Domino Michael/Michael reaction catalyzed by switchable modularly designed organocatalysts

Ramarao Parella, Satish Jakkampudi, Pranjal Bora, Nagaraju Sakkani, and John C.-G. Zhao*
Department of Chemistry
University of Texas at San Antonio

Supporting Information

Table of Contents
Determination of the Product Relative and Absolute Configuration S-1
Characterization Data for New Cinchona Alkaloid Derivatives S-3
Copy of NMR Spectra. S-9
Copy of HPLC Chromatograms S-37

Determination of the Product Relative and Absolute Configuration

The relative stereochemistry of the product was determined by COSY experiments and the coupling constants using compound $\mathbf{3 1}$ (please see Pages S-32-S-33 below for details).

The absolute stereochemistry of the domino Michael/Michael product was determined by comparing our product with that obtained with the Xu's catalytic system ${ }^{11 \mathrm{~b}}$ (Scheme S-1).

According to Xu report, ${ }^{11 \mathrm{~b}}$ the reaction of enonal $\mathbf{1 2}$ with 2a under the catalysis of $(R) \mathbf{- 1 4}$ gave the domino Michael/Michael product $\mathbf{1 3}$ with the absolute stereochemistry of $(\mathbf{1 S , 2 S}, \mathbf{3 R}, \mathbf{4 R})$ for the newly formed four stereogenic centers (Eq. 1, Scheme 1), which was assigned according to Xray crystallography. ${ }^{11 \mathrm{~b}}$

We conducted a similar reaction with enonal 1a and 2a with (R) - $\mathbf{1 4}$ as the catalyst (Eq. 2, Scheme 1) under otherwise identical conditions. Accordingly, the domino Michael/Michael product we obtained should have totally opposite stereochemistry for these four stereogenic centers [i.e., $(1 R, 2 S, 3 S, 4 S)$. Please note: The R / S designation is not totally flipped due to the removal of the 6phenyl group]. According to the HPLC chromatograms, this product turned out to be the enantiomer of the major product in our study (Please see Page S-38 vs Page S-37 below), i.e., it is ent-3a, as shown in Eq. 2. Thus, the major enantiomer 3a obtained in our study should have exactly the same absolute stereochemistry as that of compound $\mathbf{1 3}$ for the four stereogenic centers [i.e., $(1 S, 2 R, 3 R, 4 R)$ for 3a, Eq. 3]. These results are not surprising, since compound $\mathbf{1 3}$ and compound 3a are both obtained from catalysts that are based on D-proline.

Scheme S-1. Determination of the absolute stereochemistry of the reaction product 3a

Experimental Procedure for the Synthesis of ent-3a Using Catalyst (S)-14 ${ }^{11 b}$

Compound ent-3a was synthesized from enonal 1a and enal 2a using exactly the same conditions reported in Ref. 11b (Table 1, entry 3 of Ref. 11b) so that the results are comparable: Under the protection of nitrogen, to a flame dried $5-\mathrm{mL}$ round bottom flask with a magnetic stirring bar was added catalyst (S) $\mathbf{- 1 4}(6.5 \mathrm{mg}, 0.020 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and 4nitrobenzoic acid ($1.7 \mathrm{mg}, 0.010 \mathrm{mmol}, 5 \mathrm{~mol} \%$). A solution of substrate $\mathbf{1 a}(40.4 \mathrm{mg}, 0.20 \mathrm{mmol})$ in dry dichloroethane (1.0 mL) and trans-cinnamaldehyde ($\mathbf{2 a}, 26.4 \mathrm{mg}, 0.20 \mathrm{mmol}$) was added by syringe, respectively. Then the reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 18 h . After the reaction was completed, the solvent was evaporated in a rotavapor under reduced pressure and the crude product obtained was purified by flash column chromatography using 70:30 hexane/EtOAc to give product ent-3a ($46.8 \mathrm{mg}, 70 \%$). The dr of the product was determined to be $95: 5$ according to the NMR of the crude product. The HPLC analysis of this product revealed that it was the enantiomer of the major enantiomer obtained in our study (i.e., ent-3a) with an ee value of 97% (Please see Page S-38 vs Page S-37 below).

