Metal-Free Tandem Dehydrogenative α-Arylation Reaction of Propargylic Alcohols with 2-Alkynylbenzaldoximes toward the Synthesis of α-(4-Bromo-isoquinolin-1-yl)-propenone Skeletons

Khalil Alatat, ${ }^{\text {a }}$ Alireza Abbasi Kejani, ${ }^{\text {a }}$ Ali Nikbakht, ${ }^{\text {a }}$ Hamid Reza Bijanzadeh,* ${ }^{\text {b }}$ Saeed Balalaie ${ }^{* a, c}$

${ }^{\text {a }}$ Peptide Chemistry Research Center, K. N. Toosi University of Technology,P. O. Box 158754416, Tehran, Iran
${ }^{\mathrm{b}}$ Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Tehran, Iran
${ }^{c}$ Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran

Table of content

1. General methods 2
2. General Procedure for the Preparation of Substrates 1a-i 2
3. General Procedure for the Preparation of Substrates 2a-f. 2
4. Tandem reaction of 2-alkynylbenzaldoximes with propargylalcohols and Br_{2} 3
5. Typical Procedure for the Synthesis of 3a on 1.0 mmol Scale 3
6. References 3
7. The spectroscopic data ($1 \mathrm{H}, 13 \mathrm{C}$ NMR, and HRMS) of compounds 4
8. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, and HRMS spectra 11

1. General methods

Commercially available reagents were purchased in reagent grades and used with no purification. Reaction progress was monitored by thin layer chromatography (TLC) using aluminum coated plates of silica gel 60-F254 detecting at 254 nm . Products 3 were purified via flash column chromatography using silica gel 63-200 mesh. Melting points were found by Electerothermal 9100 apparatus and are uncorrected. ${ }^{1}$ H NMR spectra were recorded on Bruker 300 MHz , and ${ }^{13} \mathrm{C}$ NMR spectra were obtained by Bruker of 75 MHz . Chemical shifts are given parts per million (δ, ppm) and coupling constants are reported in Hertz (J, Hz). High resolution mass (ESI-HRMS) was obtained by Apex LCT Premier ${ }^{\text {TM }}$ XE spectrometer.

2. General Procedure for the Preparation of Substrates $1 \mathrm{a}-\mathbf{i}^{1}$

Step 1: To a solution of the 2- bromobenzaldehyde $\mathrm{S} 1(10 \mathrm{mmol}, 1$ equiv. $), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.2$ $\mathrm{mol} \%$), and $\mathrm{CuI}(0.2 \mathrm{~mol} \%)$ in $\mathrm{Et}_{3} \mathrm{~N}(50 \mathrm{~mL})$, the appropriate acetylene (1.5 equiv.) was added at room temperature under N_{2} atmosphere. The reaction mixture was heated at $70{ }^{\circ} \mathrm{C}$ for $6-18$ h , and monitored by TLC. After the reaction was completed, the mixture was cooled to room temperature, and filtered by celite, washed with acetone. The filtrate was concentrated under vacuum. The residue was purified by column chromatography on silica gel to afford the product S2 in almost 90% yield.
Step 2: A solution of 2-alkynylbenzaldehyde (2.0 mmol), hydroxylamine hydrochloride (3 $\mathrm{mmol}, 1.5$ equiv), sodium acetate ($4.0 \mathrm{mmol}, 2.0$ equiv) in $\mathrm{ACN}(10 \mathrm{~mL})$ was stirred at room temperature for 12 hours. The solvent was evaporated and then quenched with water (10 mL), extracted with EtOAc ($2 \times 30 \mathrm{~mL}$), dried by anhydrate $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent followed by purification on silica gel provided the corresponding 2-alkynylbenzaldoximes 1ai.

