A flow-based transition-metal-catalysed hydrogenolysis approach to facilitate peptide side-chain deprotection

Electronic Supporting Information

Maria Menti,^a Janice R. Aldrich-Wright,^{b,c} and Christopher P. Gordon^{b,c,d}

1.	General Considerations	2
2.	General Methods	3
	2.1. General Method 1 – Linear Peptide Synthesis	
	2.2. General Method 2 – Cbz Hydrogenation	
	2.3. General Method 3 – PS-Carbodiimide Mediated Cyclisation	
3.	Characterisation Data for Compounds 7-26	4
4.	Spectral and Chromatographic Data for Compounds 7-26	17
5.	Chromatographic Data for Cbz Deprotection Optimisation Trials	61
	5.1. Chromatographic Data for 10% Pd/C Cbz Hydrogenolysis of Compound 861	
	5.2 Chromatographic Data for Catalyst Trials for Cbz Hydrogenolysis of Compound 864	
	5.3 Chromatographic Data for Differing H ₂ Saturation Trials for Cbz Hydrogenolysis of Compound 8 72	

1. General Considerations

Protected amino acids, PS-2ClTrt-Cl (loading 0.9 mmol/g) and (2-(6-Chloro-1H-benzotriazole-1-yl)-1,1,3,3-tetramethylammonium hexafluorophosphate) (HCTU) were purchased from Auspep and used as received to synthesise the linear peptide sequences as previously published. All other reagents and reactants were purchased from standard suppliers and utilised without purification unless otherwise stated. PS-carbodiimide was purchased from biotage (loading 1.27 mmol/g). All solvents were purchased from ChemSupply and distilled under reduced pressure, with the exception of HPLC grade solvents being used as received. HPLC solvents were degassed before use. Deuterated solvents were purchased from Cambridge Isotope Laboratories and stored in a desiccator.

All flow hydrogenation methods were carried out on a ThalesNano H-Cube ProTM continuous flow reactor. The choice of catalyst (ThalesNano CatCarts®), and reaction parameters including temperature (°C) H₂ pressure (bar), flow rate (mL/min), H₂ production (%), and number of cycles are defined in each individual experiment.

All ¹H and ¹³C nuclear magnetic resonance (NMR) spectra were recorded at 25 °C on a Varian 'Mercury' 300 MHz spectrometer or a Bruker 'Avance' 400 MHz spectrometer. Chemical shifts (δ) are reported in parts per million (ppm) and are measured in reference to the designated deuterated solvent. Coupling constants (J) are recorded in Hz and significant multiplicities described by singlet (s), doublet (d), doublet of doublets (dd), doublet of triplets (dt), triplet (t), quadruplet (q), broad (br s), multiplet (m). Spectra were assigned using appropriate gCOSY sequences.

Analytical RP-HPLC analysis was performed using an Agilent instrument comprising six modules; 1260 Bin Pump, 1260 HIP Degasser, 1260 ALS, 1260 TCC, 1260 DAD and 1260 FC-AS. Analytical RP-HPLC was performed using Phenomenex Onyx Monolithic reversed-phase C18 column (4.6 x 100 mm). A: 0.06% TFA in H_2O and solvent B: 0.06% TFA in $CH_3CN:H_2O$ (9:1), flow rate of 1.0 mL/min, gradient 10-100 (%B), curve = 6, over 15.0 mins, and detection at 214 and 254 nm. For peptide purification semi-preparative RP-HPLC was performed using a Waters 2525 binary gradient pump equipped with a water 2487 dual λ absorbance detector and a Chromolith®SemiPrep RP-18e 100-10 mm column. A flow rate of 10 mL/min was used with solvent A: 0.06% TFA in water and solvent B: 0.06% TFA in $CH_3CN:H_2O$ (90:10). Gradient 10-75 (%B) over 15 mins, curve = 6, with UV detection at 214 nm and 254 nm.

Mass spectrometry data was obtained at the Western Sydney University Mass Spectrometry Facility. Low-resolution mass spectrometry (LRMS) experiments were performed using a Waters 'Xevo TQ Triple Quadrupole' Mass Spectrometer via the ESI method. Spectra were recorded in positive ion mode from analyte solutions injected into a 0.1% formic acid in methanol solution flowing at 0.1 mL/min. A capillary voltage of 3.0 kV, cone voltage of 30 V, desolvation temperature of 300 °C and desolvation flow rate of 500 L/h. Spectra were recorded over 1 min with an m/z range of 100 - 2000. High resolution mass spectra (HRMS) were obtained on a Waters 'Xevo Quadrupole-Time of Flight' spectrometer via the ESI method and were within 5.00 ppm of the acceptable limit. The instrument was fitted with an ESI probe and mass-corrected sample spectra were recorded in positive mode, using leucine encephalin (200 pg.mL⁻¹ in 50% aqueous acetonitrile + 0.1% formic acid) as a lockmass reference.

2. General Methods

2.1. General Method 1 – Linear Peptide Synthesis

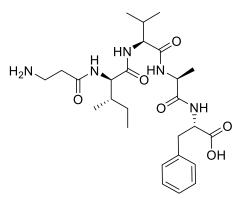
The linear sequences were synthesised using an adapted literature method, where PS-2ClTrt-Cl (200 mg, loading = 0.97 mmol/g) was placed in an OmnifitTM column (one fixed end, one variable end) and swelled with DCM (4.0 mL. 0.5 h). The adjustable end was fixed within 5 mm of the swollen resin. The column was placed inline with a syringe pump, and acetyl chloride (3 M in DCM, 10 mL) was flowed through (1.0 mL/min) at room temperature. The resin was washed with DCM (20 mL). The first amino acid solution (AA₁) (Fmoc-AA-OH 4 eq., DIPEA 8 eq., in DCM (10mL)) was flowed through (1.0 mL/min) at 40 °C. To ensure all unreacted -Cl sites on the resin were hydrolysed, MeOH (10 mL) was flowed through (5.0 mL/min). The column was then placed on a thermostatically controlled heating block (60 °C) in-line with the HPLC driven flow synthesiser established in literature, ² (UV detector zeroed to DMF at 290 nm) The resin was washed with solution A (100% DMF, 5.0 mL/min) until the UV absorbance read <0.1 AU. The resin was subsequently Fmoc-deprotected using solution B (1:1 DMF:Piperidine, 5.0 mL/min) until the detector reached maximum absorption and returned to <0.1 AU. The resin was then washed with solution A (2 min, 5.0 mL/min). The amino acid solution (Fmoc-AA-OH 4 eq., HCTU 4 eq., DIPEA 8 eq., DMF 1.0 mL) was injected into the sample loop of the reactor and flowed through the OmnifitTM column (2.0 mL/min) until the UV detector reached maximum absorbance and subsequently returned to <0.1 AU. This was followed by Fmoc-deprotection with solution B until the detector reached maximum detection and returned to <0.1 AU. The resin was then washed with solution A (2 min, 5.0 mL/min). The above steps of AA solution injection (step 1), Fmoc-deprotection (step 2) and washing (step 3) were repeated for all additional AA's in the sequence. Once the final Fmoc-deprotection was achieved, the column was removed from the heating block and the resin was washed with DCM (2 × 5 mL), MeOH (2 × 5 mL), and Et₂O (2 × 10 mL) and then dried in vacuo.

2.2. General Method 2 – Cbz Hydrogenation

A solution of the linear Cbz protected peptide sequence in MeOH was flowed through the H-cube ProTM continuous flow reactor under a 10% Pd/CaCO₃ catalyst at 40 °C, 1.0 mL/min, 1 atm, 25% H₂ production for 1 cycle. The collected eluent was concentrated *in vacuo* to afford each peptide as the free amine.

2.3. General Method 3 – PS-Carbodiimide Mediated Cyclisation

Cyclisations were performed using a previously reported flow synthesiser according to literature.³ The reaction column was initially charged with dry carbodiimide functionalised resin (2 molar equivalents). Following resin swelling, which was effected with DCM, the reaction column was placed in-line where a continuous stream of neat DCM was flowed through the resin bed at 0.5 mL/min and 60 °C. Upon stabilisation of UV absorbance, the Rheodyne® injection loop was loaded with a solution of a linear peptide (0.02 M, 1.0 mL, 10% DMF:DCM). Following the injection of coupling solution into the continuous DCM stream (0.5 mL/min) the column eluent was monitored *via* UV and upon absorbance detection, the reaction stream was collected. Collection of the column eluent continued until UV absorbance of the solvent stream returned to baseline.


3. Characterisation Data for Compounds 7-26

(3-(((benzyloxy)carbonyl)amino)propanoyl)-L-alloisoleucyl-L-valyl-L-alanyl-L-phenylalanine (8)

Chemical Formula: C₃₄H₄₇N₅O₈ Molecular Weight: 653.78 Compound **8** was synthesised using General Method 1, with Fmoc-L-Phe-OH as AA₁ (0.3012 g, 7.76 mmol), Fmoc-L-Ala-OH as AA₂ (0.2308 g, 7.76 mmol), Fmoc-L-Val-OH as AA₃ (0.2560 g, 7.76 mmol), Fmoc-L-Ile-OH as AA₄ (0.2666 g, 7.76 mmol), and Z- β -Ala-OH as AA₅ (0.1684 g, 7.76 mmol). The dried resin was added to a scintillation vial, to which a cleavage cocktail (TFA:TIPS:DCM 1.5:0.5:98) was added and allowed to cleave for 2 h. The cleaved peptide solution was filtered and H₂O (10 mL) was added to the filtrate. The organic solvent was concentrated *in vacuo* and the aqueous suspension was lyophilised to afford compound **8** as a white solid (89%, 114 mg). ¹H NMR (400 MHz, DMSO- d_6) δ 8.08 (d, J = 7.81 Hz, 1H), 7.96 (d, J = 8.48 Hz, 1H), 7.88 (d, J = 7.53 Hz, 1H), 7.72 (d, J = 8.48 Hz, 1H), 7.41 – 7.16 (m, 10H), 5.00 (s,

2H), 4.44 - 4.39 (m, 1H), 4.33 - 4.27 (m, 1H), 4.21 - 4.12 (m, 2H), 3.22 - 3.16 (m, 2H), 3.06 - 3.02 (m, 1H), 2.93 - 2.87 (m, 1H), 2.38 - 2.29 (m, 2H), 1.96 - 1.89 (m, 1H), 1.73 - 1.66 (m, 1H), 1.43 - 1.36 (m, 1H), 1.16 (d, J = 6.88, 2H), 0.99 (m, 6H), 0.81 - 0.71 (m, 10H). ¹³C NMR (101 MHz, DMSO- d_6) δ 173.12, 172.38, 171.54, 170.71, 156.44, 137.77, 137.64, 129.54, 128.61, 128.19, 128.12, 126.87, 65.65, 57.82, 57.44, 53.77, 48.33, 37.73, 37.11, 36.70, 35.95, 30.88, 24.82, 19.68, 19.64, 18.76, 18.43, 15.84, 11.41, 10.11. HRMS (ESI⁺); for $C_{34}H_{47}N_5O_8Na$ calculated 676.3322, found 676.3295. RP-HPLC Onyx Monolithic C18 100×4.6 mm, 10-100% B in 15 min, t_R 9.82 min.

