Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

Photoinduced C(sp³)–H chlorination of amides with tetrabutyl

ammonium chloride

Yanshuo Zhu and Wei Yu*

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000, China Email: yuwei@lzu.edu.cn

Contents

1. General methods	S1
2. Experimental procedures	S1
3. Optimization of reaction conditions	S3
4. Characterization data	S5
5. References	\$23
6. ¹ H and ¹³ C NMR spectra	S24

1. General methods

The ¹H and ¹³C NMR spectra were recorded on a Bruker AVANCE III-400 MHz or an INOVA600 MHz spectrometer with CDCl₃ as the solvent. In CDCl₃, the chemical shifts in ¹H NMR spectra were determined with Si(CH₃)₄ as the internal standard ($\delta =$ 0.00 ppm); the chemical shifts in ¹³C NMR spectra were determined based on the chemical shift of CDCl₃ (δ = 77.00 ppm). The coupling constant (s) (J value) are reported in Hz (s = singlet, d = doublet, t = triplet, q = quadruplet, m = multiplet or unresolved, br = broad signal). The high resolution mass spectra (HRMS) were measured on a Thermo Scientific ORBITRAP ELITE by ESI. The Fourier transformation infrared spectra (FT-IR) were measured on a FT-IR spectrometer. Melting points (m.p.) were measured on an XT-4 melting point apparatus and are uncorrected. The compact fluorescent lamp used (45 W Household CFL bulb) as the light source was purchased from Scatter Lighting co. ltd. Common glass tubes were used as the reaction vessel for irradiation, and the distance from the light source was about 1.5 cm. Thin layer chromatography (TLC) analyses were performed using Merck silica gel 60 F254 plates and visualized under UV, by phosphomolybdic acid or iodine stain. Flash column chromatography (FCC) was conducted on silica gel (200-300 mesh). Acetonitrile and other solvents were treated before use following the standard procedures.

2. Experimental procedures

Preparation of substrates 1ak, 1am and 4p

Amides **1ak** and **1am** were prepared following the known procedure.¹

Sulfonamide **4p** was prepared following the reported method.²

General procedure for the C(sp³)–H chlorination of amides

A flame-dried 15 mL glass tube equipped with a magnetic stirring bar and a rubber

stopper was charged with the amide (0.2 mmol), PhI(OAc)₂ (for amides: 83.7 mg, 0.26 mmol, 1.3 equiv.; for sulfonamides: 77.3 mg, 0.24 mmol), *n*-Bu₄NCl (66.7 mg, 0.24 mmol, 1.2 equiv.), BF₃·OEt₂ (27.0 μ L, 0.20 mmol, 1.0 equiv.) and 2 mL of CH₃CN. The tube was evacuated and backfilled with argon for three times. The mixture was irradiated under stirring with a 45 W household CFL lamp (at a distance of 1.5 cm) at ambient temperature (<35 °C in most cases; a small electric fan was used to dissipate heat emitted by the lamp) for an appropriate period of time (8.0 h in general for amides; 3.0 h in general sulfonamides). Once the reaction was complete as indicated by TLC, the mixture was subjected to silica gel column chromatography (eluent: petroleum ether (PE) PE and ethyl acetate (EA)) to afford the product.

Gram scale preparation of 2a and 5b:

A flame-dried 100 mL round bottomed flask equipped with a magnetic stirring bar and a rubber stopper was charged with **1a** (1.5 g, 8.0 mmol), PhI(OAc)₂ (3.4 g, 10.4 mmol, 1.3 equiv.), *n*-Bu₄NCl (2.7 g, 9.6 mmol, 1.2 equiv.), BF₃·OEt₂ (1.1 mL, 8 mmol, 1.0 equiv.) and 40 mL CH₃CN. The solution was irradiated with a 45 W household CFL lamp (at a distance of 1.5 cm) under an argon atmosphere (argon balloon) for 8 h. The reaction mixture was then poured into an aqueous solution of Na₂S₂O₃ (20%, 15 mL), and the product was extracted with CH₂Cl₂ (3×15 mL). The combined organic phases were dried over anhydrous Na₂SO₄, concentrated in vacuo, and purified by flash column chromatography on silica gel (PE/EA = 6:1 to 5:1) to give **2a** in a yield of 83% (1.50 g).

A flame-dried 100 mL round bottomed flask equipped with a magnetic stirring bar and a rubber stopper was charged with **4b** (1.5 g, 6.0 mmol, 1.0 equiv.), PhI(OAc)₂ (2.3 g, 7.2 mmol, 1.2 equiv.), *n*-Bu₄NCl (2.0 g, 9.6 mmol, 1.2 equiv.), BF₃·OEt₂ (0.8 mL, 6 mmol, 1.0 equiv.) and 40 mL of CH₃CN. The solution was irradiated with a 45 W household CFL lamp (at a distance of 1.5 cm) under an argon atmosphere (argon balloon) for 3 h. The reaction mixture was then poured into an aqueous solution of Na₂S₂O₃ (20%, 15 mL), and the product was extracted with CH₂Cl₂ (3×15 mL). The combined organic phases were dried over anhydrous Na₂SO₄, concentrated in vacuo, and purified by flash column chromatography on silica gel (PE/EA = 12:1 to 10:1) to give **5b** in a yield of 70 % (1.15 g).

Figure S1. Emission spectrum of the 45 W CFL.

3. Optimization of reaction conditions

	Ç	O PhI(OAc) ₂ (2.0 equiv.) n-Bu ₄ NCl (1.5 equiv.) solvent., Ar 1a 45 W CFL, 15 h	O N Za	CI + CI Sa
	Entry	Solvent	Time (h)	2a/3a Yield (%) ^b
	1	CH ₃ CN	15	55/37
	2	EtOH	15	0/0
	3	EtOAc	15	31/0

Table S1. Screening of solvent^{*a*}

4

5

6

^a The reaction was performed under an argon atmosphere on 0.2 mmol scale in 2.0 mL solvent.

15

15

15

0/0

0/0

9/0

^b Isolated yield after silica gel column chromatography.

AcOH

 H_2O

CH₃CN/H₂O (1:1)

	PhI(OAc) ₂ (2.0 equiv.) N H (CIT) (1.5 equiv.) CH ₃ CN, Ar 1a 45 W CFL, 15 h		+ N Cl 3a
Entry	[Cl ⁻]	Time (h)	$2a/3a$ Yield $(\%)^b$
1	NaCl	15	0/0
2	KCl	15	0/0
3	NH ₄ Cl	15	0/0

Table S2. Screening of nucleophilic chlorine source^{*a*}

^{*a*} The reaction was performed under an argon atmosphere on 0.2 mmol scale in 2.0 mL CH₃CN. ^{*b*} Isolated yield.

Table S3. Screening of oxidants^{*a*}

N H 1a	Oxidant (2.0 equiv.) 	N H Za	O N Cl 3a
Entry	Oxidant (equiv.)	Time (h)	2a/3a Yield $(\%)^b$
1	PhI(OAc) ₂ (2.0)	15	55/37
2	PhI(OCOCF ₃) ₂ (2.0)	15	25/33
3	PhI(OH)(OTs) (2.0)	15	11/24
4	PhIO (2.0)	15	0/0
5	BI-OH (2.0)	15	0/0
6^c	BI-Cl (2.0)	15	0/0
7^c	PhICl ₂	15	0/7
8	Oxone (2.0)	15	trace/27
9	$K_2S_2O_8$ (2.0)	15	0/0
10	DTBP (2.0)	15	0/0
11	TBHP (2.0)	15	0/0

^{*a*} The reaction was performed under an argon atmosphere on 0.2 mmol scale in 2.0 mL CH₃CN. ^{*b*} Isolated yield. ^{*c*} Without *n*-Bu₄NCl. Oxone: potassium peroxomonosulfate; DTBP: *di-tert*-butyl peroxide; TBHP: *tert*-butyl hydroperoxide; BI-OH:1-hydroxy-1 λ^3 -benzo[*d*][1,2]iodaoxol-3(1*H*)-one; BI-Cl: 1-chloro-1 λ^3 -benzo[*d*][1,2]iodaoxol-3(1*H*)-one.

Table S4. Screening of the light source^{*a*}

O F	PhI(OAc)2 (1.3 equiv.) n-Bu4NCI (1.2 equiv.) BF3·OEt2 (1.0 equiv.) 1a		+ Cl 3a
Entry	Light Source	Time (h)	2a/3a Yield (%) ^b
1	45 W CFL	8	91/0
2	10 W blue LEDs	24	73/16

^{*a*} The reaction was performed under an argon atmosphere on 0.2 mmol scale in 2.0 mL CH₃CN.

^b Isolated yield.

Figure S2. Emission spectrum of the 10 W blue LEDs.

