Electronic Supplementary Information

Isoindolinone synthesis through Rh/Cu-catalyzed Oxidative C-H/N-H Annulation of N-methoxy benzamides with Saturated Ketones

1. General Comments	S2
2. General procedure to prepare N-methoxybenzamides	S2
3. Optimization details for the reaction conditions	\$2-5
4. Mechanism studies	
5. General experimental procedures for the synthesis of isoindolinone	S5
6. Characterization for products	S6-17
7. References	S17
8. ¹ H and ¹³ C NMR spectra	S18-47

1. General comments

All other reagents were purchased from TCI, Alfa Aesar, Accela and Adamas used without further purification. 1,4-dioxane was distilled from sodium and benzophenone under nitrogen and stored over 4Å molecular sieves under nitrogen. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra were obtained on Bruker spectrometer with CDCl₃ as solvent and tetramethylsilane (TMS) as internal standard. Chemical shifts are reported in units (ppm) by assigning the TMS resonance in the ¹H NMR spectra as 0.00 ppm (CDCl₃, 7.26 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet and m = multiplet), coupling constant (J values) in Hz and integration. Chemical shifts for the ¹³C NMR spectra are recorded in ppm relative to tetramethylsilane using the central peak of CDCl₃ (77.05 ppm) as the internal standard. Flash column chromatography was performed using 300–400 mesh silica with the indicated solvent system according to standard techniques. Analytical thin layer chromatography (TLC) was performed on pre-coated, glass-backed silica gel plates. The yields of the products reported are the isolated yields and the average of two runs.

2. General procedure to prepare N-methoxybenzamides

A dried round-bottom flask was charged with acid (4.5 mmol), DCM (15 mL), and 2 drops of DMF. Then, oxalyl chloride (0.60 mL, 0.876 g, 6.9 mmol) was added dropwise within 5 min at 0 °C. The resulting mixture was stirred at room temperature for about 4h and then concentrated under reduced pressure. The residue was dissolved in EtOAc (40 mL) and K₂CO₃ (1.24 g, 9.0 mmol), MeONH₂·HCl (458 mg, 5.4 mmol), water (20 mL) were sequentially added. The resulting mixture was stirred for 12 h at room temperature and extracted with EtOAc (50 mL). The organic layer was washed with saturated aqueous NaHCO₃ (15 mL × 2), brine (15 mL × 2), and dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography, using EtOAc/ PE as the eluent.

3. Optimization details for the reaction conditions

Table S1. Optimization of silver salts ^a

Entry	Silver salts (equiv.)	Yield (%)
1	Ag ₂ CO ₃ (1.0)	43
2	AgOAc (2.0)	46
3	Ag ₂ O (1.0)	30
4	AgNO ₃ (2.0)	trace
5	Ag ₂ SO ₄ (1.0)	17
6	AgOAc (1.5)	50
7	AgOAc (1.0)	53

^a Reaction conditions: **1a** (0.2 mmol), **2a** (0.6 mmol), 1,2-Diethoxyethane (2.0 mL), N₂, 22 h, isolated yield.

Table S2. Optimization of solvents ^a

N ^{OMe} +	Cp*RhCl ₂] ₂ (2.5 n AgSbF ₆ (10 mol Cu(OAc) ₂ (20 mol TEMPO (1.0 equ PPh ₃ (20 mol% AgOAc (1.0 equ 2a	$ \begin{array}{c} $
Entry	Solvent (mL)	Yield (%)
1	1,2-diethoxyethane (2.0)	53
2	1,4-dioxane (2.0)	59
3	Toluene (2.0)	45
4	1,2-DCB (2.0)	41
5	TFE (2.0)	0
6	HFIP (2.0)	0
7	MeCN (2.0)	0
8	1,4-dioxane (1.5)	65

^a Reaction conditions: **1a** (0.2 mmol), **2a** (0.6 mmol), 120 °C, N₂, 22 h, isolated yield.

Table S3. Optimization of reaction temperature. ^a

Entry	Temp. (°C)	Yield (%)
1	120	65
2	110	78

3	100	67

^a Reaction conditions: 1a (0.2 mmol), 2a (0.6 mmol), 1,4-dioxane (1.5 mL), N₂, 22 h, isolated yield.

Table S4. Optimization of the amount of AgSbF₆.^a

 $^{\rm a}$ Reaction conditions: 1a (0.2 mmol), 2a (0.6 mmol), 1,4-dioxane (1.5 mL), 110 °C, $N_2,$ 22 h, isolated yield.

Table S5. Optimization of the amount of PPh₃.^a

 $^{\rm a}$ Reaction conditions: 1a (0.2 mmol), 2a (0.6 mmol), 1,4-dioxane (1.5 mL), 110 °C, $N_2,$ 22 h, isolated yield.

Table S6. Optimization of the amount of Cu(OAc)₂.^a

Entry	Cu(OAc) ₂	Yield
	(equiv.)	(%)
1	0.2	78
2	0.1	69
3	0	0

 $^{\rm a}$ Reaction conditions: 1a (0.2 mmol), 2a (0.6 mmol), 1,4-dioxane (1.5 mL), 110 °C, $N_2,$ 22 h, isolated yield.