(3-aminopropanoyl)-L-alloisoleucyl-L-valyl-L-alanyl-L-phenylalanine (9)

Chemical Formula: C₂₆H₄₁N₅O₆ Molecular Weight: 519.64 A solution of **8** in MeOH was flowed through the H-cube ProTM continuous flow reactor under a 10% Pd/CaCO₃ catalyst at 40 °C, 1.0 mL/min, 1 atm, 25% $\rm H_2$ production for 1 cycle. The collected eluent was concentrated *in vacuo*, prior to the addition of $\rm H_2O$. The suspension was lyophilised to afford **9** as a white solid (84% 32.7 mg). $^{1}\rm H$ NMR (400 MHz, DMSO- d_6) δ 8.19 (d, 1H, J = 8.29 Hz), 8.09 (d, 1H, J = 7.60 Hz), 7.89 (d, 1H, J = 7.60 Hz), 7.83 (d, 1H, J = 8.98 Hz), 7.38 (br s, 2H), 7.28 – 7.17 (m, 5H), 4.44 – 4.39 (m, 1H), 4.33 – 4.32 (m, 2H), 4.14 (t, 1H, J = 7.56 Hz), 3.07 – 2.87 (m, 4H), 1.94 (quin, 1H, J = 6.78 Hz), 1.75 – 1.67 (m, 1H), 1.45 – 1.39 (m, 1H), 1.16 (d, 3H, J = 6.78 Hz), 0.99 (d, 2H, J = 7.40 Hz), 0.83 – 0.78 (m, 12H). $^{13}\rm C$ NMR (101 MHz,

DMSO- d_6) δ 173.12, 172.36, 171.38, 170.67, 156.43, 137.79, 129.54, 128.61, 126.87, 57.91, 57.41, 53.78, 48.33, 37.07, 35.86, 32.32, 30.80, 24.82, 19.66, 18.81, 18.52, 18.31, 15.83, 12.53, 11.51. HRMS (ESI⁺); for C₂₆H₄₁N₅O₆ calculated 520.3135, found 520.3119. RP-HPLC Onyx Monolithic C18 100 × 4.6 mm, 10-100% B in 15 min, t_R 6.44 min.

methyl (3-aminopropanoyl)-L-alloisoleucyl-L-valyl-L-alanyl-L-phenylalaninate (10)

Chemical Formula: $C_{27}H_{43}N_5O_6$ Molecular Weight: 533.67

A solution of **8** in 9:1 CHCl₃:MeOH was flowed through the H-cube ProTM continuous flow reactor under a 10% Pd/C catalyst at 80 °C, 0.5 mL/min, 1 atm, 100% H₂ production for 1 cycle. The collected eluent was concentrated *in vacuo*, prior to the addition of H₂O. The suspension was lyophilised to afford **10** as a white solid (90%, 36.7 mg). ¹H NMR (400 MHz, DMSO- d_6) δ 8.24, (d, 1H, J = 7.92 Hz), 8.18 (d, 1H, J = 9.02 Hz), 7.90 (d, 1H, J = 6.90 Hz), 7.84 (d, 1H, J = 9.02 Hz), 7.69 (s, 2H), 7.29 – 7.25 (m, 2H), 7.22 – 7.19 (m, 3H), 4.45 (q, 1H, J = 7.86 Hz), 4.33 – 4.22 (m, 2H), 4.14 (t, 1H, J = 8.00 Hz), 3.58 (s, 3H), 3.04 – 2.89 (m, 4H), 1.98 – 1.91 (m, 4H), 1.96 – 1.91 (m, 1H), 1.74 – 1.66 (m, 1H), 1.44 – 1.38 (m, 1H), 1.16 (d, 3H, J = 6.59 Hz), 1.10 – 1.03 (m,

1H), 0.86 - 0.79 (m, 12H). ¹³C NMR (101 MHz, DMSO- d_6) δ 172.58, 172.21, 171.38, 170.69, 169.84, 137.43, 129.48, 128.71, 127.04, 57.90, 57.36, 53.99, 52.29, 48.23, 37.09, 37.01, 35.85, 32.29, 24.81, 19.62, 18.74, 18.55, 15.83, 11.52. HRMS (ESI⁺); for C₂₇H₄₄N₅O₆ calculated 534.3292, found 534.3333. RP-HPLC Onyx Monolithic C18 100 × 4.6 mm, 10-100% B in 15 min, t_R 7.42 min.

((S)-2-((S)-2-((S)-2-((S)-2-(((benzyloxy)carbonyl)amino)propanamido)-3-(tert-butoxy)propanamido)-3-(4-(tert-butoxy)phenyl)propanamido)-3-(4-(tert-butoxy)phenyl)propanoyl)-L-phenylalanine (11)

Chemical Formula: C₅₃H₆₉N₅O₁₁ Molecular Weight: 952.16

Compound 5 was synthesised using General Method 1, with Fmoc-L-Phe-OH as AA₁ (0.3012 g, 7.76 mmol), Fmoc-L-Tyr(tBu)-OH as AA₂ (0.3573 g, 7.76 mmol), Fmoc-L-Tyr(tBu)-OH as AA₃ (0.3573 g, 7.76 mmol), Fmoc-L-Ser(tBu)-OH as AA₄ (0.2982 g, 7.76 mmol), and Z- β -Ala-OH as AA₅ (0.1684 g, 7.76 mmol). The dried resin was added to a scintillation vial, which cleavage cocktail (TFA:TIPS:DCM 1.5:0.5:98) was added and allowed to cleave for 2 h. The cleaved peptide solution was filtered and H₂O (10 mL) was added to the filtrate. The organic solvent was concentrated in vacuo and the aqueous suspension was lyophilised to afford compound 11 as a white solid (76%,

120 mg). ¹H NMR (400 MHz, DMSO- d_6) δ 12.75 (s, 1H), 8.27 (d, 1H, J = 8.20 Hz), 8.07 (d, 1H, J = 8.20 Hz), 7.91 (d, 1H, J = 8.20 Hz), 7.78 (d, 2H, J = 8.43 Hz), 7.23 – 7.17 (m, 11H), 7.11 (d, 2H, J = 8.93 Hz), 7.01 (d, 2H, J = 8.93 Hz), 6.82 (d, 2H, J = 8.44 Hz), 6.76 (d, 2H, J = 8.44 Hz), 5.00 (s, 2H), 4.58 – 4.41 (m, 3H), 4.26 (q, 1H, J = 6.45 Hz), 3.20 (q, 2H, J = 7.19 Hz), 3.09 – 3.05 (m, 1H), 2.99 – 2.89 (m, 2H), 2.88 – 2.82 (m, 1H), 2.76 – 2.60 (m, 2H), 2.31 (t, 2H, J = 7.90 Hz), 1.27 (s, 9H), 1.23 (s, 9H), 1.04 (s, 9H). ¹³C NMR (101 MHz, DMSO- d_6) δ 173.06, 171.39, 170.86, 170.81, 169.83, 156.44, 153.84, 153.79, 137.78, 137.62, 132.64, 132.53, 130.13, 129.57, 128.79, 128.65, 128.20, 128.15, 126.89, 123.74, 123.63, 77.97, 73.31, 65.65, 61.98, 53.89, 35.93, 29.00, 27.55, 19.70, 18.31, 12.53, 10.11. HRMS (ESI⁺); for C₅₃H₇₀N₅O₁₁ calculated 952.5072, found 952.5110. RP-HPLC Onyx Monolithic C18 100 × 4.6 mm, 10-100% B in 15 min, t_R 14.22 min.

Chemical Formula: C₄₅H₆₃N₅O₉ Molecular Weight: 818.03

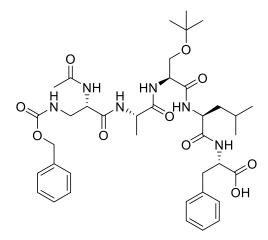
A solution of **11** in MeOH was flowed through the H-cube ProTM continuous flow reactor under a 10% Pd/CaCO₃ catalyst at 40 °C, 1.0 mL/min, 1 atm, 25% H₂ production for 1 cycle. The collected eluent was concentrated *in vacuo* to afford **12** as a white solid (92%, 94.6 mg). 1 H NMR (400 MHz, DMSO- d_6) δ 8.31 (d, 1H, J = 7.54 Hz), 8.25 (d, 1H, J = 8.34 Hz), 7.99 (d, 1H, J = 8.34 Hz), 7.93 – 7.91 (m, 1H), 7.26 – 7.15 (m, 5H), 7.12 (d, 2H, J = 8.34 Hz), 6.98 (d, 2H, J = 8.34 Hz), 6.82 (d, 2H, J = 8.34 Hz), 6.77 (d, 2H, J = 8.34 Hz), 4.41 – 4.32 (m, 2H), 4.21 – 4.18 (m, 2H), 3.15 – 3.08 (m, 2H), 3.03 – 2.89 (m, 4H), 2.84 – 2.65 (m, 3H), 1.25 (s, 18H), 1.06 (s, 9H). 13 C NMR (101 MHz, DMSO- d_6) δ 176.58, 170.97, 170.83, 170.24, 169.75, 153.84, 132.60, 130.11, 129.84, 128.37, 123.81, 123.64,

77.49, 73.42, 29.00, 27.60. HRMS (ESI⁺); for $C_{45}H_{64}N_5O_9$ calculated 818.4704, found 818.4686. RP-HPLC Onyx Monolithic C18 100 × 4.6 mm, 10-100% B in 15 min, t_R 10.50 min.

((S)-2-((S)-2-((S)-2-((S)-2-((S)-2-((Enzyloxy)carbonyl)amino)propanamido)-3-(tert-butoxy)propanamido)-3-(4-(tert-butoxy)phenyl)propanamido)-3-(4-(tert-butoxy)phenyl)propanamido)-L-phenylalanine (13)

Chemical Formula: C₅₅H₇₂N₆O₁₂ Molecular Weight: 1009.21

Compound 13 was synthesised using General Method 1, with Fmoc-L-Phe-OH as AA_1 (0.3012 g, 7.76 mmol), Fmoc-L-Tyr(tBu)-OH as AA_2 (0.3573 g, 7.76 mmol), Fmoc-L-Tyr(tBu)-OH as AA_3 (0.3573 g, 7.76 mmol), Fmoc-L-Ser(tBu)-OH as AA_4 (0.2982 g, 7.76 mmol), Fmoc-L-Dap(Z)-OH as AA_5 (0.3581 g, 7.76 mmol). After the final Fmoc deprotection, acetic anhydride (85 μ L, 7.76 mmol) and DIPEA (15.5 mmol) was added to the Omnifit column and left for 0.5 h, prior to resin washing. The dried resin was added to a scintillation vial, to which a cleavage cocktail (TFA:TIPS:DCM 1.5:0.5:98) was added and allowed to cleave for 2 h. The cleaved peptide solution was filtered and H_2O (10 mL) was added to the filtrate. The organic solvent was


concentrated *in vacuo* and the aqueous suspension was lyophilised to afford compound **13** as a white solid (87%, 170 mg). 1 H NMR (400 MHz, DMSO- d_6) δ 12.75 (s, 1H), 8.26 – 8.23 (m, 1H), 8.05 (d, 1H, J = 8.79 Hz), 8.01 (d, 1H, J = 8.08 Hz), 7.79 (d, 1H, J = 8.09 Hz), 7.75 (d, 1H, J = 8.09 Hz), 7.38 – 7.15 (m, 12H), 7.12 (d, 2H, J = 8.44 Hz), 7.01 (d, 2H, J = 8.08 Hz), 6.82 (d, 2H, J = 8.44), 6.76 (d, 2H, J = 8.09 Hz), 5.02 (s, 2H), 4.57 – 4.52 (m, 1H), 4.49 – 4.43 (m, 1H), 4.40 – 4.34 (m, 1H), 4.23 – 4.17 (m, 1H), 3.29 – 3.21 (m, 2H), 2.99 – 2.84 (m, 4H), 2.77 – 2.66 (m, 2H), 1,87 (s, 3H), 1.25 – 1.21 (m, 18H), 1.05 – 1.00 (m, 10H). 13 C NMR (101 MHz, DMSO- d_6) δ 173.05, 141.38, 169.61, 153.84, 137.77, 137.51, 132.48, 130.13, 129.58, 128.77, 128.65, 128.11, 126.89, 123.75, 123.63, 77.99, 73.38, 54.05, 53.89, 37.23, 29.00, 27.49, 19.70, 10.11. HRMS (ESI⁺); for C₅₅H₇₃N₆O₁₂ calculated 1009.5286, found 1009.5287. RP-HPLC Onyx Monolithic C18 100 × 4.6 mm, 10-100% B in 15 min, t_R 14.10 min.

