Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Synthesis of 2-Phosphonotetrahydroquinolines with Site-Selective C-H bond Phosphonylation through Intramolecular Hydroarylation-Redox CDC Reaction

Guangzhe Li, ^{a*} Guo Yu,^b Chengdong Wang,^c Taiki Morita,^b Xuhai Zhang,^a and Hiroyuki Nakamura^{b*}

^a State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.

^b Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan.

^c Department of Nuclear Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116024, China

Table of Contents

Table of Contents	1
1. General information	2
2. Optimization of the Reaction Conditions_(Table S1)	3
3. Control Experiment	4
3.1 Research on the reaction pathway	4
3.2 Research on the radical mechanism	4
4. Representative procedure	5
4.1 Reaction of <i>N</i> -propargylaniline 1 with dimethyl phosphite 2	5
4.2 Synthesis of starting materials	12
5. Reference	19
6. Copies of ¹ H-NMR, ¹³ C-NMR spectra, ³¹ P-NMR spectra	20

1. General information

NMR spectra were recorded on a Bruker biospin AVANCE II (400 MHz for ¹H, 101 MHz for ¹³C, 162 MHz for ³¹P) instrument in the indicated solvent. Chemical shifts are reported in unit parts per million (ppm) relative to the signal (0.00 ppm) for internal tetramethylsilane for solutions in CDCl₃ (7.26 ppm for ¹H, 77.16 ppm for ¹³C). Multiplicities are reported using the following abbreviations: s; singlet, d; doublet, dd; doublet of doublets, t; triplet, q; quartet, m; multiplet, br; broad, J; coupling constants in Hertz. IR spectra were recorded on a JASCO FT/IR-4200 spectrometer. Only the strongest and/or structurally important peaks are reported as IR data given in cm⁻¹. Mass spectra were measured using a JMS-700 Mstation and Bruker micro TOF II. HRMS (EI, 70 eV) was calibrated as perfluorokerosene and HRMS (ESITOF) was calibrated as sodium formate. All reactions were monitored by thin-layer chromatography carried out on 0.2 mm E. Merck silica gel plates (60F-254) with UV light (254 nm) and visualized using an aqueous alkaline KMnO₄ solution. Gel permeation chromatography (GPC) for purification was performed on Japan Analytical Industry Model LC- 9225 NEXT (recycling preparative HPLC) and a Japan Analytical Industry Model UV-600 NEXT ultra violet detector with a polystyrene gel column (JAIGEL-1H, 20 mm x 600 mm), using chloroform as solvent (3.5 mL/min). Column chromatography was performed on Silica Gel 60 N, purchased from Fuji Silysia Chemical Ltd. Preparative thin-layer chromatography (PTLC) was performed using Wakogel B5-F silica coated plates (1.0 mm) prepared in our laboratory.

2. Optimization of the Reaction Conditions(Table S1)

Entry	Cat.	Х	Conc. (M)	Temp. (^o C)	T (h)	3aa ^[a] (%)	4aa ^[a] (%)Rec. 1a ^[a] (%)
1	Cul	1	1	120	12	42	8	N.D.
2	Cul	2	1	120	12	55	12	N.D.
3	Cul	4	1	120	12	75	9	N.D.
4	Cul	5	1	120	12	76	9	N.D.
5	Cul	6	1	120	12	78	9	N.D.
6	Cul	3	1	120	4	37	3	54
7	Cul	3	1	120	8	64	7	4
8	Cul	3	1	120	24	70	11	N.D.
9	Cul	3	1	120	36	51	17	N.D.
10	Cul	3	1	140	12	N.D.	N.D.	N.D.
11	Cul	3	1	100	12	60	8	15
12	Cul	3	1	80	12	44	4	51
13	Cul	20	1.250	120	12	60	12	N.D.
14	Cul	20	0.625	120	12	64	11	N.D.
15	Cul	20	0.500	120	12	67	15	N.D.
16	Cul	20	0.400	120	12	63	15	N.D.

^{[a] 1}H-NMR yield; ^[b] Isolated yield

3. Control Experiment

3.1 Research on the reaction pathway

Compound **8** (6), CuI (9.5 mg, 0.05 mmol) and dimethyl phosphite (79.2 mg, 0.75 mmol) in 1,2dichloroethane (0.25 mL) were stirred at 120°C for 12 hours in a closed vial tube protected with Ar (Table 1, entry 1). The resulting mixture was concentrated under reduced pressure. The residue was determined by crude ¹H NMR with 1,1,2-trichloroethane as internal standard and purified by silica gel column chromatography (petroleum ether : ethyl acetate = 1:1 (v/v)) to give the final products.

3.2 Research on the radical mechanism

Scheme S2. Research on radical mechanism

Dimethyl (1-benzyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate (**3aa**, 0.25 mmol), CuI (9.5 mg, 0.05 mmol) and dimethyl phosphite (79.2 mg, 0.75 mmol), TEMPO (9.77 mg, 0.0625 mmol) in 1,2-dichloroethane (0.25 mL) were stirred at 120°C for 12 hours in a closed vial tube protected with Ar. The resulting mixture was concentrated under reduced pressure. The residue was determined by crude ¹H NMR with 1,1,2-trichloroethane as internal standard and purified by silica gel column chromatography (hexane : ethyl acetate = 1:1 (v/v)) to give tetramethyl (1-benzyl-1,2,3,4-tetrahydroquinoline-2,4-diyl)bis(phosphonate) **4aa** as the product.

4. Representative procedure

4.1 Reaction of N-propargylaniline 1 with dimethyl phosphite 2

Represent procedure for the reaction of N-propargylaniline 1 with phosphite ester 2

N-benzyl-*N*-(2-propynyl)aniline (**1a**), CuI (9.5 mg, 0.05 mmol) and dimethyl phosphite (79.2 mg, 0.75 mmol) in 1,2-dichloroethane (0.25 mL) were stirred at 120°C for 12 hours in a closed vial tube protected with Ar. The resulting mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether : ethyl acetate = 1:1 (v/v)) to give dimethyl (1-benzyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate (**3aa**, 58 mg, 75% yield) as yellow oil.

Dimethyl (1-benzyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3aa

Following the representative procedure using *N*-Benzyl-*N*-(2-propynyl)aniline **1a** (55.3 mg, 0.25 mmol), dimethyl (1-benzyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate was obtained (58.0 mg, 0.18 mmol, 70% yield) as yellow oil. ¹H-NMR (400 MHz, CDCl₃): δ 7.21-7.34 (m, 5H), 7.01 (dd, *J* = 16.0, 8.0 Hz, 2H), 6.65 (t, *J* = 7.3 Hz, 1H), 6.61 (d, *J* = 8.3 Hz, 1H), 4.77 (ABq, *J* = 16.9 Hz, 2H), 3.88 (t, *J* = 6.0 Hz, 1H), 3.65 (q, *J* = 10.4 Hz, 6H), 3.08-3.21 (m, 1H), 2.76 (d, *J* = 14.2 Hz, 1H), 2.34-2.44 (m, 1H), 2.04-2.25 (m, 1H); ¹³C-NMR (101 MHz, CDCl₃): δ 143.5, 138.0, 129.3. 128.7, 127.2, 127.0, 126.8, 121.9, 116.9, 112.3, 55.3 (d, *J* = 154.9 Hz), 54.3, 53.1 (d, *J* = 6.8 Hz), 52.4 (d, *J* = 7.5 Hz), 24.9 (d, *J* = 3.2 Hz), 22.3; ³¹P-NMR (162 MHz, CDCl₃): δ 27.1877; FT-IR (neat) 3073, 2952, 2851, 2462, 1540, 1451, 1353, 970, 870, 733 cm⁻¹; HRMS (ESI) m/z Calcd for C₁₈H₂₂NO₃P [M+Na]⁺ : 354.1229. Found: 354.1224.