4. Mechanistic studies

Table S7. Dehydrogenation control experiments. ^a

	Cu(TE	OAc) ₂ (20 mmol%) MPO (1.0 equiv.)	°
2a	Ας Ρ	OAc (1.0 equiv.) Ph ₃ (20 mmol%)	4a
Entry	AgOAc	PPh ₃	GC-Yield
	(equiv.)	(equiv.)	(%)
1	1.0	0.2	70
2	0	0.2	30
3	1.0	0	34
4	0	0	6

^a Reaction conditions: **2a** (0.2 mmol), 1,4-dioxane (1.5 mL), 110 °C, N₂, 22 h.

5. General experimental procedures for the synthesis of isoindolinones

In a glove box, a 35 mL Schlenk tube equipped with a stir bar was charged with N-Methoxybenzamides **1** (0.2 mmol) Cu(OAc)₂ (20 mol%), TEMPO (1.0 equiv.), AgSbF₆ (10 mol %), Cp*RhCl₂ (2.5 mol%), AgOAc (1.0 equiv.), PPh₃ (20 mol%). The tube was fitted with a rubber septum, and removed out from the glove box. Then propiophenone **2** (3.0 equiv.) were added through the rubber septum using syringe under the atmosphere of N₂. Dioxane (1.5 mL) was added to the Schlenk tube through the rubber septum using a syringe. The septum was replaced by a Teflon screwcap under N₂ flow. The mixture was stirred at 110 °C (preheated to 110 °C) for 22 h. After cooling, the mixture was diluted with ethyl acetate (10 mL), filtered through a pad of silica gel, followed by washing the pad of the silica gel with the ethyl acetate (10 mL). The organic phase was concentrated under reduced pressure. The residue was then purified by chromatography on silica gel to provide the corresponding product **3**.

6. Characterization for products

3-(2-Oxo-2-(p-tolyl)ethyl)isoindolin-1-one (3a)¹

41.4 mg (78%); white solid ($R_f = 0.4$, $V_{THF}/V_{PE} = 40:60$), ¹H NMR (400 MHz, CDCl₃) δ 7.86 (dd, J = 12.5, 7.9 Hz, 3H), 7.60 (t, J = 7.4 Hz, 1H), 7.49 (dd, J = 12.4, 7.5 Hz, 2H), 7.27 (d, J = 8.5 Hz, 2H), 6.94 (s, 1H), 5.13 (d, J = 12.5 Hz, 1H), 3.70 (dd, J = 18.0, 3.1 Hz, 1H), 3.07 (dd, J = 18.0, 10.3 Hz, 1H), 2.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.3, 169.9, 164.1, 146. 7, 131.9, 130.4, 129.1, 128.5, 124.1, 122.4, 114.0, 55.6, 52.6, 43.7.

7-Methyl-3-(2-oxo-2-(p-tolyl)ethyl)isoindolin-1-one (3b)²

43.1mg (77%); white solid ($R_f = 0.4$, $V_{THF}/V_{PE} = 15:85$), ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 8.1 Hz, 2H), 7.44 (t, J = 7.5 Hz, 1H), 7.28 – 7.26 (m, 3H), 7.22 (d, J = 7.5 Hz, 1H), 6.83 (s, 1H), 5.05 (d, J = 9.3 Hz, 1H), 3.66 (dd, J = 18.0, 2.8 Hz, 1H), 3.04 (dd, J = 18.0, 10.3 Hz, 1H), 2.73 (s, 3H), 2.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.7, 170.9, 147.3, 144.8, 138.4, 133.7, 131.5, 130.4, 129.5, 129.0, 128.2, 119.7, 51.7, 44.2, 21.7, 17.3.

6-Methyl-3-(2-oxo-2-(p-tolyl)ethyl)isoindolin-1-one (3c)

40.2 mg (72%); white solid ($R_f = 0.4$, $V_{THF}/V_{PE} = 30:70$), ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 8.1 Hz, 2H), 7.68 (s, 1H), 7.38 (dd, J = 17.4, 7.7 Hz, 2H), 7.28 – 7.26 (m, 2H), 6.99 (s, 1H), 5.10 – 5.08 (m, 1H), 3.67 (dd, J = 18.0, 3.2 Hz, 1H), 3.05 (dd, J = 18.0, 10.1 Hz, 1H), 2.45 (s, 3H), 2.42 (s, 3H). ¹³C

NMR (101 MHz, CDCl₃) δ 197.6, 170.1, 144.8, 143.9, 138.6, 133.6, 132.9, 132.1, 129.5, 128.2, 124.3, 122.1, 52.3, 44.0, 21.7, 21.3. HRMS (ESI): Calcd for C₁₈H₁₇NO₂ [M +Na]⁺: 302.1157, found: 302.1165.