((*S*)-2-((*S*)-2-((*S*)-2-acetamido-3-aminopropanamido)-3-(tert-butoxy)propanamido)-3-(4-(tert-butoxy)phenyl)propanamido)-3-(4-(tert-butoxy)phenyl)propanoyl)-L-phenylalanine (14)

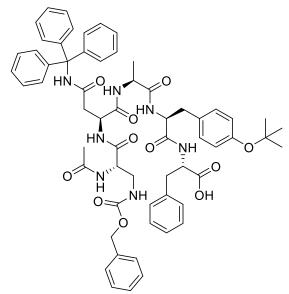
Chemical Formula: C₄₇H₆₆N₆O₁₀ Molecular Weight: 875.08 A solution of **13** in MeOH (0.5 mL/min) was flowed through the H-cube ProTM continuous flow reactor under a 10% Pd/CaCO₃ catalyst at 40 °C, 1.0 mL/min, 1 atm, 25% H₂ production for 1 cycle. The collected eluent was concentrated *in vacuo* to afford **14** as a white solid (93%, 135 mg). ¹H NMR (400 MHz, DMSO- d_6) δ 8.36 (d, 1H, J = 7.94 Hz), 8.18 – 8.11 (m, 2H), 8.07 – 8.04 (m, 1H), 7.29 – 7.17 (m, 6H), 7.13 (d, 2H, J = 8.36 Hz), 7.00 (d, 2H, J = 8.36 Hz), 6.84 (d, 2H, J = 8.78 Hz), 6.77 (d, 2H, J = 8.78 Hz), 4.62 – 4.53 (m, 1H), 4.52 – 4.33 (m, 3H), 4.22 (q, 1H, J = 5.93 Hz), 3.13 – 3.05 (m, 2H), 3.00 – 2.89 (m, 3H), 2.85 – 2.66 (m, 3H), 1.90 (s, 3H), 1.25 (s, 18H), 1.06 (s, 9H). ¹³C NMR (101 MHz, DMSO- d_6) δ 172.22, 170.78, 170.61, 169.59, 169.54, 153.87, 153.84, 138.11, 132.77, 132.38,

130.14, 129.69, 128.57, 126.76, 123.79, 123.67, 78.02, 73.54, 61.69, 54.54, 53.97, 37.35, 29.00, 27.54, 23.15. HRMS (ESI⁺); for $C_{47}H_{67}N_6O_{10}$ calculated 875.4919, found 875.4929. RP-HPLC Onyx Monolithic C18 100 × 4.6 mm, 10-100% B in 15 min, t_R 10.62 min.

N-(((S)-2-acetamido-3-(((benzyloxy)carbonyl)amino)propanoyl)-L-alanyl)-O-(tert-butyl)-L-seryl-L-leucyl-L-phenylalanine (15)

Chemical Formula: C₃₈H₅₄N₆O₁₀ Molecular Weight: 754.88 Compound **15** was synthesised using General Method 1, with Fmoc-L-Phe-OH as AA_1 (0.3012 g, 7.76 mmol), Fmoc-L-Leu-OH as AA_2 (0.2748 g, 7.76 mmol), Fmoc-L-Ser(tBu)-OH as AA_3 (0.2982 g, 7.76 mmol) Fmoc-L-Ala-OH as AA_4 (0.2421 g, 7.76 mmol), Fmoc-L-Dap(Z)-OH as AA_5 (0.3581 g, 7.76 mmol). After the final Fmoc deprotection, acetic anhydride (85 μ L, 7.76 mmol) and DIPEA (15.5 mmol) was added to the Omnifit column and left for 0.5 h, prior to resin washing. The dried resin was added to a scintillation vial, to which a cleavage cocktail (TFA:TIPS:DCM 1.5:0.5:98) was added and allowed to cleave for 2 h. The cleaved peptide solution was filtered and H_2O (10 mL) was added to the filtrate. The organic solvent was concentrated *in vacuo* and the aqueous suspension was

lyophilised to afford compound **15** as a white solid (85%, 122 mg). ¹H NMR (400 MHz, DMSO- d_6) δ 12.65 (s, 1H), 8.27 (d, 1H, J = 8.10 Hz), 8.08 (d, 1H, J = 7.43 Hz), 7.97 (d, 1H, J = 8.10 Hz) 7.96 (d, 1H, J = 8.10 Hz), 7.49 (d, 1H, J = 8.10 Hz), 7.39 – 7.29 (m, 5H), 7.26 – 7.18 (m, 5H), 7.14 – 7.13 (m, 1H), 5.02 (s, 2H), 4.44 – 4.39 (m, 1H), 4.38 – 4.29 (m, 3H), 4.27 – 4.22 (m, 1H), 3.48 – 3.44 (m, 2H), 3.30 – 3.20 (m, 2H), 3.06 – 3.01 (m, 1H), 2.92 – 2.84 (m, 1H), 1.96 – 1.90 (m, 1H), 1.84 (s, 3H), 1.21 (d, 3H, J = 7.28 Hz), 1.06 (s, 9H), 1.01 – 0.97 (m, 2H), 0.82 (d, 3H, J = 6.83 Hz), 0.79 (d, 3H, J = 6.83 Hz). ¹³C NMR (101 MHz, DMSO- d_6) δ 173.19, 172.58, 171.07, 169.87, 169.64, 156.69, 137.86, 137.56, 129.43, 128.78, 128.64, 128.18, 128.09, 126.88, 73.29, 65.81, 57.32, 53.86, 53.69, 53.21, 48.65, 37.08, 31.74, 27.54, 23.07, 19.70, 19.55, 18.58, 18.31, 18.15, 12.53, 10.11. HRMS (ESI⁺); for C₃₈H₅₅N₆O₁₀Na calculated 777.3799, found 777.3789. RP-HPLC Onyx Monolithic C18 100 × 4.6 mm, 10-100% B in 15 min, t_R 9.62 min.


N-(((S)-2-acetamido-3-aminopropanoyl)-L-alanyl)-O-(tert-butyl)-L-seryl-L-leucyl-L-phenylalanine (16)

Chemical Formula: C₃₀H₄₈N₆O₈ Molecular Weight: 620.75

A solution of **15** in MeOH was flowed through the H-cube ProTM continuous flow reactor under a 10% Pd/CaCO₃ catalyst at 40 °C, 1.0 mL/min, 1 atm, 25% $\rm H_2$ production for 1 cycle. The collected eluent was concentrated *in vacuo* to afford **16** as a white solid (91%, 90.2 mg). ¹H NMR (400 MHz, DMSO- d_6) δ 8.43 – 8.42 (m, 1H), 8.31 – 8.25 (m, 1H), 8.17 (d, 1H, J = 8.20 Hz), 7.81 (d, 1H, J = 8.20 Hz), 7.28 (d, 1H, J = 6.75 Hz), 7.20 – 7.08 (m, 5H), 4.32 – 4.21 (m, 3H), 4.13 (q, 1H, J = 6.68 Hz), 3.97 (q, 1H, J = 5.83 Hz), 3.08 – 3.03 (m, 1H), 2.94 – 2.88 (m, 1H), 2.84 – 2.76 (m, 1H), 2.74 – 2.63 (m, 1H), 2.55 (s, 3H), 1.62 – 1.52 (m, 1H), 1.44 – 1.41 (m, 2H), 1.09 (s, 9H), 0.89 (d, 3H, J = 6.60 Hz), 0.81 (d, 2H, J = 6.60 Hz). ¹³C NMR (101 MHz, DMSO- d_6) δ 173.37, 172.64, 171.34, 170.84, 139.42, 130.08, 129.68, 128.69, 127.99, 126.00, 73.29,

62.00, 55.59, 55.09, 54.20, 54.16, 49.22, 49.05, 44.12, 12.56, 37.66, 27.63, 24.42, 23.52, 22.96, 21.93, 18.06. HRMS (ESI⁺); for $C_{30}H_{49}N_6O_8$ calculated 621.3612, found 621.3609. RP-HPLC Onyx Monolithic C18 100 × 4.6 mm, 10-100% B in 15 min, t_R 7.06 min.

((S)-2-((S)-2-((S)-2-((S)-2-acetamido-3-(((benzyloxy)carbonyl)amino)propanamido)-4-oxo-4-(tritylamino)butanamido)propanamido)-3-(4-(tert-butoxy)phenyl)propanoyl)-L-phenylalanine (17)

Chemical Formula: C₆₁H₆₇N₇O₁₁ Molecular Weight: 1074.25

Compound **17** was synthesised using General Method 1, with Fmoc-L-Phe-OH as AA₁ (0.3012 g, 7.76 mmol), Fmoc-L-Tyr(*t*Bu)-OH as AA₂ (0.3573 g, 7.76 mmol), Fmoc-L-Ala-OH as AA₃ (0.2421 g, 7.76 mmol), Fmoc-L-Asn(trt)-OH as AA₄ (0.4640 g, 7.76 mmol), Fmoc-L-Dap(Z)-OH as AA₅ (0.3581 g, 7.76 mmol). After the final Fmoc deprotection, acetic anhydride (85 μL, 7.76 mmol) and DIPEA (15.5 mmol) was added to the Omnifit column and left for 0.5 h, prior to resin washing. The dried resin was added to a scintillation vial, to which a cleavage cocktail (TFA:TIPS:DCM 1.5:0.5:98) was added and allowed to cleave for 2 h. The cleaved peptide solution was filtered and H₂O (10 mL) was added to the filtrate. The organic solvent was concentrated *in vacuo* and the aqueous suspension was lyophilised to afford compound **17** as a white solid (89%, 185 mg). ¹H NMR

(400 MHz, DMSO- d_6) δ 12.71 (s, 1H), 8.69 (s, 1H), 8.32 (d, 1H, J = 7.78 Hz), 8.06 (d, 1H, J = 7.30 Hz), 7.94 (d, 1H, J = 7.30 Hz), 7.88 (d, 1H, J = 8.76 Hz), 7.82 (d, 1H, J = 7.30 Hz), 7.39 – 7.10 (m, 26H), 7.04 (d, 2H, J = 8.26 Hz), 6.78 (d, 2H, J = 8.76 Hz), 5.02 (s, 2H), 4.55 (q, 1H, J = 7.05 Hz), 4.44 – 4.36 (m, 3H), 4.15 (quin, 1H, J = 6.87 Hz), 3.31 – 3.23 (m, 2H), 3.07 – 3.01 (m, 2H), 2.93 – 2.86 (m, 2H), 2.68 – 2.64 (m, 2H), 1.89 (s, 3H), 1.22 (s, 9H), 1.07 – 1.04 (m, 3H). 13 C NMR (101 MHz, DMSO- d_6) δ 173.03, 172.03, 171.28, 170.09, 169.75, 156.71, 153.73, 145.11, 137.77, 137.50, 132.84, 130.14, 129.55, 129.02, 128.78, 128.67, 128.15, 127.93, 126.90, 126.80, 123.76, 77.99, 69.88, 28.33, 23.06, 19.71, 12.29. HRMS (ESI⁺); for C₆₁H₆₈N₇O₁₁ calculated 1074.4977, found 1074.4996. RP-HPLC Onyx Monolithic C18 100 × 4.6 mm, 10-100% B in 15 min, t_R 13.80 min.

((S)-2-((S)-2-((S)-2-((S)-2-acetamido-3-aminopropanamido)-4-oxo-4-(tritylamino)butanamido)propanamido)-3-(4-(tert-butoxy)phenyl)propanoyl)-L-phenylalanine (18)

Chemical Formula: C₅₃H₆₁N₇O₉ Molecular Weight: 940.11

A solution of **17** in MeOH was flowed through the H-cube ProTM continuous flow reactor under a 10% Pd/CaCO₃ catalyst at 40 °C, 1.0 mL/min, 1 atm, 25% H₂ production for 1 cycle. The collected eluent was concentrated *in vacuo* to afford **18** as a white solid (95%, 154 mg). ¹H NMR (400 MHz, DMSO- d_6) δ 8.79 (s, 1H), 8.77 – 8.72 (m, 1H), 8.24 (d, 1H, J = 7.98 Hz), 8.07 (d, 1H, J = 5.99 Hz), 7.93 (d, 1H, J = 8.49 Hz), 7.66 – 7.60 (m, 1H), 7.27 – 7.14 (m, 20H), 7.01 (d, 2H, J = 8.49 Hz), 6.80 (d, 2H, J = 8.49 Hz), 4.68 – 4.63 (m, 1H), 4.60 – 4.55 (m, 1H), 4.03 – 3.97 (m, 2H), 3.07 – 2.95 (m, 4H), 2.91 – 2.83 (m, 4H), 1.88 (s, 9H), 1.04 (d, 3H, J = 8.04 Hz). ¹³C NMR (101 MHz, DMSO- d_6) δ 172.16, 171.15, 170.81, 170.34, 170.07, 169.93, 153.72, 145.08, 133.06, 130.06, 129.71, 129.03, 128.43, 127.98, 126.83,

123.79, 78.03, 69.98, 28.38, 27.58, 23.09, 17.99. HRMS (ESI⁺); for $C_{53}H_{62}N_7O_9$ calculated 940.4609, found 940.4611. RP-HPLC Onyx Monolithic C18 100 × 4.6 mm, 10-100% B in 15 min, t_R 11.27 min.