Characterization Data for New Cinchona Alkaloid Derivatives

1-(4-Methoxypheny))-3-(4-((S)-(naphthalen-1-ylmethoxy)((1S,2R,4S,5R)-5-

vinylquinuclidin-2-yl)methyl)quinolin-6-yl)thiourea (4d)

White solid; m.p. $118-119{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.52$ (s, $1 \mathrm{H}), 8.76$ (d, $J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.61(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{dd}, J=$ $11.9,8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.62(\mathrm{dd}, J=16.9,9.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.42(\mathrm{~m}, 5 \mathrm{H})$, 6.75 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 5.53 (ddd, $J=17.0,10.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.98$ $(\mathrm{d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=17.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.88(\mathrm{~d}, J=36.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 1 \mathrm{H}), 3.07(\mathrm{~d}, J=78.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~d}, J=$ $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 1 \mathrm{H}), 1.10(\mathrm{~s}, 1 \mathrm{H}), 0.96-0.78$ $(\mathrm{m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.1,157.5,148.9,145.8,137.5,133.7,132.8,131.5$, $130.4,129.1,128.6,127.1,126.6,126.5 .126 .0,125.3,123.9,116.1,113.9,77.3,69.8,60.0,55.3$, $49.8,48.9,37.4,29.7,27.4 . v_{\max }\left(n e a t, \mathrm{~cm}^{-1}\right): 2931,1526,1457,1235,1167,1030,828,799,778$. HRMS (ESI, m/z) calcd. for $\mathrm{C}_{38} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 615.2788; found: 615.2780.

1-(Naphthalen-1-yl)-3-(4-((S)-(naphthalen-1-ylmethoxy)((1S,2R,4S,5R)-5-vinylquinuclidin-2-yl)methyl)quinolin-6-yl)thiourea (4e)

White solid; m.p. $105-106{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.13(\mathrm{~s}, 1 \mathrm{H})$, 8.82 (d, $J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J$ $=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-$ $7.79(\mathrm{~m}, 4 \mathrm{H}), 7.75(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{ddd}, J=30.3,15.6,7.5 \mathrm{~Hz}$, $8 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 5.59(\mathrm{ddd}, J=17.2,10.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H})$, $4.94(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 2 \mathrm{H}), 3.01$ $(\mathrm{s}, 1 \mathrm{H}), 2.84(\mathrm{~s}, 1 \mathrm{H}), 2.27(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 1 \mathrm{H}), 1.66-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.28$ $(\mathrm{s}, 1 \mathrm{H}), 1.16(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.7,149.4,146.4,134.4,133.6,132.8$, $131.4,130.5,129.9,128.9,128.6,128.4,127.2,126.9,126.6,126.4,125.9,125.6,125.2,123.8$, $122.7,115.7,69.8,60.1,49.7,48.8,38.0,29.7,27.5,24.4 . v_{\max }\left(n e a t, \mathrm{~cm}^{-1}\right): 2934,1539,1506$,

1267, 1117, 1016, 765. HRMS (ESI, m/z) calcd. for $\mathrm{C}_{41} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{OS}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 635.2839; found: 635.2831.

1-(4-((S)-(Benzyloxy)((1S,2R,4S,5R)-5-vinylquinuclidin-2-yl)methyl)quinolin-6-yl)-3phenylthiourea (4f)

White solid; m.p. $90-91{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.68(\mathrm{~s}, 1 \mathrm{H}), 8.73$ $(\mathrm{d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{dd}, J=15.2,6.2$ $\mathrm{Hz}, 3 \mathrm{H}), 7.39(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.33$ (s, 1H), 5.75 (ddd, $J=17.2,10.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=10.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.96-4.86(\mathrm{~m}, 2 \mathrm{H}), 4.62(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.34$ (dd, $J=20.5,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=20.9,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=16.2,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{t}$, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{~s}, 1 \mathrm{H}), 1.82-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.8,148.8,145.5,141.2,138.5,137.7,136.8,136.3,130.1,128.7$, $128.5,128.4,128.3,126.3,125.2,124.8,124.2,117.8,117.0,115.9,72.1,59.8,49.7,48.8,37.2$, 29.7, 27.3, 23.4, 18.7. $v_{\max }\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right): 3030,2926,1545,1542,1539,1506,1312,1236,1122$, 1053, 752. HRMS (ESI, m/z) calcd. for $\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{OS}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 535.2526; found: 535.2528.

