Supporting Information

Synthesis of 2-Phosphonotetrahydroquinolines with Site-Selective C-H bond Phosphonylation through Intramolecular Hydroarylation-Redox CDC Reaction

Guangzhe Li, ${ }^{a *}$ Guo Yu, ${ }^{b}$ Chengdong Wang, ${ }^{c}$ Taiki Morita, ${ }^{b}$ Xuhai Zhang, ${ }^{a}$ and Hiroyuki Nakamura ${ }^{b *}$

[^0]
Table of Contents

Table of Contents 1

1. General information 2
2. Optimization of the Reaction Conditions_(Table S1) 3
3. Control Experiment 4
3.1 Research on the reaction pathway 4
3.2 Research on the radical mechanism 4
4. Representative procedure 5
4.1 Reaction of N-propargylaniline 1 with dimethyl phosphite 2 5
4.2 Synthesis of starting materials 12
5. Reference 19
6. Copies of ${ }^{1} \mathrm{H}$-NMR, ${ }^{13} \mathrm{C}$-NMR spectra, ${ }^{31} \mathrm{P}$-NMR spectra 20

1. General information

NMR spectra were recorded on a Bruker biospin AVANCE II (400 MHz for ${ }^{1} \mathrm{H}, 101 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}, 162$ MHz for ${ }^{31} \mathrm{P}$) instrument in the indicated solvent. Chemical shifts are reported in unit parts per million (ppm) relative to the signal (0.00 ppm) for internal tetramethylsilane for solutions in CDCl_{3} (7.26 ppm for ${ }^{1} \mathrm{H}, 77.16 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$). Multiplicities are reported using the following abbreviations: s; singlet, d ; doublet, dd; doublet of doublets, t; triplet, q; quartet, m; multiplet, br; broad, J; coupling constants in Hertz. IR spectra were recorded on a JASCO FT/IR-4200 spectrometer. Only the strongest and/or structurally important peaks are reported as IR data given in cm^{-1}. Mass spectra were measured using a JMS-700 Mstation and Bruker micro TOF II. HRMS (EI, 70 eV) was calibrated as perfluorokerosene and HRMS (ESITOF) was calibrated as sodium formate. All reactions were monitored by thin-layer chromatography carried out on 0.2 mm E. Merck silica gel plates ($60 \mathrm{~F}-254$) with UV light (254 nm) and visualized using an aqueous alkaline KMnO_{4} solution. Gel permeation chromatography (GPC) for purification was performed on Japan Analytical Industry Model LC- 9225 NEXT (recycling preparative HPLC) and a Japan Analytical Industry Model UV-600 NEXT ultra violet detector with a polystyrene gel column (JAIGEL-1H, $20 \mathrm{~mm} \times 600 \mathrm{~mm}$), using chloroform as solvent ($3.5 \mathrm{~mL} / \mathrm{min}$). Column chromatography was performed on Silica Gel 60 N, purchased from Fuji Silysia Chemical Ltd. Preparative thin-layer chromatography (PTLC) was performed using Wakogel B5-F silica coated plates $(1.0 \mathrm{~mm})$ prepared in our laboratory.

2. Optimization of the Reaction Conditions(Table S1)

			$\begin{array}{ll} \text {-OMe } & \text { Cat.(20 } \\ & \text { DCE } \\ \text { Me } & \text { Temp } \end{array}$ equiv.		 3aa			
Entry	Cat.	X	Conc. (M)	Temp. (${ }^{\circ} \mathrm{C}$)	T (h)	$3 \mathbf{a a}{ }^{[a]}$ (\%)	4aa ${ }^{[a]}$ (\%)	Rec.1a ${ }^{[a]}$ (\%)
1	Cul	1	1	120	12	42	8	N.D.
2	Cul	2	1	120	12	55	12	N.D.
3	Cul	4	1	120	12	75	9	N.D.
4	Cul	5	1	120	12	76	9	N.D.
5	Cul	6	1	120	12	78	9	N.D.
6	Cul	3	1	120	4	37	3	54
7	Cul	3	1	120	8	64	7	4
8	Cul	3	1	120	24	70	11	N.D.
9	Cul	3	1	120	36	51	17	N.D.
10	Cul	3	1	140	12	N.D.	N.D.	N.D.
11	Cul	3	1	100	12	60	8	15
12	Cul	3	1	80	12	44	4	51
13	Cul	20	1.250	120	12	60	12	N.D.
14	Cul	20	0.625	120	12	64	11	N.D.
15	Cul	20	0.500	120	12	67	15	N.D.
16	Cul	20	0.400	120	12	63	15	N.D.

[a] ${ }^{1} \mathrm{H}-$ NMR yield; ${ }^{[b]}$ Isolated yield

3. Control Experiment

3.1 Research on the reaction pathway

Scheme S1. Experiments of Reaction Pathway
Compound 8 (6), CuI ($9.5 \mathrm{mg}, 0.05 \mathrm{mmol}$) and dimethyl phosphite ($79.2 \mathrm{mg}, 0.75 \mathrm{mmol}$) in 1,2dichloroethane $(0.25 \mathrm{~mL})$ were stirred at $120^{\circ} \mathrm{C}$ for 12 hours in a closed vial tube protected with Ar (Table 1, entry 1). The resulting mixture was concentrated under reduced pressure. The residue was determined by crude ${ }^{1} \mathrm{H}$ NMR with $1,1,2$-trichloroethane as internal standard and purified by silica gel column chromatography (petroleum ether : ethyl acetate $=1: 1(\mathrm{v} / \mathrm{v})$) to give the final products.

3.2 Research on the radical mechanism

Scheme S2. Research on radical mechanism
Dimethyl (1-benzyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate (3aa, 0.25 mmol), CuI ($9.5 \mathrm{mg}, 0.05$ mmol) and dimethyl phosphite ($79.2 \mathrm{mg}, 0.75 \mathrm{mmol}$), TEMPO ($9.77 \mathrm{mg}, 0.0625 \mathrm{mmol}$) in $1,2-$ dichloroethane $(0.25 \mathrm{~mL})$ were stirred at $120^{\circ} \mathrm{C}$ for 12 hours in a closed vial tube protected with Ar. The resulting mixture was concentrated under reduced pressure. The residue was determined by crude ${ }^{1} \mathrm{H}$ NMR with 1,1,2-trichloroethane as internal standard and purified by silica gel column chromatography (hexane : ethyl acetate $=1: 1(\mathrm{v} / \mathrm{v})$) to give tetramethyl (1-benzyl-1,2,3,4-tetrahydroquinoline-2,4diyl)bis(phosphonate) 4aa as the product.