((S)-2-((S)-2-((S)-2-((S)-2-((S)-2-((S)-2-((S)-2-(((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-(4-(tert-butoxy)phenyl)propanamido)-3-(tert-butoxy)propanamido)-3-(tert-butoxy)propanamido)-3-(4-(tert-butoxy)propanamido)-3-(4-(tert-butoxy)phenyl)propanamido)-3-(4-(tert-butoxy)phenyl)propanoyl)-L-phenylalanine (19)

Chemical Formula: C₉₆H₁₂₅N₉O₁₉ Molecular Weight: 1709.10

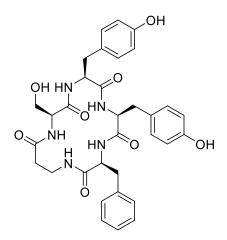
Compound 19 was synthesised using General Method 1, with Fmoc-L-Phe-OH as AA₁ (0.3012 g, 7.76 mmol), Fmoc-L-Tyr(tBu)-OH as AA₂ (0.3573 g, 7.76 mmol), Fmoc-L-Tyr(tBu)-OH as AA₃ (0.3573 g, 7.76 mmol), Fmoc-L-Ser(tBu)-OH as AA₄ (0.2982 g, 7.76 mmol), Fmoc-L-Dap(Z)-OH as AA_5 (0.3581 g, 7.76 mmol), Fmoc-L-Thr(tBu)-OH as AA₆ (0.3091 g, 7.76 mmol, Fmoc-L-Ser(tBu)-OH as AA₇ (0.2982 g, 7.76 mmol), and Fmoc-L-Tyr(tBu)-OH as AA₈ (0.3573 g, 7.76 mmol). The dried resin was added to a scintillation vial, to which a cleavage cocktail (TFA:TIPS:DCM 1.5:0.5:98) was added and allowed to cleave for 2 h. The cleaved peptide solution was filtered and H₂O (10 mL) was added to the filtrate. The organic solvent was concentrated in vacuo and the aqueous suspension was lyophilised to afford compound 19 as a white solid (85%, 280 mg). ¹H NMR

(400 MHz, DMSO- d_6) δ 12.74 (s, 1H), 8.30 – 8.25 (m, 2H), 8.09 (d, 1H, J = 8.38 Hz), 7.94 (d, 1H, J = 8.38 Hz), 7.87 (d, 2H, J = 8.38 Hz), 7.78 (d, 2H, J = 8.38 Hz), 7.69 – 7.67 (m, 2H), 7.59 (d, 1H, J = 8.38 Hz), 7.39 (t, 2H, J = 7.34), 7.34 – 7.17 (m, 16H), 7.11 (d, 2H, J = 7.34 Hz), 7.04 (d, 2H, J = 7.34 Hz), 6.84 – 6.77 (m, 4H), 6.44 (d, 2H, J = 7.34 Hz), 5.01 (s, 2H), 4.56 – 4.35 (m, 6H), 4.31 – 4.24 (m, 2H), 4.15 – 4.08 (m, 3H), 3.99 – 3.95 (m, 1H), 3.61 – 3.56 (m, 1H), 3.52 – 3.48 (m, 1H), 3.10 – 3.02 (m, 1H), 2.98 – 2.83 (m, 3H), 2.79 – 2.67 (m, 3H), 1.27 – 0.92 (m, 58H). ¹³C NMR (101 MHz, DMSO- d_6) δ 173.05, 153.84, 144.18, 141.12, 137.76, 132.59, 130.27, 130.13, 129.56, 128.76, 128.64, 128.08, 127.48, 123.71, 123.66, 120.51, 77.95, 73.52, 73.38, 53.89, 37.21, 28.94, 28.25, 27.57, 27.47, 19.71, 10.11. HRMS (ESI⁺); for C₉₆H₁₂₆N₉O₁₉ calculated 1708.9170, found 1708.9315. RP-HPLC Onyx Monolithic C18 100 × 4.6 mm, 10-100% B in 15 min, t_R 22.05 min.

Chemical Formula: C₈₈H₁₁₉N₉O₁₇ Molecular Weight: 1574.97

A solution of 19 in MeOH was flowed through the Hcube ProTM continuous flow reactor under a 10% Pd/CaCO₃ catalyst at 40 °C, 1.0 mL/min, 1 atm, 25% H₂ production for 1 cycle. The collected eluent was concentrated in vacuo to afford 20 as a white solid (85%, 199 mg). 1 H NMR (400 MHz, DMSO- d_6) δ 8.54 – 8.45 (m, 1H), 8.35 - 8.23 (m, 1H), 8.19 (br s, 1H), 7.89 - 7.84(m, 2H), 7.72 - 7.62 (m, 3H), 7.52 - 7.41 (m, 3H), 7.33-7.07 (m, 16H), 6.90 - 6.74 (m, 6H), 4.47 - 4.29 (m, 6H), 4.20 - 4.09 (m, 4H), 3.98 - 3.92 (m, 2H), 3.19 - 3.10(m, 2H), 2.81 - 2.71 (m, 6H), 2.23 - 2.18 (m, 2H), 1.27-1.08 (m, 58H). 13 C NMR (101 MHz, DMSO- d_6) δ 173.04, 144.18, 141.12, 137.76, 132.59, 130.27, 130.13, 129.56, 128.76, 128.64, 128.08, 127.48, 123.71, 123.66, 120.51, 77.95, 73.52, 73.38, 53.89, 37.21, 28.94, 28.25, 27.57, 27.47, 19.71, 10.11.HRMS (ESI⁺); for $C_{88}H_{120}N_9O_{17}$ calculated 1574.8802, found 1574.8795.

RP-HPLC Onyx Monolithic C18 100 \times 4.6 mm, 10-100% B in 15 min, t_R 15.37 min.


$(2-((2S)-2-amino-3-methylpentanamido)-3-(4-(benzyloxy)phenyl)propanoyl)-L-valyl-L-alanyl-L-phenylalanine \\ (21)$

Chemical Formula: C₃₉H₅₁N₅O₇ Molecular Weight: 701.87

Compound **21** was synthesised using General Method 1, with Fmoc-L-Phe-OH as AA₁ (0.3012 g, 7.76 mmol), Fmoc-L-Ala-OH as AA₂ (0.2242 g, 7.76 mmol), Fmoc-L-Val-OH as AA₃ (0.2624 g, 7.76 mmol), Fmoc-L-Tyr(OBzl)-OH as AA₄ (0.3564 g, 7.76 mmol), and Fmoc-L-Ile-OH as AA₅ (0.2675 g, 7.76 mmol). The dried resin was added to a scintillation vial, to which a cleavage cocktail (TFA:TIPS:DCM 1.5:0.5:98) was added and allowed to cleave for 2 h. The cleaved peptide solution was filtered, and H₂O (10 mL) was added to the filtrate. The organic solvent was concentrated *in vacuo* and the aqueous suspension was lyophilised to afford compound **21** as a white solid (78%, 120 mg). 1 H NMR (400 MHz, DMSO- d_6) 8.50 (d, 1H, J = 8.61 Hz), 8.15 (d, 1H, J = 7.31 Hz), 8.08 (d, 1H, J = 8.66 Hz), 8.01 – 7.94

(m, 8H), 7.46 - 7.31 (m, 5H), 7.28 - 7.15 (m, 8H), 6.90 (d, 2H, J = 8.66 Hz), 5.05 (s, 2H), 4.71 - 4.63 (m, 1H), 4.48 - 4.40 (m, 1H), 4.24 - 4.17 (m, 1H), 3.07 - 3.01 (m, 2H), 2.95 - 2.89 (m, 3H), 2.78 - 2.66 (m, 2H), 1.97 - 1.90 (m, 1H), 1.84 - 1.78 (m, 1H), 1.45 - 1.39 (m, 1H), 1.19 (d, 2H, J = 7.11 Hz), 0.99 (d, 8H, J = 6.01 Hz), 0.89 (d, 3H, J = 7.38 Hz), 0.84 - 0.78 (m, 9H). ¹³C NMR (75 MHz, DMSO- d_6) δ 173.22, 173.11, 172.46, 171.13, 170.61, 168.29, 158.58, 158.26, 157.42, 137.98, 137.76, 137.66, 130.71, 130.11, 129.55, 129.47, 128.90, 128.61, 128.21, 128.08, 126.31, 14.83, 69.56, 57.84, 56.96, 54.62, 53.76, 48.33, 37.12, 37.00, 36.83, 36.26, 31.24, 31.08, 23.81, 22.66, 19.56, 18.74, 18.30, 15.09, 12.52, 11.65. HRMS (ESI⁺) for C₄₉H₅₉N₉O₁₄ m/z 702 (M + H, 100%); HRMS (ESI⁺); calculated 702.3867, found; 702.3867 RP-HPLC Onyx Monolithic C18 100 × 4.6 mm, 10-100% B in 15 min, t_R 8.69 min

(3*S*,6*S*,9*S*,12*S*)-3-benzyl-6,9-bis(4-hydroxybenzyl)-12-(hydroxymethyl)-1,4,7,10,13-pentaazacyclohexadecane-2,5,8,11,14-pentaone (23)

 $\begin{array}{c} \hbox{Chemical Formula: } C_{33} H_{37} N_5 O_8 \\ \hbox{Molecular Weight: 631.69} \end{array}$

Compound **23** was synthesised using general procedure 2 with a 10% DMF:DCM (2 mL) solution containing **12** (100 mg, 0.127 mmol). The sequence was deprotected with a TFA:TIPS:DCM cleavage cocktail (98:1.5:0.5) and evaporated to dryness to afford AIP analogue **23** (77 mg, 90%). ¹H NMR (400 MHz, DMSO- d_6) δ 7.94 (d, 1H, J = 13.22 Hz), 7.89 (d, 1H, J = 7.68 Hz), 7.86 (d, 1H, J = 7.68 Hz), 7.78 (d, 1H, J = 7.23 Hz), 7.40 – 7.36 (m, 1H), 7.27 – 7.22 (m, 2H), 7.20 – 7.14 (m, 3H), 6.92 (d, 2H, J = 8.14 Hz), 6.89 (d, 2H, J = 8.14 Hz), 6.65 (d, 4H, J = 7.68 Hz), 4.21 (q, 1H, J = 7.68 Hz), 4.14 – 4.07 (m, 2H), 4.04 (q, 1H, J = 7.68 Hz), 3.58 – 3.53 (m, 1H), 3.51 – 3.47 (m, 3H), 3.12 – 3.03 (m, 2H), 2.89 (dd, 2H, J = 14.51 Hz, 8.96 Hz), 2.86 – 2.57 (m, 5H), 2.58 – 2.53 (m, 1H), 2.51 – 2.49 (m, 1H), 2.42 – 2.24 (m, 1H). ¹³C NMR (75 MHz, DMSO- d_6) δ 171.95, 171.20,

170.74, 170.57, 170.24, 156.34, 156.23, 139.12, 130.49, 129.52, 128.59, 128.13, 127.94, 126.52, 115.49, 115.36, 61.61, 57.29, 56.92, 56.22, 55.77, 36.57, 36.20, 35.59, 34.95. MS (ESI⁺) for $C_{33}H_{38}N_5O_8$ m/z 632 (M + H, 100%), 654 (M + Na, 100%); HRMS (ESI⁺); calculated 632.2720, found 632.2711; RP-HPLC Onyx Monolithic C18 100 × 4.6 mm, 10-100% B in 15 min, t_R 6.81 min.

N-((3S,6S,9S,12S,15S)-3-benzyl-6,9-bis(4-hydroxybenzyl)-12-(hydroxymethyl)-2,5,8,11,14-pentaoxo-1,4,7,10,13-pentaozacyclohexadecan-15-yl)acetamide (7)

Chemical Formula: C₃₅H₄₀N₆O₉ Molecular Weight: 688.74

Compound **7** was synthesised using general method 2 with a 10% DMF:DCM (2 mL) solution containing **14** (110 mg, 0.127 mmol). The sequence was deprotected with a TFA:TIPS:DCM cleavage cocktail (98:1.5:0.5) and evaporated to dryness to afford AIP analogue **7** (83 mg, 90%). ¹H NMR (300 MHz, DMSO- d_6) δ 9.20 (s, 2H), 8.44 (d, 1H, J = 6.37 Hz) 8.04 (d, 1H, J = 7.96), 7.95 (d, 1H, J = 7.74 Hz), 7.82 – 7.75 (m, 2H), 7.27 – 7.16 (m, 5H), 6.87 (t, 4H, J = 7.97 Hz), 6.61 (d, 4H, J = 7.97 Hz), 5.15 (t, 1H, J = 4.84 Hz), 4.45 – 4.36 (m, 1H), 4.34 – 4.25 (m, 1H), 4.22 – 4.17 (m, 1H), 3.95 – 3.87 (m, 1H), 3.82 (q, 1H, J = 6.60 Hz), 3.65 – 3.50 (m, 2H), 3.28 (d, 1H, J = 4.85 Hz), 3.19 (d, 2H, J = 4.41 Hz), 3.00 – 2.98 (m, 2H), 2.79 – 2.66 (m, 2H), 1.83 (s, 3H). ¹³C NMR (75 MHz, DMSO- d_6) δ 171.42, 171.23, 171.21, 171.10, 170.93,

169.47, 156.27, 156.23, 138.93, 130.48, 130.20, 129.59, 128.71, 128.56, 128.15, 126.58, 115.51, 61.77, 57.74, 57.17, 56.03, 55.60, 51.92, 37.50, 35.39, 35.19, 22.85. MS (ESI⁺) for $C_{35}H_{41}N_6O_9$ m/z 689 (M + H, 100%); HRMS (ESI⁺); calculated 689.2935, found 689.2935; RP-HPLC Onyx Monolithic C18 100 × 4.6 mm, 10-100% B in 15 min, t_R 6.84 min.