[4-(Dimethoxy-phosphoryl)-1,2,3,4-tetrahydro-quinolin-2-yl]-phosphonic acid dimethyl ester 4aa

Following the representative procedure using *N*-Benzyl-*N*-(2-propynyl)aniline **1a** (55.3 mg, 0.25 mmol), [4-(Dimethoxy-phosphoryl)-1,2,3,4-tetrahydro-quinolin-2-yl]-phosphonic acid dimethyl ester was obtained (9.9 mg, 0.10 mmol, 12% yield) as yellow oil. The configurations of Major (M) to minor is 13:1 observerd in the ³¹P-NMR spectra according to the report.^[4] ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 7.5 Hz, 1H), 7.33 (dq, *J* = 14.6, 7.1 Hz, 4H), 7.24 (q, *J* = 7.3 Hz, 1H), 6.98 (t, *J* = 7.8 Hz, 1H), 6.69 – 6.58 (m, 2H), 4.81 (d, *J* = 16.8 Hz, 1H), 4.59 (d, *J* = 16.8 Hz, 1H), 4.09 – 4.02 (m, 1H), 3.82 – 3.75 (m, 1H), 3.73 (d, *J* = 10.6 Hz, 3H), 3.62 (d, *J* = 10.5 Hz, 3H), 3.59 (d, *J* = 10.5 Hz, 3H), 3.54 (d, *J* = 10.4 Hz, 3H), 2.60 – 2.38 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 144.5 (d, *J* = 8.1 Hz), 138.0 (d, *J* = 1.0 Hz), 129.6 (d, *J* = 5.1 Hz), 128.7, 128.2, 127.2, 127.1, 117.9, 117.1 (d, *J* = 5.9 Hz), 113.7, 55.4, 54.0 (dd, *J* = 152.4,

10.8 Hz), 53.6 (d, J = 7.1 Hz), 52.7 (d, J = 7.1 Hz), 52.8 (d, J = 7.1 Hz), 52.3 (d, J = 7.5 Hz), 32.7 (dd, J = 142.1, 3.8 Hz), 25.4 (d, J = 2.9 Hz). ³¹P NMR (162 MHz, Chloroform-*d*) δ 30.86, 26.88. HRMS (ESI-TOF) m/z Calcd for C₂₀H₂₇NO₆P₂ [M+H]⁺: 440.1392. Found: 440.1377.

Dimethyl (1-benzyl-6-methoxy-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ba

Following the representative procedure using *N*-benzyl-4-methoxy-*N*-(prop-2-yn-1-yl)aniline **1b** (62.9 mg, 0.25 mmol), dimethyl (1-benzyl-6-methoxy-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate was obtained (66.9 mg, 0.19 mmol, 74% yield) as yellow oil. ¹H-NMR (400 MHz, CDCl₃): δ 7.18-7.34 (m, 5H), 6.50-6.66 (m, 3H), 4.66 (ABq, *J* = 16.9 Hz, 2H), 3.76-3.85 (m, 1H), 3.71 (s, 3H), 3.61 (q, *J* = 10.4 Hz, 6H), 3.03-3.14 (m, 1H), 2.70 (d, *J* = 14.2 Hz, 1H), 2.27-2.38 (m, 1H), 2.01-2.23 (m, 1H); ¹³C-NMR (101 MHz, CDCl₃): δ 151.5, 138.4, 137.9, 128.7, 127.1, 127.0, 123.8, 115.0, 113.9, 112.6, 55.7, 55.3 (d, *J* = 154.4 Hz), 55.4, 53.0 (d, *J* = 6.8 Hz), 52.4 (d, *J* = 7.5 Hz), 25.3 (d, *J* = 3.2 Hz), 22.5; ³¹P-NMR (162 MHz, CDCl₃): δ 27.8887; FT-IR (neat) 3027, 2948, 2831, 2462, 1505, 1452, 1352, 1207, 1026, 801, 733, 695 cm⁻¹; HRMS (ESI) m/z Calcd for C₁₉H₂₄NO₄P [M+Na]⁺ : 384.1335. Found: 384.1333.

Dimethyl (1-benzyl-6-chloro-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ca

Following the representative procedure using *N*-benzyl-4-chloro-*N*-(prop-2-yn-1-yl)aniline **1c** (63.9 mg, 0.25 mmol), dimethyl (1-benzyl-6-chloro-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate was obtained (58.5 mg, 0.16 mmol, 64% yield) as yellow solid. m.p. 93-97 °C; ¹H-NMR (400 MHz, CDCl₃): δ 7.16-7.32 (m, 5H), 6.98 (d, *J* = 2.4 Hz, 1H), 6.90 (dd, *J* = 8.8, 2.4 Hz, 1H), 6.48 (d, *J* = 8.8 Hz, 1H), 4.71 (ABq, *J* = 16.7 Hz, 1H), 3.81-3.88 (m, 1H), 3.65 (q, *J* = 10.4 Hz, 6H), 3.05-3.16 (m, 1H), 2.70 (dd, *J* = 14.2, 4.6 Hz, 1H), 2.31-2.41 (m, 1H), 1.99-2.20 (m, 1H); ¹³C-NMR (101 MHz, CDCl₃): δ 142.0, 137.5, 128.9, 128.8, 127.2, 127.0, 126.6, 123.6, 121.6, 113.4, 55.3 (d, *J* = 153.9 Hz), 54.5, 53.2 (d, *J* = 6.8 Hz), 52.5 (d, *J* = 7.5 Hz), 24.8 (d, *J* = 3.2 Hz), 22.0; ³¹P-NMR (162 MHz, CDCl₃): δ 27.1212; FT-IR (neat) 3028, 2951, 2849, 1596, 1494, 1353, 1236, 1189, 1027, 800, 733, 697, 634 cm⁻¹; HRMS (ESI) m/z Calcd for C₁₈H₂₁NO₃CIP [M+Na]⁺: 388.0838. Found: 388.0837.

Dimethyl (1-benzyl-6-methyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3da

Following the representative procedure using *N*-Benzyl-*N*-(2-propynyl)-4-methylaniline **1d** (58.8 mg, 0.25 mmol), dimethyl (1-benzyl-6-methyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate was obtained (50.1 mg, 0.15 mmol, 58% yield) as yellow oil. ¹H-NMR (400 MHz, CDCl₃): δ 7.18-7.32 (m, 5H), 6.83 (s, 1H), 6.78 (d, *J* = 8.3 Hz, 1H), 6.50 (d, *J* = 8.3 Hz, 1H), 4.71 (ABq, *J* = 16.7 Hz, 1H), 3.80-3.88 (m, 1H), 3.62 (q, *J* = 10.4 Hz, 6H), 3.03-3.15 (m, 1H), 2.69 (d, *J* = 16.2 Hz, 1H), 2.30-2.40 (m, 1H), 2.19 (s, 3H), 2.00-2.17 (m, 1H); ¹³C-NMR (101 MHz, CDCl₃): δ 141.2, 138.3, 130.0, 128.7, 127.7, 127.0, 126.9, 126.0, 122.0, 112.4, 55.3 (d, *J* = 156.6 Hz), 54.6, 53.0 (d, *J* = 6.8 Hz), 52.5 (d, *J* = 7.5 Hz), 25.0 (d, *J* = 3.2 Hz), 22.4, 20.4; ³¹P-NMR (162 MHz, CDCl₃): δ 27.7089; FT-IR (neat) 3026, 2951, 2854, 1671, 1508, 1453, 1374, 1268, 1200, 1050, 802, 733, 697 cm⁻¹; HRMS (ESI) m/z Calcd for C₁₉H₂₄NO₃P [M+Na]⁺: 368.1386. Found: 368.1386.