4. Representative procedure

4.1 Reaction of N-propargylaniline 1 with dimethyl phosphite 2

Represent procedure for the reaction of N-propargylaniline 1 with phosphite ester 2

N-benzyl- N-(2-propynyl)aniline (1a), CuI ($9.5 \mathrm{mg}, 0.05 \mathrm{mmol}$) and dimethyl phosphite ($79.2 \mathrm{mg}, 0.75$ $\mathrm{mmol})$ in 1,2-dichloroethane $(0.25 \mathrm{~mL})$ were stirred at $120^{\circ} \mathrm{C}$ for 12 hours in a closed vial tube protected with Ar. The resulting mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether : ethyl acetate $=1: 1(\mathrm{v} / \mathrm{v})$) to give dimethyl (1-benzyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate (3aa, $58 \mathrm{mg}, 75 \%$ yield) as yellow oil.

Dimethyl (1-benzyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3aa

Following the representative procedure using N-Benzyl- N-(2-propynyl)aniline 1a ($55.3 \mathrm{mg}, 0.25$ mmol), dimethyl (1-benzyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate was obtained ($58.0 \mathrm{mg}, 0.18$ $\mathrm{mmol}, 70 \%$ yield) as yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.21-7.34$ (m, 5 H), 7.01 (dd, $J=16.0$, $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{ABq}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{t}, J=$ $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{q}, J=10.4 \mathrm{~Hz}, 6 \mathrm{H}), 3.08-3.21(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.44(\mathrm{~m}, 1 \mathrm{H})$, 2.04-2.25 (m, 1H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 143.5,138.0,129.3 .128 .7,127.2,127.0,126.8,121.9$, $116.9,112.3,55.3(\mathrm{~d}, J=154.9 \mathrm{~Hz}), 54.3,53.1(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 52.4(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 24.9(\mathrm{~d}, J=3.2 \mathrm{~Hz})$, 22.3; ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 27.1877$; FT-IR (neat) 3073, 2952, 2851, 2462, 1540, 1451, 1353, 970, 870, $733 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+}: 354.1229$. Found: 354.1224.

[4-(Dimethoxy-phosphoryl)-1,2,3,4-tetrahydro-quinolin-2-yl]-phosphonic acid dimethyl ester 4aa Following the representative procedure using N-Benzyl- N-(2-propynyl)aniline $\mathbf{1 a}$ ($55.3 \mathrm{mg}, 0.25 \mathrm{mmol}$), [4-(Dimethoxy-phosphoryl)-1,2,3,4-tetrahydro-quinolin-2-yl]-phosphonic acid dimethyl ester was obtained ($9.9 \mathrm{mg}, 0.10 \mathrm{mmol}, 12 \%$ yield) as yellow oil. The configurations of Major (M) to minor is 13:1 observerd in the ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectra according to the report. ${ }^{[4]}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dq}, J=14.6,7.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.24(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.69-6.58$ $(\mathrm{m}, 2 \mathrm{H}), 4.81(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.75(\mathrm{~m}, 1 \mathrm{H})$, 3.73 (d, $J=10.6 \mathrm{~Hz}, 3 \mathrm{H}), 3.62(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 3 \mathrm{H}), 3.59(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 3 \mathrm{H}), 3.54(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 3 \mathrm{H})$, $2.60-2.38(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.5(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 138.0(\mathrm{~d}, J=1.0 \mathrm{~Hz}), 129.6$ (d, $J=5.1 \mathrm{~Hz}), 128.7,128.2,127.2,127.1,117.9,117.1(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 113.7,55.4,54.0(\mathrm{dd}, J=152.4$,
$10.8 \mathrm{~Hz}), 53.6(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 52.7(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 52.8(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 52.3(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 32.7(\mathrm{dd}, J$ $=142.1,3.8 \mathrm{~Hz}$), 25.4 (d, $J=2.9 \mathrm{~Hz}$). ${ }^{31} \mathrm{P}$ NMR (162 MHz , Chloroform- d) $\delta 30.86,26.88$. HRMS (ESITOF) m / z Calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{6} \mathrm{P}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 440.1392$. Found: 440.1377.

Dimethyl (1-benzyl-6-methoxy-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ba

Following the representative procedure using N-benzyl-4-methoxy- N-(prop-2-yn-1-yl)aniline 1b (62.9 $\mathrm{mg}, 0.25 \mathrm{mmol}$), dimethyl (1-benzyl-6-methoxy-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate was obtained ($66.9 \mathrm{mg}, 0.19 \mathrm{mmol}, 74 \%$ yield) as yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 7.18-7.34(\mathrm{~m}$, $5 \mathrm{H}), 6.50-6.66(\mathrm{~m}, 3 \mathrm{H}), 4.66(\mathrm{ABq}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.76-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{q}, J=10.4$ $\mathrm{Hz}, 6 \mathrm{H}), 3.03-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.01-2.23(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (101 MHz, CDCl_{3}): $\delta 151.5,138.4,137.9,128.7,127.1,127.0,123.8,115.0,113.9,112.6,55.7,55.3$ (d, $J=154.4 \mathrm{~Hz}), 55.4,53.0(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 52.4(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 25.3(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 22.5 ;{ }^{31} \mathrm{P}-\mathrm{NMR}(162$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 27.8887$; FT-IR (neat) 3027, 2948, 2831, 2462, 1505, 1452, 1352, 1207, 1026, 801, 733, $695 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+}$: 384.1335. Found: 384.1333.

Dimethyl (1-benzyl-6-chloro-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ca
Following the representative procedure using N-benzyl-4-chloro- N-(prop-2-yn-1-yl)aniline 1c (63.9 $\mathrm{mg}, 0.25 \mathrm{mmol}$), dimethyl (1-benzyl-6-chloro-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate was obtained ($58.5 \mathrm{mg}, 0.16 \mathrm{mmol}, 64 \%$ yield) as yellow solid. m.p. $93-97{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.16-$ 7.32 (m, 5H), 6.98 (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{ABq}$, $J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{q}, J=10.4 \mathrm{~Hz}, 6 \mathrm{H}), 3.05-3.16(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=14.2,4.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.31-2.41 (m, 1H), 1.99-2.20 (m, 1H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 142.0,137.5,128.9$, $128.8,127.2,127.0,126.6,123.6,121.6,113.4,55.3(\mathrm{~d}, J=153.9 \mathrm{~Hz}), 54.5,53.2(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 52.5$ (d, $J=7.5 \mathrm{~Hz}$), $24.8\left(\mathrm{~d}, J=3.2 \mathrm{~Hz}\right.$), 22.0; ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 27.1212$; FT-IR (neat) 3028,2951 , 2849, 1596, 1494, 1353, 1236, 1189, 1027, 800, 733, 697, $634 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{ClP}[\mathrm{M}+\mathrm{Na}]^{+}: 388.0838$. Found: 388.0837 .