5-Methyl-3-(2-oxo-2-(p-tolyl)ethyl)isoindolin-1-one (3d)

33.5 mg (60%), white solid (R_f = 0.4, V_{THF}/V_{PE} = 30:70), ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 7.7 Hz, 2H), 7.74 (d, *J* = 7.6 Hz, 1H), 7.28 (d, *J* = 14.1 Hz, 4H), 6.92 (s, 1H), 5.07 (d, *J* = 9.1 Hz, 1H), 3.69 – 3.64 (m, 1H), 3.05 (dd, *J* = 17.9, 10.1 Hz, 1H), 2.46 (s, 3H), 2.40 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.6, 170.1, 147.1, 144.8, 142. 7, 133.6, 129.5, 129.5, 129.2, 128.2, 123.9, 122.8, 52.3, 44.0, 22.0, 21.7. HRMS (ESI): Calcd for $C_{18}H_{18}NO_2$ [M +H]⁺: 280.1332, found: 280.1335.

5,7-Dimethyl-3-(2-oxo-2-(p-tolyl)ethyl)isoindolin-1-one (3e)

41.1 mg (70%), white solid ($R_f = 0.4$, $V_{THF}/V_{PE} = 30:70$), ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 8.1 Hz, 2H), 7.27 (d, J = 7.0 Hz, 2H), 7.04 (d, J = 9.7 Hz, 2H), 6.68 (s, 1H), 5.00 (d, J = 9.4 Hz, 1H), 3.64 (dd, J = 18.0, 2.8 Hz, 1H), 3.02 (dd, J = 18.0, 10.4 Hz, 1H), 2.67 (s, 3H), 2.42 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 197.7, 171.0, 147.7, 144.8, 142.1, 138.0, 133.7, 131.4, 129.5, 128.2, 126.5, 120.2, 51.5, 44.3, 21.8, 21.7, 17.2. HRMS (ESI): Calcd for $C_{19}H_{20}NO_2$ [M +H]⁺: 294.1489, found: 294.1488.

7-Methoxy-3-(2-oxo-2-(p-tolyl)ethyl)isoindolin-1-one (3f)

39.6 mg (67%), white solid (R_f = 0.4, V_{THF}/V_{PE} = 30:70), ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J =

8.1 Hz, 2H), 7.53 (t, J = 7.9 Hz, 1H), 7.27 – 7.25 (m, 2H), 7.12 (s, 1H), 7.02 (d, J = 7.5 Hz, 1H), 6.92 (d, J = 8.3 Hz, 1H), 5.07 (d, J = 8.3 Hz, 1H), 4.00 (d, J = 18.4 Hz, 3H), 3.62 (dd, J = 18.0, 3.1 Hz, 1H), 3.08 (dd, J = 18.0, 9.9 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.4, 158.0, 149.7, 144.9, 134.0, 133.6, 129.5, 128.3, 114.4, 110.6, 56.0, 52.2, 44.0, 21.7. HRMS (ESI): Calcd for C₁₈H₁₈NO₃ [M +H]⁺: 296.1281, found: 296.1273.

6-Methoxy-7-methyl-3-(2-oxo-2-(p-tolyl)ethyl)isoindolin-1-one (3g)

42.7 mg (68%), white solid ($R_f = 0.4$, $V_{THF}/V_{PE} = 30:70$), ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 8.1 Hz, 2H), 7.27 (d, J = 9.2 Hz, 3H), 7.21 (d, J = 8.2 Hz, 1H), 7.03 (d, J = 8.2 Hz, 1H), 6.71 (s, 1H), 4.99 (d, J = 10.4 Hz, 1H), 3.88 (s, 3H), 3.63 (dd, J = 17.9, 2.9 Hz, 1H), 3.01 (dd, J = 18.0, 10.3 Hz, 1H), 2.62 (s, 3H), 2.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.9, 170.9, 158.1, 144.8, 138.7, 133.8, 129.9, 129.5, 128.2, 127.3, 119.7, 113.6, 56.2, 50.9, 44.6, 21.8, 9.6. HRMS (ESI): Calcd for C₁₉H₂₀NO₃ [M +Na]⁺: 310.1438, found: 310.1434.

6,7-Dimethoxy-3-(2-oxo-2-(p-tolyl)ethyl)isoindolin-1-one(3h)

3h

42.9 mg (66%), white solid ($R_f = 0.4$, $V_{THF}/V_{PE} = 40:60$), ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 8.1 Hz, 2H), 7.25 (d, J = 7.6 Hz, 2H), 7.10 (q, J = 8.2 Hz, 2H), 6.86 (s, 1H), 4.99 (dd, J = 9.8, 2.5 Hz, 1H), 4.07 (s, 3H), 3.89 (s, 3H), 3.60 (dd, J = 17.9, 3.3 Hz, 1H), 3.05 (dd, J = 18.0, 10.0 Hz, 1H), 2.40 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.6, 168.3, 152.6, 147.8, 144.8, 140.1, 133.7, 129.5, 128.2, 124.1, 117.3, 117.0, 62.5, 56.8, 51.3, 44.4, 21.7. HRMS (ESI): Calcd for C₁₉H₂₀NO₄ [M +H]⁺: 326.1387, found: 326.1392.