3. General Procedure for the Preparation of Substrates 2a- \mathbf{f}^{1}

$$
\overline{=} R^{3}+R^{4}{ }^{\text {O }} R^{4} \xrightarrow[-78^{\circ} \mathrm{C}, \mathrm{THF}]{\mathrm{n}-\mathrm{BuLi}} \quad R^{3}=\underset{\text { 2a-f }}{=} \mathrm{R}^{4} \mathrm{R}^{4}
$$

To a stirring solution of aryl acetylene (5 mmol) in THF (1.0 M) was added dropwise $n-\mathrm{BuLi}$ (1.0 M in THF, 1.1 equiv) at $-78^{\circ} \mathrm{C}$. Then, benzophenone derivatives (5 mmol) were added dropwise with stirring after 0.5 h . The solution was warming to room temperature after 1.0 h . After the reaction was completed as determined by TLC, the reaction mixture was quenched by addition of saturated aqueous ammonium chloride $(10 \mathrm{~mL})$ and extracted with ethyl acetate $(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and
concentrated under reduced pressure. The crude material was purified by column chromatography on silica gel using petroleum ether/ethyl acetate to obtain the pure product propargylic alcohols 2a-f.

4. Tandem reaction of 2-alkynylbenzaldoximes with propargylalcohols and Br_{2} (or ICI)

2-Alkynylbenzaldoximes $\mathbf{1}(0.2 \mathrm{mmol})$ was added to a solution of NaHCO_{3} (1.5 equiv.) and Br_{2} (or ICl) (2.0 equiv.) in DMF (2 mL). Following 1 hour of stirring at room temperature and the formation of 4-bromoisoquinoline- N -oxides, propargyl alcohols $2(0.2 \mathrm{mmol}$) was added, and the mixture was stirred at $110^{\circ} \mathrm{C}$. After completion of reaction as indicated by TLC, the mixture was diluted with ethyl acetate $(5 \mathrm{~mL})$ and quenched with water $(5 \mathrm{~mL})$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash column chromatograph on silica gel (EtOAc $/$ hexane $=1 / 20$) to afford the product 3 .

5. Typical Procedure for the Synthesis of 3a on 1.0 mmol Scale

2-Alkynylbenzaldoximes $\mathbf{1 a}(1.0 \mathrm{mmol})$ was added to a solution of $\mathrm{NaHCO}_{3}(1.5 \mathrm{mmol}, 126.0$ $\mathrm{mg})$ and $\mathrm{Br}_{2}(2.0 \mathrm{mmol}, 320.0 \mathrm{mg})$ in DMF $(10 \mathrm{~mL})$. Following 1 hour of stirring at room temperature and the formation of 4-bromoisoquinoline-N-oxides, propargyl alcohols 2a (1.0 $\mathrm{mmol}, 352.0 \mathrm{mg}$) was added, and the mixture was stirred at $110{ }^{\circ} \mathrm{C}$. After completion of reaction as indicated by TLC, the mixture was diluted with ethyl acetate (25 mL) and quenched with water (25 mL). The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash column chromatograph on silica gel (EtOAc /hexane $=1 / 20$) to afford the product 3a $(69 \%$ yield, 437 mg$)$.

6. References

[1] 13 A. Nikbakht, S. Balalaie and B. Breit, Org. Lett., 2019, 21, 7645-7648.

7. The spectroscopic data ($1 \mathrm{H}, 13 \mathrm{C}$ NMR, and HRMS) of compounds

3a: 2-(4-bromo-3-phenylisoquinolin-1-yl)-3,3-bis(4-chlorophenyl)-1-phenylprop-2-en-1one

Yellow solid, m.p. $125-128{ }^{\circ} \mathrm{C}$, (95 mg , yield 75%), (silica gel, $n-$ hexane/EtOAc $=20: 1$); ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}(\mathrm{ppm})=8.29$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}$, 2 H), 7.72 (ddd, $J=8.4,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.52$ (m, 3H), $7.46-7.37$ (m, 4H), 7.32 - 7.26 (m, 2H), 7.22 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.16 (d, $J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.04(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}(\mathrm{ppm})=197.3$, $156.9,151.1,146.6,140.3,138.5,138.5,137.7,137.2,136.5,134.8,134.3,132.9,131.5,131.5$, 131.4, $130.2,130.0,128.5,128.2,128.2,128.2,127.6,127.4,127.3,126.9,117.9$; HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd. for $\mathrm{C}_{36} \mathrm{H}_{23} \mathrm{BrCl}_{2} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$634.0340, found 634.0334.