Dimethyl (1-benzyl-6-methyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3da

Following the representative procedure using N-Benzyl- N-(2-propynyl)-4-methylaniline 1d (58.8 mg , 0.25 mmol), dimethyl (1-benzyl-6-methyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate was obtained $\left(50.1 \mathrm{mg}, 0.15 \mathrm{mmol}, 58 \%\right.$ yield) as yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.18-7.32(\mathrm{~m}, 5 \mathrm{H}), 6.83$ $(\mathrm{s}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{ABq}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.88(\mathrm{~m}$, $1 \mathrm{H}), 3.62(\mathrm{q}, J=10.4 \mathrm{~Hz}, 6 \mathrm{H}), 3.03-3.15(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~s}$, $3 \mathrm{H}), 2.00-2.17(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 141.2,138.3,130.0,128.7,127.7,127.0,126.9$, $126.0,122.0,112.4,55.3(\mathrm{~d}, J=156.6 \mathrm{~Hz}), 54.6,53.0(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 52.5(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 25.0(\mathrm{~d}, J=$ 3.2 Hz), 22.4, 20.4; ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 27.7089$; FT-IR (neat) 3026, 2951, 2854, 1671, 1508, 1453, 1374, 1268, 1200, 1050, 802, 733, $697 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+}$: 368.1386. Found: 368.1386 .

Dimethyl (1-benzyl-6-fluoro-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ea

Following the representative procedure using N-Benzyl- N-(2-propynyl)-4-fluoroaniline $\mathbf{1 e}$ (59.8 mg , 0.25 mmol), dimethyl (1-benzyl-6-fluoro-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate was obtained $\left(55.1 \mathrm{mg}, 0.16 \mathrm{mmol}, 63 \%\right.$ yield) as yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.19-7.32(\mathrm{~m}, 2 \mathrm{H}), 6.74$ (dd, $J=8.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{td}, J=8.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{dd}, J=9.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{ABq}, J=$ $16.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{q}, J=10.4 \mathrm{~Hz}, 6 \mathrm{H}), 3.05-3.16(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=16.2,2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.30-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.01-2.23(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 155.3(\mathrm{~d}, J=236.1 \mathrm{~Hz})$, $139.8,137.9,128.7,127.0,126.8,123.7,115.6(\mathrm{~d}, J=22.2 \mathrm{~Hz}), 113.4(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 113.3(\mathrm{~d}, J=6.9$ Hz), 55.3 (d, $J=154.8 \mathrm{~Hz}), 54.5,52.9(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 52.4(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 25.1(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 22.2$; ${ }^{31}$ P-NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 27.4498$; FT-IR (neat) $3467,3028,2952,2851,1504,1353,1205,1028$, 800, 734, $693 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{FP}[\mathrm{M}+\mathrm{Na}]^{+}: 372.1135$. Found: 372.1129.

Methyl 3-(2-(dimethoxyphosphoryl)-3,4-dihydroquinolin-1(2H)-yl) propanoate 3fa

Following the representative procedure using methyl 3-(phenyl(prop-2-yn-1-yl)amino)propanoate if ($54.3 \mathrm{mg}, 0.25 \mathrm{mmol}$), methyl 3-(2-(dimethoxyphosphoryl)-3,4-dihydroquinolin- $1(2 \mathrm{H})$-yl) propanoate was obtained ($49.1 \mathrm{mg}, 0.15 \mathrm{mmol}, 60 \%$ yield) as yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.08(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.91-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.81-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.70-$ $3.81(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{t}, J=5.8 \mathrm{~Hz}), 3.61(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.98-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.27-$ $2.36(\mathrm{~m}, 1 \mathrm{H}), 1.86-2.08(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.7,142.2,129.5,127.2,122.5,117.0$, 111.6, $56.0(\mathrm{~d}, J=156.2 \mathrm{~Hz}), 53.0(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 52.5(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 51.7,47.3,31.5(\mathrm{~d}, J=1.4 \mathrm{~Hz})$, $24.8(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 22.0 ;{ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 27.3967$; FT-IR (neat) $3734,3648,3073,2950$,

2850, 1732, 1630, 1508, 1363, 1167, 981, 853, 760. $639 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{5} \mathrm{P}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 350.1128$. Found: 350.1127.

Dimethyl (1-phenyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ga

Following the representative procedure using N-phenyl- N-(prop-2-yn-1-yl)aniline $\mathbf{1 g}$ ($51.8 \mathrm{mg}, 0.25$ mmol), dimethyl (1-phenyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate was obtained ($46.0 \mathrm{mg}, 0.15$ $\mathrm{mmol}, 58 \%$ yield) as yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.36-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.34(\mathrm{~m}, 2 \mathrm{H})$, 7.08 (t, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $6.95(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.83(\mathrm{~m}, 2 \mathrm{H}), 4.15-4.24(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=10.4$ $\mathrm{Hz}, 3 \mathrm{H}), 3.54(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.06-3.16(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=16.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.36(\mathrm{~m}, 1 \mathrm{H})$, 2.07-2.27 (m, 1H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 149.7,142.5,129.6,129.5,126.4,125.3,124.7,124.1$, $120.0,119.5,58.3(\mathrm{~d}, J=162.0 \mathrm{~Hz}), 53.2(\mathrm{~d}, J=6.5 \mathrm{~Hz}$), 52.7 (d, $J=8.0 \mathrm{~Hz}), 24.6(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 21.9$; ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 27.0869$; FT-IR (neat) 3031, 2951, 2849, 1684, 1592, 1491, 1360, 1269, 1027, 829, 755, $696 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+}: 340.1073$. Found: 340.1071.

Dimethyl (1-allyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ha

Following the representative procedure using N-allyl- N-(prop-2-yn-1-yl)aniline $\mathbf{1 h}(42.8 \mathbf{m g}, 0.25$ mmol), dimethyl (1-allyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate was obtained ($38.0 \mathrm{mg}, 0.13 \mathrm{mmol}$, 54% yield) as yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.04(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.66(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.75-5.87(\mathrm{~m}, 1 \mathrm{H}), 5.12-5.22(\mathrm{~m}, 2 \mathrm{H}), 4.24(\mathrm{dt}, J$ $=17.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{ddd}, J=16.0,6.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{q}, J=10.4 \mathrm{~Hz}, 6 \mathrm{H})$, 3.00-3.12 (m, 1H), $2.68(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.40(\mathrm{~m}, 1 \mathrm{H}), 1.88-2.10(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (101 MHz , CDCl_{3}): $\delta 143.2,133.2,129.2,127.1,122.1,116.8,116.7,112.3,55.1(\mathrm{~d}, J=158.2 \mathrm{~Hz}), 53.5,53.2(\mathrm{~d}, J$ $=7.0 \mathrm{~Hz}), 52.5(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 25.0(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 22.0 ;{ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 27.3162$; FTIR (neat) $3015,2951,2850,1601,1497,1234,1025,826,745,665 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+}: 304.1073$. Found: 304.1074.