N-((3S,6S,9S,12S)-3-benzyl-9-(hydroxymethyl)-6-isobutyl-12-methyl-2,5,8,11,14-pentaoxo-1,4,7,10,13-pentaozacyclohexadecan-15-yl)acetamide (24)

Chemical Formula: C₂₆H₃₈N₆O₇ Molecular Weight: 546.63

Compound **24** was synthesised using general procedure 2 with a 10% DMF:DCM (2 mL) solution containing **16** (69.3 mg, 0.127 mmol). The sequence was deprotected with a TFA:TIPS:DCM cleavage cocktail (98:1.5:0.5), and evaporated to dryness to afford AIP analogue **24** (66 mg, 90%). 1 H NMR (300 MHz, DMSO- d_6) δ 8.52 (d, 1H, J = 6.54 Hz), 8.12 (d, 1H, J = 7.85 Hz), 7.89 – 7.84 (m, 2H), 7.47 (d, 1H, J = 8.51 Hz), 7.29 – 7.17 (m, 5H), 7.04 – 7.01 (m, 1H), 4.38 – 4.28 (m, 3H), 3.95 (dd, 1H, J = 10.78, 8.04 Hz), 3.80 (q, 1H, J = 6.20 Hz), 3.69 – 3.66 (m, 1H), 3.06 – 3.00 (m, 1H), 2.98 – 2.92 (m, 1H), 1.85 (s, 3H), 1.37 – 1.32 (m, 2H), 1.27 (d, 3H, J = 7.46 Hz), 0.76 (t, 6H, J = 6.99 Hz). 13 C NMR (75 MHz, DMSO- d_6) δ 181.21, 178.66, 178.63, 178.45, 177.68, 176.31, 145.91, 136.33, 135.54, 133.56, 66.85, 62.81, 62.34,

60.63, 58.71, 44.24, 31.55, 30.24, 29.75, 28.59, 24.41. MS (ESI⁺) for $C_{26}H_{39}N_6O_{37}$ m/z 547 (M + H, 100%); HRMS (ESI⁺); calculated 547.2880, found 547.2881; RP-HPLC C18 150 × 4.6 mm, 10-100% B in 45 min, t_R 14.15 min.

2-((2S,5S,8S,11S,15S)-15-acetamido-11-benzyl-8-(4-hydroxybenzyl)-5-methyl-3,6,9,12,16-pentaoxo-1,4,7,10,13-pentaozacyclohexadecan-2-yl)acetamide (25)

Chemical Formula: C₃₀H₃₇N₇O₈ Molecular Weight: 623.67

Compound **25** was synthesised using general procedure 2 with a 10% DMF:DCM (2 mL) solution containing **18** (69.3 mg, 0.127 mmol). The sequence was deprotected with a TFA:TIPS:DCM cleavage cocktail (98:1.5:0.5), and evaporated to dryness to afford AIP analogue **25** (68 mg, 94%). ¹H NMR (300 MHz, DMSO- d_6) δ 8.24 (d, 1H, J = 4.38 Hz), 8.02 – 7.99 (m, 1H), 7.89 (d, 1H, J = 7.42 Hz), 7.84 (s, 1H), 7.81 (d, 1H, J = 8.43 Hz), 7.61 (d, 1H, J = 8.76 Hz), 7.36 (d, 1H, J = 9.10 Hz), 7.32 – 7.14 (m, 5H), 6.87 (d, 2H, J = 8.42 Hz), 6.60 (d, 2H, J = 8.09 Hz), 4.58 – 4.48 (m, 2H), 4.34 – 4.28 (m, 1H), 4.13 – 4.08 (m, 1H), 3.83 – 3.77 (m, 1H), 3.72 – 3.68 (m, 1H),

3.02 - 2.96 (m, 2H), 2.83 - 2.77 (m, 2H), 2.72 (d, 1H, J = 4.05 Hz), 2.67 (d, 1H, J = 4.05 Hz), 2.30 - 2.47 (m, 1H), 1.86 (s, 3H), 1.09 (d, 3H, J = 7.71 Hz). ¹³C NMR (75 MHz, DMSO- d_6) $\delta = 173.13$, 172.08, 171.73, 170.99, 169.31, 156.13, 138.81, 129.99, 129.92, 128.50, 126.46, 115.34, 56.38, 55.02, 52.37, 52.06, 49.59, 36.46, 35.53, 22.79, 16.71. MS (ESI⁺) for $C_{30}H_{38}N_7O_8$ m/z 646 (M + Na, 100%); HRMS (ESI⁺); calculated 624.2782, found 624.2780; RP-HPLC C18 150 × 4.6 mm, 10-100% B in 45 min, t_R 14.15 min.

 $(2S,3S)-2-((S)-2-((S)-2-amino-3-(4-hydroxyphenyl)propanamido)-3-hydroxypropanamido)-N-\\((3S,6S,9S,12S,15S)-3-benzyl-6,9-bis(4-hydroxybenzyl)-12-(hydroxymethyl)-2,5,8,11,14-pentaoxo-1,4,7,10,13-pentaozacyclohexadecan-15-yl)-3-hydroxybutanamide (26)$

Chemical Formula: C₄₉H₅₉N₉O₁₄ Molecular Weight: 998.06

Compound **26** was synthesised using general method 2 with a 10% DMF:DCM (2 mL) solution containing **20** (199 mg, 0.127 mmol). The sequence was deprotected with a TFA:TIPS:DCM cleavage cocktail (98:1.5:0.5), and Fmoc deprotected with a 50% Piperidine in DMF solution, prior to purification by RP-HPLC to afford AIP analogue **26** (105 mg, 80%). ¹H NMR (300 MHz, DMSO- d_6) 9.20 (br s, 1H), 9.07 (br s, 1H), 8.57 (d, 1H, J = 9.56 Hz), 8.35 (d, 1H, J = 6.15 Hz), 7.94 (d, 1H, J = 7.52 Hz), 7.80 – 7.72 (m, 5H), 7.45 (br s, 1H), 7.30 – 7.08 (d, 2H, J = 7.52 Hz), 6.92 (d, 2H, J = 7.52 Hz), 6.87 (d, 2H, J = 7.52 Hz), 6.70 (d, 2H, J = 7.52 Hz), 6.67 – 6.63 (m, 3H), 5.06 (br s, 1H), 4.77 (br s, 1H), 4.54 – 4.46 (m, 2H), 4.39 – 4.34 (m, 1H), 4.27 – 4.19 (m,

2H), 4.12 (br s, 1H), 4.03 (q, 1H, J = 4.89 Hz), 3.98 – 3.94 (m, 1H), 3.87 (q, 1H), 3.73 – 3.64 (m, 4H), 3.67 – 3.58 (m, 1H), 3.09 (d, 1H, J = 7.34 Hz), 3.04 (d, 1H, J = 5.30 Hz), 2.98 (dd, 1H, J = 13.66, 9.50 Hz), 2.88 (d, 2H, J = 3.67 Hz), 2.85 – 2.79 (m, 2H), 2.76 – 2.70 (m, 1H), 1.08 (d, 3H, J = 7.42 Hz). ¹³C NMR (75 MHz, DMSO- d_6) δ 171.50, 171.39, 171.32, 171.25, 170.27, 169.89, 168.77, 156.98, 156.28, 156.24, 138.85, 131.03, 130.54, 130.20, 129.65, 128.77, 128.62, 128.08, 126.67, 125.23, 115.78, 115.49, 115.46, 65.16, 61.70, 58.55, 57.41, 55.93, 55.61, 55.29, 55.18, 54.05, 54.01, 20.33. HRMS (ESI⁺) for C₄₉H₅₉N₉O₁₄ m/z 998 (M + H, 100%); HRMS (ESI⁺); calculated 998.4260, found; 998.4222 RP-HPLC Onyx Monolithic C18 100 × 4.6 mm, 10-100% B in 15 min, t_R 6.67 min.

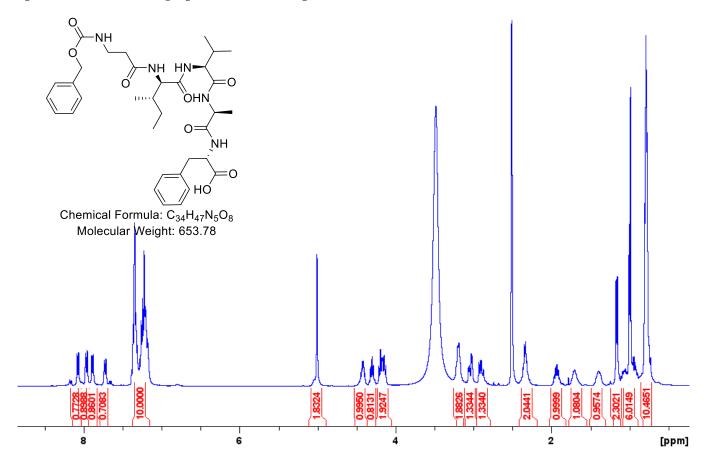


Figure S. 1. ¹H NMR spectrum for compound 8 in DMSO-d₆.

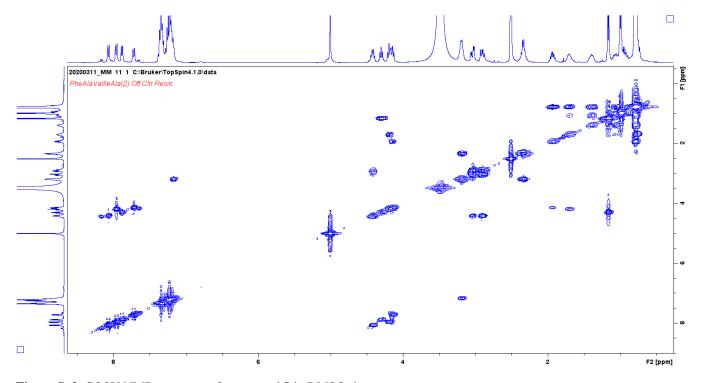


Figure S. 2. COSY NMR spectrum of compound 8 in DMSO-d₆.

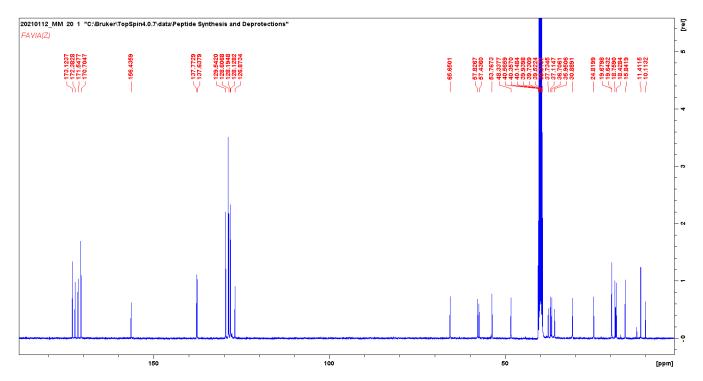
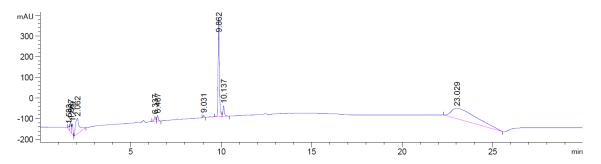
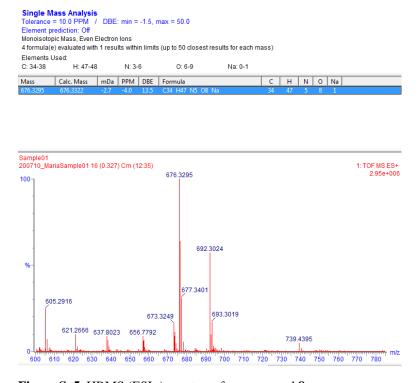




Figure S. 3. ¹³C NMR spectrum of compound 8 in DMSO.

