMR (600 MHz, CD₃OD): δ 5.63 – 5.59 (m, 1H), 4.21 – 4.10 (m, 3H), 3.83 – 3.76 (m, 2H), 3.68 – 3.62 (m, 1H), 3.56 (dd, *J* = 8.8, 1.5 Hz, 1H), 2.16 (ddd, *J* = 60.4, 14.2, 7.9 Hz, 2H), 2.06 – 2.02 (m, 1H), 2.01 (s, 3H), 1.72 – 1.63 (m, 2H), 1.60 – 1.57 (m, 2H). ¹³C NMR (150 MHz, CD₃OD): δ 174.03, 148.29, 135.16, 126.90, 115.65, 76.83, 71.45, 71.24, 69.06, 64.74, 52.48, 29.32, 26.62, 24.02, 23.16, 22.68. HR MS [M - H]⁻ m/z: calcd for C₁₇H₂₄NO₈⁻: 370.1507, found: 370.1507.

5-Acetamido-5-deoxy-3-allyl-β-D-glycero-D-galacto-non-2-enonic acid (91). Obtained as a white solid (5.38 mg, 65%) with borate as substrate. ¹H NMR (600 MHz, CD₃OD): δ 5.87 – 5.81 (m, 1H), 5.10 (d, *J* = 17.1 Hz, 1H), 4.98 (d, *J* = 10.4 Hz, 1H), 4.22 (d, *J* = 8.2 Hz, 1H), 4.10 (dd, *J* = 10.4, 8.2 Hz, 1H), 4.02 (d, *J* = 10.4 Hz, 1H), 3.89 – 3.74 (m, 2H), 3.64 (dd, *J* = 11.6, 5.6 Hz, 1H), 3.56 – 3.41 (m, 2H), 3.02 (dd, *J* = 14.6, 7.9 Hz, 1H), 2.02 (s, 3H). ¹³C NMR (150 MHz, CD₃OD): δ 174.7, 138.0, 115.9, 77.1, 71.1, 70.6, 69. 5, 64.8, 53.1, 31.8, 20.9. HR MS [M - H]⁻ m/z: calcd for C₁₄H₂₀NO₈⁻: 330.1194, found: 330.1209. Its NMR data matched that reported in reference 9a (main text).

5-Acetamido-5-deoxy-3-cinnamyl-β-D-glycero-D-galacto-non-2-enonic acid (9m). Obtained as a white solid (7.1 mg, 70%) with borate as substrate. ¹H NMR (600 MHz, CD₃OD): δ 7.33 (d, J = 7.8 Hz, 2H), 7.24 (t, J = 7.7 Hz, 2H), 7.14 (t, J = 7.4 Hz, 1H), 6.48 (d, J = 15.7 Hz, 1H), 6.27 (dt, J = 15.0, 7.0 Hz, 1H), 5.13 (s, 1H), 4.21 (d, J = 8.0 Hz, 1H), 4.17 – 4.10 (m, 1H), 4.02 (d, J = 10.1 Hz, 1H), 3.84 – 3.80 (m, 2H), 3.67 – 3.60 (m, 1H), 3.54 (dd, J = 14.8, 5.7 Hz, 1H), 3.48 (d, J = 9.4 Hz, 1H), 3.11 (dd, J = 14.5, 8.3 Hz, 1H), 1.99 (s, 3H). ¹³C NMR (150 MHz, CD₃OD): δ 179.0, 139.4, 132.34, 132.28, 132.0, 130.9, 130.0, 129.4, 128.8, 128.7, 127.8, 127.0, 112.5, 77.0, 70.9, 70.7, 69.5, 64.8, 53.1, 30.8, 23.2. HR MS [M - H]⁻ m/z: calcd for C₂₀H₂₄NO₈⁻: 406.1507, found: 406.1499. Its NMR data matched that reported in reference 11a (main text).