Dimethyl (1-methyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ia

Following the representative procedure using N-methyl- N-(prop-2-yn-1-yl)aniline $\mathbf{1 i}(42.8 \mathrm{mg}, 0.25$ mmol), dimethyl (1-methyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate was obtained ($43.4 \mathrm{mg}, 0.17$ $\mathrm{mmol}, 68 \%$ yield) as yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.09(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=7.28$ $\mathrm{Hz}, 1 \mathrm{H}), 6.63(\mathrm{q}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.71-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{t}, J=10.8 \mathrm{~Hz}, 6 \mathrm{H}), 3.07(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H})$, 2.99-3.06 (m, 1H), $2.69(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.00-2.21(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz}$, CDCl_{3}): $\delta 144.4,128.9,127.3,121.9,116.8,111.1,57.4(\mathrm{~d}, J=153.6 \mathrm{~Hz}), 52.9(\mathrm{~d}, J=6.4 \mathrm{~Hz}), 52.5(\mathrm{~d}$,
$J=7.6 \mathrm{~Hz}), 39.9,24.9(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 22.1 ;{ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 27.6214$; FT-IR (neat) 2959 , 2903, 2827, 1671, 1477, 1366, 1271, 1208, 1132, 1042, 840, 757, $636 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+}: 278.0916$. Found: 278.0913.

trans-3ja

cis-3ja

Dimethyl (1-benzyl-4-methyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ja

Following the representative procedure using N-benzyl- N-(but-2-yn-1-yl)aniline $\mathbf{1 j}$ ($58.8 \mathrm{mg}, 0.25$ mmol), dimethyl (1-benzyl-4-methyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate was obtained (58.7 $\mathrm{mg}, 0.17 \mathrm{mmol}, 68 \%$ yield) as yellow oil. The configurations were assigned by the coupling constant of 2-H and 4-H according to our previous reports. ${ }^{[2]}$ Trans/cis isomer total yield: 68\% (total weight: 58.7 mg), a mixture of trans-isomer and cis-isomer (trans/cis $=8: 1$) observed in the ${ }^{31} \mathrm{P}$-NMR spectra. Trans isomer: yellow oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.15-7.32(\mathrm{~m}, 7 \mathrm{H}), 6.95-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.68(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 6.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{ABq}, J=17.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.82-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=10.5 \mathrm{~Hz}$, $3 \mathrm{H}), 3.60(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 3 \mathrm{H}), 3.15-3.26(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.39(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.36$ (d, $J=6.7$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 143.3,138.0,128.7,127.3,127.2,127.1,127.0,126.9,117.2,112.4$, $55.3(\mathrm{~d}, J=154 \mathrm{~Hz}), 54.6,53.0(\mathrm{~d}, J=6.4 \mathrm{~Hz}), 52.5(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 31.6,28.0(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 20.7 ;{ }^{31} \mathrm{P}-$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 28.8702,28.4707$; FT-IR (neat) 3030, 2960, 2871, 2360, 1671, 1493, 1450, 1375, 1293, 1201, 1048, 835, 731, $696 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+}: 368.1386$. Found: 368.1386.

Dimethyl (1-benzyl-4-phenyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ka

Following the representative procedure using N-benzyl- N-(3-phenylprop-2-yn-1-yl)aniline 1k (74.4 $\mathrm{mg}, 0.25 \mathrm{mmol}$), dimethyl (1-benzyl-4-phenyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate was obtained ($51.9 \mathrm{mg}, 0.13 \mathrm{mmol}, 51 \%$ yield) as yellow solid. The configurations were assigned by the coupling constant of $2-\mathrm{H}$ and $4-\mathrm{H}$ according to our previous reports. ${ }^{[1]}$ Trans/cis isomer total yield: 51\% (total weight: 51.9 mg), a mixture of trans-isomer and cis-isomer (trans/cis $=9: 1$) observed in the ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectra. m.p. 103-107 ${ }^{\circ} \mathrm{C}$; Trans isomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.27-7.33(\mathrm{~m}, 6 \mathrm{H}), 7.20-7.28(\mathrm{~m}$, $5 \mathrm{H}), 6.95-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.63-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.54(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{ABq}, J=17.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.39$ (dd, $J=12.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{q}, J=10.5 \mathrm{~Hz}, 6 \mathrm{H}), 2.47-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.42(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 145.6,143.9,138.1,130.0,128.9,128.8,128.7,127.5 .127 .2,127.0$,
126.7, 125.8, 117.2, 112.6, $55.4(\mathrm{~d}, J=154.0 \mathrm{~Hz}), 54.9,53.2(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 52.5(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 41.1$ (d, $J=2.6 \mathrm{~Hz}$), 32.2; ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 27.5889$, 27.4191; FT-IR (neat) 3027, 2951, 2849, 1674, 1598, 1491, 1352, 1240, 1047, 827, 731, $677 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z Calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{P}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 430.1542$. Found: 430.1541.

trans-3la

cis-3la

Dimethyl (1-benzyl-4-butyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3la

Following the representative procedure using N-benzyl- N-(hept-2-yn-1-yl)aniline $\mathbf{1 1}$ ($69.4 \mathrm{mg}, 0.25$ mmol), dimethyl (1-benzyl-4-butyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate was obtained (41.7 mg , $0.10 \mathrm{mmol}, 43 \%$ yield) as yellow oil. The configurations were assigned by the coupling constant of $2-\mathrm{H}$ and 4-H according to our previous reports. ${ }^{[2]}$ Trans/cis isomer total yield: 43% (total weight: 41.7 mg), a mixture of trans-isomer and cis-isomer (trans/cis $=6: 1$) observed in the ${ }^{31} \mathrm{P}$-NMR spectra. Trans isomer: yellow oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.18-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.13(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-7.03(\mathrm{~m}$, $1 \mathrm{H}), 6.64-6.72(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.73(\mathrm{ABq}, J=69.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{ABq}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{q}, J$ $=10.5 \mathrm{~Hz}, 6 \mathrm{H}), 2.94-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.51(\mathrm{~m}, 1 \mathrm{H}), 1.85-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.22-1.47$ $(\mathrm{m}, 6 \mathrm{H}), 0.90(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 144.1,138.0,128.6,128.5,128.0,127.3$, $127.1,127.0,117.5,113.8,55.1,54.3(\mathrm{~d}, J=152.4 \mathrm{~Hz}), 53.1(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 52.4(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 34.5$, 33.4 (d, $J=5.0 \mathrm{~Hz}$), 29.0, 28.8, 23.0, 14.2; ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 29.1352,28.8756$; FT-IR (neat) 3029, 2952, 2857, 1598, 1493, 1351, 1237, 1027, 821, 744, $641 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z Calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+}: 410.1855$. Found: 410.1850.

Diethyl (1-benzyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ab

Following the representative procedure using diethyl phosphite 2b ($103.6 \mathrm{mg}, 0.75 \mathrm{mmol}, 96.6 \mu \mathrm{~L}$), diethyl (1-benzyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate ($69.2 \mathrm{mg}, 0.19 \mathrm{mmol}, 77 \%$ yield) as yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.18-7.32(\mathrm{~m}, 5 \mathrm{H}), 6.96(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{ABq}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.98-4.09(\mathrm{~m}, 3 \mathrm{H}), 3.80-3.93(\mathrm{~m}, 2 \mathrm{H})$, $3.10-3.22(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.04-2.22(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.12(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 143.7,138.2,129.2,128.7,127.1,127.0,126.8$, $122.1,116.8,112.1,62.6(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 61.8(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 56.7(\mathrm{~d}, J=155.5 \mathrm{~Hz}), 54.3,25.0(\mathrm{~d}, J=$ $3.1 \mathrm{~Hz}), 22.4,16.5(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 16.4(\mathrm{~d}, J=2.5 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 24.9946$; FT-IR (neat) 3029, 2981, 2906, 1681, 1601, 1496, 1452, 1388, 1230, 1045, 961, 735, $696 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+}: 382.1542$. Found: 382.1540.