3b: 2-(4-bromo-3-phenylisoquinolin-1-yl)-3,3-bis(4-fluorophenyl)-1-phenylprop-2-en-1one

Yellow solid, m.p. $115-118{ }^{\circ} \mathrm{C}$, (102 mg , yield 85%), (silica gel, $n-$ hexane/EtOAc $=20: 1$); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}(\mathrm{ppm})=8.28$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{dd}, J=8.3,1.3 \mathrm{~Hz}$, 2 H), 7.70 (ddd, $J=8.4,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.66-7.61$ (m, 2H), 7.53 (ddd, $J=8.1,6.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.11$ $-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}(\mathrm{ppm})=197.8,162.8\left(\mathrm{~d},{ }^{1} J_{C-F}=249.5 \mathrm{~Hz}\right), 162.3\left(\mathrm{~d},{ }^{1} J_{C-F}=249.4\right.$ $\mathrm{Hz}), 157.5,151.0,147.0,140.4,137.4,137.0,136.5,136.3\left(\mathrm{~d},{ }^{3} J_{C-F}=7.6\right), 136.3\left(\mathrm{~d},{ }^{3} J_{C-F}=\right.$ $7.6), 132.7,132.2,132.1,131.9,131.4,130.2,129.9,128.2,128.1,128.0,127.3,127.2,127.0$, 117.7, $115.3\left(\mathrm{~d},{ }^{2} J_{C-F}=21.8 \mathrm{~Hz}\right), 115.0\left(\mathrm{~d},{ }^{2} J_{C-F}=21.8 \mathrm{~Hz}\right)$; HRMS-ESI (m/z): calcd. for $\mathrm{C}_{36} \mathrm{H}_{23} \mathrm{BrF}_{2} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$602.0931, found 602.0923 .

3c: 2-(4-bromo-3-phenylisoquinolin-1-yl)-1-phenyl-3,3-di-p-tolylprop-2-en-1-one

Yellow solid, m.p. $146-148{ }^{\circ} \mathrm{C}$, (92 mg , yield 86%), (silica gel, $n-$ hexane/EtOAc $=20: 1$); ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}}(\mathrm{ppm})=8.23$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.53-$ 7.44 (m, 4H), $7.43-7.39$ (m, 4H), 6.99 (s, 5H), 2.52 (brs, 2H), 1.52 (brs, $2 \mathrm{H}), 0.70(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}(\mathrm{ppm})=$ $207.3,158.1,151.0,147.5,140.6,140.3,138.8,136.3,131.3,130.1,130.1,128.9,128.5,128.2$,
128.1, 127.9, 127.7, 127.6, 127.4, 127.2, 127.0, 127.0, 125.9, 117.6, 45.6, 17.4, 13.5; HRMSESI (m/z): calcd. for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+} 532.1276$, found 532.1272.