4. Characterization data

4-(N, N-Dipropylsulfamoyl)-N-pentylbenzamide (1ak)

White solid obtained by column chromatography (PE/EA = 8:1); 1.6 g, 65% yield (7.0 mmol scale). m.p. 110–111 °C; $R_f = 0.24$ (PE/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 8.3 Hz, 2H), 7.78–7.74 (m, 2H), 6.69 (br, 1H), 3.44 (q, J = 8.0 Hz, 2H), 3.22–2.91 (t, J = 6.0 Hz, 4H), 1.67–1.49 (m, 6H), 1.40–1.32 (m, 4H), 0.91–0.84 (m, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 142.3, 138.5, 127.7, 127.0, 49.9, 40.2, 29.1, 29.1, 22.3, 21.8, 13.9, 11.1. IR (KBr, cm⁻¹) v 3319, 2964, 2933, 2874, 1639, 1549, 1468, 1327, 1147, 1090, 1000, 852, 778, 739, 663, 604, 560, 451. HRMS (ESI-TOF) calcd for C₁₈H₃₁N₂O₃S [M+H]⁺ 355.2050, found 355.2049.

2-(2-Fluoro-[1,1'-biphenyl]-4-yl)-N-pentylpropanamide (1am)

White solid obtained by column chromatography (PE/EA = 8:1); 1.0 g, 78% yield (4.1 mmol scale). m.p. 82–84 °C; $R_f = 0.25$ (PE/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 7.9 Hz, 2H), 7.44–7.33 (m, 4H), 7.15 (t, J = 8.5 Hz, 2H), 5.96 (s, 1H), 3.59 (q, J = 7.2 Hz, 1H), 3.21 (q, J = 6.7 Hz, 2H), 1.53 (d, J = 7.2 Hz, 3H), 1.48–1.41 (m, 2H), 1.32–1.17 (m, 4H), 0.85 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.4, 160.8, 158.4, 142.9 (d, J = 7.4 Hz, 1C), 135.3, 130.8 (d, J = 3.9 Hz, 1C), 128.8

(d, J = 2.8 Hz, 1C), 128.3, 127.5 (t, J = 7.0 Hz, 1C), 123.5 (d, J = 3.3 Hz, 1C), 115.1 (d, J = 23.4 Hz, 1C), 46.4, 39.6, 29.1, 28.9, 22.2, 18.4, 13.9. IR (KBr, cm⁻¹) v 3294, 3078, 2931, 2871, 1651, 1557, 1418, 1371, 1230, 1132, 1074 1011, 928, 766, 697, 573, 458. HRMS (ESI-TOF) calcd for C₂₀H₂₅FNO [M+H]⁺ 314.1915, found 314.1913.

N-Butyl-4-cyanobenzenesulfonamide (4p)

White solid obtained by column chromatography (PE/EA = 5:1); 1.8 g, 90% yield (8.4 mmol scale). m.p. 107–108 °C; $R_f = 0.18$ (PE/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.4 Hz, 2H), 7.85 (d, *J* = 8.3 Hz, 2H), 5.26 (t, *J* = 6.0 Hz, 1H), 2.98 (q, *J* = 6.7 Hz, 2H), 1.49–1.42 (m, 2H), 1.34–1.25 (m, 1H), 0.85 (t, *J* = 7.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 144.2, 132.9, 127.6, 117.3, 1 16.1, 42.9, 31.4, 19.5, 13.4. IR (KBr, cm⁻¹) v 3265, 2957, 2860, 1435, 1324, 1157, 1089, 845, 568, 515. HRMS (ESI-TOF) calcd for C₁₁H₁₅N₂O₂S [M+H]⁺ 239.0849, found 239.0846.

N-(4-Chloropentyl)benzamide (2a)³

Colorless oil obtained by column chromatography (PE/EA = 6:1 to 4:1); 41 mg, 91% yield; reaction time = 6 h. $R_f = 0.35$ (PE/EA = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.81–7.78 (d, *J* = 7.0 Hz, 2H), 7.45 (t, *J* = 7.3 Hz, 1H), 7.36 (t, *J* = 7.5 Hz, 2H), 7.20 (s, 1H), 4.04–3.96 (m, 1H), 3.40 (q, *J* = 5.3 Hz, 2H), 1.84–1.65 (m, 4H), 1.46 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 134.4, 131.2, 128.3, 126.8, 58.3, 39.3, 37.3, 26.7, 25.2.

N-(4-Chloropentyl)-4-fluorobenzamide (2b)³

Colorless oil obtained by column chromatography (PE/EA = 5:1 to 4:1); 44 mg, 90% yield; reaction time = 8 h. $R_f = 0.32$ (PE/EA = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.81–7.77 (m, 2H), 7.09 (t, *J* = 8.6 Hz, 2H), 6.67 (s, 1H), 4.10–4.03 (m, 1H), 3.46 (d, *J* = 6.2 Hz, 2H), 1.86–1.71 (m, 4H), 1.52 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 164.6 (d, *J* = 251.8 Hz, 1C), 130.7 (d, *J* = 3.1 Hz, 1C), 129.2 (d, *J* = 8.9 Hz, 1C), 115.5 (d, *J* = 21.8 Hz, 1C), 58.3, 39.5, 37.4, 26.8, 25.3.

4-Chloro-N-(4-chloropentyl)benzamide (2c)³

White solid obtained by column chromatography (PE/EA = 5:1 to 4:1); 45 mg, 87% yield; reaction time = 8 h. $R_f = 0.34$ (PE/EA = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 8.6 Hz, 2H), 7.38 (d, *J* = 8.6 Hz, 2H), 6.74 (t, *J* = 5.9 Hz, 1H), 4.08–4.00 (m, 1H), 3.43 (q, *J* = 5.3 Hz, 2H), 1.87–1.68 (m, 4H), 1.50 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 137.5, 132.9, 128.7, 128.3, 58.3, 39.5, 37.4, 26.7, 25.3.

4-bromo-N-(4-chloropentyl)benzamide (2d)³

White solid obtained by column chromatography (PE/EA = 5:1 to 4:1); 53 mg, 87% yield; reaction time = 8 h. $R_f = 0.34$ (PE/EA = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 8.4 Hz, 2H), 7.54 (d, J = 8.4 Hz, 2H), 6.51 (s, 1H), 4.09–4.02 (m, 1H), 3.47–3.42 (m, 2H), 1.86–1.71 (m, 4H), 1.51 (d, J = 6.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 133.4, 131.7, 128.5, 126.0, 58.3, 39.5, 37.5, 26.8, 25.4.

N-(4-Chloropentyl)-4-cyanobenzamide (2e)³

White solid obtained by column chromatography (PE/EA = 4:1 to 3:1); 40 mg, 80% yield; reaction time = 8 h. $R_f = 0.15$ (PE/EA = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.3 Hz, 2H), 7.73 (d, J = 8.3 Hz, 2H), 6.67 (s, J = 6.0 Hz,1H), 4.12-4.03 (m, 1H), 3.48 (q, J = 6.4 Hz, 2H), 1.89–1.74 (m, 4H), 1.52 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 138.5, 132.3, 127.6, 117.9, 114.8, 58.2, 39.6, 37.4, 26.6, 25.3.

N-(4-Chloropentyl)-4-nitrobenzamide (2f)³

White solid obtained by column chromatography (PE/EA = 4:1 to 3:1); 24 mg, 51% yield; reaction time = 8 h. $R_f = 0.15$ (PE/EA = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, J = 8.8 Hz, 2H), 7.94 (d, J = 8.9 Hz, 2H), 6.41 (s, 1H), 4.13–4.05 (m, 1H), 3.52 (q, J = 5.3 Hz, 2H), 1.91–1.75 (m, 4H), 1.54 (d, J = 6.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 149.5, 140.1, 128.1, 123.8, 58.3, 39.8, 37.4, 26.7, 25.4.

N-(4-Chloropentyl)-4-methoxybenzamide $(2g)^3$

White solid obtained by column chromatography (PE/EA = 4:1 to 3:1); 42 mg, 82% yield; reaction time = 8 h. $R_f = 0.13$ (PE/EA = 3:1). ¹H NMR (400 MHz, CDCl₃) δ

7.74 (d, J = 8.8 Hz, 2H), 6.92 (d, J = 8.8 Hz, 2H), 6.24 (s, 1H), 4.11–4.02 (m, 1H), 3.85 (s, 3H), 3.52–3.42 (m, 2H), 1.86–1.72 (m, 4H), 1.52 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 162.1, 128.6, 126.8, 113.7, 58.4, 55.4, 39.3, 37.5, 27.0, 25.4.