Diisopropyl (1-benzyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ac

Following the representative procedure using diisopropyl phosphite $\mathbf{2 c}(124.6 \mathrm{mg}, 0.75 \mathrm{mmol}, 124.6$ $\mu \mathrm{L}$), diisopropyl (1-benzyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate ($59.1 \mathrm{mg}, 0.15 \mathrm{mmol}, 61 \%$ yield) as yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.16-7.31(\mathrm{~m}, 5 \mathrm{H}), 6.95(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{ABq}, J=17.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.59-4.73(\mathrm{~m}, 2 \mathrm{H}), 3.74-3.81(\mathrm{~m}, 1 \mathrm{H})$, 3.10-3.22 (m, 1H), $2.70(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.44(\mathrm{~m}, 1 \mathrm{H}), 1.99-2.20(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $6 \mathrm{H}), 1.22(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 143.7,138.3$, 129.1, 128.6, 127.1, 126.8, 126.7, 122.1, 116.4, 111.9, 71.6 (d, $J=7.9 \mathrm{~Hz}), 70.3(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 56.3$ (d, $J=158.1 \mathrm{~Hz}), 54.1,25.0(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 24.6(\mathrm{~d}, J=2.8 \mathrm{~Hz}),, 24.2(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 24.1(\mathrm{~d}, J=5.6 \mathrm{~Hz})$, 23.5 (d, $J=5.1 \mathrm{~Hz}$), 22.4; ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 22.8750$, 22.6391; FT-IR (neat) 3029, 2976, 2930, 1601, 1499, 1451, 1384, 1229, 1105, 979, 784, $665 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z Calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{P}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 410.1855$. Found: 410.1850.

Dimethyl (4-benzyl-4,5,6,7-tetrahydrothieno[3,2-b]pyridin-5-yl)phosphonate 3ma

Following the representative procedure using N-benzyl- N-(prop-2-yn-1-yl)thiophen-3-amine $\mathbf{1 m}$ (56.8 $\mathrm{mg}, 0.25 \mathrm{mmol}$), dimethyl (4-benzyl-4,5,6,7-tetrahydrothieno[3,2-b]pyridin-5-yl)phosphonate (17.7 mg , $0.05 \mathrm{mmol}, 21 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.21-7.33(\mathrm{~m}, 5 \mathrm{H}), 6.99(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.68$ $(\mathrm{d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=$ $10.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.56(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.84-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=16.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.31(\mathrm{~m}$, $1 \mathrm{H}), 1.75-1.97(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 142.2,138.4,128.6,127.8,127.5,121.4,118.6$, 111.7, 57.6 (d, $J=5.1 \mathrm{~Hz}$), $53.7(\mathrm{~d}, J=158.3 \mathrm{~Hz}), 53.0(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 52.6(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 21.8,20.5$ (d, $J=3.1 \mathrm{~Hz}$); ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 27.1969$; FT-IR (neat) 3103, 2844, 1667, 1561, 1419, 1343, 1267, 1205, 1137, 1041, 976, 850, 732, $699 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{PS}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 360.0793$. Found: 360.0790.

4.2 Synthesis of starting materials

Represent procedure A of N-benzyl- N-(2-propynyl)anilines 1a-e, 1h-1j

To a solution of aniline ($\mathbf{5 a}, 2.2 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added sodium sulfate (2.0 equiv.), followed by benzaldehyde ($\mathbf{6 a}, 2.0 \mathrm{mmol}$) at room temperature. The resultant mixture was stirred for 3 hours at room temperature. The reaction mixture was filtered and concentrated to afford the crude residue $7 \mathbf{a}(2.0 \mathrm{mmol})$. The crude residue was continuously used in the next step without further purifications. To a solution of $7 \mathbf{a}$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ was slowly added sodium tetrahydridoborate (2.2 equiv.) at $0^{\circ} \mathrm{C}$. The reaction was monitored by TLC and after the full conversion, the solvent was removed under reduced pressure and the crude product was purified by column chromatography in silica gel to afford $\mathbf{8 a}$ in quantitative. To a solution of $\mathbf{8 a}(2.0 \mathrm{mmol})$ in DMF (5 mL) was added potassium carbonate (4.0 mmol , 2.0 equiv.) followed by propargyl bromide ($2.4 \mathrm{mmol}, 1.2$ equiv.) and the resultant mixture was stirred overnight at $80^{\circ} \mathrm{C}$. The reaction was quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution and the mixture was extracted three times with ethyl acetate. The combined organic layer was washed with saturated aqueous NaCl solution, dried over anhydrous MgSO_{4}, and concentrated in vacuo. The resulting residue was purified by silica gel column chromatography (hexane : ethyl acetate $=49: 1(\mathrm{v}: \mathrm{v})$) to give N-Benzyl- N -(2-propynyl)aniline.

N-Benzyl- N-(2-propynyl)aniline 1a

Following the representative procedure A using N-benzylaniline $\mathbf{8 a}$ ($366.5 \mathrm{mg}, 2.0 \mathrm{mmol}$), N-Benzyl-N-(2-propynyl)aniline was obtained ($198.5 \mathrm{mg}, 1.8 \mathrm{mmol}, 87 \%$ yield) as light yellowish oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.33$ (d, $J=4.7 \mathrm{~Hz}, 4 \mathrm{H}$), $7.30-7.22(\mathrm{~m}, 3 \mathrm{H}), 6.91(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 4.03(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$. Spectral data are in accordance with the reported data. ${ }^{[2]}$

N-benzyl-4-methoxy- N-(prop-2-yn-1-yl)aniline 1b

Following the representative procedure A using N-benzyl-4-methoxyaniline $\mathbf{8 b}$ ($213.3 \mathrm{mg}, 1.0 \mathrm{mmol}$), N-benzyl-4-methoxy- N-(prop-2-yn-1-yl)aniline was obtained ($246.3 \mathrm{mg}, 1.0 \mathrm{mmol}, 99 \%$ yield) as white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz ; CDCl3): 7.30-7.37 (m, 4H), 7.22-7.28 (m, 1H), 6.89-6.94 (m, 2H), 6.80-6.88 $(\mathrm{m}, 2 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 3.90(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$. Spectral data are in accordance with the reported data. ${ }^{[2]}$

N-benzyl-4-chloro- N-(prop-2-yn-1-yl)aniline 1c

Following the representative procedure A using N-benzyl-4-chloroaniline $\mathbf{8 c}(217.7 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathrm{N}$ -benzyl-4-chloro- N-(prop-2-yn-1-yl)aniline was obtained ($202.1 \mathrm{mg}, 0.8 \mathrm{mmol}, 84 \%$ yield) as light yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): 7.23-7.37 (m, 5 H), 7.18 (d, $\left.J=7.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $4.52(\mathrm{~s}, 2 \mathrm{H}), 4.00(\mathrm{~d} . J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.23(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$. Spectral data are in accordance with the reported data. ${ }^{[2]}$