3d: 2-(4-bromo-3-pentylisoquinolin-1-yl)-1-phenyl-3,3-di-p-tolylprop-2-en-1-one

Yellow solid, m.p. $155-157{ }^{\circ} \mathrm{C}$, (99 mg , yield 81%), (silica gel, $n-$ hexane/EtOAc $=20: 1$); ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}(\mathrm{ppm})=8.21$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $8.12-8.02(\mathrm{~m}, 3 \mathrm{H}), 7.57(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42$ $-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{t}, J$ $=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 6.79(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.11(\mathrm{brs}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.13$ ($\mathrm{s}, 3 \mathrm{H}$), $1.75-1.64$ (m, 2H), 1.42 - 1.22 (m, 5H), 0.88 (t, J = 6.6 Hz , $3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}(\mathrm{ppm})=198.4,157.9,153.5,149.2,138.5,138.1,138.0$, $137.8,136.0,135.9,132.2,130.4,130.2,130.1,130.0,129.8,129.7,128.7,128.5,128.3,127.8$, 127.0, 126.9, 118.2, 37.4, 31.3, 28.2, 22.6, 21.3, 21.1, 14.1; HRMS-ESI (m/z): calcd. for $\mathrm{C}_{37} \mathrm{H}_{35} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+} 558.1902$, found 558.1895 .

3e: 2-(3-([1,1'-biphenyl]-4-yl)-4-bromo-6-chloroisoquinolin-1-yl)-1-phenyl-3,3-di-p-tolylprop -2-en-1-one

Yellow solid, m.p. $215-217{ }^{\circ} \mathrm{C}$, (93 mg , yield 69%), (silica gel, $n-$ hexane/EtOAc $=20: 1$); ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}}(\mathrm{ppm})=8.29(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.08(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.77-7.64(\mathrm{~m}, 7 \mathrm{H}), 7.53(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.03$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 6.98 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), $6.86(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $2.25(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}(\mathrm{ppm})=198.4,158.5,150.5,149.9$, $140.9,139.7,138.6,138.0,138.0,137.9,136.6,135.6,132.3,131.2,130.8,130.6,130.5,130.4$, 130.0, 130.2, 128.8, 128.5, 128.3 127.9, 127.8, 127.6, 127.4, 127.4, 127.2, 127.1, 126.3, 117.4, 21.2, 21.1; HRMS-ESI (m/z): calcd. for $\mathrm{C}_{44} \mathrm{H}_{33} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+} 670.1746$, found 670.1738 .

Yellow solid, m.p. $191-193{ }^{\circ} \mathrm{C}$, (85 mg , yield 70%), (silica gel, $n-$ hexane $/ \mathrm{EtOAc}=20: 1$); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}}(\mathrm{ppm})=8.29$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, 7.65 (ddd, $J=8.4,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.46$ (m, 1H), $7.36-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 2 H), 7.02 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.97$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.84$ (d, $J=7.9$ $\mathrm{Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}(\mathrm{ppm})=$ $198.4,158.3,150.9,149.7,138.5,138.0,137.9,137.8,136.5,135.7,132.2,131.1,130.4,130.3$, $130.2,130.1,129.9,128.7,128.5,128.4,128.4,128.3,127.8,127.6,127.5,127.4,127.0,117.2$, 21.4, 21.2, 21.1; HRMS-ESI (m/z): calcd. for $\mathrm{C}_{39} \mathrm{H}_{31} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+} 608.1589$, found 608.1586 .

3g: 2-(4-bromo-3-(p-tolyl)isoquinolin-1-yl)-3,3-bis(4-fluorophenyl)-1-phenylprop-2-en-1one

Yellow solid, m.p. 207-210 ${ }^{\circ} \mathrm{C}$, (99 mg , yield 81%), (silica gel, $n-$ hexane $/ \mathrm{EtOAc}=20: 1$); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}(\mathrm{ppm})=8.27$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, 7.69 (ddd, $J=8.4,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.49$ (m, 3H), $7.42-7.36$ (m, $1 \mathrm{H}), 7.31-7.23(\mathrm{~m}, 6 \mathrm{H}), 7.12-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.74(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ_{C} $(\mathrm{ppm})=197.8,162.8\left(\mathrm{~d},{ }^{1} J_{C-F}=249.7 \mathrm{~Hz}\right), 162.3\left(\mathrm{~d},{ }^{1} J_{C-F}=249.2 \mathrm{~Hz}\right), 157.4,151.0,146.8$, $138.1,137.6,137.4,136.6,136.5\left(\mathrm{~d},{ }^{3} J_{C-F}=8.8 \mathrm{~Hz}\right), 136.5\left(\mathrm{~d},{ }^{3} J_{C-F}=8.8 \mathrm{~Hz}\right), 132.7,132.2$, $132.1,131.9,131.4,130.1,129.9,128.4,128.1,127.9,127.3,127.1,127.0,117.5,115.3$ (d, $\left.{ }^{2} J_{C-F}=21.8 \mathrm{~Hz}\right), 115.0\left(\mathrm{~d},{ }^{2} J_{C-F}=21.8 \mathrm{~Hz}\right), 21.4$; HRMS-ESI (m/z): calcd. for $\mathrm{C}_{37} \mathrm{H}_{25} \mathrm{BrF}_{2} \mathrm{NO}$ $[\mathrm{M}+\mathrm{H}]^{+}$616.1088, found 616.1084.