7-Fluoro-3-(2-oxo-2-(p-tolyl)ethyl)isoindolin-1-one (3i)

3i

36.3 mg (64%), white solid ($R_f = 0.4$, $V_{THF}/V_{PE} = 30:70$), ¹H NMR (400 MHz, DMSO) δ 8.60 (s, 1H), 7.90 (d, J = 8.2 Hz, 2H), 7.61 (td, J = 7.9, 4.9 Hz, 1H), 7.45 (d, J = 7.6 Hz, 1H), 7.33 (d, J = 8.1 Hz, 2H), 7.23 (t, J = 9.2 Hz, 1H), 5.10 (dd, J = 7.6, 4.6 Hz, 1H), 3.68 (dd, J = 17.9, 4.6 Hz, 1H), 3.39 – 3.33 (m, 1H), 2.37 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 197.0, 166.2 (d, J = 2.0 Hz), 158.2 (d, J = 257.4 Hz), 150.9 (d, J = 3.1 Hz), 144.0, 134.0 (d, J = 7.6 Hz), 133.9, 129.4, 128.3, 119.7 (d, J = 3.8 Hz), 119.3 (d, J = 13.4 Hz), 115.1 (d, J = 19.4 Hz), 52.1, 43.3, 21.2. HRMS (ESI): Calcd for $C_{17}H_{15}FNO_2$ [M +H]⁺: 284.1081, found: 284.1081.

5-Fluoro-7-methyl-3-(2-oxo-2-(p-tolyl)ethyl)isoindolin-1-one (3j)

41.6 mg (70%), white solid ($R_f = 0.4$, $V_{THF}/V_{PE} = 30:70$), ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 7.6 Hz, 2H), 7.27 (d, J = 6.9 Hz, 2H), 6.96 – 6.91 (m, 2H), 6.84 (s, 1H), 5.03 (d, J = 8.9 Hz, 1H), 3.63 – 3.58 (m, 1H), 3.07 (dd, J = 17.9, 10.1 Hz, 1H), 2.70 (s, 3H), 2.41 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.3, 169.9, 164.7 (d, J = 252.5 Hz), 149.8 (d, J = 10.1 Hz), 144.9, 141.3 (d, J = 9.5 Hz), 133.6, 129.5, 128.2, 125.2, 117.7 (d, J = 22.5 Hz), 107.3 (d, J = 24.0 Hz), 51.6 (d, J = 2.7 Hz), 44.1, 21.7, 17.4. HRMS (ESI): Calcd for C₁₈H₁₇FNO₂ [M +H]⁺: 298.1238, found: 298.1243.

4-Fluoro-7-methyl-3-(2-oxo-2-(p-tolyl)ethyl)isoindolin-1-one (3k)

38.1 mg (64%), white solid ($R_f = 0.4$, $V_{THF}/V_{PE} = 30:70$), ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 8.2 Hz, 2H), 7.26 – 7.25 (m, 2H), 6.93 (dd, J = 13.4, 9.0 Hz, 2H), 6.86 (s, 1H), 5.03 (dd, J = 9.9, 2.7 Hz,

1H), 3.59 (dd, J = 17.9, 3.3 Hz, 1H), 3.08 (dd, J = 17.9, 10.0 Hz, 1H), 2.70 (s, 3H), 2.41 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.3, 169.9, 167.7 (d, J = 252.5 Hz), 149.8 (d, J = 10.1 Hz), 144.9, 141.2 (d, J = 10.1 Hz), 133.6, 129.5, 128.2, 125.2 (d, J = 2.0 Hz), 117.6 (d, J = 22.2 Hz), 107.1 (d, J = 23.2 Hz), 51.6, 51.6, 44.1, 21.7, 17.4. HRMS (ESI): Calcd for C₁₈H₁₇FNO₂ [M +Na]⁺: 320.1063, found: 320.1066.

6-Chloro-3-(2-oxo-2-(p-tolyl)ethyl)isoindolin-1-one (3I)

40.2 mg (67%), white solid ($R_f = 0.4$, $V_{THF}/V_{PE} = 30:70$), ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 8.3 Hz, 3H), 7.54 (dd, J = 8.0, 1.5 Hz, 1H), 7.42 (d, J = 8.1 Hz, 1H), 7.27 (d, J = 7.4 Hz, 2H), 7.15 (s, 1H), 5.12 (dd, J = 9.7, 2.7 Hz, 1H), 3.65 (dd, J = 18.0, 3.2 Hz, 1H), 3.09 (dd, J = 18.0, 9.9 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.2, 168.6, 145.0, 144.8, 134.8, 133.5, 132.1, 131.3, 130.3, 129.6, 129.3, 128.2, 124.3, 123.8, 52.4, 43.7, 21.7. HRMS (ESI): Calcd for C₁₇H₁₅ClNO₂ [M +Na]⁺: 322.0611, found: 322.0619.