N-Benzyl- N-(2-propynyl)-4-methylaniline 1d

Following the representative procedure A using N-benzyl-4-methylaniline 8c ($197.3 \mathrm{mg}, 1.0 \mathrm{mmol}$), N-Benzyl- N-(2-propynyl)-4-methylaniline was obtained ($188.3 \mathrm{mg}, 0.8 \mathrm{mmol}, 80 \%$ yield) as yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.16-7.42(\mathrm{~m}, 5 \mathrm{H}), 7.07(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.50$ $(\mathrm{s}, 2 \mathrm{H}), 3.98(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$. Spectral data are in accordance with the reported data. ${ }^{[2]}$

N-Benzyl- N-(2-propynyl)-4-fluoroaniline 1e

Following the representative procedure A using N-benzyl-4-fluoroaniline $\mathbf{8 c}(201.24 \mathrm{mg}, 1.0 \mathrm{mmol})$, N-Benzyl- N-(2-propynyl)-4-fluoroaniline was obtained ($208.4 \mathrm{mg}, 0.9 \mathrm{mmol}, 91 \%$ yield) as brown oil. ${ }^{1} \mathrm{H}$ NMR (400MHz; CDCl_{3}): 7.22-7.37 (m, 5H), 6.90-6.98 (m, 2H), 6.81-6.89 (m, 2H), $4.45(\mathrm{~s}, 2 \mathrm{H}), 3.94$ (d, $J=2.4 \mathrm{~Hz}, 2 \mathrm{H}$), $2.21(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$. Spectral data are in accordance with the reported data. ${ }^{[2]}$

Synthesis of Methyl 3-(phenyl(prop-2-yn-1-yl)amino)propanoate 1f

To a sealing tube add $\mathbf{5 a}(3.0 \mathrm{mmol})$, followed by methyl acrylate (1.1 equiv.). Then add $\mathrm{AlCl}_{3}(0.6 \mathrm{~g})$ to the liquid mixture. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 4 h under Ar. The reaction was quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution and the mixture was extracted three times with ethyl acetate. The combined organic layer was washed with saturated aqueous NaCl solution, dried over anhydrous MgSO_{4}, and concentrated in vacuo. The resulting residue was purified by silica gel column chromatography and gave the desired product $\mathbf{8 f}$. To a solution of $\mathbf{8 f}(2.0 \mathrm{mmol})$ in DMF $(5 \mathrm{~mL})$ was added potassium carbonate ($4.0 \mathrm{mmol}, 2.0$ equiv.) followed by propargyl bromide ($2.4 \mathrm{mmol}, 1.2$ equiv.) and the resultant mixture was stirred overnight at $80^{\circ} \mathrm{C}$. The reaction was quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution and the mixture was extracted three times with ethyl acetate. The combined organic layer was washed with saturated aqueous NaCl solution, dried over anhydrous MgSO_{4}, and concentrated in vacuo. The resulting residue was purified by silica gel column chromatography (hexane : ethyl acetate $=9: 1(\mathrm{v}: \mathrm{v})$) to give methyl 3-(phenyl(prop-2-yn-1-yl)amino)propanoate as yellow oil ($308.4 \mathrm{mg}, 1.7 \mathrm{mmol}, 57 \%$ yield).

Methyl 3-(phenyl(prop-2-yn-1-yl)amino)propanoate 1f

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): 7.23-7.29 (m, 2H), 6.83-6.87 (m, 2H), 6.78-6.82 (m, 1H), 4.05 (d, $J=$ $2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz; CDCl_{3}): 172.6, 147.3, 129.4, 118.4, 114.0, 80.0, 72.2, 51.8, 47.3, 40.4, 32.4. HRMS (ESI) m/z Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 240.0994$. Found: 240.0993.

Synthesis of N-phenyl- N-(prop-2-yn-1-yl)aniline 1 g

To a dry dimethylformamide solution (5 mL) of diphenylamine (3 mmol) was added $60 \% \mathrm{NaH}$ (1.1equiv.) at $0^{\circ} \mathrm{C}$ under Ar , and the mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$. Then propargyl bromide (1.2 equiv.) was added to the reaction media and let stirring continue for 3 h at room temperature. The reaction
was quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution and the mixture was extracted three times with ethyl acetate. The combined organic layer was washed with saturated aqueous NaCl solution, dried over anhydrous MgSO_{4}, and concentrated in vacuo. The resulting residue was purified by silica gel column chromatography (petroleum ether : ethyl acetate $=30: 1$ (v:v)) to give N-phenyl- N-(prop-2-yn-1yl)aniline $\mathbf{1 g}$ as light yellow oil ($391.7 \mathrm{mg}, 1.9 \mathrm{mmol}, 63 \%$ yield).

N -phenyl- N -(prop-2-yn-1-yl)aniline 1 g

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): 7.32(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.04(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 4.38(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$. Spectral data are in accordance with the reported data. ${ }^{[2]}$

N-allyl- N-(prop-2-yn-1-yl)aniline 1 h

Following the representative procedure A using N-allylaniline $\mathbf{8 h}(399.5 \mathrm{mg}, 3.0 \mathrm{mmol}), \mathrm{N}$-allyl -N -(prop-2-yn-1-yl)aniline was obtained ($442.8 \mathrm{mg}, 2.7 \mathrm{mmol}, 89 \%$ yield) as yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right): 7.25(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.86-5.91(\mathrm{~m}$, $1 \mathrm{H}), 5.27$ (dd, $J=17.0 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.19$ (dd, $J=10.5 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.96$ (dt, $J=5.5 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$. Spectral data are in accordance with the reported data. ${ }^{[2]}$

N-methyl- N-(prop-2-yn-1-yl)aniline 1 i

Following the representative procedure A using N-methylaniline $\mathbf{8 i}(107.2 \mathrm{mg}, 1.0 \mathrm{mmol}), N$-methylN -(prop-2-yn-1-yl)aniline was obtained ($103.8 \mathrm{mg}, 0.9 \mathrm{mmol}, 85 \%$ yield) as colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.29-7.38(\mathrm{~m}, 3 \mathrm{H}), 6.85-6.95(\mathrm{~m}, 3 \mathrm{H}), 4.10(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{t}, J=$ $2.3 \mathrm{~Hz}, 1 \mathrm{H})$. Spectral data are in accordance with the reported data. ${ }^{[2]}$