Dimethyl (1-benzyl-6-fluoro-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ea

Following the representative procedure using *N*-Benzyl-*N*-(2-propynyl)-4-fluoroaniline **1e** (59.8 mg, 0.25 mmol), dimethyl (1-benzyl-6-fluoro-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate was obtained (55.1 mg, 0.16 mmol, 63% yield) as yellow oil. ¹H-NMR (400 MHz, CDCl₃): δ 7.19-7.32 (m, 2H), 6.74 (dd, *J* = 8.9, 3.0 Hz, 1H), 6.67 (td, *J* = 8.6, 3.0 Hz, 1H), 6.49 (dd, *J* = 9.0, 4.6 Hz, 1H), 4.69 (ABq, *J* = 16.7 Hz, 1H), 3.80-3.86 (m, 1H), 3.63 (q, *J* = 10.4 Hz, 6H), 3.05-3.16 (m, 1H), 2.70 (dd, *J* = 16.2, 2.7 Hz, 1H), 2.30-2.40 (m, 1H), 2.01-2.23 (m, 1H); ¹³C-NMR (101 MHz, CDCl₃): δ 155.3 (d, *J* = 236.1 Hz), 139.8, 137.9, 128.7, 127.0, 126.8, 123.7, 115.6 (d, *J* = 22.2 Hz), 113.4 (d, *J* = 22.1 Hz), 113.3 (d, *J* = 6.9 Hz), 55.3 (d, *J* = 154.8 Hz), 54.5, 52.9 (d, *J* = 7.5 Hz), 52.4 (d, *J* = 7.7 Hz), 25.1 (d, *J* = 3.3 Hz), 22.2; ³¹P-NMR (162 MHz, CDCl₃): δ 27.4498; FT-IR (neat) 3467, 3028, 2952, 2851, 1504, 1353, 1205, 1028, 800, 734, 693 cm⁻¹; HRMS (ESI) m/z Calcd for C₁₈H₂₁NO₃FP [M+Na]⁺: 372.1135. Found: 372.1129.

Methyl 3-(2-(dimethoxyphosphoryl)-3,4-dihydroquinolin-1(2H)-yl) propanoate 3fa

Following the representative procedure using methyl 3-(phenyl(prop-2-yn-1-yl)amino)propanoate **1f** (54.3 mg, 0.25 mmol), methyl 3-(2-(dimethoxyphosphoryl)-3,4-dihydroquinolin-1(2H)-yl) propanoate was obtained (49.1 mg, 0.15 mmol, 60% yield) as yellow oil. ¹H-NMR (400 MHz, CDCl₃): δ 7.08 (t, J = 7.3 Hz, 1H), 6.98 (d, J = 7.3 Hz, 1H), 6.65 (t, J = 7.6 Hz, 2H), 3.91-3.97 (m, 1H), 3.81-3.90 (m,1H), 3.70-3.81 (m, 1H), 3.66 (t, J = 5.8 Hz), 3.61 (d, J = 10.3 Hz, 3H), 2.98-3.09 (m, 1H), 2.58-2.73 (m, 1H), 2.27-2.36 (m, 1H), 1.86-2.08 (m, 1H); ¹³C-NMR (101 MHz, CDCl₃): δ 172.7, 142.2, 129.5, 127.2, 122.5, 117.0, 111.6, 56.0 (d, J = 156.2 Hz), 53.0 (d, J = 7.3 Hz), 52.5 (d, J = 8.1 Hz), 51.7, 47.3, 31.5 (d, J = 1.4 Hz), 24.8 (d, J = 3.4 Hz), 22.0; ³¹P-NMR (162 MHz, CDCl₃): δ 27.3967; FT-IR (neat) 3734, 3648, 3073, 2950,

2850, 1732, 1630, 1508, 1363, 1167, 981, 853, 760. 639 cm⁻¹; HRMS (ESI) m/z Calcd for $C_{15}H_{22}NO_5P$ [M+Na]⁺: 350.1128. Found: 350.1127.

Dimethyl (1-phenyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ga

Following the representative procedure using *N*-phenyl-*N*-(prop-2-yn-1-yl)aniline **1g** (51.8 mg, 0.25 mmol), dimethyl (1-phenyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate was obtained (46.0 mg, 0.15 mmol, 58% yield) as yellow oil. ¹H-NMR (400 MHz, CDCl₃): δ 7.36-7.41 (m, 2H), 7.23-7.34 (m, 2H), 7.08 (t, *J* = 7.3 Hz, 2H), 6.95 (t, *J* = 7.0 Hz, 1H), 6.76-6.83 (m, 2H), 4.15-4.24 (m, 1H), 3.67 (d, *J* = 10.4 Hz, 3H), 3.54 (d, *J* = 10.4 Hz, 3H), 3.06-3.16 (m, 1H), 2.80 (dd, *J* = 16.7, 4.4 Hz, 1H), 2.27-2.36 (m, 1H), 2.07-2.27 (m, 1H); ¹³C-NMR (101 MHz, CDCl₃): δ 149.7, 142.5, 129.6, 129.5, 126.4, 125.3, 124.7, 124.1, 120.0, 119.5, 58.3 (d, *J* = 162.0 Hz), 53.2 (d, *J* = 6.5 Hz,), 52.7 (d, *J* = 8.0 Hz), 24.6 (d, *J* = 2.6 Hz), 21.9; ³¹P-NMR (162 MHz, CDCl₃): δ 27.0869; FT-IR (neat) 3031, 2951, 2849, 1684, 1592, 1491, 1360, 1269, 1027, 829, 755, 696 cm⁻¹; HRMS (ESI) m/z Calcd for C₁₇H₂₀NO₃P [M+Na]⁺: 340.1073. Found: 340.1071.