3h: 2-(4-bromo-3-(4-methoxyphenyl)isoquinolin-1-yl)-1-phenyl-3,3-di-p-tolylprop-2-en-1-one

Yellow solid, m.p. 203-206 ${ }^{\circ} \mathrm{C}$, (111 mg , yield 89%), (silica gel, $n-$ hexane/EtOAc $=20: 1$); ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}}(\mathrm{ppm})=8.26$ ($\mathrm{t}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}$), 8.07 (d, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.70-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.48$ ($\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.35(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.17(\mathrm{~m}, 4 \mathrm{H}), 7.05$ $-6.93(\mathrm{~m}, 6 \mathrm{H}), 6.84(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.17$ $(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}(\mathrm{ppm})=198.4,159.5,158.3$,
$150.5,149.6,138.5,138.0,137.9,137.8,136.6,135.6,133.1,132.2,131.7,131.1,130.4,130.3$, 129.9, 128.7, 128.4, 127.9, 127.6, 127.4, 127.3, 127.0, 117.0, 112.9, 55.2, 21.2, 21.1; HRMSESI (m/z): calcd. for $\mathrm{C}_{39} \mathrm{H}_{31} \mathrm{BrNO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 624.1538$, found 624.1538.

3i: 2-(4-bromo-3-(4-methoxyphenyl)isoquinolin-1-yl)-3,3-bis(4-chlorophenyl)-1-phenylprop -2-en-1-one

Yellow solid, m.p. $196-198^{\circ} \mathrm{C}$, (121 mg , yield 91%), (silica gel, $n-$ hexane/EtOAc $=20: 1$); ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}(\mathrm{ppm})=8.27$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.21 ($\mathrm{d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 8.07 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.69 (ddd, $J=8.4,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.60$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.52 (ddd, $J=8.2,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.7 \mathrm{~Hz}$, 12 H), 7.22 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.16 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.03 (s, 4H), $6.97(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}(\mathrm{ppm})=197.5,159.6$, $156.8,150.6,146.4,138.6,138.5,137.7,137.2,136.7,134.8,134.3,132.9,132.7,131.6,131.5$, $131.5,130.0,128.5,128.2,128.2,127.9,127.4,127.3,127.0,126.8,117.5,113.0,55.3 ;$ HRMS-ESI (m/z): calcd. for $\mathrm{C}_{37} \mathrm{H}_{25} \mathrm{BrCl}_{2} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$664.0446, found 664.0438 .

3j: 2-(4-bromo-6-methyl-3-phenylisoquinolin-1-yl)-1-phenyl-3,3-di-p-tolylprop-2-en-1-one

Yellow solid, m.p. $168-170{ }^{\circ} \mathrm{C}$, (89 mg , yield 73%), (silica gel, n hexane/EtOAc $=20: 1$); ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}}(\mathrm{ppm})=$ 8.17 (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.08-8.01(\mathrm{~m}, 3 \mathrm{H}), 7.63-7.54(\mathrm{~m}, 2 \mathrm{H})$, $7.44-7.29$ (m, 5H), 7.23 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.00(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, 2 H), $2.53(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}(\mathrm{ppm})=198.3,157.9,151.0,149.7,141.7,140.8,138.4,138.0,137.9,137.9,137.9$, $136.6,135.9,132.2,130.4,130.3,130.3,130.0,129.9,129.1,128.7,128.4,127.9,127.8,127.5$, 127.2, 126.1, 116.8, 22.2, 21.2, 21.1; HRMS-ESI (m/z): calcd. for $\mathrm{C}_{39} \mathrm{H}_{31} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+}$ 608.1589, found 608.1586.