5-Chloro-7-methyl-3-(2-oxo-2-(p-tolyl)ethyl)isoindolin-1-one (3m)

41.8 mg (67%), white solid ($R_f = 0.4$, $V_{THF}/V_{PE} = 30:70$), ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 8.2 Hz, 2H), 7.27 (d, J = 9.6 Hz, 3H), 7.22 (s, 1H), 6.87 (s, 1H), 5.03 (dd, J = 10.0, 1.9 Hz, 1H), 3.63 (dd, J = 18.0, 3.1 Hz, 1H), 3.06 (dd, J = 18.0, 10.3 Hz, 1H), 2.69 (s, 3H), 2.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.3, 169.9, 148.9, 145.0, 140.1, 137.6, 133.5, 130.6, 129.6, 128.2, 127.6, 120.2, 51.5, 44.0, 21.8, 17.2. HRMS (ESI): Calcd for C₁₈H₁₇ClNO₂ [M +Na]⁺: 314.0767, found: 314.0775.

4-Chloro-7-methyl-3-(2-oxo-2-(p-tolyl)ethyl)isoindolin-1-one (3n)

24.9 mg (40%), white solid ($R_f = 0.4$, $V_{THF}/V_{PE} = 30:70$), ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 8.1 Hz, 2H), 7.39 (d, J = 8.1 Hz, 1H), 7.27 (d, J = 7.3 Hz, 2H), 7.19 (d, J = 8.1 Hz, 1H), 6.94 (s, 1H), 5.07 (d, J = 10.6 Hz, 1H), 4.28 (dd, J = 18.1, 2.0 Hz, 1H), 2.85 (dd, J = 18.1, 10.8 Hz, 1H), 2.69 (s, 3H), 2.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.9, 169.4, 144.9, 143.7, 137.2, 133.6, 132.1, 131.8, 131.3, 129.5, 128.2, 126.2, 51.5, 41.5, 21.7, 16.9. HRMS (ESI): Calcd for C₁₈H₁₇CINO₂ [M +H]⁺: 314.0942, found: 314.0958.

3-(2-Oxo-2-(p-tolyl)ethyl)-2,3-dihydro-1H-benzo[e]isoindol-1-one (30)

30

40.4 mg (64%), white solid ($R_f = 0.4$, $V_{THF}/V_{PE} = 30:70$), ¹H NMR (400 MHz, CDCl₃) δ 9.22 (d, J = 8.3 Hz, 1H), 8.04 (d, J = 8.4 Hz, 1H), 7.92 (d, J = 8.2 Hz, 1H), 7.85 (d, J = 8.2 Hz, 2H), 7.67 – 7.63 (m, 1H), 7.59 – 7.55 (m, 1H), 7.51 (d, J = 8.4 Hz, 1H), 7.26 – 7.24 (m, 2H), 7.07 (s, 1H), 5.16 (dd, J = 10.2, 1.9 Hz, 1H), 3.74 (dd, J = 17.9, 3.1 Hz, 1H), 3.06 (dd, J = 17.9, 10.3 Hz, 1H), 2.40 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.5, 171.1, 147.1, 144.8, 133.6, 133.2, 133.0, 129.6, 129.5, 128.2, 128.1, 128.1, 126.7, 126.0, 123.9, 119.4, 52.2, 43.5, 21.7. HRMS (ESI): Calcd for C₂₁H₁₈NO₂ [M +H]⁺: 316.1332, found: 316.1331.

3-(2-Oxo-2-(p-tolyl)ethyl)-2,3,6,7,8,9-hexahydro-1H-benzo[e]isoindol-1-one (3p)

40.2 mg (63%), white solid (R_f = 0.4, V_{THF}/V_{PE} = 40:60), ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J =

8.1 Hz, 2H), 7.28 – 7.26 (m, 3H), 7.17 (d, J = 7.7 Hz, 1H), 6.75 (s, 1H), 5.01 (d, J = 9.3 Hz, 1H), 3.64 (dd, J = 18.0, 2.9 Hz, 1H), 3.31 (s, 2H), 3.02 (dd, J = 18.0, 10.3 Hz, 1H), 2.84 (s, 2H), 2.42 (s, 3H), 1.86 – 1.78 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 197.8, 171.2, 145.0, 144.8, 137.8, 137.6, 133.7, 132.9, 129.5, 128.5, 128.2, 119.0, 51.4, 44.3, 29.6, 25.0, 22.8, 22.4, 21.7. HRMS (ESI): Calcd for C₂₁H₂₂NO₂ [M +H]⁺: 320.1645 , found: 320.1642.

3-(2-Oxo-2-(m-tolyl)ethyl)isoindolin-1-one (4a)

4a

35.6 mg (67%), white solid ($R_f = 0.4$, $V_{THF}/V_{PE} = 30:70$), ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 7.4 Hz, 1H), 7.76 – 7.73 (m, 2H), 7.59 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.7 Hz, 2H), 7.42 – 7.33 (m, 2H), 7.04 (s, 1H), 5.13 (dd, J = 10.0, 2.6 Hz, 1H), 3.70 (dd, J = 18.1, 3.3 Hz, 1H), 3.10 (dd, J = 18.1, 10.1 Hz, 1H), 2.40 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.5, 170.0, 146.6, 144.9, 133.6, 132.0, 131.9, 129.5, 128.5, 128.2, 124.1, 122.4, 52.5, 43.9, 21.7. HRMS (ESI): Calcd for C₁₇H₁₆NO₂ [M +H]⁺: 266.1176 , found: 266.1179.