Figure S. 4. RP-HPLC chromatogram for compound **8** at 214 nm.

Figure S. 5. HRMS (ESI+) spectrum for compound **8**.

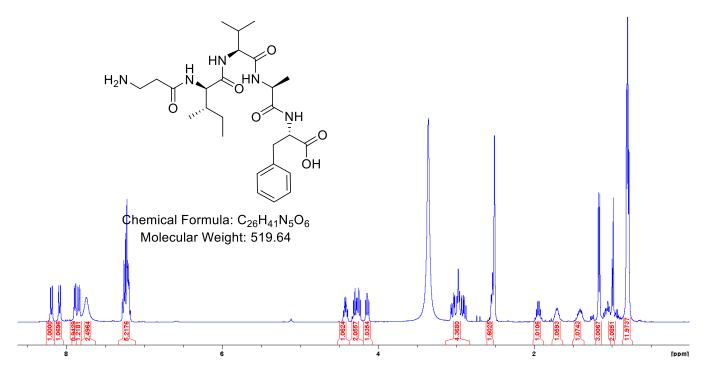


Figure S. 6. ¹H NMR spectrum for compound 9 in DMSO-d₆.

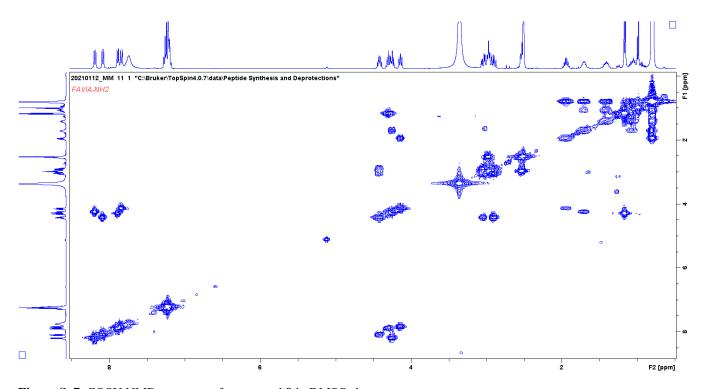


Figure S. 7. COSY NMR spectrum of compound 9 in DMSO-d $_{6}$.

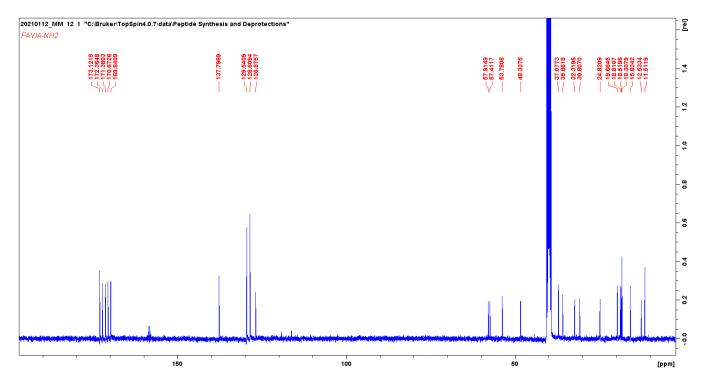
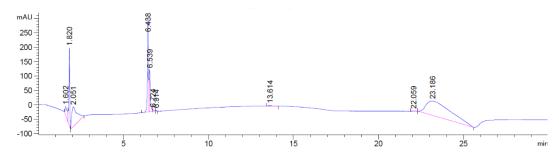



Figure S. 8. ¹³C NMR spectrum of compound 9 in DMSO.

Figure S. 9. RP-HPLC chromatogram for compound **9** at 214 nm.

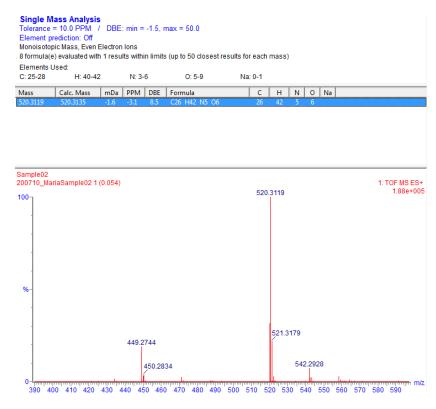


Figure S. 10. HRMS (ESI+) spectrum for compound 9.

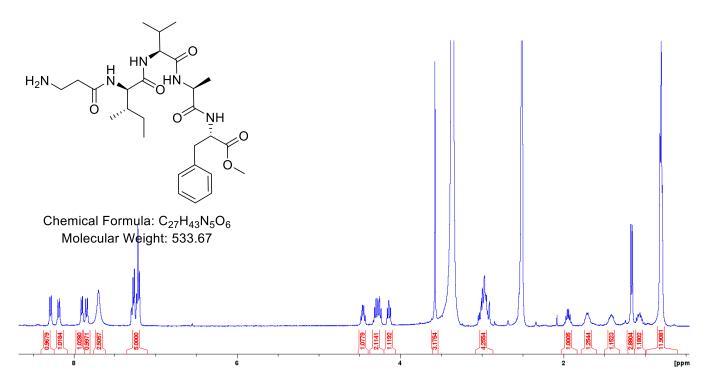


Figure S. 11. ¹H NMR spectrum for compound 10 in DMSO-d₆.

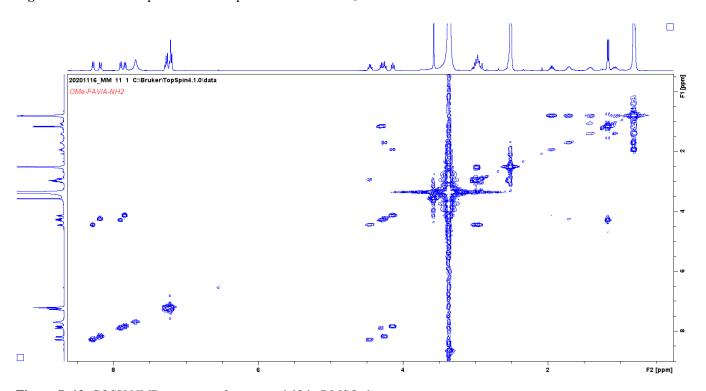


Figure S. 12. COSY NMR spectrum of compound 10 in DMSO-d₆.

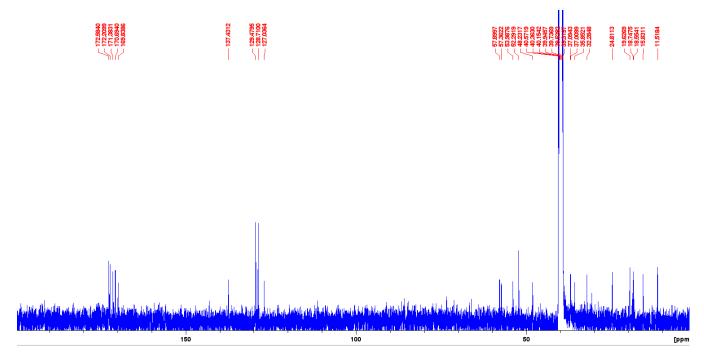


Figure S. 13. ¹³C NMR spectrum of compound 10 in DMSO.

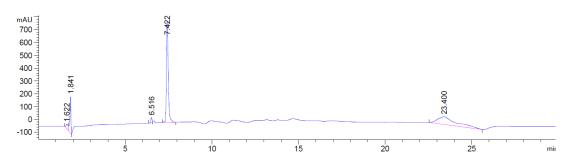
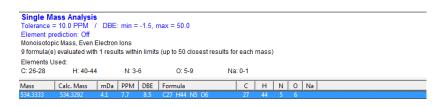



Figure S. 14. RP-HPLC chromatogram for compound 10 at 214 nm.

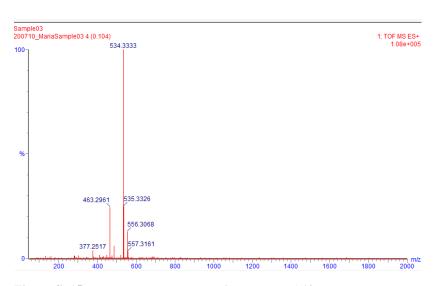


Figure S. 15. HRMS (ESI+) spectrum for compound 10.

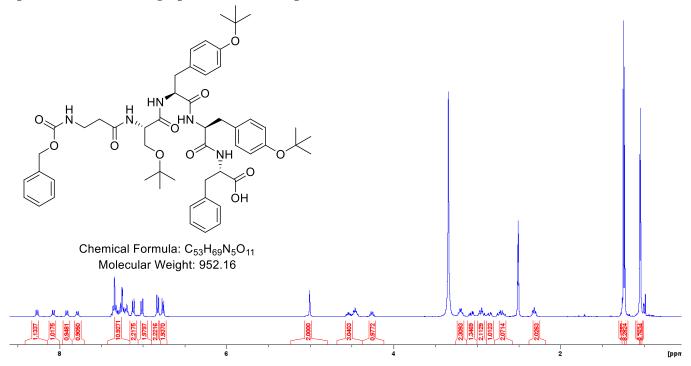


Figure S. 16. ¹H NMR spectrum for compound 11 in DMSO-d₆.

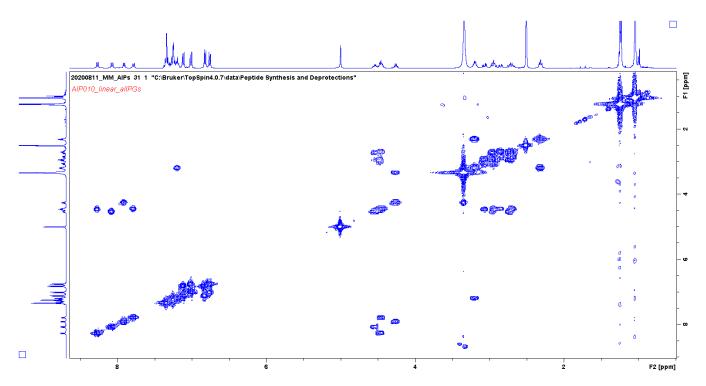


Figure S. 17. COSY NMR spectrum of compound 11 in DMSO-d₆.

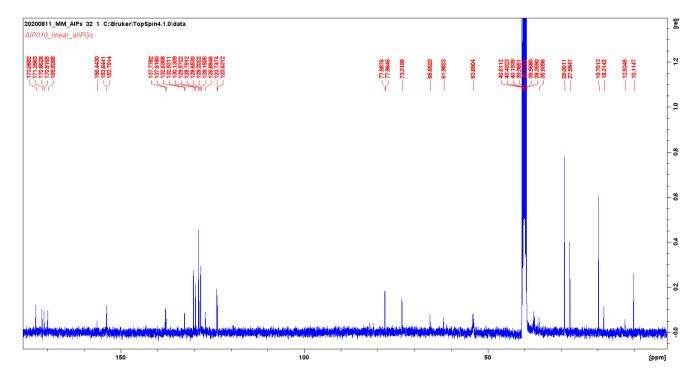


Figure S. 18. ¹³C NMR spectrum of compound 11 in DMSO.

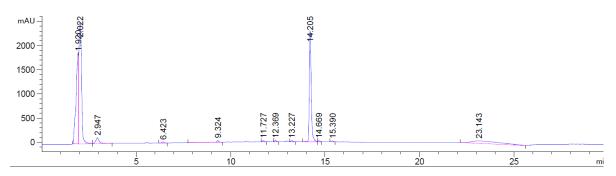


Figure S. 19. RP-HPLC chromatogram for compound 11 at 214 nm.