3k: 2-(4-bromo-6-methyl-3-phenylisoquinolin-1-yl)-3,3-bis(4-chlorophenyl)-1-phenylprop -2-en-1-one

Yellow solid, m.p. $154-157{ }^{\circ} \mathrm{C}$, (96 mg , yield 74%), (silica gel, $n-$ hexane/EtOAc $=20: 1) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}}(\mathrm{ppm})=$ $8.11(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.08-8.02(\mathrm{~m}, 3 \mathrm{H}), 7.63-7.51(\mathrm{~m}, 3 \mathrm{H})$, $7.43-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.15(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~s}, 4 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}(\mathrm{ppm})=197.4,156.5,151.1,146.4,142.2,140.5$, $138.6,137.9,137.2,136.7,134.8,134.2,132.9,131.4,131.4,130.4,130.1,129.9,128.5,128.4$, 128.2, 128.1, 127.6, 127.4, 126.7, 126.4, 125.7, 117.3, 22.2; HRMS-ESI (m/z): calcd. for $\mathrm{C}_{37} \mathrm{H}_{25} \mathrm{BrCl}_{2} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$648.0497, found 648.0496.

3I: 2-(4-bromo-6-chloro-3-phenylisoquinolin-1-yl)-3,3-bis(4-chlorophenyl)-1-phenylprop -2-en-1-one

Yellow solid, m.p. $135-137{ }^{\circ} \mathrm{C}$, (122 mg , yield 91\%), (silica gel, n hexane/EtOAc $=20: 1$); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}}(\mathrm{ppm})=8.30$ (d, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.94 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.62-7.56$ (m, 2H), $7.45-7.40(\mathrm{~m}, 4 \mathrm{H})$, $7.37-7.27$ (m, 4H), $7.19-7.13(\mathrm{~m}, 4 \mathrm{H}), 7.07-7.03(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}(\mathrm{ppm})=197.3,157.0,152.3,146.6$, $140.0,138.3,137.9,137.1,135.7,135.0,133.1,131.4,131.4,131.0,130.1,129.9,129.8,128.8$, 128.7, 128.5, 128.5, 128.3, 128.2, 127.7, 126.6, 125.5, 124.4, 116.4; HRMS-ESI (m/z): calcd. for $\mathrm{C}_{36} \mathrm{H}_{22} \mathrm{BrCl}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 667.9950$, found 667.9947.

3m: 2-(4-bromo-6-chloro-3-phenylisoquinolin-1-yl)-1-phenyl-3,3-di-p-tolylprop-2-en-1-one

Yellow solid, m.p. $196-198{ }^{\circ} \mathrm{C}$, (101 mg, yield 80%), (silica gel, $n-$ hexane/EtOAc $=20: 1$); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}}(\mathrm{ppm})=8.26$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.04-7.95(\mathrm{~m}, 3 \mathrm{H})$, $7.65-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.17 - 7.07 (m, 3H), 6.98 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 6.95 (d, $J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}(\mathrm{ppm})=198.3,158.5,152.0,149.9,140.2,138.7,138.2,137.8,137.5$, $137.4,132.9,132.4,132.3,130.4,130.3,130.2,129.9,129.3,128.7,128.6,128.6,128.4,128.3$,
127.9, 127.6, 126.3, 125.7, 115.9, 21.2, 21.1; HRMS-ESI (m/z): calcd. for $\mathrm{C}_{38} \mathrm{H}_{28} \mathrm{BrClNO}$ $[\mathrm{M}+\mathrm{H}]^{+} 628.1043$, found 628.1035.