N-(4-Chloropentyl)-4-methylbenzamide (2h)³

White solid obtained by column chromatography (PE/EA = 6:1 to 5:1); 43 mg, 91% yield; reaction time = 8 h. $R_f = 0.36$ (PE/EA = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 7.8 Hz, 2H), 7.20 (d, *J* = 7.8 Hz, 2H), 6.55 (s, 1H), 4.08–4.01 (m, 1H), 3.49–3.41 (m, 2H), 2.38 (s, 3H), 1.86–1.68 (m, 4H), 1.50 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 141.7, 131.6, 129.1, 126.8, 58.3, 39.2, 37.5, 26.9, 25.3, 21.3.

N-(4-Chloropentyl)-3-fluorobenzamide (2i)³

Colorless oil obtained by column chromatography (PE/EA = 5:1); 42 mg, 86% yield; reaction time = 8 h. R_f = 0.30 (PE/EA = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.52 (dd, J_I = 13.8, J_2 = 8.5 Hz, 2H), 7.41–7.35 (m, 1H), 7.18 (t, J = 8.3 Hz, 1H), 6.56 (br, 1H), 4.10–4.03 (m, 1H), 3.49–3.42 (m, 2H), 1.86–1.73 (m, 4H), 1.51 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 162.7 (d, J = 248.1 Hz, 1C), 136.8 (d, J = 6.7 Hz, 1C), 130.2 (d, J = 7.9 Hz, 1C), 122.3, 118.4 (d, J = 21.3 Hz, 1C), 114.3 (d, J = 22.9 Hz, 1C), 58.3, 39.5, 37.4, 26.8, 25.3.

3-Chloro-N-(**4-chloropentyl**)benzamide (2j)³

Colorless oil obtained by column chromatography (PE/EA = 5:1); 48 mg, 92% yield; reaction time = 8 h. $R_f = 0.33$ (PE/EA = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.76 (s, 1H), 7.64 (d, *J* = 7.9 Hz, 1H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.33 (t, *J* = 7.9 Hz, 1H), 6.86 (s, 1H), 4.07–4.00 (m, 1H), 3.44 (q, *J* = 6.3 Hz, 2H), 1.87–1.70 (m, 4H), 1.50 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 136.3, 134.5, 131.3, 129.8, 127.2, 125.0, 58.3, 39.5, 37.4, 26.7, 25.3.

3-Bromo-*N***-(4-chloropentyl)benzamide** (2k)³

Colorless oil obtained by column chromatography (PE/EA = 5:1); 55 mg, 92% yield; reaction time = 8 h. $R_f = 0.33$ (PE/EA = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.91 (s, 1H), 7.69 (d, *J* = 7.8 Hz, 1H), 7.61 (d, *J* = 7.9 Hz, 1H), 7.30 (t, *J* = 16.0 Hz, 1H), 6.47 (s, 1H), 4.11–4.03 (m, 1H), 3.51–3.43 (m, 2H), 1.87–1.72 (m, 4H), 1.52 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.3, 136.5, 134.3, 130.1, 130.0, 125.5, 122.6, 58.3, 39.6, 37.4, 26.7, 25.3.

N-(4-Chloropentyl)-3-(trifluoromethyl)benzamide (2l)³

Colorless oil obtained by column chromatography (PE/EA = 5:1); 51 mg, 87% yield; reaction time = 8 h. $R_f = 0.32$ (PE/EA = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 8.03 (s, 1H), 7.96 (d, *J* = 7.7 Hz, 1H), 7.74 (d, *J* = 7.8 Hz, 1H), 7.55 (t, *J* = 7.8 Hz, 1H), 6.66 (s, 1H), 4.10–4.03 (m, 1H), 3.49 (q, *J* = 6.7 Hz, 3H), 1.89–1.73 (m, 4H), 1.52 (d, *J* = 6.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 135.3, 131.0 (d, *J* = 33.0 Hz, 1C), 129.7 (d, *J* = 104.0 Hz, 1C), 128.0 (d, *J* = 3.6 Hz, 1C), 125.0, 123.9 (d, *J* = 3.9 Hz, 1C), 122.3, 58.3, 39.6, 37.4, 26.8, 25.3.

N-(4-Chloropentyl)-3-methylbenzamide $(2m)^3$

Colorless oil obtained by column chromatography (PE/EA = 6:1 to 5:1); 43 mg, 90% yield; reaction time = 8 h. $R_f = 0.35$ (PE/EA = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.60 (s, 1H), 7.56–7.54 (m, 1H), 7.29 (d, *J* = 5.0 Hz, 2H), 6.56 (s, 1H), 4.10–4.01 (m, 1H), 3.50–3.41 (m, 2H), 2.36 (s, 3H), 1.85–1.70 (m, 4H), 1.50 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 138.3, 134.5, 132.0, 128.3, 127.6, 123.8, 58.3, 39.3, 37.4, 26.8, 25.3, 21.2.

N-(4-Chloropentyl)-3,5-dinitrobenzamide (2n)³

White solid obtained by column chromatography (PE/EA = 4:1 to 3:1); 22 mg, 35% yield; reaction time = 8 h. $R_f = 0.13$ (PE/EA = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 9.16 (t, J = 2.1 Hz, 1H), 9.00 (d, J = 2.1 Hz, 2H), 6.92 (t, J = 6.0 Hz, 1H), 4.13–4.05 (m, 1H), 3.59 (q, J = 6.3 Hz, 2H), 1.96–1.77 (m, 4H), 1.54 (d, J = 6.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.9, 148.6, 137.8, 127.2, 121.1, 58.2, 40.2, 37.4, 26.6, 25.4.

N-(4-Chloropentyl)-3,5-dimethylbenzamide (20)³

Colorless oil obtained by column chromatography (PE/EA = 6:1); 43 mg, 85% yield; reaction time = 8 h. $R_f = 0.36$ (PE/EA = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.37 (s, 2H), 7.11 (s, 1H), 6.38 (s, 1H), 4.09–4.02 (m, 1H), 3.50–3.41 (m, 2H), 2.33 (s, 6H), 1.85–1.70 (m, 4H), 1.51 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 138.1, 134.5, 132.9, 124.6, 58.3, 39.3, 37.5, 26.9, 25.3, 21.1.

N-(4-Chloropentyl)-3,5-dimethylbenzamide (2p)³

Colorless oil obtained by column chromatography (PE/EA = 4:1 to 3:1); 52 mg, 89% yield; reaction time = 6 h. $R_f = 0.30$ (PE/EA = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 2.0 Hz, 1H), 7.60 (d, J = 8.4 Hz, 1H), 7.44 (d, J = 8.3 Hz, 1H), 7.24 (s, 1H), 4.05–3.99 (m, 1H), 3.42 (q, J = 6.1 Hz, 2H), 1.87–1.70 (m, 4H), 1.50 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 135.7, 134.3, 132.8, 130.4, 129.1, 126.1, 58.2, 39.6, 37.4, 26.6, 25.3.

N-(4-Chloropentyl)-2-naphthamide $(2q)^3$

Colorless oil obtained by column chromatography (PE/EA = 5:1); 42 mg, 76% yield; reaction time = 8 h. $R_f = 0.31$ (PE/EA = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 8.28 (s, 1H), 7.85–7.80 (m, 4H), 7.54–7.45 (m, 2H), 6.93 (t, *J* = 5.8 Hz, 1H), 4.04–3.96 (m, 1H), 3.47 (q, *J* = 5.8 Hz, 2H), 1.86–1.69 (m, 4H), 1.46 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 134.5, 132.4, 131.7, 128.8, 128.2, 127.6, 127.5, 127.3, 126.6, 123.5, 58.4, 39.5, 37.4, 26.8, 25.3.

N-(4-Chloropentyl)thiophene-2-carboxamide $(2r)^3$

Colorless oil obtained by column chromatography (PE/EA = 5:1 to 4:1); 35 mg, 81% yield; reaction time = 8 h. $R_f = 0.30$ (PE/EA = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.58 (dd, $J_1 = 3.8$ Hz, $J_2 = 1.2$ Hz, 1H), 7.46 (dd, $J_1 = 5.0$ Hz, $J_2 = 1.1$ Hz, 1H), 7.06 (dd, $J_1 = 5.0$ Hz, $J_2 = 3.7$ Hz, 1H), 6.71 (t, J = 8.0 Hz, 1H), 4.09–3.99 (m, 1H), 3.49–3.88 (m, 2H), 1.85–1.70 (m, 4H), 1.49 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.1, 139.0, 129.8, 128.0, 127.6, 58.3, 39.3, 37.4, 26.8, 25.3.

N-(4-Chloro-4-methylpentyl)benzamide (2s)⁴

Colorless oil obtained by column chromatography (PE/EA = 6:1); 44 mg, 92% yield; reaction time = 8 h. $R_f = 0.37$ (PE/EA = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 7.0 Hz, 2H), 7.48 (t, *J* = 7.4 Hz, 1H), 7.40 (t, *J* = 7.5 Hz, 2H), 6.71 (s, 1H), 3.45 (q, *J* = 6.2 Hz, 2H), 1.85–1.75 (m, 4H), 1.56 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 134.5, 131.3, 128.4, 126.8, 70.6, 43.0, 39.8, 32.3, 25.4.