Dimethyl (1-allyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ha

Following the representative procedure using *N*-allyl-*N*-(prop-2-yn-1-yl)aniline **1h** (42.8 mg, 0.25 mmol), dimethyl (1-allyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate was obtained (38.0 mg, 0.13 mmol, 54% yield) as yellow oil. ¹H-NMR (400 MHz, CDCl₃): δ 7.04 (t, *J* = 7.6 Hz, 1H), 6.97 (d, *J* = 7.3 Hz, 1H), 6.66 (d, *J* = 8.3 Hz, 1H), 6.63 (t, *J* = 7.3 Hz, 1H), 5.75-5.87 (m, 1H), 5.12-5.22 (m, 2H), 4.24 (dt, *J* = 17.3, 2.0 Hz, 1H), 4.01 (ddd, *J* = 16.0, 6.0, 1.0 Hz, 1H), 3.77-3.84 (m, 1H), 3.65 (q, *J* = 10.4 Hz, 6H), 3.00-3.12 (m, 1H), 2.68 (d, *J* = 16.2 Hz, 1H), 2.30-2.40 (m, 1H), 1.88-2.10 (m, 1H); ¹³C-NMR (101 MHz, CDCl₃): δ 143.2, 133.2, 129.2, 127.1, 122.1, 116.8, 116.7, 112.3, 55.1 (d, *J* = 158.2 Hz), 53.5, 53.2 (d, *J* = 7.0 Hz), 52.5 (d, *J* = 7.8 Hz), 25.0 (d, *J* = 3.2 Hz), 22.0; ³¹P-NMR (162 MHz, CDCl₃): δ 27.3162; FT-IR (neat) 3015, 2951, 2850, 1601, 1497, 1234, 1025, 826, 745, 665 cm⁻¹; HRMS (ESI) m/z Calcd for C₁₄H₂₀NO₃P [M+Na]⁺: 304.1073. Found: 304.1074.

Dimethyl (1-methyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ia

Following the representative procedure using *N*-methyl-*N*-(prop-2-yn-1-yl)aniline **1i** (42.8 mg, 0.25 mmol), dimethyl (1-methyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate was obtained (43.4 mg, 0.17 mmol, 68% yield) as yellow oil. ¹H-NMR (400 MHz, CDCl₃): δ 7.09 (t, *J* = 7.7 Hz, 1H), 6.97 (d, *J* = 7.28 Hz, 1H), 6.63 (q, *J* = 8.4 Hz, 2H), 3.71-3.76 (m, 1H), 3.64 (t, *J* = 10.8 Hz, 6H), 3.07 (d, *J* = 0.8 Hz, 3H), 2.99-3.06 (m, 1H), 2.69 (d, *J* = 16.2 Hz, 1H), 2.28-2.38 (m, 1H), 2.00-2.21 (m, 1H); ¹³C-NMR (101 MHz, CDCl₃): δ 144.4, 128.9, 127.3, 121.9, 116.8, 111.1, 57.4 (d, *J* = 153.6 Hz), 52.9 (d, *J* = 6.4 Hz), 52.5 (d,

J = 7.6 Hz), 39.9, 24.9 (d, J = 3.3 Hz), 22.1; ³¹P-NMR (162 MHz, CDCl₃): δ 27.6214; FT-IR (neat) 2959, 2903, 2827, 1671, 1477, 1366, 1271, 1208, 1132, 1042, 840, 757, 636 cm⁻¹; HRMS (ESI) m/z Calcd for C₁₂H₁₈NO₃P [M+Na]⁺: 278.0916. Found: 278.0913.

Dimethyl (1-benzyl-4-methyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ja

Following the representative procedure using *N*-benzyl-*N*-(but-2-yn-1-yl)aniline **1j** (58.8 mg, 0.25 mmol), dimethyl (1-benzyl-4-methyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate was obtained (58.7 mg, 0.17 mmol, 68% yield) as yellow oil. The configurations were assigned by the coupling constant of 2-H and 4-H according to our previous reports.^[2] *Trans/cis* isomer total yield: 68% (total weight: 58.7 mg), a mixture of *trans*-isomer and *cis*-isomer (*trans/cis* = 8:1) observed in the ³¹P-NMR spectra. Trans isomer: yellow oil; ¹H-NMR (400 MHz, CDCl₃): δ 7.15-7.32 (m, 7H), 6.95-7.01 (m, 1H), 6.68 (t, *J* = 7.4 Hz, 2H), 6.58 (d, *J* = 8.4 Hz, 1H), 4.72 (ABq, *J* = 17.0 Hz, 2H), 3.82-3.87 (m, 1H), 3.64 (d, *J* = 10.5 Hz, 3H), 3.60 (d, *J* = 10.5 Hz, 3H), 3.15-3.26 (m, 1H), 2.31-2.39 (m, 1H), 1.80-1.99 (m, 2H), 1.36 (d, *J* = 6.7 Hz); ¹³C-NMR (101 MHz, CDCl₃): δ 143.3, 138.0, 128.7, 127.3, 127.2, 127.1, 127.0, 126.9, 117.2, 112.4, 55.3 (d, *J* = 154 Hz), 54.6, 53.0 (d, *J* = 6.4 Hz), 52.5 (d, *J* = 7.5 Hz), 31.6, 28.0 (d, *J* = 3.1 Hz), 20.7; ³¹P-NMR (162 MHz, CDCl₃): δ 28.8702, 28.4707; FT-IR (neat) 3030, 2960, 2871, 2360, 1671, 1493, 1450, 1375, 1293, 1201, 1048, 835, 731, 696 cm⁻¹; HRMS (ESI) m/z Calcd for C₁₉H₂₄NO₃P [M+Na]⁺: 368.1386.

Dimethyl (1-benzyl-4-phenyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ka

Following the representative procedure using *N*-benzyl-*N*-(3-phenylprop-2-yn-1-yl)aniline **1k** (74.4 mg, 0.25 mmol), dimethyl (1-benzyl-4-phenyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate was obtained (51.9 mg, 0.13 mmol, 51% yield) as yellow solid. The configurations were assigned by the coupling constant of 2-H and 4-H according to our previous reports.^[1] *Trans/cis* isomer total yield: 51% (total weight: 51.9 mg), a mixture of *trans*-isomer and *cis*-isomer (*trans/cis* = 9:1) observed in the ³¹P-NMR spectra. m.p. 103-107 °C; Trans isomer: ¹H-NMR (400 MHz, CDCl₃): δ 7.27-7.33 (m, 6H), 7.20-7.28 (m, 5H), 6.95-7.02 (m, 1H), 6.63-6.68 (m, 2H), 6.54 (t, *J* = 7.4 Hz, 1H), 4.77 (ABq, *J* = 17.0 Hz, 2H), 4.39 (dd, *J* = 12.0, 5.6 Hz, 1H), 3.85-3.91 (m, 1H), 3.65 (q, *J* = 10.5 Hz, 6H), 2.47-2.57 (m, 1H), 2.22-2.42 (m, 1H); ¹³C-NMR (101 MHz, CDCl₃): δ 145.6, 143.9, 138.1, 130.0, 128.9, 128.8, 128.7, 127.5. 127.2, 127.0,

126.7, 125.8, 117.2, 112.6, 55.4 (d, J = 154.0 Hz), 54.9, 53.2 (d, J = 6.8 Hz), 52.5 (d, J = 7.8 Hz), 41.1 (d, J = 2.6 Hz), 32.2; ³¹P-NMR (162 MHz, CDCl₃): δ 27.5889, 27.4191; FT-IR (neat) 3027, 2951, 2849, 1674, 1598, 1491, 1352, 1240, 1047, 827, 731, 677 cm⁻¹; HRMS (ESI) m/z Calcd for C₂₄H₂₆NO₃P [M+Na]⁺: 430.1542. Found: 430.1541.