General procedure for Heck coupling reaction

Vinyl iodide **8** (10.4 mg, 0.025 mmol), an alkene (0.05 mmol), palladium acetate (0.6 mg, 0.0025 mmol), triphenylphosphine (1.3 mg, 0.005 mmol), and K₂CO₃ (8.6 mg, 0.0625 mmol) were mixed in dioxane and H₂O (v/v = 4/1, 1 mL, degassed by bubbling nitrogen for 0.5 h). The reaction mixture was flushed with nitrogen, heated to 70 °C on an aluminum block, and stirred overnight. The reaction was monitored with TLC (**8**: R_f = 0.4 in DCM/MeOH/H₂O 5/1/0.1), which indicated the complete consumption of starting material. NaOH solution (1 M, 0.5 mL) was added, and the resulting mixture was stirred at rt for another 0.5 h. The reaction was monitored with TLC, and upon completion, it was neutralized with Amberlyst® 15 resin. After filtration, the filtrate was collected and the solvent was removed under vacuum before purification by flash chromatography (20-35% MeOH/H₂O/AcOH 5/1/0.1 in EA) to give the product.

5-Acetamido-5-deoxy-3-[(E)-styryl]-β-D-glycero-D-galacto-non-2-enonic acid (9n). Obtained as a white solid (8.3 mg, 85%). ¹H NMR (600 MHz, CD₃OD): δ 7.39 (dd, 2H, J = 7.4, Hz), 7.25 (t, 2H, J = 7.4 Hz), 7.13 (t, 2H, J = 7.4 Hz), 6.72 (d, 2H, J = 16.3 Hz), 4.52 (d, 1H, J = 6.3 Hz), 4.29 (dd, 1H, J = 7.7, 6.2 Hz), 4.20 (d, 1H, J = 7.8 Hz), 3.86 – 3.81 (m, 2H), 3.68 – 3.64 (m, 2H), 2.04 (s, 3H). ¹³C NMR (150 MHz, CD₃OD) δ 175.7, 140.0, 129.5, 127.6, 127.5, 127.0, 125.9, 112.6, 77.5, 71.8, 71.1, 67.1, 64.7, 53.6, 21.0. HRMS [M-H]⁻ m/z calcd for C₁₉H₂₂ NO₈⁻: 392.1351, found: 392.1351.

5-Acetamido-5-deoxy-3-((*E*)-oct-1-en-1-yl)-β-D-glycero-D-galacto-non-2-enonic acid (9o). Obtained as a white solid (6.7 mg, 67%) using Ag₂CO₃ (17.3 mg, 0.0625 mmol) instead of K₂CO₃. ¹H NMR (600 MHz, CD₃OD): δ 6.58 (d, *J* = 15.9 Hz, 1H), 5.82 (dt, *J* = 15.8, 7.0 Hz, 1H), 4.42 (d, *J* = 6.4 Hz, 1H), 4.25 – 4.21 (m, 1H), 4.13 – 4.09 (m, 1H), 3.85 – 3.79 (m, 2H), 3.70 (ddd, *J* = 11.9, 6.4, 2.2 Hz, 1H), 3.65 (dd, *J* = 8.6, 1.7 Hz, 1H), 2.17 – 2.08 (m, 2H), 2.05 (s, 3H), 1.46 – 1.23 (m, 8H), 0.91 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (150 MHz, CD₃OD): δ 174.2, 150.6, 132.5, 129.8, 129.5, 126.4, 77.1, 71.3, 71.2, 67.42, 64.37, 53.6, 34.7, 33.0, 30.8, 30.0, 23.7, 22.7, 14.4. HR MS [M - H]⁻ m/z: calcd for C₁₉H₃₀NO₈⁻: 400.1977, found: 400.1974.