N-((3-Chlorocyclohexyl)methyl)benzamide (2t)³

Colorless oil obtained by column chromatography (PE/EA = 6:1 to 5:1); 31 mg, 51% yield; reaction time = 8 h. dr = 2:1. $R_f = 0.25$ (PE/EA = 3:1); ¹H NMR (major) (400 MHz, CDCl₃) δ 7.77 (d, *J* = 7.3 Hz, 2H), 7.49 (t, *J* = 7.3 Hz, 1H), 7.42 (t, *J* = 7.4 Hz, 2H), 6.61 (s, 1H), 4.53–4.50 (m, 1H), 3.40–3.23 (m, 1H), 2.28–2.09 (m, 1H), 2.08–2.01 (m, 1H), 1.98–1.90 (m, 1H), 1.84–1.67 (m, 3H), 1.63–1.49 (m, 1H), 1.54–1.49 (m, 1H), 1.36–1.25 (m, 1H), 1.10–0.88 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 134.6, 131.4, 128.5, 126.9, 126.8, 59.2, 59.0, 45.4, 45.0, 41.4, 38.2, 38.1, 37.1, 33.9, 32.4, 29.7, 29.1, 25.2, 19.7.

2,2,2-Trichloro-*N*-(4-chloropentyl)acetamide (2u)³

Colorless oil obtained by column chromatography (PE/EA = 50:1 to 30:1); 34 mg, 64% yield; reaction time = 8 h. $R_f = 0.50$ (PE/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 6.76 (s, 1H), 4.18–3.97 (m, 1H), 3.52–3.27 (m, 2H), 2.00–1.68 (m, 4H), 1.53 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.0, 92.5, 58.0, 40.8, 37.1, 26.2, 25.4.

N-(4-Chloropentyl)cyclopropanecarboxamide (2v)³

Light yellow oil obtained by column chromatography (PE/EA = 3:1); 32 mg, 82% yield; reaction time = 8 h. $R_f = 0.18$ (PE/EA = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 6.01 (s, 1H), 4.06–3.98 (m, 1H), 3.26 (q, *J* = 5.5, 4.6 Hz, 2H), 1.76–1.57 (m, 4H), 1.49 (d, *J* = 6.5 Hz, 3H), 1.37–1.30 (m, 1H), 0.94–0.90 (m, 2H), 0.72–0.68 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 173.6, 58.4, 39.0, 37.4, 26.9, 25.3, 14.6, 7.0.

N-(4-Chloropentyl)cyclobutanecarboxamide (2w)³

Colorless oil obtained by column chromatography (PE/EA = 3:1); 32 mg, 78% yield; reaction time = 6 h. R_f = 0.18 (PE/EA = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 5.52 (s, 1H), 4.07–3.99 (m, 1H), 3.30–3.19 (m, 2H), 3.01–2.93 (m, 1H), 2.29–2.20 (m, 2H), 2.16–2.08 (m, 2H), 1.96–1.82 (m, 2H), 1.74–1.58 (m, 4H), 1.51 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 175.0, 58.3, 39.9, 38.7, 37.4, 26.9, 25.4, 25.3, 18.1.

N-(4-Chloropentyl)cyclobutanecarboxamide (2x)³

Colorless oil obtained by column chromatography (PE/EA = 3:1); 33 mg, 75% yield; reaction time = 8 h. $R_f = 0.18$ (PE/EA = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 5.64 (s, 1H), 4.07–3.99 (m, 1H), 3.30–3.19 (m, 2H), 2.52–2.44 (m, 1H), 1.87–1.48 (m, 15H). ¹³C NMR (100 MHz, CDCl₃) δ 176.3, 58.4, 45.8, 38.7, 37.4, 30.4 (2C), 27.0, 25.9, 25.4.

N-(4-Chloropentyl)cyclohexanecarboxamide (2y)³

Colorless oil obtained by column chromatography (PE/EA = 3:1); 35 mg, 76% yield; reaction time = 8 h. $R_f = 0.20$ (PE/EA = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 5.58 (s, 1H), 4.07–3.99 (m, 1H), 3.32–3.21 (m, 2H), 2.09–2.01 (m, 1H), 1.85–1.60 (m, 9H), 1.49 (d, *J* = 6.6 Hz, 3H), 1.45–1.37 (m, 2H), 1.29–1.17 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.1, 58.3, 45.6, 38.6, 37.4, 29.7 (2C), 26.9, 25.7, 25.4.

N-(4-Chloropentyl)acetamide $(2z)^3$

Light yellow oil obtained by column chromatography (PE/EA = 1:1 to 1:3); 29 mg, 89% yield; reaction time = 8 h. $R_f = 0.22$ (PE/EA = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 6.06 (s, 1H), 4.09–4.01 (m, 1H), 3.27 (q, *J* = 5.7 Hz, 2H), 1.99 (s, 3H), 1.77–1.61 (m, 4H), 1.52 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 58.3, 38.9, 37.3, 26.7, 25.3, 23.2.

N-(4-Chloropentyl)propionamide (2aa)³

Light yellow oil obtained by column chromatography (PE/EA = 2:1 to 1:1); 30 mg, 84% yield; reaction time = 8 h. $R_f = 0.11$ (PE/EA = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 5.75 (s, 1H), 4.06–3.98 (m, 1H), 3.25 (q, *J* = 6.3, 2H), 2.18 (q, *J* = 7.6 Hz, 2H), 1.74–

1.58 (m, 4H), 1.49 (d, J = 6.5 Hz, 3H), 1.13 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.9, 58.3, 38.8, 37.4, 29.7, 26.8, 25.3, 9.9.

N-(4-Chloropentyl)butyramide (2ab)³

Light yellow oil obtained by column chromatography (PE/EA = 3:1); 32 mg, 84% yield; reaction time = 8 h. $R_f = 0.10$ (PE/EA = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 5.75 (s, 1H), 4.06–3.98 (m, 1H), 3.30–3.21 (m, 2H), 2.13 (t, *J* = 7.5 Hz, 2H), 1.74–1.48 (m, 6H), 1.48 (d, *J* = 6.6 Hz, 3H), 0.92 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.1, 58.3, 38.7, 38.6, 37.4, 26.9, 25.3, 19.1, 13.7.

N-(4-Chloropentyl)pentanamide (2ac)³

Light yellow oil obtained by column chromatography (PE/EA = 3:1); 32 mg, 78% yield; reaction time = 8 h. $R_f = 0.15$ (PE/EA = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 5.60 (s, 1H), 4.07–3.99 (m, 1H), 3.29–3.23 (m, 2H), 2.16 (t, *J* = 8.0 Hz, 2H), 1.75–1.56 (m, 6H), 1.50 (d, *J* = 6.6 Hz, 3H), 1.38–1.28 (m, 2H), 0.90 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.2, 58.3, 38.7, 37.4, 36.5, 27.8, 26.9, 25.4, 22.4, 13.8.

N-(4-Chloropentyl)isobutyramide (2ad)³

Colorless oil obtained by column chromatography (PE/EA = 3:1); 27 mg, 70% yield; reaction time = 8 h. $R_f = 0.20$ (PE/EA = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 5.63 (s, 1H), 4.07–3.99 (m, 1H), 3.32–3.19 (m, 2H), 2.38–2.28 (m, 1H), 1.76–1.59 (m, 4H), 1.46 (d, J = 6.5 Hz, 3H), 1.10 (d, J = 6.9 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 177.0, 58.4, 38.6, 37.4, 35.6, 26.9, 25.4, 19.6 (2C).

N-(4-Chlorobutyl)cyclopropanecarboxamide (2ae)³

Colorless oil obtained by column chromatography (PE/EA = 3:1); 18 mg, 51% yield; reaction time = 16 h. $R_f = 0.10$ (PE/EA = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 5.89 (s, 1H), 3.55 (t, *J* = 6.4 Hz, 2H), 3.28 (q, *J* = 6.7 Hz, 2H), 1.83–1.76 (m, 2H), 1.69–1.62 (m, 2H), 1.36–1.30 (m, 1H), 0.95–0.91 (m, 2H), 0.73–0.69 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 173.6, 44.6, 38.8, 29.8, 27.1, 14.6, 7.0.

N-(4-chlorobutyl)benzamide (2af)⁵

Colorless oil obtained by column chromatography (PE/EA = 5:1); 28 mg, 66% yield; reaction time = 16 h. $R_f = 0.31$ (PE/EA = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.79–7.76 (m, 2H), 7.49 (t, *J* = 7.3 Hz, 1H), 7.42 (t, *J* = 7.4 Hz, 2H), 6.46 (s, 1H), 3.58 (t, *J* = 6.3 Hz, 2H), 3.48 (q, *J* = 5.3 Hz, 2H), 1.89–1.73 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 134.5, 131.4, 128.5, 126.8, 44.6, 39.2, 29.8, 27.0.