3-(2-(4-Methoxyphenyl)-2-oxoethyl)isoindolin-1-one (4b) 1

4b

38.3 mg (68%), white solid ($R_f = 0.4$, $V_{THF}/V_{PE} = 30:70$), ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 8.8 Hz, 2H), 7.87 (d, J = 7.5 Hz, 1H), 7.58 (t, J = 7.4 Hz, 1H), 7.51 – 7.46 (m, 2H), 7.01 (s, 1H), 6.93 (d, J = 8.8 Hz, 2H), 5.12 (dd, J = 9.8, 1.8 Hz, 1H), 3.86 (s, 3H), 3.66 (dd, J = 17.9, 3.1 Hz, 1H), 3.04 (dd, J = 17.9, 10.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 196.3, 169.9, 164.1, 146.7, 132.0, 131.9, 130.4, 129.1, 128.5, 124.1, 122.4, 114.0, 55.6, 52.6, 43.7.

3-(2-(Benzo[d][1,3]dioxol-5-yl)-2-oxoethyl)isoindolin-1-one (4c)

4c

36.6 mg (62%), white solid ($R_f = 0.4$, $V_{THF}/V_{PE} = 30:70$), ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 7.5 Hz, 1H), 7.57 (t, J = 7.4 Hz, 1H), 7.52 – 7.46 (m, 3H), 7.42 (s, 1H), 7.12 (s, 1H), 6.82 (d, J = 8.2 Hz, 1H), 6.04 (s, 2H), 5.10 (dd, J = 9.8, 2.4 Hz, 1H), 3.61 (dd, J = 17.9, 3.3 Hz, 1H), 3.02 (dd, J = 17.9, 10.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 195.8, 170.1, 152.4, 148.4, 146.6, 131.9, 130.9, 128.5, 127.4, 124.6, 124.1, 122.4, 108.0, 107.7, 102.0, 52.6, 43.7. HRMS (ESI): Calcd for C₁₇H₁₄NO₄ [M +H]⁺: 296.0917, found: 296.0920.

3-(2-(4-Fluorophenyl)-2-oxoethyl)isoindolin-1-one (4d) 1

4d

42.6 mg (79%), white solid ($R_f = 0.4$, $V_{THF}/V_{PE} = 30:70$), ¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.96 (m, 2H), 7.85 (d, J = 7.4 Hz, 1H), 7.60 – 7.56 (m, 1H), 7.48 (t, J = 7.5 Hz, 2H), 7.25 (d, J = 6.6 Hz, 1H), 7.13 (t, J = 8.6 Hz, 2H), 5.13 (dd, J = 9.7, 3.0 Hz, 1H), 3.66 (dd, J = 18.0, 3.5 Hz, 1H), 3.10 (dd, J = 18.0, 9.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 196.3, 170.1, 166.1 (d, J = 254.6 Hz), 146.5, 132.5 (d, J = 3.0 Hz), 132.0, 130.8 (d, J = 9.5 Hz), 128.6, 127.4, 124.1, 122.4, 116.0 (d, J = 21.9 Hz), 52.4, 44.0.

3-(2-(3-Fluorophenyl)-2-oxoethyl)isoindolin-1-one (4e) 3

38.8 mg (72%), white solid (R_f = 0.4, V_{THF}/V_{PE} = 30:70), ¹H NMR (400 MHz, DMSO-d6) δ 8.58 (s, 1H), 7.85 (d, J = 7.6 Hz, 1H), 7.77 (d, J = 9.7 Hz, 1H), 7.66 (d, J = 7.4 Hz, 1H), 7.62 – 7.56 (m, 3H),

7.53 – 7.46 (m , 2H), 5.10 (dd, J = 7.5, 4.5 Hz, 1H), 3.72 (dd, J = 18.0, 4.4 Hz, 1H), 3.42 – 3.32 (m, 1H, H₂O). ¹³C NMR (101 MHz, DMSO-d6) δ 196.8 (d, J = 2.1 Hz), 169.3, 162.3 (d, J = 246.3 Hz), 147.4, 138.6 (d, J = 6.2 Hz), 132.4, 131.6, 131.0 (d, J = 7.8 Hz), 128.2, 124.5 (d, J = 2.7 Hz), 123.4, 122.9, 120.5 (d, J = 21.4 Hz), 114.7 (d, J = 22.4 Hz), 52.2, 43.8.