Dimethyl (1-benzyl-4-butyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3la

Following the representative procedure using *N*-benzyl-*N*-(hept-2-yn-1-yl)aniline **11** (69.4 mg, 0.25 mmol), dimethyl (1-benzyl-4-butyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate was obtained (41.7 mg, 0.10 mmol, 43% yield) as yellow oil. The configurations were assigned by the coupling constant of 2-H and 4-H according to our previous reports.^[2] *Trans/cis* isomer total yield: 43% (total weight: 41.7 mg), a mixture of *trans*-isomer and *cis*-isomer (*trans/cis* = 6:1) observed in the ³¹P-NMR spectra. Trans isomer: yellow oil; ¹H-NMR (400 MHz, CDCl₃): δ 7.18-7.31 (m, 5H), 7.13 (d, *J* = 7.5 Hz, 1H), 6.96-7.03 (m, 1H), 6.64-6.72 (t, *J* = 8.4 Hz, 2H), 4.73 (ABq, *J* = 69.3 Hz, 2H), 3.80 (ABq, *J* = 6.0 Hz, 1H), 3.61 (q, *J* = 10.5 Hz, 6H), 2.94-3.04 (m, 1H), 2.31-2.51 (m, 1H), 1.85-2.02 (m, 1H), 1.71-1.83 (m, 1H), 1.22-1.47 (m, 6H), 0.90 (t, *J* = 6.6 Hz, 3H); ¹³C-NMR (151 MHz, CDCl₃): δ 144.1, 138.0, 128.6, 128.5, 128.0, 127.3, 127.1, 127.0, 117.5, 113.8, 55.1, 54.3 (d, *J* = 152.4 Hz), 53.1 (d, *J* = 6.6 Hz), 52.4 (d, *J* = 7.1 Hz), 34.5, 33.4 (d, *J* = 5.0 Hz), 29.0, 28.8, 23.0, 14.2; ³¹P-NMR (162 MHz, CDCl₃): δ 29.1352, 28.8756; FT-IR (neat) 3029, 2952, 2857, 1598, 1493, 1351, 1237, 1027, 821, 744, 641 cm⁻¹; HRMS (ESI) m/z Calcd for C₂₂H₃₀NO₃P [M+Na]⁺: 410.1855. Found: 410.1850.

Diethyl (1-benzyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ab

Following the representative procedure using diethyl phosphite **2b** (103.6 mg, 0.75 mmol, 96.6 µL), diethyl (1-benzyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate (69.2 mg, 0.19 mmol, 77% yield) as yellow oil. ¹H-NMR (400 MHz, CDCl₃): δ 7.18-7.32 (m, 5H), 6.96 (q, J = 7.6 Hz, 2H), 6.60 (t, J = 7.3 Hz, 1H), 6.61 (d, J = 8.3 Hz, 1H), 4.77 (ABq, J = 16.9 Hz, 2H), 3.98-4.09 (m, 3H), 3.80-3.93 (m, 2H), 3.10-3.22 (m, 1H), 2.68-2.77 (m, 1H), 2.34-2.43 (m, 1H), 2.04-2.22 (m, 1H), 1.21 (t, J = 7.0 Hz, 3H), 1.12 (t, J = 7.0 Hz, 3H); ¹³C-NMR (101 MHz, CDCl₃): δ 143.7, 138.2, 129.2, 128.7, 127.1, 127.0, 126.8, 122.1, 116.8, 112.1, 62.6 (d, J = 7.1 Hz), 61.8 (d, J = 7.6 Hz), 56.7 (d, J = 155.5 Hz), 54.3, 25.0 (d, J = 3.1 Hz), 22.4, 16.5 (d, J = 2.4 Hz), 16.4 (d, J = 2.5 Hz); ³¹P-NMR (162 MHz, CDCl₃): δ 24.9946; FT-IR (neat) 3029, 2981, 2906, 1681, 1601, 1496, 1452, 1388, 1230, 1045, 961, 735, 696 cm⁻¹; HRMS (ESI) m/z Calcd for C₂₀H₂₆NO₃P [M+Na]⁺ : 382.1542. Found: 382.1540.

Diisopropyl (1-benzyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ac

Following the representative procedure using diisopropyl phosphite **2c** (124.6 mg, 0.75 mmol, 124.6 μ L), diisopropyl (1-benzyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate (59.1 mg, 0.15 mmol, 61% yield) as yellow oil. ¹H-NMR (400 MHz, CDCl₃): δ 7.16-7.31 (m, 5H), 6.95 (q, *J* = 7.0 Hz, 2H), 6.59 (t, *J* = 7.3 Hz, 1H), 6.54 (d, *J* = 8.2 Hz, 1H), 4.82 (ABq, *J* = 17.5 Hz, 2H), 4.59-4.73 (m, 2H), 3.74- 3.81 (m, 1H), 3.10-3.22 (m, 1H), 2.70 (d, *J* = 16 Hz, 1H), 2.34-2.44 (m, 1H), 1.99-2.20 (m, 1H), 1.27 (d, *J* = 6.2 Hz, 6H), 1.22 (d, *J* = 6.2 Hz, 3H), 0.95 (d, *J* = 6.2 Hz, 3H); ¹³C-NMR (101 MHz, CDCl₃): δ 143.7, 138.3, 129.1, 128.6, 127.1, 126.8, 126.7, 122.1, 116.4, 111.9, 71.6 (d, *J* = 7.9 Hz), 70.3 (d, *J* = 8.2 Hz), 56.3 (d, *J* = 158.1 Hz), 54.1, 25.0 (d, *J* = 3.0 Hz), 24.6 (d, *J* = 2.8 Hz,), 24.2 (d, *J* = 4.0 Hz), 24.1 (d, *J* = 5.6 Hz), 23.5 (d, *J* = 5.1 Hz), 22.4; ³¹P-NMR (162 MHz, CDCl₃): δ 22.8750, 22.6391; FT-IR (neat) 3029, 2976, 2930, 1601, 1499, 1451, 1384, 1229, 1105, 979, 784, 665 cm⁻¹; HRMS (ESI) m/z Calcd for C₂₂H₃₀NO₃P [M+Na]⁺ : 410.1855. Found: 410.1850.

Dimethyl (4-benzyl-4,5,6,7-tetrahydrothieno[3,2-b]pyridin-5-yl)phosphonate 3ma

Following the representative procedure using *N*-benzyl-*N*-(prop-2-yn-1-yl)thiophen-3-amine **1m** (56.8 mg, 0.25 mmol), dimethyl (4-benzyl-4,5,6,7-tetrahydrothieno[3,2-b]pyridin-5-yl)phosphonate (17.7 mg, 0.05 mmol, 21% yield). ¹H-NMR (400 MHz, CDCl₃): δ 7.21-7.33 (m, 5H), 6.99 (d, *J* = 5.3 Hz, 1H), 6.68 (d, *J* = 5.3 Hz, 1H), 4.64 (d, *J* = 15.8 Hz, 1H), 4.42 (d, *J* = 15.8 Hz, 1H), 3.65- 3.74 (m, 1H), 3.63 (d, *J* = 10.4 Hz, 3H), 3.56 (d, *J* = 10.4 Hz, 3H), 2.84-2.95 (m, 1H), 2.70 (dd, *J* = 16.3, 5.2 Hz, 1H), 2.21-2.31 (m, 1H), 1.75-1.97 (m, 1H); ¹³C-NMR (101 MHz, CDCl₃): δ 142.2, 138.4, 128.6, 127.8, 127.5, 121.4, 118.6, 111.7, 57.6 (d, *J* = 5.1 Hz), 53.7 (d, *J* = 158.3 Hz), 53.0 (d, *J* = 6.8 Hz), 52.6 (d, *J* = 7.6 Hz), 21.8, 20.5 (d, *J* = 3.1 Hz); ³¹P-NMR (162 MHz, CDCl₃): δ 27.1969; FT-IR (neat) 3103, 2844, 1667, 1561, 1419, 1343, 1267, 1205, 1137, 1041, 976, 850, 732, 699 cm⁻¹; HRMS (ESI) m/z Calcd for C₁₆H₂₀NO₃PS [M+Na]⁺: 360.0793. Found: 360.0790.