N-(4-Chlorobutyl)-4-fluorobenzamide $(2ag)^3$

White solid obtained by column chromatography (PE/EA = 6:1 to 5:1); 32 mg, 70% yield; reaction time = 16 h. $R_f = 0.22$ (PE/EA = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.81–7.76 (m, 2H), 7.09 (t, J = 8.6 Hz, 2H), 6.55 (s, 1H), 3.58 (t, J = 6.3 Hz, 2H), 3.46 (q, J = 5.3 Hz, 2H), 1.89–1.73 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 164.6 (d, J = 251.9 Hz, 1C), 130.6 (d, J = 3.1 Hz, 1C), 129.2 (d, J = 8.8 Hz, 1C), 115.5 (d, J = 21.9 Hz, 1C), 44.6, 39.3, 29.8, 27.0.

4-Chloro-N-(4-chlorobutyl)benzamide (2ah)³

White solid obtained by column chromatography (PE/EA = 6:1 to 4:1); 36 mg, 73% yield; reaction time = 16 h. $R_f = 0.31$ (PE/EA = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 8.5 Hz, 2H), 7.37 (d, J = 8.5 Hz, 2H), 6.68 (s, 1H), 3.57 (t, J = 6.2 Hz, 2H), 3.45 (q, J = 6.5 Hz, 2H), 1.87–1.72 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 137.6, 132.8, 128.7, 128.3, 44.5, 39.3, 29.8, 26.9.

N-(4-Chlorobutyl)-4-cyanobenzamide (2ai)³

White solid obtained by column chromatography (PE/EA = 4:1 to 3:1); 34 mg, 72% yield; reaction time = 16 h. $R_f = 0.19$ (PE/EA = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.4 Hz, 2H), 7.74 (d, *J* = 8.4 Hz, 2H), 6.52 (s, 1H), 3.60 (t, *J* = 6.1 Hz, 2H), 3.51 (q, *J* = 6.5 Hz, 2H), 1.89–1.78 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 138.4, 132.4, 127.6, 118.0, 114.9, 44.5, 39.5, 29.7, 26.8.

N-(4-Chlorobutyl)-4-methylbenzamide (2aj)³

Colorless oil obtained by column chromatography (PE/EA = 6:1 to 5:1); 24 mg, 53% yield; reaction time = 16 h. $R_f = 0.22$ (PE/EA = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 8.2 Hz, 2H), 7.21 (d, J = 7.9 Hz, 2H), 6.38 (s, 1H), 3.57 (t, J = 6.3 Hz, 2H), 3.47 (q, J = 6.6 Hz, 2H), 2.39 (s, 3H), 1.88–1.82 (m, 2H), 1.80–1.71 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 141.8, 131.7, 129.2, 126.8, 44.6, 39.1, 29.9, 27.1, 21.4.

N-(4-Chloropentyl)-4-(*N*, *N*-dipropylsulfamoyl)benzamide (2ak)

Colorless oil obtained by column chromatography (PE/EA = 5:1); 63 mg, 81% yield; reaction time = 8 h. $R_f = 0.13$ (PE/EA = 3:1). ¹H NMR (400 MHz, CDCl₃) δ ¹H NMR (400 MHz, CDCl₃) δ ^{7.87} (d, *J* = 8.4 Hz, 2H), 7.74 (d, *J* = 8.4 Hz, 2H), 6.95 (t, *J* = 5.8 Hz, 1H), 4.11–4.03 (m, 1H), 3.47 (q, *J* = 6.2 Hz, 2H), 3.06 (t, *J* = 8.0 Hz, 1H, 3H), 1.89–1.73 (m, 4H), 1.58–1.48 (m, 7H), 0.86 (t, *J* = 7.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 142.2, 138.3, 127.7, 127.0, 58.3, 49.8, 39.6, 37.4, 26.6, 25.3, 21.8, 11.1. IR (KBr, cm⁻¹) v 3326, 3073, 2968, 1645, 1543, 1459, 1339, 1148, 1090, 993, 739, 602, 452. HRMS (ESI-TOF) calcd for C₁₈H₃₀ClN₂O₃S [M+H]⁺ 389.1660, found 389.1660.

(2S)-N-(4-Chloropentyl)-2-(6-methoxynaphthalen-2-yl)propanamide (2al)³

White solid obtained by column chromatography (PE/EA = 5:1); 44 mg, 66% yield; reaction time = 8 h. $R_f = 0.30$ (PE/EA = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 8.8 Hz, 1H), 7.71 (d, *J* = 9.5 Hz, 2H), 7.49 (dd, *J*₁ = 8.8 Hz, *J*₁ = 1.8 Hz, 1H), 7.29–7.27 (m, 1H), 5.66 (t, *J* = 5.9 Hz, 1H), 4.01 (s, 3H), 3.69 (q, *J* = 7.1 Hz, 1H), 3.17 (q, *J* = 6.9 Hz, 2H), 1.59 (d, *J* = 7.1 Hz, 2H), 1.42–1.35 (m, 2H), 1.25–1.13 (m, 4H), 0.81 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.8, 152.4, 137.4, 130.9, 129.4, 127.7, 127.4, 126.1, 124.0, 116.6, 113.9, 56.8, 46.7, 39.6, 29.1, 28.8, 22.2, 18.5, 13.8.

N-(4-Chloropentyl)-2-(2-fluoro-[1,1'-biphenyl]-4-yl)propenamide (2am)

Colorless oil obtained by column chromatography (PE/EA = 5:1); 43 mg, 62% yield; reaction time = 8 h. $R_f = 0.14$ (PE/EA = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, *J*

= 8.0 Hz, 2H), 7.46–7.35 (m, 4H), 7.16–7.12 (m, 2H), 5.64 (s, 1H), 4.02–3.94 (m, 1H), 3.57 (q, J = 7.1 Hz, 1H), 3.32–3.21 (m, 2H), 1.71–1.58 (m, 4H), 1.54 (d, J = 7.1 Hz, 3H), 1.46 (dd, $J_1 = 6.5$, $J_2 = 3.1$ Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.5, 161.0, 158.47, 142.7 (t, J = 4.0 Hz, 1C), 135.3, 131.0 (d, J = 4.0 Hz, 1C), 128.9 (d, J = 2.9Hz, 1C), 128.4, 127.8 (d, J = 40.0 Hz, 1C), 123.5 (d, J = 3.3 Hz, 1C), 115.2 (d, J =23.6 Hz, 1C), 58.2 (d, J = 4.3 Hz, 1C), 46.6, 39.0 (d, J = 7.6 Hz, 1C), 37.3 (d, J = 6.7Hz, 1C), 26.7, 25.3, 18.4 (d, J = 2.6 Hz, 1C). IR (KBr, cm⁻¹) v 3295, 3077, 2971, 2932, 1645, 1553, 1418, 1292, 1230, 1132, 928, 767, 698. HRMS (ESI-TOF) calcd for C₂₀H₂₄CIFNO [M+H]⁺ 348.1525, found 348.1524.

4-Chloro-*N*-methylpentanamide (2an)⁶

Colorless oil obtained by column chromatography (PE/EA = 2:1 to 1:1); 18 mg, 60% yield; reaction time = 16 h. $R_f = 0.25$ (PE/EA = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 5.92 (s, 1H), 4.08–4.00 (m, 1H), 2.78 (d, J = 4.7 Hz, 3H), 2.43–2.28 (m, 2H), 2.19–2.11 (m, 1H), 1.91–1.82 (m, 1H), 1.50 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 58.4, 35.6, 33.3, 26.3, 25.4.

4-Chloro-*N*-isopropylpentanamide (2ao)³

Colorless oil obtained by column chromatography (PE/EA = 6:1 to 5:1); 22 mg, 62% yield; reaction time = 16 h. $R_f = 0.50$ (PE/EA = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 5.60 (s, 1H), 4.08–3.99 (m, 2H), 2.37–2.22 (m, 2H), 2.17–2.07 (m, 1H), 1.90–1.81 (m, 1H), 1.49 (d, J = 6.6 Hz, 3H), 1.11 (d, J = 6.6 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 58.3, 41.2, 35.7, 33.6, 25.4, 22.7, 22.6.

4-Chloro-*N*,4-dimethylpentanamide (2ap)⁶

Colorless oil obtained by column chromatography (PE/EA = 2:1 to 1:1); 24 mg, 73% yield; reaction time = 16 h. $R_f = 0.32$ (PE/EA = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 5.92 (s, 1H), 2.78 (d, *J* = 4.8 Hz, 3H), 2.39 (t, *J* = 8.0 Hz, 2H), 2.07 (t, *J* = 8.0 Hz, 2H), 1.55 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 173.0, 70.4, 41.0, 32.3, 26.3, 22.3.