3n: 2-(4-bromo-3-phenylisoquinolin-1-yl)-1-phenyl-3,3-di-p-tolylprop-2-en-1-one

Yellow solid, m.p. $198-200{ }^{\circ} \mathrm{C}$, (84 mg , yield 71%), (silica gel, $n-$ hexane/EtOAc $=20: 1) ;{ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}(\mathrm{ppm})=8.30-$ $8.22(\mathrm{~m}, 2 \mathrm{H}), 8.07-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.31(\mathrm{~m}$, $5 \mathrm{H}), 7.27-7.13(\mathrm{~m}, 4 \mathrm{H}), 7.01-6.91(\mathrm{~m}, 4 \mathrm{H}), 6.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $2.24(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}(\mathrm{ppm})=198.3$, $158.4,150.9,149.9,140.6,138.5,137.9,137.8,136.4,135.6,132.2$, 131.1, 130.4, 130.3, 130.1, 129.9, 129.7, 129.2, 129.1, 128.7, 128.4, 128.0, 127.8, 127.8, 127.5, 127.4, 127.0, 117.3, 21.2, 21.1; HRMS-ESI (m/z): calcd. for $\mathrm{C}_{38} \mathrm{H}_{29} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+}$594.1433, found 594.1425.

3n': 2-(4-iodo-3-phenylisoquinolin-1-yl)-1-phenyl-3,3-di-p-tolylprop-2-en-1-one

Yellow solid, m.p. 204-206 ${ }^{\circ} \mathrm{C}$, (83 mg , yield 65%), (silica gel, $n-$ hexane/EtOAc $=20: 1$); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}(\mathrm{ppm})=8.27$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{dd}, J=7.1,1.6 \mathrm{~Hz}$, 2 H), 7.64 (ddd, $J=8.4,6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.39$ (m, 3H), 7.33 (t, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.16(\mathrm{~m}, 4 \mathrm{H}), 7.04-6.95(\mathrm{~m}$, $4 \mathrm{H}), 6.85(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}(\mathrm{ppm})=198.3,159.3,155.8,150.0,143.6,139.0,138.6,138.0,137.9,137.9$, 135.6, 132.7, 132.2, 131.5, 130.4, 130.3, 130.2, 130.0, 129.9, 129.7, 128.8, 128.7, 128.4, 128.0, 127.9, 127.5, 127.2, 97.4, 21.3, 21.2; HRMS-ESI (m/z): calcd. for $\mathrm{C}_{38} \mathrm{H}_{29} \mathrm{INO}[\mathrm{M}+\mathrm{H}]^{+}$ 642.1294, found 642.1287.

4a: 2-(4-bromo-6-chloro-3-phenylisoquinolin-1-yl)-1-phenyl-3,3-di-p-tolylprop-2-en-1-one

Yellow solid, $\mathrm{mp} 101-103{ }^{\circ} \mathrm{C}$, (51 mg , yield 80%), (silica gel, $n-$ hexane/EtOAc $=20: 1$); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}(\mathrm{ppm})=7.92$ (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.54(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.36$ $-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}$ $(\mathrm{ppm})=192.0,152.3,139.4,137.8,136.9,135.7,134.6,133.0,131.0$, 129.7, 128.8, 128.6, 128.5, 128.5, 124.4; HRMS-ESI (m/z): calcd. for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$ 353.0500 , found 353.0495 .