4.2 Synthesis of starting materials

Represent procedure A of N-benzyl-N-(2-propynyl)anilines 1a-e, 1h-1j

To a solution of aniline (**5a**, 2.2 mmol) in dry CH₂Cl₂ (5 mL) was added sodium sulfate (2.0 equiv.), followed by benzaldehyde (**6a**, 2.0 mmol) at room temperature. The resultant mixture was stirred for 3 hours at room temperature. The reaction mixture was filtered and concentrated to afford the crude residue **7a** (2.0 mmol). The crude residue was continuously used in the next step without further purifications. To a solution of **7a** in MeOH (5 mL) was slowly added sodium tetrahydridoborate (2.2 equiv.) at 0°C. The reaction was monitored by TLC and after the full conversion, the solvent was removed under reduced pressure and the crude product was purified by column chromatography in silica gel to afford **8a** in quantitative. To a solution of **8a** (2.0 mmol) in DMF (5 mL) was added potassium carbonate (4.0 mmol, 2.0 equiv.) followed by propargyl bromide (2.4 mmol, 1.2 equiv.) and the resultant mixture was stirred overnight at 80°C. The reaction was quenched by saturated NH₄Cl aqueous solution and the mixture was extracted three times with ethyl acetate. The combined organic layer was washed with saturated aqueous NaCl solution, dried over anhydrous MgSO₄, and concentrated in vacuo. The resulting residue was purified by silica gel column chromatography (hexane : ethyl acetate = 49 : 1 (v:v)) to give *N*-Benzyl-*N*-(2-propynyl)aniline.

N-Benzyl-N-(2-propynyl)aniline 1a

Following the representative procedure A using *N*-benzylaniline **8a** (366.5 mg, 2.0 mmol), *N*-Benzyl-*N*-(2-propynyl)aniline was obtained (198.5 mg, 1.8 mmol, 87% yield) as light yellowish oil. ¹H NMR (400 MHz; CDCl₃): δ 7.33 (d, *J* = 4.7 Hz, 4H), 7.30-7.22 (m, 3H), 6.91 (d, *J* = 8.1 Hz, 2H), 6.82 (t, *J* = 7.3 Hz, 1H), 4.56 (s, 2H), 4.03 (d, *J* = 2.2 Hz, 2H), 2.22 (t, *J* = 2.3 Hz, 1H). Spectral data are in accordance with the reported data.^[2]

N-benzyl-4-methoxy-N-(prop-2-yn-1-yl)aniline 1b

Following the representative procedure A using *N*-benzyl-4-methoxyaniline **8b** (213.3 mg, 1.0 mmol), *N*-benzyl-4-methoxy-*N*-(prop-2-yn-1-yl)aniline was obtained (246.3 mg, 1.0 mmol, 99% yield) as white solid. ¹H NMR (400 MHz; CDCl3): 7.30-7.37 (m, 4H), 7.22-7.28 (m, 1H), 6.89-6.94 (m, 2H), 6.80-6.88 (m, 2H), 4.42 (s, 2H), 3.90 (d, J = 3.2 Hz, 2H), 3.75 (s, 3H), 2.22 (t, J = 2.4 Hz, 1H). Spectral data are in accordance with the reported data.^[2]

N-benzyl-4-chloro-*N*-(prop-2-yn-1-yl)aniline 1c

Following the representative procedure A using *N*-benzyl-4-chloroaniline **8c** (217.7 mg, 1.0 mmol), *N*-benzyl-4-chloro-*N*-(prop-2-yn-1-yl)aniline was obtained (202.1 mg, 0.8 mmol, 84% yield) as light yellow oil. ¹H NMR (400 MHz; CDCl₃): 7.23-7.37 (m, 5H), 7.18 (d, *J*= 7.8 Hz, 2H), 6.80 (d, *J*= 7.8 Hz, 2H), 4.52 (s, 2H), 4.00 (d. *J*= 2.4 Hz, 2H), 2.23 (t, *J*= 1.5 Hz, 1H). Spectral data are in accordance with the reported data.^[2]

N-Benzyl-N-(2-propynyl)-4-methylaniline 1d

Following the representative procedure A using *N*-benzyl-4-methylaniline **8c** (197.3 mg, 1.0 mmol), *N*-Benzyl-*N*-(2-propynyl)-4-methylaniline was obtained (188.3 mg, 0.8 mmol, 80% yield) as yellow oil. ¹H-NMR (400 MHz, CDCl₃): δ 7.16-7.42 (m, 5H), 7.07 (d, *J* = 8.2 Hz, 2H), 6.84 (d, *J* = 8.4 Hz, 1H), 4.50 (s, 2H), 3.98 (d, *J* = 1.9 Hz, 1H), 2.26 (s, 3H), 2.20 (t, *J* = 2.0 Hz, 1H). Spectral data are in accordance with the reported data.^[2]

N-Benzyl-N-(2-propynyl)-4-fluoroaniline 1e

Following the representative procedure A using *N*-benzyl-4-fluoroaniline **8c** (201.24 mg, 1.0 mmol), *N*-Benzyl-*N*-(2-propynyl)-4-fluoroaniline was obtained (208.4 mg, 0.9 mmol, 91% yield) as brown oil. ¹H NMR (400MHz; CDCl₃): 7.22-7.37 (m, 5H), 6.90-6.98 (m, 2H), 6.81-6.89 (m, 2H), 4.45 (s, 2H), 3.94 (d, J=2.4 Hz, 2H), 2.21 (t, J=2.4 Hz, 1H). Spectral data are in accordance with the reported data.^[2]

Synthesis of Methyl 3-(phenyl(prop-2-yn-1-yl)amino)propanoate 1f

To a sealing tube add **5a** (3.0 mmol), followed by methyl acrylate (1.1 equiv.). Then add AlCl₃ (0.6 g) to the liquid mixture. The mixture was stirred at 60°C for 4 h under Ar. The reaction was quenched by saturated NH₄Cl aqueous solution and the mixture was extracted three times with ethyl acetate. The combined organic layer was washed with saturated aqueous NaCl solution, dried over anhydrous MgSO₄, and concentrated in vacuo. The resulting residue was purified by silica gel column chromatography and gave the desired product **8f**. To a solution of **8f** (2.0 mmol) in DMF (5 mL) was added potassium carbonate (4.0 mmol, 2.0 equiv.) followed by propargyl bromide (2.4 mmol, 1.2 equiv.) and the resultant mixture was stirred overnight at 80°C. The reaction was quenched by saturated NH₄Cl aqueous solution and the mixture was extracted three times with ethyl acetate. The combined organic layer was washed with ethyl acetate aqueous NaCl solution, dried over any drouged by saturated NH₄Cl aqueous solution and the mixture was extracted three times with ethyl acetate. The combined organic layer was washed with ethyl acetate aqueous NaCl solution and the resultant mixture was extracted three times with ethyl acetate. The combined organic layer was washed with saturated aqueous NaCl solution, dried over anhydrous MgSO₄, and concentrated in vacuo. The resulting residue was purified by silica gel column chromatography (hexane : ethyl acetate = 9 : 1 (v:v)) to give methyl 3-(phenyl(prop-2-yn-1-yl)amino)propanoate as yellow oil (308.4 mg, 1.7 mmol, 57% yield).