1-(4-((S)-(Naphthalen-1-ylmethoxy)((1S,2R,4S,5R)-5-vinylquinuclidin-2-yl)methyl)quinolin-6-yl)-3-phenylurea (4h)

White solid; m.p. 121-123 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.37(\mathrm{~s}, 1 \mathrm{H})$, 8.65 (dd, $J=44.3,20.3 \mathrm{~Hz}, 3 \mathrm{H}), 8.05-7.62(\mathrm{~m}, 5 \mathrm{H}), 7.57-7.25(\mathrm{~m}, 7 \mathrm{H})$, $7.04(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.27-5.16(\mathrm{~m}, 3 \mathrm{H}), 5.01$ $-4.64(\mathrm{~m}, 4 \mathrm{H}), 3.90-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{dd}, J=16.4$, $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.71(\mathrm{~s}, 1 \mathrm{H}), 1.55-0.97(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.6,147.8,144.9,144.2,139.3,138.6,138.3,133.5,133.1,131.2,130.8,128.7,128.6,128.5$, $126.9,126.4,126.2,125.8,125.2,123.6,123.3,122.9,119.4,115.0,69.5,59.6,49.6,49.1,39.1$, 27.7, 25.5. $v_{\max }\left(\right.$ neat, cm^{-1}): 2934, 1595, 1568, 1524, 1441, 1202, 791, 668. HRMS (ESI, m/z) calcd. for $\mathrm{C}_{37} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 569.2911 ; found: 569.2899.

1-(4-((S)-(Benzyloxy)((1S,2R,4S,5R)-5-vinylquinuclidin-2-yl)methyl)quinolin-6-yl)-3-

phenylurea (4j)

White solid; m.p. $114-116{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.77(\mathrm{~d}, J=4.4$ $\mathrm{Hz}, 2 \mathrm{H}$), $8.52(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.44(\mathrm{~m}$, $2 \mathrm{H}), 7.32(\mathrm{dd}, J=7.8,6.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.92$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{ddd}, J=17.4,10.0,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 4.99$ $(\mathrm{t}, J=13.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.56(\mathrm{~s}, 1 \mathrm{H}), 4.43-4.28(\mathrm{~m}, 2 \mathrm{H}), 3.38(\mathrm{~s}, 1 \mathrm{H}), 3.11(\mathrm{~s}$, $1 \mathrm{H}), 3.00-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.71(\mathrm{dd}, J=14.9,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~s}, 1 \mathrm{H}), 1.58$ $-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{dd}, J=26.6,19.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.7,148.2$, 145.6, 144.9, 140.3, 138.3, 137.7, 137.6, 130.6, 128.9, 128.3, 127.8, 127.7, 127.2, 123.4, 120.1, $114.6,71.4,59.9,49.8,49.3,39.8,28.1,26.2 . v_{\max }\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right): 2939,2859,1595,1545,1525$, 1515, 1205, 1026, 828, 743. HRMS (ESI, m/z) calcd. for $\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 519.2755; found: 519.2741.

1-(4-((S)-Butoxy((1S,2R,4S,5R)-5-vinylquinuclidin-2-yl)methyl)quinolin-6-yl)-3phenylthiourea (41)

White solid; m.p. 79-81 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.46(\mathrm{~s}, 1 \mathrm{H})$, $8.74(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{~s}, 1 \mathrm{H}), 7.91-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{dd}, J=7.7$, $1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.99$ (ddd, $J=17.5,10.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 5.22-5.09$ $(\mathrm{m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 1 \mathrm{H}), 3.68-3.37(\mathrm{~m}, 4 \mathrm{H}), 3.18(\mathrm{t}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dt}, J=12.7,9.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.42(\mathrm{dd}, J=17.4,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{dt}, J=5.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-$ $1.34(\mathrm{~m}, 6 \mathrm{H}), 1.17-1.01(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.8$, $149.1,145.8,143.2,138.1,137.9,130.3,128.8,126.6,125.7,125.4,124.4,118.0,116.4,116.3$, $69.6,59.8,49.8,49.2,38.3,32.1,27.6,24.4,19.5,13.9 . v_{\max }\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right): 2932,2873,1539,1506$, 1517, 1236, 1115, 828, 754, 693. HRMS (ESI, m/z) calcd. for $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{OS}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 501.2683$; found: 501.2671.