N -benzyl- N -(but-2-yn-1-yl)aniline $\mathbf{1 j}$

Following the representative procedure A using N-benzylaniline $\mathbf{8 a}(549.7 \mathrm{mg}, 3.0 \mathrm{mmol}$), N-benzylN -(but-2-yn-1-yl)aniline was obtained ($308.4 \mathrm{mg}, 1.5 \mathrm{mmol}, 53 \%$ yield) as yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz} ; \mathrm{CDCl}_{3}$): 7.20-7.33 (m, 7H), 6.87-6.89 (m, 2H), 6.76-6.81 (m, 1H), 4.56 (s, 2H), 3.99 (q, J=2.2 Hz, $2 \mathrm{H}), 1.81(\mathrm{t}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H})$. Spectral data are in accordance with the reported data. ${ }^{[2]}$

Represent procedure B for \boldsymbol{N}-benzyl- \boldsymbol{N}-(2-propynyl)anilines $\mathbf{1 k}$, 11

A mixture of aniline ($2.0 \mathrm{mmol}, 1.0$ equiv), formaldehyde (40% aqueous solution) ($2.2 \mathrm{mmol}, 1.1$ equiv.), phenylboronic acid ($1.0 \mathrm{mmol}, 0.5$ equiv.), alkyne ($1.2 \mathrm{mmol}, 0.6$ equiv.), Copper(II) acetate ($0.2 \mathrm{mmol}, 10 \mathrm{mmol} \%$) and 1, 2-dichloroethane (5 mL) was stirred in a sealed glass tube at $80^{\circ} \mathrm{C}$ for 24 hours. After completion of the reaction, the reaction solution was filtered. After evaporating the solvents in vacuum, the residue was purified by silica gel column chromatography (hexane : ethyl acetate $=30: 1$ (v:v)) to give the pure products.

N-benzyl- N-(3-phenylprop-2-yn-1-yl)aniline 1 k

Following the representative procedure b using aniline ($186.2 \mathrm{mg}, 2.0 \mathrm{mmol}$), N-benzyl- N -(3-phenylprop-2-yn-1-yl)aniline was obtained ($571.1 \mathrm{mg}, 1.9 \mathrm{mmol}, 96 \%$ yield) as green oil. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz} ; \mathrm{CDCl}_{3}$): $7.43(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.38(\mathrm{~m}, 8 \mathrm{H}), 7.14-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.90-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.82$ $(\mathrm{tt}, J=7.2 \mathrm{~Hz}, 0.96 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 4.22(\mathrm{~s}, 2 \mathrm{H})$. Spectral data are in accordance with the reported data. ${ }^{[2]}$

N-benzyl- N-(hept-2-yn-1-yl)aniline 11

Following the representative procedure b using aniline ($93.1 \mathrm{mg}, 1.0 \mathrm{mmol}$), N-benzyl- N-(hept-2-yn1 -yl)aniline was obtained ($255.2 \mathrm{mg}, 0.9 \mathrm{mmol}, 92 \%$ yield) as yellow oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$: 7.25-7.32 (m, 4H), 7.15-7.24 (m, 3H), $6.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 3.97$ $(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.32-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.09-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.49(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$. Spectral data are in accordance with the reported data. ${ }^{[2]}$

Synthesis of N-benzyl- N-(prop-2-yn-1-yl)thiophen-3-amine 1m

A mixture of 3-bromothiphene (2.0 mmol), benzylamine (1.1 equiv.), DMAPO ($20 \mathrm{mmol} \%$), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (2.0 equiv.), Copper(I) iodide ($10 \mathrm{mmol} \%$) and DMSO (5 mL) was stirred in a sealed glass tube at $90^{\circ} \mathrm{C}$ for 20 hours. After completion of the reaction, the reaction solution was filtered. After evaporating the solvents in vacuum, the residue was purified by silica gel column chromatography (hexane : ethyl acetate $=10: 1(\mathrm{v}: \mathrm{v}))$ to give N-benzylthiophen-3-amine $\mathbf{8 m}$ as deep red oil ($204.4 \mathrm{mg}, 1.1 \mathrm{mmol}, 54 \%$ yield).

To a solution of $\mathbf{8 m}(1.1 \mathrm{mmol})$ in DMF (5 mL) was added potassium carbonate (2.0 equiv.) followed by propargyl bromide (1.2 equiv.) and the resultant mixture was stirred at $80^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was filtered and concentrated to afford the crude residue, which was purified by silica gel column chromatography (hexane : ethyl acetate $=10: 1(\mathrm{v}: \mathrm{v})$) to afford N-benzyl- N-(prop-2-yn-1-yl)thiophen-3amine 10 as yellow solid ($211.1 \mathrm{mg}, 0.9 \mathrm{mmol}, 86 \%$ yield).

N -benzylthiophen-3-amine 8m
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): 7.23-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.13(\mathrm{q}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{dd}, J=1.2 \mathrm{~Hz}, 5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.95(\mathrm{q}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{br}, 1 \mathrm{H})$. Spectral data are in accordance with the reported data. ${ }^{[3]}$

N-benzyl- N-(prop-2-yn-1-yl)thiophen-3-amine 1m
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): 7.31-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{q}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}$, $J=1.2 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{q}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{t}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): 150.2, 138.1, 128.7, 128.2, 127.5, 125.4, 120.2, 100.7, 79.3, 72.7, 56.2, 41.0. HRMS (ESI) m/z Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NS}[\mathrm{M}+\mathrm{H}]^{+}: 228.0841$. Found: 228.0839.

5. Reference

1 G. Li, H. Nakamura, Angew. Chem. Int. Ed. 2016, 55, 6758.
2 G. Li, C. Wang, Y. Li, K. Shao, G. Yu, S. Wang, X. Guo, W. Zhao and H. Nakamura, Chem. Commun. 2020, 56, 7333.
3 Y. Zhang, X. Yang, Q. Yao, D. Ma. Org. Lett. 2012, 12, 3056.
4 A. D. Blieck, K. G. R. Masschelein, F. Dhaene, E. R. Sokolowska, B. Marciniak, J. Drabowiczc and C. V. Stevens, Chem. Commun, 2010, 46, 258.

6. Copies of ${ }^{1} \mathbf{H}$-NMR, ${ }^{13} \mathrm{C}$-NMR spectra, ${ }^{31} \mathrm{P}$-NMR spectra

Dimethyl (1-benzyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3aa (${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Dimethyl (1-benzyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3aa $\left({ }^{13} \mathrm{C}\right.$ NMR, $\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

180	160	140	120	100	80	1		
180	60	40	20	ppm				

Dimethyl (1-benzyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3aa (${ }^{31} \mathrm{P}$ NMR, $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Dimethyl (1-benzyl-6-methoxy-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ba (${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Dimethyl (1-benzyl-6-methoxy-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ba $\left({ }^{13} \mathrm{C}\right.$ NMR, $\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Dimethyl (1-benzyl-6-methoxy-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ba (${ }^{31} \mathrm{P}$ NMR, $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