Single Mass Analysis

Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0

Element prediction: Off

Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons

15 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass)

Elements Used:

Mass Calc. Mass mDa PPM DBE Formula i-FIT i-FIT Norm Fit Conf % C H N O Na

	952.5184	-7.4	-7.8	21.5	C52 H70 N7 O10	330.7	0.977	37.65	52	70	7	10
Sample05 200813_Ma	ariaSample05 2	25 (0.519	9) AM2 (Ar,2000	0.0,0.00,0.00); Cm (15:44)							
100								952.5110				
-								953.5142				
%-												
		321	1.0487		495.7303			966.526	2			
					496.2317			967.52				
1:	30. ₁₅₆₆ 227.0	05.0707 612	323	487. .0454	7407 502.7375 503.7374 708.840	787.4282	856.4189	.975.49	948 1052.	6161		1447.7480 1440.25931454.7552
0-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	30	- 	400		700 80	0 90	0 1000	110)	1200	1300 1400 1500

Figure S. 20. HRMS (ESI+) spectrum for compound 11.

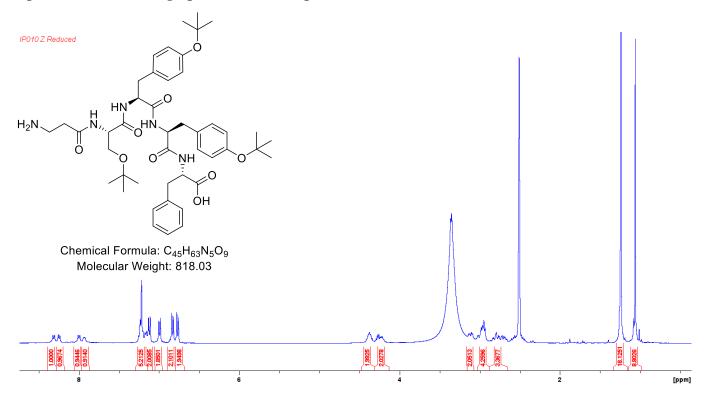


Figure S. 21. ¹H NMR spectrum for compound 12 in DMSO-d₆.

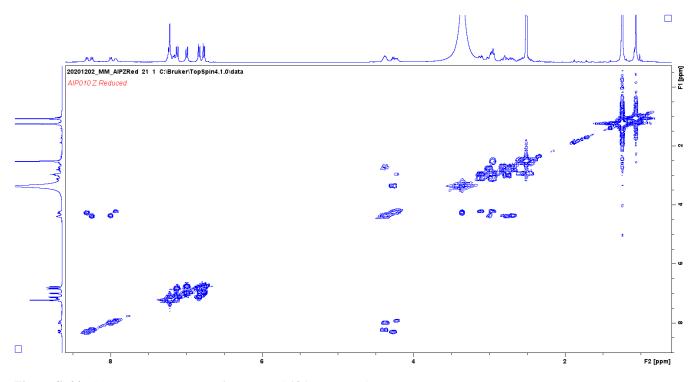


Figure S. 22. COSY NMR spectrum of compound 12 in DMSO-d₆.

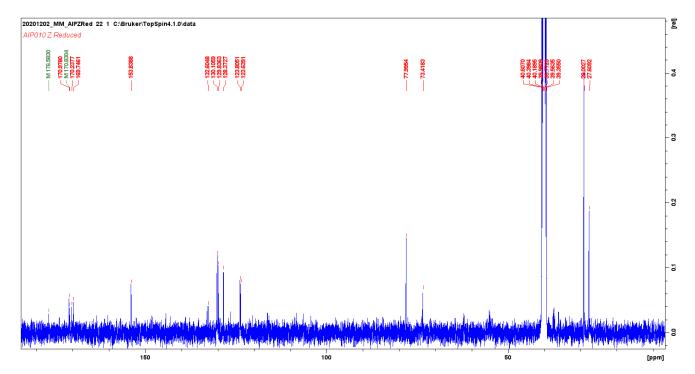


Figure S. 23. ¹³C NMR spectrum of compound 12 in DMSO.

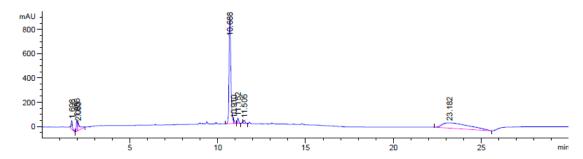


Figure S. 24. RP-HPLC chromatogram for compound 12 at 214 nm.

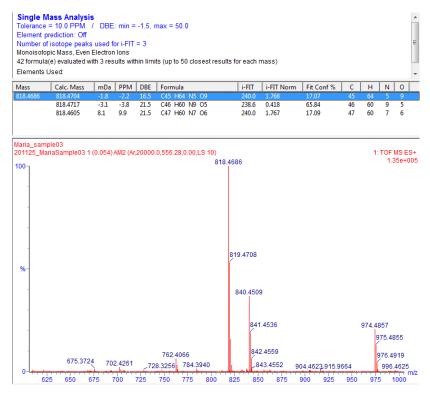


Figure S. 25. HRMS (ESI+) spectrum for compound 12.

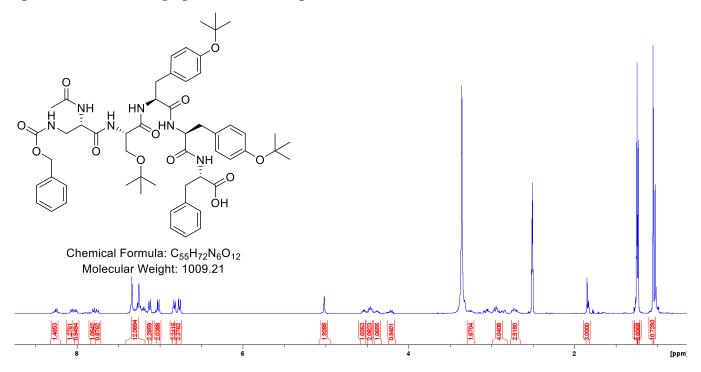


Figure S. 26. ¹H NMR spectrum for compound 13 in DMSO-d₆.

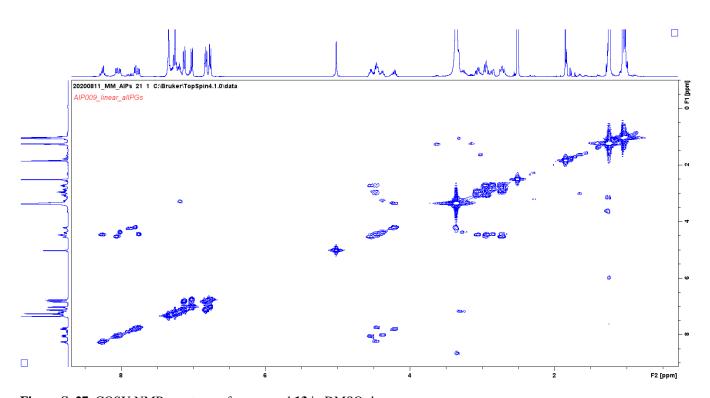


Figure S. 27. COSY NMR spectrum of compound 13 in DMSO-d $_6$.

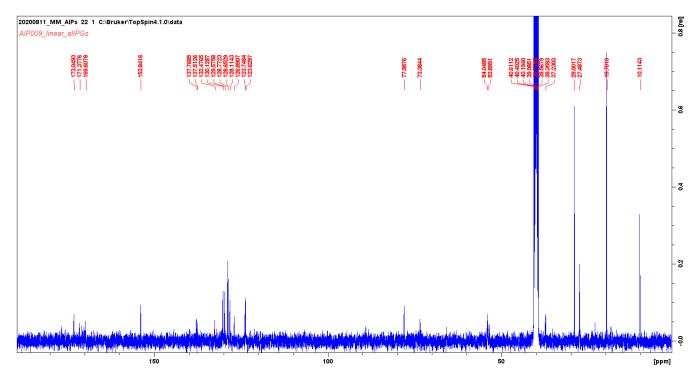


Figure S. 28. ¹³C NMR spectrum of compound 13 in DMSO.

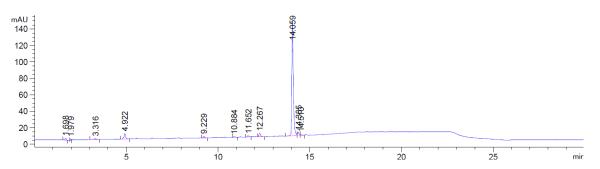


Figure S. 29. RP-HPLC chromatogram for compound 13 at 214 nm.

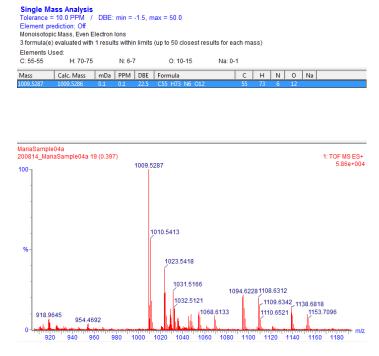


Figure S. 30. HRMS (ESI+) spectrum for compound 13.

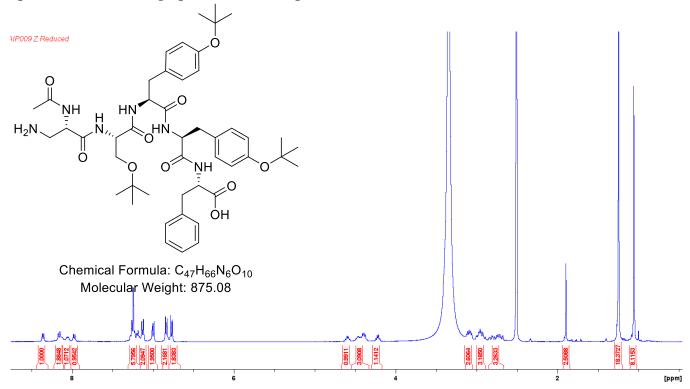


Figure S. 31. ¹H NMR spectrum for compound 14 in DMSO-d₆.

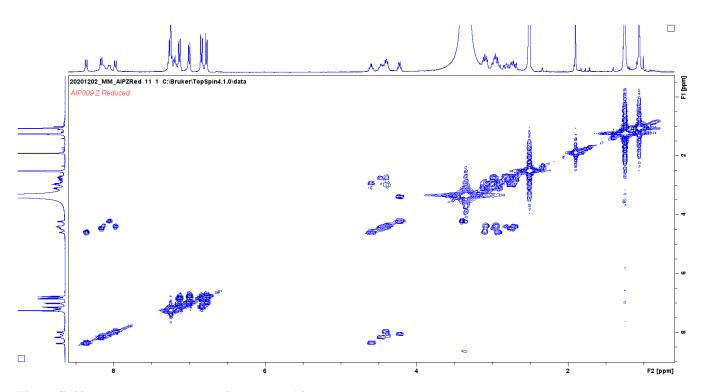


Figure S. 32. COSY NMR spectrum of compound 14 in DMSO-d₆.

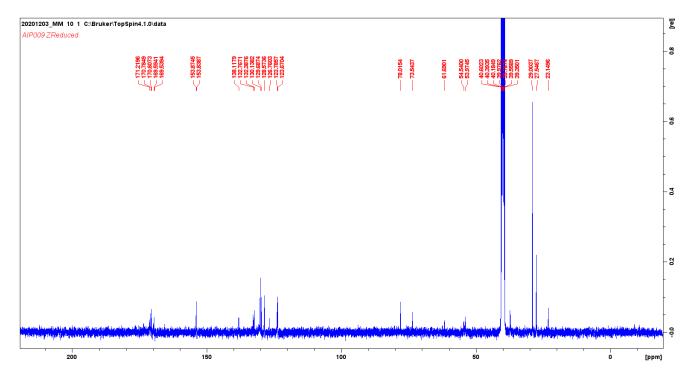


Figure S. 33. ¹³C NMR spectrum of compound 14 in DMSO.

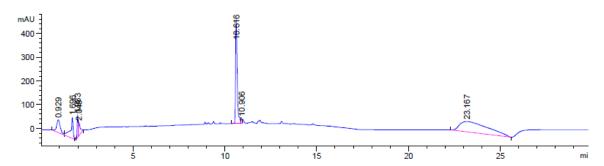
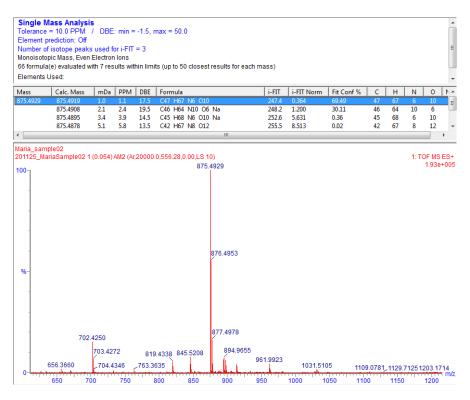



Figure S. 34. RP-HPLC chromatogram for compound 14 at 214 nm.