Methyl 3-(phenyl(prop-2-yn-1-yl)amino)propanoate 1f

¹H NMR (400 MHz; CDCl₃): 7.23-7.29 (m, 2H), 6.83-6.87 (m, 2H), 6.78-6.82 (m, 1H), 4.05 (d, J = 2.4 Hz, 2H), 3.72 (t, J = 7.0 Hz, 2H), 3.68 (s, 3H), 2.67 (t, J = 6.4 Hz, 2H), 2.19 (t, J = 2.4 Hz, 1H). ¹³C NMR (101 MHz; CDCl₃): 172.6, 147.3, 129.4, 118.4, 114.0, 80.0, 72.2, 51.8, 47.3, 40.4, 32.4. HRMS (ESI) m/z Calcd for C₁₃H₁₅NO₂ [M+Na]⁺ : 240.0994. Found: 240.0993.

Synthesis of N-phenyl-N-(prop-2-yn-1-yl)aniline 1g

To a dry dimethylformamide solution (5 mL) of diphenylamine (3 mmol) was added 60% NaH (1.1equiv.) at 0 °C under Ar, and the mixture was stirred for 30 min at 0 °C. Then propargyl bromide (1.2 equiv.) was added to the reaction media and let stirring continue for 3 h at room temperature. The reaction

was quenched by saturated NH₄Cl aqueous solution and the mixture was extracted three times with ethyl acetate. The combined organic layer was washed with saturated aqueous NaCl solution, dried over anhydrous MgSO₄, and concentrated in vacuo. The resulting residue was purified by silica gel column chromatography (petroleum ether : ethyl acetate = 30 : 1 (v:v)) to give *N*-phenyl-*N*-(prop-2-yn-1-yl)aniline **1g** as light yellow oil (391.7 mg, 1.9 mmol, 63% yield).

N-phenyl-N-(prop-2-yn-1-yl)aniline 1g

¹H- NMR (400 MHz; CDCl₃): 7.32 (t, J = 8.0 Hz, 4H), 7.11 (d, J = 8.0 Hz, 4H), 7.04 (t, J = 8.0 Hz, 2H), 4.38 (d, J = 2.0 Hz, 2H), 2.20 (t, J = 2.0 Hz, 1H). Spectral data are in accordance with the reported data.^[2]

N-allyl-N-(prop-2-yn-1-yl)aniline 1h

Following the representative procedure A using *N*-allylaniline **8h** (399.5 mg, 3.0 mmol), *N*-allyl-*N*-(prop-2-yn-1-yl)aniline was obtained (442.8 mg, 2.7 mmol, 89% yield) as yellow oil. ¹H- NMR (400 MHz; CDCl₃):7.25 (t, *J*= 8.0 Hz, 2H), 6.85 (d, *J* = 8.0 Hz, 2H), 6.79 (t, *J* = 7.5 Hz, 1H), 5.86-5.91 (m, 1H), 5.27 (dd, *J* = 17.0 Hz, 1.5 Hz, 1H), 5.19 (dd, *J* = 10.5 Hz, 1.5 Hz, 1H), 4.05 (d, *J* = 2.5 Hz, 2H), 3.96 (dt, *J* = 5.5 Hz, 1.5 Hz, 2H), 2.18 (t, *J* = 2.5 Hz, 1H). Spectral data are in accordance with the reported data.^[2]

N-methyl-N-(prop-2-yn-1-yl)aniline 1i

Following the representative procedure A using *N*-methylaniline **8i** (107.2 mg, 1.0 mmol), *N*-methyl-*N*-(prop-2-yn-1-yl)aniline was obtained (103.8 mg, 0.9 mmol, 85% yield) as colorless oil. ¹H-NMR (400 MHz, CDCl₃): δ 7.29-7.38 (m, 3H), 6.85-6.95 (m, 3H), 4.10 (d, *J* = 2.3 Hz, 2H), 3.02 (s, 3H), 2.22 (t, *J* = 2.3 Hz, 1H). Spectral data are in accordance with the reported data.^[2]

N-benzyl-N-(but-2-yn-1-yl)aniline 1j

Following the representative procedure A using *N*-benzylaniline **8a** (549.7 mg, 3.0 mmol), *N*-benzyl-*N*-(but-2-yn-1-yl)aniline was obtained (308.4 mg, 1.5 mmol, 53% yield) as yellow oil. ¹H NMR (400 MHz; CDCl₃): 7.20-7.33 (m, 7H), 6.87-6.89 (m, 2H), 6.76-6.81 (m, 1H), 4.56 (s, 2H), 3.99 (q, J =2.2 Hz, 2H), 1.81 (t, J =2.3 Hz, 3H). Spectral data are in accordance with the reported data.^[2]

Represent procedure B for N-benzyl-N-(2-propynyl)anilines 1k, 1l

A mixture of aniline (2.0 mmol, 1.0 equiv), formaldehyde (40% aqueous solution) (2.2 mmol, 1.1 equiv.), phenylboronic acid (1.0 mmol, 0.5 equiv.), alkyne (1.2 mmol, 0.6 equiv.), Copper(II) acetate (0.2 mmol, 10 mmol%) and 1, 2-dichloroethane (5 mL) was stirred in a sealed glass tube at 80°C for 24 hours. After completion of the reaction, the reaction solution was filtered. After evaporating the solvents in vacuum, the residue was purified by silica gel column chromatography (hexane : ethyl acetate = 30 : 1 (v:v)) to give the pure products.

N-benzyl-N-(3-phenylprop-2-yn-1-yl)aniline 1k

Following the representative procedure b using aniline (186.2 mg, 2.0 mmol), *N*-benzyl-*N*-(3-phenylprop-2-yn-1-yl)aniline was obtained (571.1 mg, 1.9 mmol, 96% yield) as green oil. ¹H NMR (400 MHz; CDCl₃): 7.43 (d, J = 2.0 Hz, 1H), 7.21-7.38 (m, 8H), 7.14-7.18 (m, 1H), 6.90-6.94 (m, 2H), 6.82 (tt, J = 7.2 Hz, 0.96 Hz, 1H), 4.60 (s, 2H), 4.22 (s, 2H). Spectral data are in accordance with the reported data.^[2]

N-benzyl-N-(hept-2-yn-1-yl)aniline 11

Following the representative procedure b using aniline (93.1 mg, 1.0 mmol), *N*-benzyl-*N*-(hept-2-yn-1-yl)aniline was obtained (255.2 mg, 0.9 mmol, 92% yield) as yellow oil. ¹H NMR (400 MHz; CDCl₃): 7.25-7.32 (m, 4H), 7.15-7.24 (m, 3H), 6.85 (d, J = 8.0 Hz, 2H), 6.70 (t, J = 7.5 Hz, 1H), 4.52 (s, 2H), 3.97 (t, J = 6.0 Hz, 2H), 2.32-2.38 (m, 2H), 2.09-2.17 (m, 2H), 1.29-1.49 (m, 2H), 0.87 (t, J = 6.4 Hz, 3H). Spectral data are in accordance with the reported data.^[2]

Synthesis of N-benzyl-N-(prop-2-yn-1-yl)thiophen-3-amine 1m

A mixture of 3-bromothiphene (2.0 mmol), benzylamine (1.1 equiv.), DMAPO (20 mmol%), K₃PO₄ (2.0 equiv.), Copper(I) iodide (10 mmol%) and DMSO (5 mL) was stirred in a sealed glass tube at 90°C for 20 hours. After completion of the reaction, the reaction solution was filtered. After evaporating the solvents in vacuum, the residue was purified by silica gel column chromatography (hexane : ethyl acetate = 10 : 1 (v:v)) to give *N*-benzylthiophen-3-amine **8m** as deep red oil (204.4 mg, 1.1 mmol, 54% yield).