1-(4-((R)-(Naphthalen-1-ylmethoxy)((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl)quinolin-6-yl)-3-phenylthiourea (40)

White solid; m.p. $116-118{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.81(\mathrm{~d}, J=$ $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{~s}, 1 \mathrm{H}), 8.07-7.96(\mathrm{~m}, 3 \mathrm{H}), 7.90-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.61-$ $7.41(\mathrm{~m}, 8 \mathrm{H}), 7.25(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 5.64(\mathrm{ddd}, J=17.3,10.0$, $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-4.91(\mathrm{~m}, 4 \mathrm{H}), 3.61(\mathrm{~d}, J=72.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.23-2.97(\mathrm{~m}$, 2 H), 2.81 (d, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 1 \mathrm{H}), 1.86(\mathrm{t}, J=44.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.55$ $(\mathrm{s}, 2 \mathrm{H}), 1.29(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.9,149.3,146.2,143.7,139.3,137.8$, $137.4,133.6,132.9,131.2,130.6,129.1,128.8,128.7,126.9,126.4,126.2,126.1,125.3,124.7$, $123.4,116.0,69.5,60.4,55.8,43.7,38.5,29.7,27.3,26.0 . v_{\max }\left(n e a t, \mathrm{~cm}^{-1}\right): 2934,2858,2375$, 1539, 1523, 1516, 1317, 1236, 1070, 751, 694. HRMS (ESI, m/z) calcd. for $\mathrm{C}_{37} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{OS}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 585.2683$; found: 585.2668.

1-(4-((R)-(Benzyloxy)((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl)quinolin-6-yl)-3phenylthiourea (4q)

White solid; m.p. $95-97{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.32(\mathrm{~s}, 1 \mathrm{H}), 8.81$ (d, $J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{q}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 7.42-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.27(\mathrm{dd}, J=12.9,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 5.66(\mathrm{ddd}, J=17.4,10.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{dd}, J=24.7$, $13.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.56(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 1 \mathrm{H}), 3.53(\mathrm{~s}$, $1 \mathrm{H}), 3.22(\mathrm{t}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~s}, 1 \mathrm{H}), 2.90(\mathrm{~s}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 1 \mathrm{H}), 1.92(\mathrm{~d}, J=35.8 \mathrm{~Hz}, 3 \mathrm{H})$, $1.60(\mathrm{~d}, J=38.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.9,149.3,146.1,143.7,139.4,137.7$, $137.2,130.5,129.1,128.6,128.0,127.7,126.9,126.1,125.8,124.8,118.5,117.0,116.0,71.5$, $60.4,56.0,43.9,38.6,29.7,27.4,26.1 . v_{\max }\left(n e a t, \mathrm{~cm}^{-1}\right): 2931,1549,1539,1506,1496,1312,1238$, 1025, 751, 726. HRMS (ESI, m/z) calcd. for $\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{OS}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 535.2526; found: 535.2517.

White solid; m.p. 111-113 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.94(\mathrm{~s}, 1 \mathrm{H})$,
 8.75 (d, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.66(\mathrm{~s}, 1 \mathrm{H}), 8.40(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.80(\mathrm{dd}, J=27.0,8.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.58-7.34(\mathrm{~m}, 8 \mathrm{H}), 7.12(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.66$ (ddd, $J=17.5,10.1,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.16$ (s , $1 \mathrm{H}), 4.96-4.74$ (m, 4H), 3.39 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.21 ($\mathrm{s}, 1 \mathrm{H}$), 3.02 (t, $J=$ $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 1 \mathrm{H}), 1.96-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.41$ (s, 1H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.7,148.2,145.9,145.0,141.4,138.5,138.4,137.9$, $133.5,133.3,131.1,130.7,129.1,128.9,128.6,128.5,127.3,126.3,125.8,125.3,123.4,120.0$, $114.4,69.3,60.6,56.7,43.0,39.7,29.7,27.9,27.7,27.4 . v_{\max }\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right): 2939,1549,1506,1456$, 1362, 1312, 1204, 1083, 748. HRMS (ESI, m/z) calcd. for $\mathrm{C}_{37} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{2}$ ($[\mathrm{M}+\mathrm{H}]^{+}$): 569.2911; found: 569.2899.