5-Acetamido-5-deoxy-3-[(E)-2-carboxyvinyl]-β-D-glycero-D-galacto-non-2-enonic acid (9p). Obtained as a white solid (4.6 mg, 51%). This reaction was carried out at 50 °C instead of 70 °C, as at 70 °C, the reaction system became complex as monitored by TLC. ¹H NMR (600 MHz, D₂O): δ 5.96 (d, J = 12.4 Hz, 1H), 5.85 (d, J = 4.9 Hz, 1H), 5.68 (d, J = 12.4 Hz, 1H), 4.48 (d, J = 1.7 Hz, 1H), 4.13 (d, J = 5.0 Hz, 1H), 3.83 (dd, J = 6.1, 1.9 Hz, 1H), 3.72 – 3.64 (m, 2H), 3.59 – 3.52 (m, 1H), 3.27 (s, 1H), 1.95 (s, 3H). ¹³C NMR (150 MHz, D₂O): δ 181.51, 173.43, 138.27, 130.13, 123.23, 121.19, 104.02, 77.39, 77.28, 71.65, 62.30, 47.65, 21.82. HR MS [M - H]⁻ m/z: calcd for C₁₄H₁₈NO₁₀⁻: 360.0936, found: 360.0920.

General procedure for Sonogashira coupling reaction

Vinyl iodide **8** (10.4 mg, 0.025 mmol) and phenylacetylene (5.7 µL, 0.05 mmol), palladium acetate (0.6 mg, 0.0025 mmol), and K₂CO₃ (8.6 mg, 0.0625 mmol) were mixed in dioxane and H₂O (v/v = 4/1, 1 mL, degassed by bubbling nitrogen for 0.5 h). The reaction mixture was flushed with nitrogen, heated to 50 °C on an aluminum block, and stirred overnight. The reaction was monitored with TLC (**8**: R_f = 0.4 in DCM/MeOH/H₂O 5/1/0.1), which indicated the complete consumption of starting material. NaOH solution (1 M, 0.5 mL) was added, and the resulting mixture was stirred at rt for another 0.5 h. The reaction was monitored with TLC (product **9q**: Rf = 0.3 in EA/MeOH/H₂O/AcOH = 10/5/1/0.1), and upon completion, it was neutralized with Amberlyst® 15 resin. After filtration, the filtrate was collected and the solvent was removed under vacuum before purification by flash chromatography (20-35% MeOH/H₂O/AcOH 5/1/0.1 in EA) to give *5-acetamido-5-deoxy-3-(phenylethynyl)-β-D-glycero-D-galacto-non-2-enonic acid* (**9q**) as a white solid (7.6 mg, 78%). ¹H NMR (600 MHz, MeOD): δ 7.53 – 7.40 (m, 2H), 7.34 – 7.18 (m, 3H), 4.32 (d, *J* = 8.3 Hz, 1H), 4.22 (d, *J* = 10.2 Hz, 1H), 4.15 (d, *J* = 8.8 Hz, 1H), 3.86 – 3.78 (m, 2H), 3.68 (dd, *J* = 11.6, 5.4 Hz, 1H), 3.60 (s, 1H), 3.57 (d, *J* = 9.2 Hz, 1H), 2.04 (s, 3H). ¹³C NMR (150 MHz, MeOD): δ 180.89, 132.33, 129.13, 128.49, 125.95, 100.14, 94.49, 86.82, 77.70, 70.96, 70.43, 69.76, 64.72, 51.77, 22.75. HR MS [M - H]⁻ m/z: calcd for C₁₉H₂₀NO₈⁻: 390.1194, found: 390.1193.

II. NMR and MS Spectra of New Compounds

Figure S1. ¹H NMR of Compound 8 (600 MHz, CD₃OD)

Figure S2. ¹³C NMR of Compound 8 (150 MHz, CD₃OD)

Figure S3. HRMS of Compound 8 (ESI-TOF)

Figure S4. ¹H NMR of Compound 9a (600 MHz, CD₃OD)

Figure S5. ¹³C NMR of Compound 9a (150 MHz, CD₃OD)

Figure S6. ¹H-¹H COSY NMR of Compound **9a** (600 MHz, CD₃OD)

Figure S7. HSQC NMR of Compound 9a (600 MHz, CD₃OD)

Figure S8. HMBC NMR of Compound 9a (600 MHz, CD₃OD)

Figure S9. HRMS of Compound 9a (ESI-TOF)

Figure S10. ¹H NMR of Compound 9b (600 MHz, CD₃OD)

Figure S11. ¹³C NMR of Compound **9b** (150 MHz, CD₃OD)

Figure S12. HRMS of Compound 9b (ESI-TOF)