,

Dimethyl (1-benzyl-6-chloro-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ca (${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Dimethyl (1-benzyl-6-chloro-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ca $\left({ }^{13} \mathrm{C}\right.$ NMR, $\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Dimethyl (1-benzyl-6-chloro-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ca $\left({ }^{31} \mathbf{P}\right.$ NMR, $\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Dimethyl (1-benzyl-6-methyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3da (${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Dimethyl (1-benzyl-6-methyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3da (${ }^{13} \mathrm{C}$ NMR, $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Dimethyl (1-benzyl-6-methyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3da (${ }^{31} \mathrm{P}$ NMR, $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Dimethyl (1-benzyl-6-fluoro-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ea (${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Dimethyl (1-benzyl-6-fluoro-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ea (${ }^{13} \mathrm{C}$ NMR, $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

11 VVVV

Dimethyl (1-benzyl-6-fluoro-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ea (${ }^{31} \mathrm{P}$ NMR, $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\stackrel{\text { ® }}{\stackrel{\text { ® }}{\stackrel{1}{2}}}$

Methyl 3-(2-(dimethoxyphosphoryl)-3,4-dihydroquinolin-1(2H)-yl) propanoate 3fa (${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

항…

Methyl 3-(2-(dimethoxyphosphoryl)-3,4-dihydroquinolin-1(2H)-yl) propanoate 3fa $\left({ }^{13} \mathrm{C}\right.$ NMR, $\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Methyl 3-(2-(dimethoxyphosphoryl)-3,4-dihydroquinolin-1(2H)-yl) propanoate 3fa (${ }^{31} \mathrm{P}$ NMR, $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Dimethyl (1-phenyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ga (${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Dimethyl (1-phenyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ga $\left({ }^{13} \mathrm{C}\right.$ NMR, $\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

V1

Dimethyl (1-phenyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ga (${ }^{31} \mathrm{P}$ NMR, $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\stackrel{\stackrel{3}{\mid}}{\stackrel{1}{\mid}}$

Dimethyl (1-allyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ha (${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$$
1
$$

Dimethyl (1-allyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ha $\left({ }^{13} \mathrm{C}\right.$ NMR, $\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

 \qquad Vil

Dimethyl (1-allyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ha (${ }^{31} \mathrm{P}$ NMR, $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Dimethyl (1-methyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ia (${ }^{1} \mathbf{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Dimethyl (1-methyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ia (${ }^{13} \mathrm{C}$ NMR, $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Dimethyl (1-methyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ia (${ }^{31} \mathrm{P}$ NMR, $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\stackrel{\text { ® }}{\sim}}{\stackrel{\text { ® }}{1}}$

Dimethyl (1-benzyl-4-methyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ja (${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Dimethyl (1-benzyl-4-methyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ja $\left({ }^{13} \mathrm{C}\right.$ NMR, $\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Dimethyl (1-benzyl-4-methyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ja (${ }^{31} \mathrm{P}$ NMR, $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Dimethyl (1-benzyl-4-phenyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ka (${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Dimethyl (1-benzyl-4-phenyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ka $\left({ }^{13} \mathrm{C}\right.$ NMR, $\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Dimethyl (1-benzyl-4-phenyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ka (${ }^{31} \mathrm{P}$ NMR, $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

管

Dimethyl (1-benzyl-4-butyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3la (${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Dimethyl (1-benzyl-4-butyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3la $\left({ }^{13} \mathrm{C}\right.$ NMR, $\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Dimethyl (1-benzyl-4-butyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3la (${ }^{31} \mathrm{P}$ NMR, $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Dimethyl (4-benzyl-4,5,6,7-tetrahydrothieno[3,2-b]pyridin-5-yl)phosphonate 3ma (${ }^{1} \mathrm{H} \mathrm{NMR}, \mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Dimethyl (4-benzyl-4,5,6,7-tetrahydrothieno[3,2-b]pyridin-5-yl)phosphonate 3ma (${ }^{13} \mathrm{C}$ NMR, $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Dimethyl (4-benzyl-4,5,6,7-tetrahydrothieno[3,2-b]pyridin-5-yl)phosphonate 3ma (${ }^{31}$ P NMR, $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Diethyl (1-benzyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ab (${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Diethyl (1-benzyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ab $\left({ }^{13} \mathrm{C}\right.$ NMR, $\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Diethyl (1-benzyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ab (${ }^{31} \mathrm{P}$ NMR, $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\stackrel{\stackrel{8}{\overleftarrow{~}}}{\stackrel{\pi}{4}}$

Diisopropyl (1-benzyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ac (${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Diisopropyl (1-benzyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ac (${ }^{13} \mathrm{C}$ NMR, $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Diisopropyl (1-benzyl-1,2,3,4-tetrahydroquinolin-2-yl)phosphonate 3ac (${ }^{31} \mathrm{P}$ NMR, $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

M11111/

[4-(Dimethoxy-phosphoryl)-1,2,3,4-tetrahydro-quinolin-2-yl]-phosphonic acid dimethyl ester 4aa (${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[4-(Dimethoxy-phosphoryl)-1,2,3,4-tetrahydro-quinolin-2-yl]-phosphonic acid dimethyl ester 4aa $\left({ }^{13} \mathrm{C}\right.$ NMR, $\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

 -

[4-(Dimethoxy-phosphoryl)-1,2,3,4-tetrahydro-quinolin-2-yl]-phosphonic acid dimethyl ester 4aa (${ }^{31} \mathrm{P}$ NMR, $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\stackrel{\infty}{\infty}$

N-Benzyl- N-(2-propynyl)aniline 1a
(${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N-benzyl-4-methoxy- N-(prop-2-yn-1-yl)aniline 1b (${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N -benzyl-4-chloro- N -(prop-2-yn-1-yl)aniline 1c (${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N-Benzyl- N-(2-propynyl)-4-methylaniline 1d (${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

国 (\%્สૂ|
ศ్ల్ల|웅
N-Benzyl- N-(2-propynyl)-4-fluoroaniline 1e
(${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Methyl 3-(phenyl(prop-2-yn-1-yl)amino)propanoate if (${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Methyl 3-(phenyl(prop-2-yn-1-yl)amino)propanoate $1 f$ $\left({ }^{13} \mathrm{C}\right.$ NMR, $\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
-172.64
-147.30

$\left.\right|_{\text {®ic }} ^{\text {® }}$

N-phenyl- N-(prop-2-yn-1-yl)aniline 1 g (${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N-allyl- N-(prop-2-yn-1-yl)aniline 1h
(${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N-methyl- N-(prop-2-yn-1-yl)aniline 1 i (${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N-benzyl- N-(but-2-yn-1-yl)aniline 1 j
(${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N-benzyl- N-(3-phenylprop-2-yn-1-yl)aniline 1k
(${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N-benzyl- N-(hept-2-yn-1-yl)aniline 11
(${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N -benzylthiophen-3-amine 8 m
(${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N -benzyl- N -(prop-2-yn-1-yl)thiophen-3-amine 1m
(${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N-benzyl- N-(prop-2-yn-1-yl)thiophen-3-amine 1m $\left({ }^{13} \mathrm{C}\right.$ NMR, $101 \mathrm{MHz}, \mathrm{CDC}$

|

[^0]: ${ }^{\text {a }}$ State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
 ${ }^{\mathrm{b}}$ Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan.
 ${ }^{\text {c }}$ Department of Nuclear Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116024, China