1-(3,5-Bis(trifluoromethyl)phenyl)-3-(4-((R)-(naphthalen-1-ylmethoxy)((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl)quinolin-6-yl)urea (4t)

White solid; m.p. $127-129{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.95$ (s, $1 \mathrm{H}), 8.77(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.59(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.94-7.72(\mathrm{~m}, 5 \mathrm{H}), 7.63-7.31(\mathrm{~m}, 7 \mathrm{H}), 5.74-5.60(\mathrm{~m}, 1 \mathrm{H}), 4.99-$ $4.78(\mathrm{~m}, 4 \mathrm{H}), 4.45(\mathrm{~s}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 1 \mathrm{H}), 3.02(\mathrm{t}, J=11.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.68(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=15.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.23$ $(\mathrm{d}, J=19.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.17(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.8,148.4,145.6$, $145.0,140.9,140.4,137.2,133.5,133.0,132.3,132.1,131.8,131.5,131.1,130.7,128.6,127.1$, $126.1,125.8,125.2,124.2,123.3,123.0,122.0,118.3,115.7,114.7,69.3,60.4,56.4,43.0,39.4$, 27.5, 27.1. $v_{\max }\left(\right.$ neat, cm^{-1}): 2945, 1558, 1521, 1386, 1278, 1174, 791, 701, 681. HRMS (ESI, m / z) calcd. for $\mathrm{C}_{39} \mathrm{H}_{35} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 705.2659; found: 705.2640.

1-(4-((R)-(Benzyloxy)((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl)quinolin-6-yl)-3phenylurea (4u)

White solid; m.p. $98-100{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.39(\mathrm{~s}, 1 \mathrm{H})$, $8.74(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.53(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{dd}, J=27.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.18-$ $8.08(\mathrm{~m}, 1 \mathrm{H}), 7.96(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=5.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.40-7.34$ $(\mathrm{m}, 4 \mathrm{H}), 7.15(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 5.57$ (ddd, $J=17.2,10.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{dd}, J=46.5,13.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.62(\mathrm{~d}, J$
$=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{dd}, J=19.3,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=10.3,7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.35(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.10-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{dd}, J=13.7,7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.05-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{td}, J=7.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{dd}, J=8.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.3,147.8,144.9,141.1,139.1,139.0,137.6,136.8,130.9,128.7$, 128.7, 128.2, 127.7, 125.9, 123.6, 122.6, 119.2, 117.7, 116.9, 109.1, 76.2, 71.6, 60.1, 54.9, 44.0, 37.5, 29.7, 26.9, 24.9. $v_{\max }\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right): 2934,1700,1569,1557,1549,1539,1506,1200,1025$, 1025, 745, 692. HRMS (ESI, m/z) calcd. for $\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 519.2755; found: 519.2740 .

1－NS－91－P．2．fid	$\begin{aligned} & \overrightarrow{\mathrm{x}} \\ & \stackrel{y}{\mid} \end{aligned}$	ロヅ山ダロM き崇き品佥品 く心步年		$\stackrel{\text { a }}{\text { N }}$		$\begin{aligned} & \text { \$\& } \\ & \dot{\sim} \dot{j} \end{aligned}$	先	$\begin{aligned} & \text { ROW } \\ & \text { 篤 } \end{aligned}$

4h

1-Ns-180-1.2.fid

10	190	180	170	16	150	140	130	120	110				70		50		30		10
50	190	180	170	160	150	140	130	120	110	${ }_{\mathrm{f} 1}(\mathrm{ppm})$	90	80	70	60	50	40	30	20	10

II-NS-213-P.2.fid		$\begin{aligned} & \mathbb{8} \\ & \stackrel{8}{8} \\ & \text { \| } \end{aligned}$	8	+80	R	$\stackrel{\text { \% }}{\text { \% }}$	$\begin{aligned} & \mathrm{N}_{0}^{\infty} 8 \\ & \text { Ni } \\ & \text { \1/ } \end{aligned}$

								为为		H．${ }^{\text {H }}$			$\begin{aligned} & \text { T'T } \\ & \text { \& } \end{aligned}$	$\stackrel{T}{\text { TJ }}$		$\begin{gathered} \text { TH } \\ \text { ※io } \end{gathered}$	尔	$$	$\underset{\text { Y' }}{\substack{\circ \\ \hline}}$		Try			
． 0	11.5	11.0	10.5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	$\begin{aligned} & 6.0 \\ & \mathrm{f}(\mathrm{ppm}) \end{aligned}$	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	

| 10 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | $($ |
| :--- |

3a

3a

1－rp－2095－1／4）	\cdots		$\stackrel{\square}{6}$				
¢inios	∞	$\stackrel{\sim}{m}$	$\stackrel{\text { ¢ }}{ \pm}$	$\stackrel{\text { N̦ }}{\text { No }}$		＋0	¢ \％¢
N－1	$\stackrel{\square}{-}$	－ワワーフワ	\cdots	ヘスペ	\bigcirc ¢ ¢	\％	mm
1r 1			｜	－	$1 \times$	$1 /$	111