4-Chloro-*N*-isopropylbutanamide (2aq)³

Colorless oil obtained by column chromatography (PE/EA = 3:1); 10 mg, 31% yield; reaction time = 16 h. $R_f = 0.50$ (PE/EA = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 5.66 (s, 1H), 4.08–3.99 (m, 1H), 3.56 (t, *J* = 6.2 Hz, 2H), 2.28 (t, *J* = 7.2 Hz, 2H), 2.10–2.03 (m, 2H), 1.11 (d, *J* = 6.6 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 44.5, 41.2, 33.3, 28.1, 22.6.

N-Chloro-N-(4-chlorophenyl)pentanamide (3ar-1)

Colorless oil obtained by column chromatography (PE/EA = 80:1); 10 mg, 20% yield. $R_f = 0.79$ (PE/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 8.8 Hz, 2H), 7.34 (d, *J* = 8.7 Hz, 2H), 2.29 (s, 2H), 1.66–1.58 (m, 2H), 1.33–1.24 (m, 2H), 0.86 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 143.1, 129.7, 129.4, 128.2, 33.9, 27.5, 22.0, 13.5. IR (KBr, cm⁻¹) v 3341, 2959, 2872, 1694, 1592, 1489, 1274, 1182, 1090, 697, 526. HRMS (ESI-TOF) calcd for C₁₂H₁₄Cl₂NO [M+H]⁺ 246.0447, found 246.0444.

N-(2-Chlorophenyl)pentanamide (3ar-2)

Colorless oil obtained by column chromatography (PE/EA = 80:1); 4 mg, 10% yield. $R_f = 0.78$ (PE/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, *J* = 8.3 Hz, 1H), 7.64 (s, 1H), 7.35 (dd, *J*₁ = 8.1 Hz, *J*₂ = 1.6 Hz, 1H), 7.27–7.24 (m, 1H), 7.04–7.00 (m, 1H), 2.43 (t, *J* = 7.6 Hz, 2H), 1.77–1.69 (m, 2H), 1.47–1.38 (m, 2H), 0.96 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 134.6, 128.9, 127.7, 124.4, 122.5, 121.6, 37.7, 27.5, 22.3, 13.7. ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 143.1, 129.7, 129.4, 128.2, 33.9, 27.5, 22.0, 13.5. IR (KBr, cm⁻¹) v 3283, 2960, 1661, 1585, 1527, 1441, 1288, 1188, 1034, 757, 678. HRMS (ESI-TOF) calcd for C₁₁H₁₄Cl₂NO [M+H]⁺ 212.0837, found 212.0842.

N-(4-Chloropentyl)benzenesulfonamide (5a)⁷

Colorless oil obtained by column chromatography (PE/EA = 12:1 to 8:1); 38 mg, 73% yield; reaction time = 3 h. $R_f = 0.22$ (PE/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 7.1 Hz, 2H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.53 (t, *J* = 7.4 Hz, 2H), 5.11 (t, *J* = 6.1 Hz, 1H), 4.99–3.91 (m, 1H), 2.97 (q, *J* = 6.3 Hz, 2H), 1.79–1.55 (m, 4H), 1.45 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.2, 136.9, 129.6, 126.9, 54.8, 52.6, 48.8, 34.1, 27.7, 25.9, 25.1, 21.4.

N-(4-Chloropentyl)-4-methylbenzenesulfonamide (5b)⁷

Colorless oil obtained by column chromatography (PE/EA = 12:1 to 8:1); 39 mg, 71% yield; reaction time = 3 h. $R_f = 0.23$ (PE/EA = 5:1). ¹H NMR (600 MHz, CDCl₃) δ 7.76 (d, *J* = 8.0 Hz, 2H), 7.31 (d, *J* = 7.9 Hz, 2H), 5.00 (t, *J* = 6.3 Hz, 1H), 3.98–3.92 (m, 1H), 2.95 (q, *J* = 6.4 Hz, 2H), 2.43 (s, 3H), 1.76–1.57 (m, 4H), 1.45 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 143.4, 136.8, 129.7, 127.0, 58.0, 42.5, 36.9, 26.6, 25.3, 21.4.

N-(4-Chloropentyl)naphthalene-2-sulfonamide $(5c)^7$

White solid obtained by column chromatography (PE/EA = 8:1 to 6:1); 40 mg, 64% yield; reaction time = 3 h. $R_f = 0.15$ (PE/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 8.46 (s, 1H), 7.97–7.95 (m, 2H), 7.91–7.86 (m, 2H), 7.66–7.58 (m, 2H), 5.21 (t, *J* = 6.2 Hz, 1H), 3.96–3.88 (m, 1H), 3.00 (q, *J* = 6.2 Hz, 2H), 1.75–1.56 (m, 4H), 1.40 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 136.5, 134.7, 132.1, 129.5, 129.1, 128.8, 128.4, 127.8, 127.5, 122.2, 58.0, 42.6, 36.9, 26.6, 25.2.

N-(4-Chloropentyl)thiophene-2-sulfonamide (5d)⁷

Colorless oil obtained by column chromatography (PE/EA = 10:1 to 8:1); 36 mg, 67% yield; reaction time = 3 h. $R_f = 0.23$ (PE/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.63–7.60 (m, 2H), 7.12–7.10 (m, 1H), 4.92 (t, *J* = 6.3 Hz, 1H), 4.03–3.95 (m, 1H), 3.07 (q, *J* = 6.3 Hz, 2H), 1.80–1.61 (m, 4H), 1.49 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 140.6, 132.1, 131.9, 127.4, 58.0, 42.8, 36.9, 26.5, 25.3.

N-((1-(2-Chloropropyl)cyclohexyl)methyl)-4-methylbenzenesulfonamide (5e)³

White solid obtained by column chromatography (PE/EA = 30:1 to 20:1); 47 mg, 70% yield; reaction time = 3 h. $R_f = 0.43$ (PE/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.1 Hz, 2H), 7.31 (d, *J* = 7.9 Hz, 2H), 5.04 (dd, *J*₁ = 9.4, *J*₂ =5.1 Hz, 1H), 4.12–4.05 (m, 1H), 2.98 (dd, *J*₁ = 12.9, *J*₂ =9.4 Hz, 1H), 2.80 (dd, *J*₁ = 13.0, *J*₂ = 5.1 Hz, 1H), 2.43 (s, 3H), 1.85 (dd, *J*₁ = 16.0, *J*₁ = 9.4 Hz, 1H), 1.69 (d, *J* = 15.9 Hz, 1H), 1.49 (d, *J* = 6.6 Hz, 3H), 1.50–1.29 (m, 10H). ¹³C NMR (100 MHz, CDCl₃) δ 143.2, 136.8, 129.6, 126.9, 54.4, 48.4, 45.7, 36.1, 33.9, 33.5, 27.9, 25.8, 21.4, 21.2, 21.0.

N-(5-Chloroheptan-2-yl)-4-methylbenzenesulfonamide (5f)

Colorless oil obtained by column chromatography (PE/EA = 12:1 to 10:1); 45 mg, 74% yield; dr = 1:1; reaction time = 3 h. $R_f = 0.29$ (PE/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 8.2 Hz, 2H), 7.31 (d, *J* = 8.1 Hz, 2H), 4.78 (dd, *J*₁ = 16.0, *J*₂ = 8.5 Hz, 1H), 3.74–3.68 (m, 1H), .3.37–3.24 (m, 1H), 2.43 (s, 3H), 1.74–1.37 (m, 6H), 1.0 (dd, *J*₁ = 6.6, *J*₂ = 3.4 Hz, 3H), 0.96 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.3, 138.1, 129.6, 127.0, 65.5, 65.0, 50.0, 49.2, 34.5, 34.2, 34.1, 33.6 (2C), 31.5, 31.4, 21.8 (2C), 21.5, 10.8 (2C). IR (KBr, cm⁻¹) v 3284, 2971, 1638, 1431, 1382, 1322, 1161, 1094, 990, 815, 665, 581, 552. HRMS (ESI-TOF) calcd for C₁₄H₂₂ClNO₂SNa [M+Na]⁺ 326.0952, found 326.0957.

N-(4-Chloro-2-ethylhexyl)-4-methylbenzenesulfonamide (5g)

Colorless oil obtained by column chromatography (PE/EA = 12:1 to 10:1); 46 mg, 72% yield; dr = 1:1; reaction time = 3 h. $R_f = 0.34$ (PE/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 5.16–5.07 (m, 1H), 3.85–3.84 (m, 1H), 2.94–2.86 (m, 2H), 2.40 (s, 3H), 1.77–1.50 (m, 5H), 1.44–1.18 (m, 2H), 0.96 (t, *J* = 8.0 Hz, 3H), 0.79 (q, *J* = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.3 (2C), 136.7, 136.6, 129.6 (2C), 127.0 (2C), 63.3 (2C), 45.8, 44.1, 39.9 (2C), 36.4 (2C), 31.9 (2C), 24.6, 22.8, 21.4, 10.9, 10.8, 10.7, 10.2. IR (KBr, cm⁻¹) v 3284, 2966, 2933, 2878, 1599, 1460, 1325, 1160, 1094, 907, 815, 665, 551. HRMS (ESI-TOF) calcd for C₁₅H₂₅ClNO₂S [M+H]⁺ 318.1289, found 318.1297.