To a solution of **8m** (1.1 mmol) in DMF (5 mL) was added potassium carbonate (2.0 equiv.) followed by propargyl bromide (1.2 equiv.) and the resultant mixture was stirred at 80°C for 12 h. The reaction mixture was filtered and concentrated to afford the crude residue, which was purified by silica gel column chromatography (hexane : ethyl acetate = 10 : 1 (v:v)) to afford *N*-benzyl-*N*-(prop-2-yn-1-yl)thiophen-3amine **1o** as yellow solid (211.1 mg, 0.9 mmol, 86% yield).

N-benzylthiophen-3-amine 8m

¹H-NMR (400 MHz; CDCl₃): 7.23-7.29 (m, 5H), 7.13 (q, *J*=3.2 Hz, 1H), 6.62 (dd, *J*=1.2 Hz, 5.2 Hz, 1H), 5.95 (q, *J*=1.2 Hz, 1H), 4.24 (s, 1H), 3.92 (br, 1H). Spectral data are in accordance with the reported data.^[3]

N-benzyl-*N*-(prop-2-yn-1-yl)thiophen-3-amine 1m

¹H-NMR (400 MHz; CDCl₃): 7.31-7.38 (m, 4H), 7.26-7.30 (m, 1H), 7.23 (q, J = 3.2 Hz, 1H), 6.87 (dd, J = 1.2 Hz, 5.2 Hz, 1H), 6.26 (q, J = 1.2 Hz, 1H), 4.39 (s, 2H), 3.86 (d, J = 1.2 Hz, 2H), 2.21 (t, J = 2.4 Hz, 1H). ¹³C NMR (101 MHz; CDCl₃): 150.2, 138.1, 128.7, 128.2, 127.5, 125.4, 120.2, 100.7, 79.3, 72.7, 56.2, 41.0. HRMS (ESI) m/z Calcd for C₁₄H₁₃NS [M+H]⁺ : 228.0841. Found: 228.0839.

5. Reference

- 1 G. Li, H. Nakamura, Angew. Chem. Int. Ed. 2016, 55, 6758.
- 2 G. Li, C. Wang, Y. Li, K. Shao, G. Yu, S. Wang, X. Guo, W. Zhao and H. Nakamura, *Chem. Commun.* **2020**, 56, 7333.
- 3 Y. Zhang, X. Yang, Q. Yao, D. Ma. Org. Lett. 2012, 12, 3056.
- 4 A. D. Blieck, K. G. R. Masschelein, F. Dhaene, E. R. Sokolowska, B. Marciniak, J. Drabowiczc and C. V. Stevens, *Chem. Commun*, 2010, **46**, 258.

6. Copies of ¹H-NMR, ¹³C-NMR spectra, ³¹P-NMR spectra

Dimethyl (1-benzyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3aa

5

11

10

ģ

8

ż

3.00

6

5 4 3 2 1001 111 1010 1011 111 111 1011 111

i.

ò

-1 ppm

Dimethyl (1-benzyl-6-methoxy-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ba (³¹P NMR, 162 MHz, CDCl₃)

ppm

Dimethyl (1-benzyl-6-methyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3da (¹H NMR, 400 MHz, CDCl₃)

Dimethyl (1-benzyl-6-methyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3da (³¹P NMR, 162 MHz, CDCl₃)

Dimethyl (1-benzyl-6-fluoro-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ea (¹H NMR, 400 MHz, CDCl₃)

Dimethyl (1-benzyl-6-fluoro-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ea (¹³C NMR, 101 MHz, CDCl₃)

Methyl 3-(2-(dimethoxyphosphoryl)-3,4-dihydroquinolin-1(2H)-yl) propanoate 3fa (¹H NMR, 400 MHz, CDCl₃)

		· ·	,		
094 076 995 666 631 631 631 955 955 955	943 929 924 924 920 853	839 822 799 782	765 763 745 725 673	658 647 621 595 681 681 681	662 651 651 637 637 637 637 018 018
	n m m m m m m	m m m m m m	m m m m m m m m m	~~~~~~~~~	000000000
			551111	<u></u>	

Methyl 3-(2-(dimethoxyphosphoryl)-3,4-dihydroquinolin-1(2H)-yl) propanoate 3fa (³¹P NMR, 162 MHz, CDCl₃)

Dimethyl (1-allyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ha (³¹P NMR, 162 MHz, CDCl₃)

27.32

Dimethyl (1-benzyl-4-methyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ja (³¹P NMR, 162 MHz, CDCl₃)

Dimethyl (1-benzyl-4-phenyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ka (¹H NMR, 400 MHz, CDCl₃)

Dimethyl (1-benzyl-4-phenyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ka (¹³C NMR, 101 MHz, CDCl₃)

Dimethyl (1-benzyl-4-butyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3la (¹H NMR, 400 MHz, CDCl₃)

Dimethyl (1-benzyl-4-butyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3la (³¹P NMR, 162 MHz, CDCl₃)

Dimethyl (4-benzyl-4,5,6,7-tetrahydrothieno[3,2-b]pyridin-5-yl)phosphonate 3ma (¹H NMR, 400 MHz, CDCl₃)

Dimethyl (4-benzyl-4,5,6,7-tetrahydrothieno[3,2-b]pyridin-5-yl)phosphonate 3ma (¹³C NMR, 101 MHz, CDCl₃)

Dimethyl (4-benzyl-4,5,6,7-tetrahydrothieno[3,2-b]pyridin-5-yl)phosphonate 3ma (³¹P NMR, 162 MHz, CDCl₃)

Diethyl (1-benzyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ab

Diisopropyl (1-benzyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ac (¹³C NMR, 101 MHz, CDCl₃)

[4-(Dimethoxy-phosphoryl)-1,2,3,4-tetrahydro-quinolin-2-yl]-phosphonic acid dimethyl ester 4aa (¹H NMR, 400 MHz, CDCl₃)

671 652 332 332 332 332 332 332 332 323 253 25	245 240 051	032 747	710	688 667	832	5.60	LL8	861 861	849	845 839	7777 761	744 699	631 5.00	572	435	604 601	594 590 583	222
Law	Care Care Car	0	00	60	4 4		t m c	nma	n m	m m	m m	m m	$m \alpha$	i m e	n m	20	200	J.

[4-(Dimethoxy-phosphoryl)-1,2,3,4-tetrahydro-quinolin-2-yl]-phosphonic acid dimethyl ester 4aa (¹³C NMR, 101 MHz, CDCl₃)

[4-(Dimethoxy-phosphoryl)-1,2,3,4-tetrahydro-quinolin-2-yl]-phosphonic acid dimethyl ester 4aa (³¹P NMR, 162 MHz, CDCl₃)