3-(2-(2-fluorophenyl)-2-oxoethyl)isoindolin-1-one (4f) ³

33.4 mg (62%), white solid (R_f = 0.4, V_{THF}/V_{PE} = 30:70), ¹H NMR (400 MHz, CDCl₃) δ 7.96 (td, *J* = 7.7, 1.8 Hz, 1H), 7.87 (d, *J* = 7.5 Hz, 1H), 7.61 – 7.54 (m, 2H), 7.51 – 7.47 (m, 2H), 7.29 – 7.25 (m, 1H), 7.14 (ddd, *J* = 11.4, 8.3, 0.8 Hz, 1H), 7.04 (s, 1H), 5.13 (dd, *J* = 10.0, 2.2 Hz, 1H), 3.74 (dt, *J* = 18.8, 3.3 Hz, 1H), 3.10 (ddd, *J* = 18.8, 10.2, 3.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 196.1 (d, *J* = 4.1 Hz), 170.1, 162.4 (d, *J* = 256.2 Hz), 146.4, 135.6 (d, *J* = 9.3 Hz), 132.0 (d, *J* = 5.5 Hz), 130.6 (d, *J* = 2.2 Hz), 128.5, 124.8 (d, *J* = 3.3 Hz), 124.5 (d, *J* = 12.6 Hz), 124.1, 122.4, 116.9 (d, *J* = 23.8 Hz), 52.5 (d, *J* = 2.8 Hz), 48.9 (d, *J* = 8.1 Hz).

3-(2-Oxo-2-(4-(trifluoromethyl)phenyl)ethyl)isoindolin-1-one (4g) ³

4g

29.4 mg (46%), white solid ($R_f = 0.4$, $V_{THF}/V_{PE} = 30:70$), ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 8.1 Hz, 2H), 7.88 (d, J = 7.5 Hz, 1H), 7.75 (d, J = 8.2 Hz, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.53 – 7.48 (m, 2H), 7.11 (s, 1H), 5.16 (dd, J = 9.6, 2.1 Hz, 1H), 3.73 (dd, J = 18.2, 3.2 Hz, 1H), 3.16 (dd, J = 18.2, 9.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 197.1, 170.1, 146.3, 138.6, 135.3 (CF₃), 135.0 (CF₃), 132.1, 132.0, 128.7, 128.5, 126.0(d, J = 11.0 Hz), 124.8 (CF₃), 124.3, 122.4, 122.1 (CF₃), 52.3, 44.5.

3-(2-(4-Chlorophenyl)-2-oxoethyl)isoindolin-1-one (4h)¹

4h

41.7 mg (73%), white solid ($R_f = 0.4$, $V_{THF}/V_{PE} = 30:70$), ¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.84 (m, 3H), 7.59 – 7.55 (m, 1H), 7.51 – 7.40 (m, 4H), 7.32 (s, 1H), 5.13 (dd, *J* = 9.6, 3.0 Hz, 1H), 3.65 (dd, *J* = 18.1, 3.5 Hz, 1H), 3.10 (dd, *J* = 18.1, 9.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 196.7, 170.2, 146.4, 140.4, 134.3, 132.0, 129.5, 129.2, 128.6, 127.4, 124.1, 122.40, 52.4, 44.0. 3-(2-(3-Chlorophenyl)-2-oxoethyl)isoindolin-1-one (**4i**) ³

4i

40.6 mg (70%), white solid ($R_f = 0.4$, $V_{THF}/V_{PE} = 30:70$), ¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.87 (d, J = 7.5 Hz, 1H), 7.82 (d, J = 7.7 Hz, 1H), 7.58 (dd, J = 15.4, 7.8 Hz, 2H), 7.49 (dd, J = 12.0, 7.5 Hz, 2H), 7.42 (t, J = 7.9 Hz, 1H), 7.14 (s, 1H), 5.14 (dd, J = 9.7, 2.6 Hz, 1H), 3.68 (dd, J = 18.2, 3.3 Hz, 1H), 3.11 (dd, J = 18.2, 9.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 196.7, 170.1, 146.3, 137.5, 135.2, 133.8, 132.1, 130.2, 128.7, 128.2, 127.4, 126.2, 124.2, 122.4, 52.3, 44.2.

3-(2-(4-Bromophenyl)-2-oxoethyl)isoindolin-1-one (4j)¹

52.8 mg (80%), white solid (R_f = 0.4, V_{THF}/V_{PE} = 30:70), ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 7.5 Hz, 1H), 7.80 (d, *J* = 8.5 Hz, 2H), 7.61 –7.56 (m, 3H), 7.50 – 7.46 (m, 2H), 7.22 (s, 1H), 5.13 (dd, *J* = 9.7, 2.9 Hz, 1H), 3.65 (dd, *J* = 18.1, 3.4 Hz, 1H), 3.09 (dd, *J* = 18.1, 9.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 196.9, 170.1, 146.4, 134.7, 132.1, 132.0, 131.9, 129.6, 129.2, 128.6, 124.1, 122.4, 52.3, 44.0.