S N CI

N-(4-Chloro-2,2-dimethylpentyl)-4-methylbenzenesulfonamide (5h)³

Colorless oil obtained by column chromatography (PE/EA = 15:1 to 12:1); 43 mg, 71% yield; reaction time = 3 h. $R_f = 0.37$ (PE/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 8.3 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 5.12 (t, *J* = 7.1 Hz, 1H), 4.10–4.02 (m, 1H), 2.75 (d, *J* = 6.6 Hz, 2H), 2.42 (s, 3H), 1.81 (dd, *J*₁ = 15.5, *J*₂ = 9.1 Hz, 1H), 1.61 (dd, *J*₁ = 15.5, *J*₂ = 2.6 Hz, 1H), 1.48 (d, *J* = 6.6 Hz, 3H), 0.95 (d, *J* = 11.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 143.3, 136.8, 129.7, 126.9, 54.9, 52.4, 48.8, 34.1, 27.8, 26.1, 25.1, 21.5.

o o S N H

N-(4-Chloropentyl)methanesulfonamide (5i)⁷

Colorless oil obtained by column chromatography (PE/EA = 4:1 to 3:1); 29 mg, 73% yield; reaction time = 3 h. $R_f = 0.20$ (PE/EA = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 4.72 (s, 1H), 4.08–4.01 (m, 1H), 3.15 (q, J = 6.2 Hz, 2H), 2.96 (s, 3H), 1.82–1.66 (m, 4H), 1.51 (d, J = 6.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 58.1, 42.6, 40.2, 36.9, 27.2, 25.4.

N-(4-Chloropentyl)cyclohexanesulfonamide (5j)⁷

White solid obtained by column chromatography (PE/EA = 10:1 to 8:1); 36 mg, 67% yield; reaction time = 3 h. $R_f = 0.19$ (PE/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 4.57 (t, J = 6.4 Hz, 1H), 4.07–3.99 (m, 1H), 3.12 (q, J = 6.3 Hz, 2H), 2.84 (t, J = 12.1 Hz, 1H), 2.14 (d, J = 11.0 Hz, 2H), 1.88 (d, J = 10.0 Hz, 2H), 1.80–1.63 (m, 5H), 1.51–1.42 (m, 5H), 1.31–1.15 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 61.1, 58.1, 42.9, 36.9, 27.7, 26.4, 26.4, 25.4, 25.1, 25.0.

N-(2-(2-Chlorocyclohexyl)ethyl)-4-methylbenzenesulfonamide (5k)⁸

Colorless oil obtained by column chromatography (PE/EA = 12:1 to 10:1); 42 mg, 66% yield; reaction time = 3 h; dr = 1.5:1. $R_f = 0.32$ (PE/EA = 5:1). ¹H NMR (major) (400 MHz, CDCl₃) δ 7.76 (d, J = 8.3Hz, 2H), 7.32 (d, J = 8.1 Hz, 2H), 4.96 (t, J = 6.3 Hz, 1H), 4.24 (q, J = 2.8 Hz, 1H), 3.07–2.89 (m, 2H), 2.43 (s, 3H), 2.20–2.14 (m, 1H), 2.03-1.93 (m, 1H), 1.84-1.78 (m, 1H), 1.75-1.60 (m, 3H), 1.58-1.51 (m, 1H), 1.47-1.35 (m, 1H), 1.39–1.30 (m, 1H), 1.30–1.13 (m, 1H), 0.99–0.90 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 143.4 (2C), 136.6, 136.6, 129.7, 127.1, 127.0, 65.6, 63.9, 43.1, 40.6, 40.2, 38.6, 37.4, 34.1, 33.3, 31.4, 26.1, 26.1, 25.1, 24.9, 21.5, 19.9.

N-(4-Chloro-4-methylpentyl)-4-methylbenzenesulfonamide (51)⁷

Colorless oil obtained by column chromatography (PE/EA = 15:1); 47 mg, 81% yield; reaction time = 3 h. R_f = 0.27 (PE/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 7.8 Hz, 2H), 5.04 (t, J = 6.3 Hz, 1H), 2.96 (q, J = 6.2 Hz, 2H), 2.43 (s, 3H), 1.72–1.63 (m, 4H), 1.50 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 143.4, 136.7, 129.7, 127.0, 70.3, 43.1, 42.6, 32.3, 25.2, 21.5. Ts NCI

N-(4-Chlorobutyl)-4-methylbenzenesulfonamide (5m)⁷

Colorless oil obtained by column chromatography (PE/EA = 10:1 to 8:1); 23 mg, 44% yield; reaction time = 8 h. $R_f = 0.20$ (PE/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 8.2 Hz, 2H), 5.03 (t, J = 6.3 Hz, 1H), 3.48 (t, J = 6.4 Hz, 2H), 2.95 (q, J = 6.7 Hz, 2H), 2.43 (s, 3H), 1.82–1.74 (m, 2H), 1.65–1.58 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 143.5, 136.7, 129.7, 127.0, 44.3, 42.3, 29.3, 26.7, 21.5.

4-Chloro-N-(4-chlorobutyl)benzenesulfonamide (5n)³

Colorless oil obtained by column chromatography (PE/EA = 12:1 to 10:1); 13 mg, 23% yield; reaction time = 8 h. $R_f = 0.25$ (PE/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.5 Hz, 2H), 7.51 (d, *J* = 8.6 Hz, 2H), 4.53 (t, *J* = 6.2 Hz, 1H), 3.52 (t, *J* = 6.4 Hz, 2H), 3.01 (q, *J* = 6.7 Hz, 2H), 1.83–1.76 (m, 2H), 1.69–1.62 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 139.3, 138.3, 129.5, 128.5, 76.7, 44.2, 42.5, 29.2, 26.9.

N-(4-Chlorobutyl)-4-(trifluoromethyl)benzenesulfonamide (50)³

Colorless oil obtained by column chromatography (PE/EA = 12:1 to 10:1); 16 mg, 25% yield; reaction time = 8 h. $R_f = 0.30$ (PE/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.1 Hz, 2H), 7.81 (d, *J* = 8.1 Hz, 2H), 5.05 (t, *J* = 6.3 Hz, 1H), 3.51 (t, *J* = 6.3 Hz, 2H), 3.03 (q, *J* = 6.7 Hz, 2H), 1.83–1.76 (m, 2H), 1.70–1.63 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 143.3, 134.4 (d, *J* = 33.2 Hz, 1C), 127.5, 126.4 (q, *J* = 3.7 Hz, 1C), 124.5, 121.8, 44.2, 42.5, 29.2, 26.9.

N-(4-Chlorobutyl)-4-cyanobenzenesulfonamide (5p)

White solid obtained by column chromatography (PE/EA = 6:1 to 5:1); 15 mg, 27% yield; reaction time = 8 h. $R_f = 0.20$ (PE/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 8.4 Hz, 2H), 7.84 (d, *J* = 8.2 Hz, 2H), 4.72 (t, *J* = 6.3 Hz, 1H), 3.53 (t, *J* = 6.2 Hz, 2H), 3.05 (q, *J* = 6.6 Hz, 2H), 1.83–1.76 (m, 2H), 1.71–1.65 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 144.2, 133.0, 127.6, 117.3, 116.5, 44.1, 42.6, 29.2, 27.0. IR (KBr, cm⁻¹) v 3283, 2956, 1595, 1432, 1332, 1158, 1020, 842, 570, 518. HRMS (ESI-TOF) calcd for C₁₁H₁₄ClN₂O₂S [M+H]⁺ 273.0459, found 273.0455.

N-(4-Chlorobutyl)methanesulfonamide (5q)³

Colorless oil obtained by column chromatography (PE/EA = 3:1); 16 mg, 43% yield; reaction time = 16 h. $R_f = 0.16$ (PE/EA = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 4.66 (s,

1H), 3.58 (t, J = 6.3 Hz, 2H), 3.18 (q, J = 6.6 Hz, 2H), 2.97 (s, 3H), 1.90–1.84 (m, 2H), 1.78–1.71 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 44.3, 42.5, 40.3, 29.3, 27.4.