5c: 2-(3,4-diphenylisoquinolin-1-yl)-1-phenyl-3,3-di-p-tolylprop-2-en-1-one

Yellow solid, m.p. $93-95{ }^{\circ} \mathrm{C}$, (68 mg , yield 58%), (silica gel, $n-$ hexane $/ \mathrm{EtOAc}=30: 1$); ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}}(\mathrm{ppm})=8.36-$ $8.26(\mathrm{~m}, 1 \mathrm{H}), 8.15-8.08(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.38(\mathrm{~m}$, $3 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 4 \mathrm{H}), 7.17$ -7.09 (m, 3H), 7.05 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.97$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.85$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $2.25(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}(\mathrm{ppm})=198.9,158.6,150.5,148.9,140.6,138.3,138.2,138.1,137.7,137.6,136.8$, $136.4,132.1,131.3,130.5,130.1,130.0,129.9,129.7,128.7,128.6,128.3,128.2,127.8,127.3$, 127.2, 127.0, 126.8, 126.7, 126.1, 125.7, 125.3, 21.2, 21.2; HRMS-ESI (m/z): calcd. for $\mathrm{C}_{44} \mathrm{H}_{34} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 592.2640$, found 592.2631.

5c': 1-phenyl-2-(3-phenyl-4-(phenylethynyl)isoquinolin-1-yl)-3,3-di-p-tolylprop-2-en-1-one

Yellow solid, m.p. $95-98{ }^{\circ} \mathrm{C}$, (76 mg , yield 62%), (silica gel, $n-$ hexane $/ \mathrm{EtOAc}=30: 1$); ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}}(\mathrm{ppm})=8.44$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.14-8.07(\mathrm{~m}, 4 \mathrm{H}), 7.67$ (ddd, $J=8.4,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.42(\mathrm{~m}, 4 \mathrm{H})$, $7.41-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.30(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.02(\mathrm{t}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 6.85(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}(\mathrm{ppm})=198.6,158.8,152.9,149.6$, $139.9,138.5,138.2,138.1,138.0,137.5,136.2,132.2,131.5,131.4,130.5,130.2,130.0,129.9$, $129.7,128.8,128.7,128.6,128.5,128.4,127.9,127.6,127.4,127.4,125.8,125.4,123.3,111.5$, 99.3, 86.5, 21.3, 21.1; HRMS-ESI (m/z): calcd. for $\mathrm{C}_{46} \mathrm{H}_{34} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 616.2640$, found 616.2631 .

8. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, and HRMS spectra

HRMS-ESI Compound 3a

HRMS-ESI Compound 3b

${ }^{13} \mathrm{C}$ NMR Compound $\mathbf{3 c}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS-ESI Compound 3c

${ }^{13} \mathrm{C}$ NMR Compound $\mathbf{3 d}$ ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

HRMS-ESI Compound 3d

HRMS-ESI Compound 3e

$\begin{array}{lllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 10 & 10 & 10\end{array}$ ${ }^{13} \mathrm{C}$ NMR Compound $\mathbf{3 f}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS-ESI Compound 3f

$\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathbf{- 1 0}\end{array}$ ${ }^{13} \mathrm{C}$ NMR Compound $\mathbf{3 g}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS-ESI Compound $\mathbf{3 g}$

$\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathbf{- 1 0}\end{array}$ ${ }^{13} \mathrm{C}$ NMR Compound $\mathbf{3 h}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS-ESI Compound 3h

N

HRMS-ESI Compound 3i

${ }^{13} \mathrm{C}$ NMR Compound $\mathbf{3 j}$ ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

HRMS-ESI Compound $\mathbf{3 j}$

-22.21

HRMS-ESI Compound 3k

HRMS-ESI Compound 31

HRMS-ESI Compound $\mathbf{3 m}$

-198.33

HRMS-ESI Compound 3n

HRMS-ESI Compound $\mathbf{3 n}^{\prime}$

${ }^{13} \mathrm{C}$ NMR Compound $\mathbf{4 a}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS-ESI Compound 3n

${ }^{1} \mathrm{H}$ NMR Compound $5 \mathbf{5 c}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Compound $5 \mathrm{c}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS-ESI Compound 5c

${ }^{13} \mathrm{C}$ NMR Compound $\mathbf{5 c}^{\prime}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS-ESI Compound $\mathbf{5 c}^{\prime}$