Figure S13. ¹H NMR of Compound 9c (600 MHz, CD₃OD)

Figure S14. ¹³C NMR of Compound **9c** (150 MHz, CD₃OD)

Figure S15. HRMS of Compound 9c (ESI-TOF)

Figure S17. ¹³C NMR of Compound **9d** (150 MHz, CD₃OD)

Figure S18. HRMS of Compound 9d (ESI-TOF)

Figure S19. ¹H NMR of Compound 9e (600 MHz, CD₃OD)

Figure S20. ¹³C NMR of Compound **9e** (150 MHz, CD₃OD)

Figure S21. HRMS of Compound 9e (ESI-TOF)

Figure S22. ¹H NMR of Compound 9f (600 MHz, CD₃OD)

Figure S23. ¹³C NMR of Compound **9f** (150 MHz, CD₃OD)

Figure S24. HRMS of Compound 9f (ESI-TOF)

Figure S25. ¹H NMR of Compound 9g (600 MHz, CD₃OD)

Figure S26. ¹³C NMR of Compound **9g** (150 MHz, CD₃OD)

Figure S27. HRMS of Compound 9g (ESI-TOF)

Figure S28. ¹H NMR of Compound 9h (600 MHz, CD₃OD)

Figure S29. ¹³C NMR of Compound 9h (150 MHz, CD₃OD)

Figure S30. HRMS of Compound 9h (ESI-TOF)

Figure S31. ¹H NMR of Compound 9i (600 MHz, CD₃OD)

Figure S32. ¹³C NMR of Compound **9i** (150 MHz, CD₃OD)

Figure S33. HRMS of Compound 9i (ESI-TOF)

Figure S34. ¹H NMR of Compound 9j (600 MHz, CD₃OD)

Figure S35. ¹³C NMR of Compound **9j** (150 MHz, CD₃OD)

Figure S36. HRMS of Compound 9j (ESI-TOF)

Figure S37. ¹H NMR of Compound 9k (150 MHz, CD₃OD)

Figure S38. ¹³C NMR of Compound 9k (150 MHz, CD₃OD)

Figure S39. HRMS of Compound 9k (ESI-TOF)

Figure S40. ¹H NMR of Compound 91 (600 MHz, CD₃OD)

Figure S41. ¹³C NMR of Compound **9l** (150 MHz, CD₃OD)

Figure S42. HRMS of Compound 91 (ESI-TOF)

Figure S43. ¹H NMR of Compound 9m (600 MHz, CD₃OD)

Figure S44. ¹³C NMR of Compound 9m (150 MHz, CD₃OD)

Figure S45. HRMS of Compound 9m (ESI-TOF)

Figure S46. ¹H NMR of Compound 9n (600 MHz, CD₃OD)

Figure S47. ¹³C NMR of Compound **9n** (150 MHz, CD₃OD)

Figure S48. HRMS of Compound 9n (ESI-TOF)

Figure S49. ¹H NMR of Compound 90 (600 MHz, CD₃OD)

Figure S50. ¹³C NMR of Compound 90 (150 MHz, CD₃OD)

Figure S51. HRMS of Compound 90 (ESI-TOF)

9/14/2021 YL

UF Mass Spectrometry Research and Education Center

Figure S52. ¹H NMR of Compound **9p** (600 MHz, D₂O)

60

VL3-101.51.fid **|**− 5000 --- 47.65 $< \frac{77.39}{77.28}$ — 71.65 21.82 - 4500 ОН OH ΪĦ. - 4000 _CO₂H 0 ÖH AcHN `CO₂H ōн - 3500 - 3000 - 2500 - 2000 - 1500 - 1000 - 500 - 0 0.00410.0011 - -500 190 80 70 60 50 40 30 10 0 110 100 200 180 170 160 150 140 130 120 90 20 f1 (ppm)

Figure S53. ¹³C NMR of Compound 9p (150 MHz, D₂O)

Figure S54. HRMS of Compound 9p (ESI-TOF)

Figure S56. ¹³C NMR of Compound 9q (150 MHz, CD₃OD)

Figure S57. HRMS of Compound 9q (ESI-TOF)

65