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

3h

3j

3k

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
										f1 (ppm)										

31

$\underbrace{\infty}$

31

$\mathrm{H}_{8} 83.19(\mathrm{t}, \mathrm{J}=11.1 \mathrm{~Hz}, 1 \mathrm{H})$
2 - axial-axial couplings, substituents must be equatorial

Relative stereochemistry assignment of compound 31

Relative stereochemistry assignment of compound 31

3m

3m

HPLC of 3a
==== Shimadzu LCsolution Analysis Report ====

HPLC of ent-3a obtained by using the Xu's catalytic system:

==== Shimadzu LCsolution Analysis Report ====

HPLC of racemic 3b

HPLC of 3b

HPLC of racemic 3c
==== Shimadzu LCsolution Analysis Report ====

1 Det.A Ch $1 / 254 \mathrm{~nm}$

HPLC of 3c

HPLC of racemic 3d

HPLC of 3d

HPLC of racemic 3e

HPLC of $\mathbf{3 e}$
==== Shimadzu LCsolution Analysis Report ====

	C:LLabSolutionsLLCsolutionl1-RP-2265-IC-RM.Icd
Acquired by	: Admin
Sample ID	
Vail \#	
Injection Volume	: 1 uL
Data File Name	: 1-RP-2265-IC-RM.Icd
Method File Name Batch File Name	: ChiralPak IC-30.0\%-1.0 mL-254nm.lcm
Report File Name	Default.lcr
Data Acquired	: 8/21/2020 3:07:36 PM
Data Processed	: 8/21/2020 3:33:21 PM

<Chromatogram>

HPLC of racemic 3f
==== Shimadzu LCsolution Analysis Report ====

<Chromatogram>

1 Det.ACh $1 / 254 \mathrm{~nm}$

HPLC of $\mathbf{3 f}$

HPLC of $\mathbf{3 g}$

HPLC of racemic 3h
==== Shimadzu LCsolution Analysis Report ====

	C:ILabSolutionsILCsolution\1-rp-2193-pure.Icd
Acquired by	: Admin
Sample Name	
Sample ID	:
Vail \#	
Injection Volume	: 1 uL
Data File Name	: 1-rp-2193-pure.lcd
Method File Name	: ChiralPak IC-40\%-1 mL-254nm. lcm
Batch File Name	
Report File Name	: Default.lcr
Data Acquired	: 7/20/2020 3:25:57 PM
Data Processed	: 7/20/2020 4:06:02 PM

Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height \%
1	25.211	42241214	821392	90.173	90.904
2	28.986	4603643	82191	9.827	9.096
Total		46844857	903583	100.000	100.000

HPLC of 3h
==== Shimadzu LCsolution Analysis Report ====

HPLC of racemic 3i
==== Shimadzu LCsolution Analysis Report ====

PeakTable

Detector A Chl 254nm PeakTable					
Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	22.353	49911331	743044	82.911	83.165
2	32.282	10287335	150416	17.089	16.835
Total		60198666	893460	100.000	100.000

HPLC of 3i

HPLC of racemic $\mathbf{3 j}$
==== Shimadzu LCsolution Analysis Report ====

HPLC of $\mathbf{3 j}$

HPLC of racemic $\mathbf{3 k}$

HPLC of 3k

==== Shimadzu LCsolution Analysis Report ====

HPLC of racemic 31
==== Shimadzu LCsolution Analysis Report ====

HPLC of 31

HPLC of racemic 3m
==== Shimadzu LCsolution Analysis Report ====

<Chromatogram>

Detector A Ch1 254 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	25.429	75803084	683346	86.089	88.325
2	44.347	12248993	90328	13.911	11.675
Total		88052077	773674	100.000	100.000

HPLC of $\mathbf{3 m}$

HPLC of racemic $\mathbf{1 0}$ ==== Shimadzu LCsolution Analysis Report ====

HPLC of 10

HPLC of racemic $\mathbf{1 1}$

1 Det.A Ch1/254nm

HPLC of 11