N-(4-Chloropentyl)butane-1-sulfonamide (5r)⁷

Colorless oil obtained by column chromatography (PE/EA = 5:1); 30 mg, 62% yield; reaction time = 3 h. $R_f = 0.17$ (PE/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 4.64 (t, *J* = 6.3 Hz, 1H), 4.07–4.00 (m, 1H), 3.12 (q, *J* = 6.3 Hz, 2H), 3.02–2.98 (m, 2H), 1.84–1.64 (m, 6H), 1.51 (d, *J* = 6.6 Hz, 3H), 1.47–1.39 (m, 2H), 0.94 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 58.1, 52.3, 42.6, 36.9, 27.4, 25.6, 25.4, 21.5, 13.6.

3-Chloro-*N*-methylbutane-1-sulfonamide (5s)⁹

Colorless oil obtained by column chromatography (PE/EA = 5:1); 23 mg, 62% yield; reaction time = 16 h. $R_f = 0.18$ (PE/EA = 3:1). ¹H NMR (600 MHz, CDCl₃) δ 4.44 (s, 1H), 4.19–4.14 (m, 1H), 3.30–3.25 (m, 1H), 3.18–3.13 (m, 1H), 2.81 (d, *J* = 5.3 Hz, 3H), 2.23–2.24 (m, 1H), 2.13–2.06 (m, 1H), 1.56 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 56.3, 48.6, 34.1, 29.3, 25.2.

3-Chloro-*N***-isopropylbutane-1-sulfonamide** (5t)³

Colorless oil obtained by column chromatography (PE/EA = 6:1); 26 mg, 61% yield; reaction time = 16 h. $R_f = 0.26$ (PE/EA = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 4.23 (d, J = 7.9 Hz, 1H), 4.19–4.12 (m, 1H), 3.68–3.59 (m, 1H), 3.31–3.23 (m, 1H), 3.18–3.11 (m, 1H), 2.32–2.23 (m, 1H), 2.15–2.05 (m, 1H), 1.56 (d, J = 6.6 Hz, 3H), 1.25 (d, J = 6.6 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 56.4, 51.1, 46.3, 34.2, 25.3, 24.3, 24.2.

N-(4-Chloropentyl)-4-(2-(p-tolyl)-4-(trifluoromethyl)cyclopenta-2,4-dien-1-yl)ben zenesulfonamide (5u)⁷

White solid obtained by column chromatography (PE/EA = 12:1 to 10:1); 63 mg, 65% yield; reaction time = 3 h. $R_f = 0.19$ (PE/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.84 (t, *J* = 8.5 Hz, 2H), 7.45 (dd, *J*₁ = 25.5 Hz, *J*₂ = 8.7 Hz, 2H), 7.25–7.10 (m, 4H), 6.75 (s, 1H), 4.84 (t, *J* = 6.1 Hz, 1H), 4.02–3.94 (m, 1H), 2.97 (q, *J* = 6.3 Hz, 2H),

2.39 (d, J = 9.7 Hz, 3H), 1.77–1.58 (m, 4H), 1.48 (d, J = 6.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.2, 144.0 (d, J = 38.9 Hz, 1C), 142.5, 141.9 (d, J = 30.0 Hz, 1C), 140.1 (d, J = 71.1 Hz, 1C), 139.3 (d, J = 29.5 Hz, 1C), 129.70 (t, J = 15.0 Hz, 1C), 128.6, 128.0 (d, J = 4.4 Hz, 1C), 125.6, 125.1, 122.7 (d, J = 79.5 Hz, 1C), 119.6, 106.3, 57.9, 42.6, 36.8, 26.6, 25.3, 21.3 (d, J = 13.6 Hz, 1C).

N-(4-Chloropentyl)-1-((1R,4S)-7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl)meth anesulfonamide (5v)⁷

Colorless oil obtained by column chromatography (PE/EA = 7:1 to 5:1); 45 mg, 67% yield; dr = 1:1; reaction time = 3 h. $R_f = 0.14$ (PE/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 5.32 (s, 1H), 4.09–4.00 (m, 1H), 3.37 (d, J = 15.0 Hz, 2H), 3.18 (s, 1H), 2.90 (d, J = 15.1 Hz, 1H), 2.38 (d, J = 18.6 Hz, 1H), 2.22–2.11 (m, 2H), 2.06–1.90 (m, 3H), 1.92–1.86 (m, 4H), 1.83–1.68 (m, 4H), 1.51 (d, J = 6.6 Hz, 1H), 1.47–1.41 (m, 3H), 0.99 (s, 1H), 0.88 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 217.3, 59.2 (2C), 58.3, 58.1, 49.2 (2C), 48.9, 48.8, 43.1, 43.0, 42.9 (2C), 42.7, 37.1, 36.9, 27.2, 27.0 (2C), 26.7, 26.6, 25.4, 19.9, 19.4.

5. References

- 1 J. Richers, M. Heilmann, M. Drees and K. Tiefenbacher, *Org. Lett.*, 2016, **18**, 6472–6475.
- 2 E. A. Wappes, S. C. Fosu, T. C. Chopko and D. A. Nagib, *Angew. Chem. Int. Ed.*, 2016, **55**, 9974–9978.
- 3 Y.-S. Zhu, J.-C. Shi and W. Yu, Org. Lett., 2020, 22, 8899–8903.
- 4 Y. Xia, L. Wang and A. Studer, Angew. Chem. Int. Ed., 2018, 57, 12940–12944.
- 5 M. F. Pouliot, O. Mah é, J. D. Hamel, J. Desroches and J. F. Paquin, *Org. Lett.*, 2012, **14**, 5428–5431.
- 6 S. P. Morcillo, E. M. Dauncey, J. H. Kim, J. J. Douglas, N. S. Sheikh and D Leonori, *Angew. Chem. Int. Ed.*, 2018, **57**, 12945–12949.
- 7 Y.-S. Zhu, J.-J. Wang, D. H. Wu and W. Yu, Asian J. Org. Chem., 2020, 9, 1650–1654.
- 8 Q. X. Qin and S.-Y. Yu, Org. Lett., 2015, 17, 1894–1897.
- 9 M. Okahara, T. Ohashi and S. Komori, J. Org. Chem., 1968, 33, 3066–3070.

6. ¹H and ¹³C NMR spectra

1ak

1am

¹H NMR (CDCl₃, 400 MHz)

4p

¹H NMR (CDCl₃, 400 MHz)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

2b

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30

-10

20 10 0

2f

2g

3, 5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 4.0 2.5 2.0 1.5 6.0 5.5 5.0 4.5 3.0 1.0 0.5 0.0

2h

2m

¹H NMR (CDCl₃, 400 MHz)

-10 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

2n

¹³C NMR (CDCl₃, 100 MHz)

2p

90 80

70 60 50 40 30

20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100

2q

10.0 7.5 7.0 3.5 9.0 8.5 8.0 4.0 1.5 9.5 6.5 5.5 5.0 4.5 3, 0 2.5 2.0 1.0 0.5 0.0 6.0

2r

¹³C NMR (CDCl₃, 100 MHz)

2t

210 200

¹H NMR (CDCl₃, 400 MHz)

90 80

70 60

190 180 170 160 150 140 130 120 110 100

50 40

30

20 10 0 -10

2u

2v

¹H NMR (CDCl₃, 400 MHz)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

 $2\mathbf{w}$

2x

2y

70 60 50 40 30 20 10

0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80

S53

2ac

2ad

2ae

8.5 8.0 7.5 10.0 7.0 6.5 4.0 3.5 9.5 9.0 6, 0 5.5 5.0 4.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

0 -10

8.5 8.0 7.5 7.0 6.5 3.5 10.0 9.5 9.0 2.0 6.0 5.5 5.0 4.5 4.0 3.0 2.5 1.5 1.0 0.5 0.0

2ai

2ak

¹H NMR (CDCl₃, 400 MHz)

2al

2am

¹H NMR (CDCl₃, 400 MHz)

2an

2ao

10.0 9.5 9.0 6.0 3.0 2.5 2.0 1.5 1.0 0.0 8.5 8.0 7.5 7.0 6.5 5.5 5.0 4.5 4.0 3.5 0.5

5b

5c

¹H NMR (CDCl₃, 400 MHz)

-10 210 200 190 180 170 160 150 140 130 120 110 100 90 80

5d

5e

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

5f

5h

-10

210 200 190 180 170 160 150 140 130 120 110 100

5j

10.0 9.5 4.5 4.0 3.5 2.5 2.0 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 3.0 1.5 1.0 0.5 0.0

51

5m

¹H NMR (CDCl₃, 400 MHz)

50

¹H NMR (CDCl₃, 400 MHz)

¹³C NMR (CDCl₃, 100 MHz)

5r

10.0 9.5 6.0 5.5 5.0 4.5 4.0 3.0 1.5 1.0 0.5 0.0 9.0 8.5 8.0 7.5 7.0 6.5 3.5 2.5 2.0

5s

¹³C NMR (CDCl₃, 150 MHz)

5t

¹H NMR (CDCl₃, 400 MHz)

10.0 9.5 1.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.0 0.5 0.0

5v