3-(2-(3-Bromophenyl)-2-oxoethyl)isoindolin-1-one (4k)

4k

46.2 mg (70%), white solid ($R_f = 0.4$, $V_{THF}/V_{PE} = 30:70$), ¹H NMR (400 MHz, CDCl₃) δ 8.07 (s, 1H), 7.86 (d, J = 7.6 Hz, 2H), 7.70 (dd, J = 8.0, 0.6 Hz, 1H), 7.59 (t, J = 7.2 Hz, 1H), 7.49 (t, J = 8.1 Hz, 2H), 7.35 (t, J = 7.9 Hz, 1H), 7.21 (s, 1H), 5.13 (dd, J = 9.7, 2.9 Hz, 1H), 3.66 (dd, J = 18.2, 3.4 Hz, 1H), 3.11 (dd, J = 18.2, 9.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 196.6, 170.1, 146.3, 137.7, 136.7, 132.0, 131.9, 131.1, 130.4, 128.6, 126.6, 124.2, 123.2, 122.4, 52.3, 44.2. HRMS (ESI): Calcd for C₁₆H₁₃BrNO₂ [M +H]⁺: 351.9958, found: 351.9949.

3-(2-(3,4-Dichlorophenyl)-2-oxoethyl)isoindolin-1-one (4)

42.9 mg (67%), white solid ($R_f = 0.4$, $V_{THF}/V_{PE} = 30:70$), ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 1.9 Hz, 1H), 7.88 (d, J = 7.5 Hz, 1H), 7.78 (dd, J = 8.4, 2.0 Hz, 1H), 7.63 – 7.56 (m 2H), 7.53 – 7.47 (m, 2H), 6.97 (s, 1H), 5.14 (dd, J = 9.9, 2.3 Hz, 1H), 3.67 (dd, J = 18.2, 3.2 Hz, 1H), 3.08 (dd, J = 18.2, 10.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 195.8, 170.0, 146.2, 138.7, 135.5, 133.7, 132.1, 131.9, 131.0, 130.1, 128.8, 127.1, 124.3, 122.4, 52.2, 44.2. HRMS (ESI): Calcd for C₁₆H₁₂Cl₂NO₂ [M +H]⁺: 320.0240, found: 320.0244.

3-(2-Oxo-2-(thiophen-2-yl)ethyl)isoindolin-1-one (4m)¹

34.5 mg (67%), whitle solid ($R_f = 0.4$, $V_{THF}/V_{PE} = 30:70$), ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 7.4 Hz, 1H), 7.69 (t, J = 4.0 Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.48 (t, J = 8.0 Hz, 2H), 7.14 – 7.10 (m, 2H), 5.13 (dd, J = 9.7, 2.7 Hz, 1H), 3.63 (dd, J = 17.6, 3.5 Hz, 1H), 3.07 (dd, J = 17.6, 10.0 Hz, 1H). ¹³C

NMR (101 MHz, CDCl3) δ 190.5, 170.0, 146.3, 143.1, 134.7, 132.7, 132.0, 128.6, 128.4, 127.4, 124.2, 122.4, 52.5, 44.5.

3-(2-(5-Methylfuran-2-yl)-2-oxoethyl)isoindolin-1-one (4n)

4n

29.1 mg (57%), white solid ($R_f = 0.4$, $V_{THF}/V_{PE} = 30:70$), ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 7.5 Hz, 1H), 7.56 (t, J = 7.1 Hz, 1H), 7.46 (t, J = 6.8 Hz, 2H), 7.15 (d, J = 3.0 Hz, 2H), 6.16 (d, J = 2.9 Hz, 1H), 5.08 (dd, J = 9.8, 3.0 Hz, 1H), 3.49 (dd, J = 17.6, 3.5 Hz, 1H), 2.92 (dd, J = 17.6, 10.0 Hz, 1H), 2.36 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 185.7, 170.1, 158.5, 150.8, 146.5, 131.9, 131.8, 128.4, 124.0, 122.4, 120.0, 109.4, 52.3, 43.1, 14.0. HRMS (ESI): Calcd for C₁₅H₁₄NO₃ [M +H]⁺: 256.0968, found: 256.0967.

3-(2-Oxobutyl)isoindolin-1-one (40)

14.3 mg (33%), white solid (Rf = 0.4, V_{THF}/V_{PE} = 40:60), ¹H NMR (400 MHz, CDCl₃) δ 7.39 (t, *J* = 7.6 Hz, 1H), 7.17 (t, *J* = 7.2 Hz, 2H), 6.78 (s, 1H), 4.87 (dd, *J* = 10.2, 3.0 Hz, 1H), 3.11 (dd, *J* = 18.1, 3.3 Hz, 1H), 2.69 (s, 3H), 2.56 – 2.44 (m, 3H), 1.09 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 209.6, 171.0, 147.1, 138.4, 131.5, 130.4, 128.9, 119.5, 51.4, 47.5, 36.2, 17.3, 7.7. HRMS (ESI): Calcd for C₁₃H₁₆NO₂ [M +H]⁺: 218.1176 found: 218.1174.

7. References

F. Z. Han, B. Su, L. N. Jia, P. W. Wang, X. P. Hu, *Adv. Synth. Catal.*, 2017, **359**,146.
 X. Zhou, H. Xu, Q. Yang, H. Chen, S. Wang, H. Zhao, *Chem. Commun.* 2019, **55**, 8603.
 J. Li, Y. Li, Z. Wang, Y. Bian, S. Bai, L. Liu, J. Sun, *J. Org. Chem.*, 2018, **83**, 4257.

8. ¹H and ¹³C NMR spectra

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