Figure S. 35. HRMS (ESI+) spectrum for compound **14**.

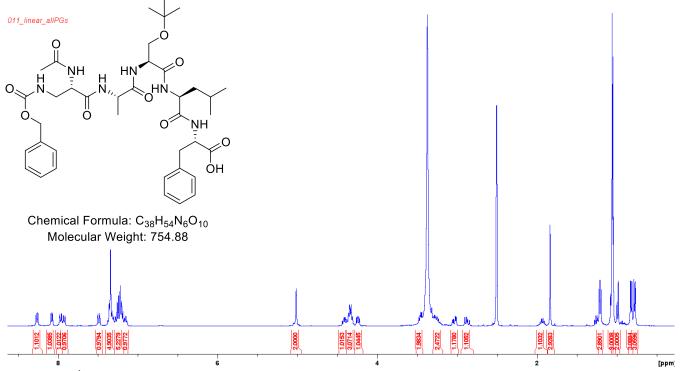


Figure S. 36. ¹H NMR spectrum for compound 15 in DMSO-d₆.

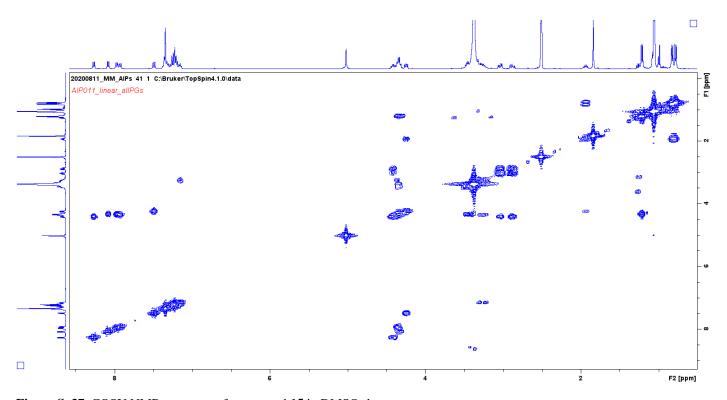


Figure S. 37. COSY NMR spectrum of compound 15 in DMSO-d₆.

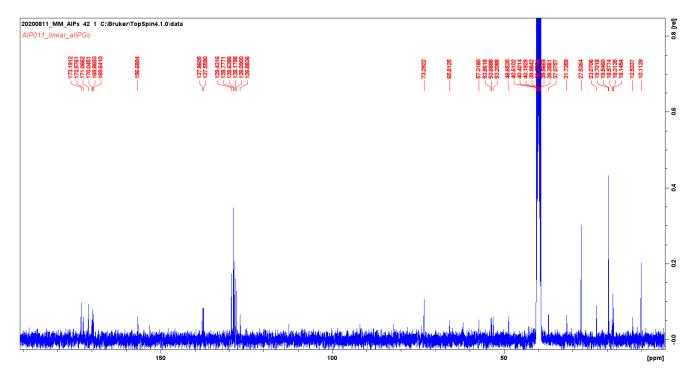


Figure S. 38. ¹³C NMR spectrum of compound 15 in DMSO.

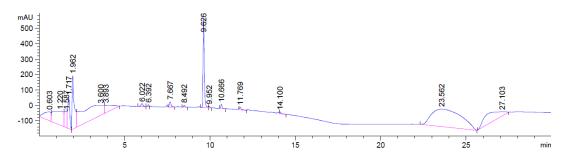


Figure S. 39. RP-HPLC chromatogram for compound 15 at 214 nm.

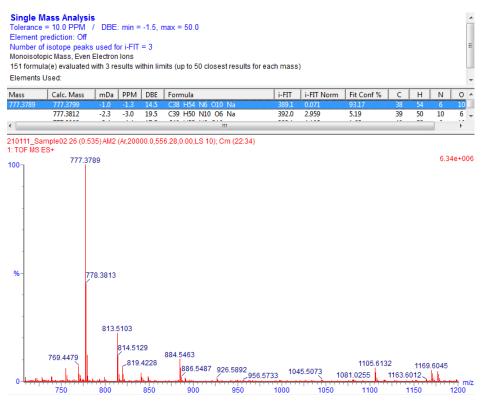


Figure S. 40. HRMS (ESI+) spectrum for compound 15.

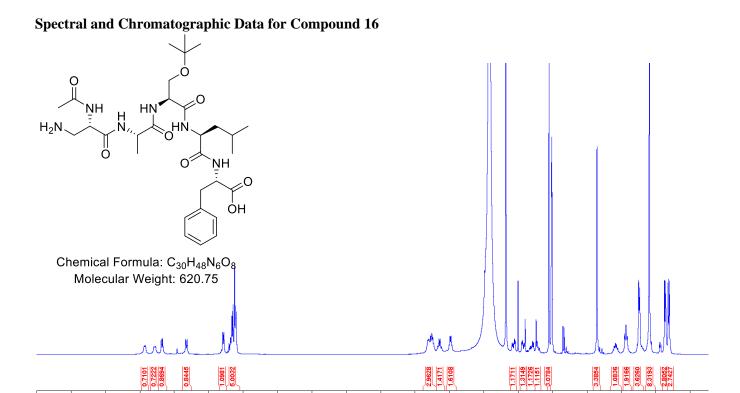


Figure S. 41. ¹H NMR spectrum for compound 16 in DMSO-d₆.

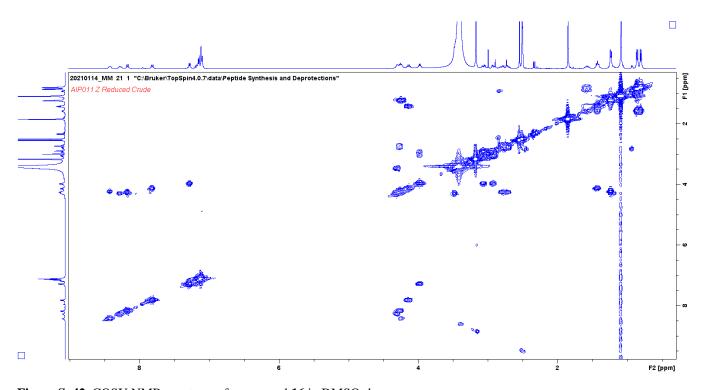


Figure S. 42. COSY NMR spectrum of compound 16 in DMSO- d_6 .

[ppn

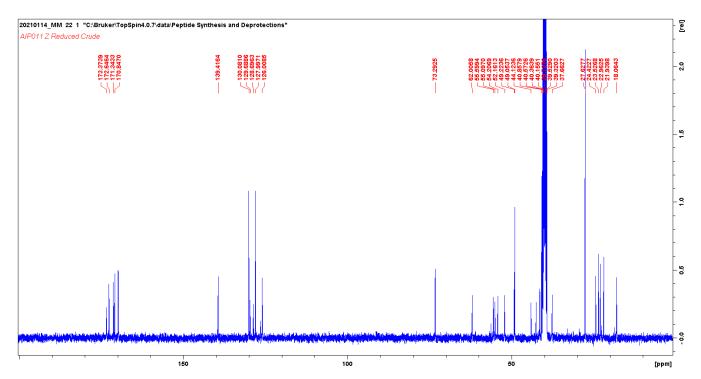


Figure S. 43. ¹³C NMR spectrum of compound 16 in DMSO.

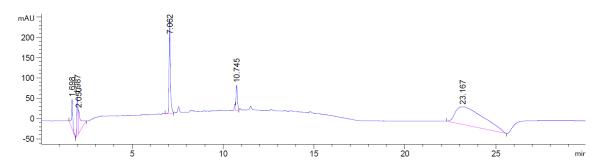


Figure S. 44. RP-HPLC chromatogram for compound 16 at 214 nm.

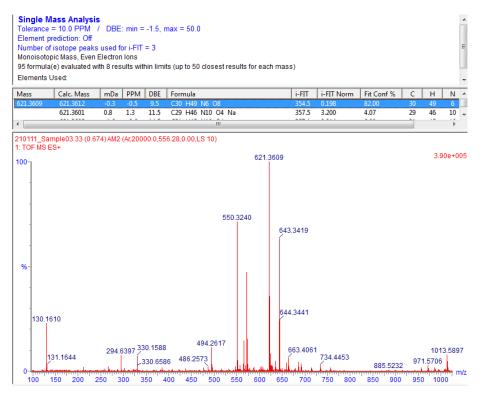


Figure S. 45. HRMS (ESI+) spectrum for compound 16.

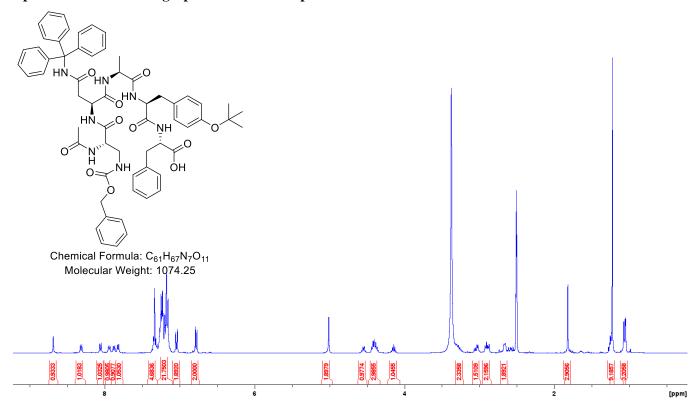


Figure S. 46. ¹H NMR spectrum for compound 17 in DMSO-d₆.

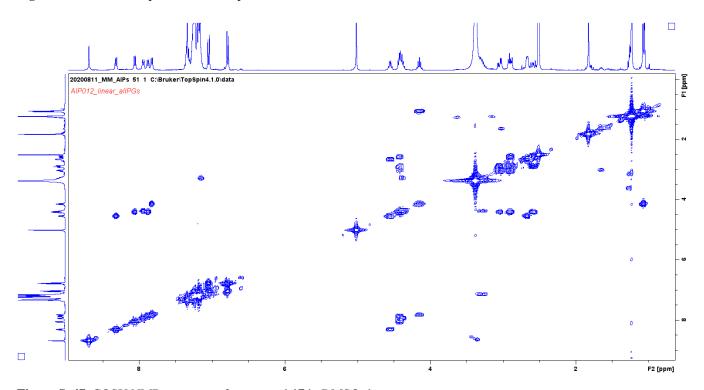


Figure S. 47. COSY NMR spectrum of compound 17 in DMSO-d₆.



Figure S. 48. ¹³C NMR spectrum of compound 17 in DMSO.

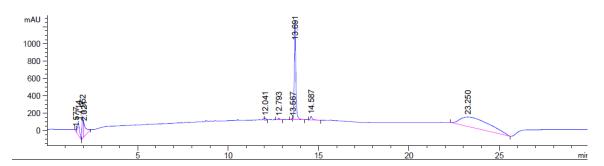


Figure S. 49. RP-HPLC chromatogram for compound 17 at 214 nm.

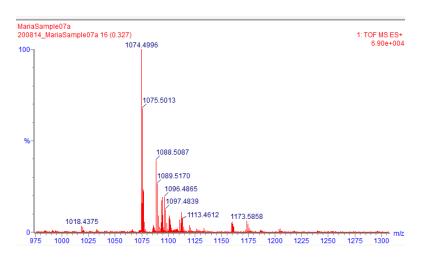


Figure S. 50. HRMS (ESI+) spectrum for compound 17.

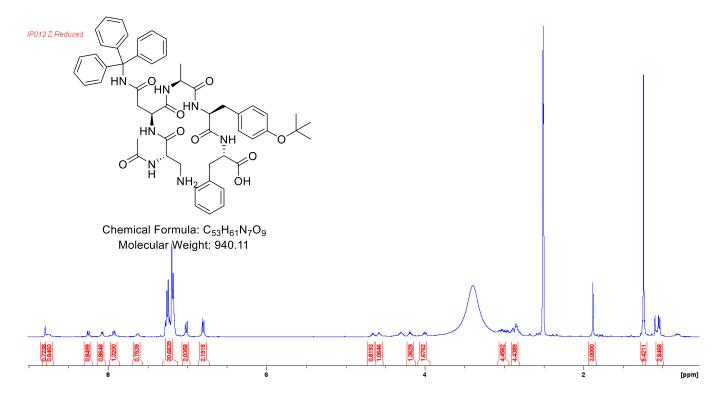


Figure S. 51. ¹H NMR spectrum for compound 18 in DMSO-d₆.

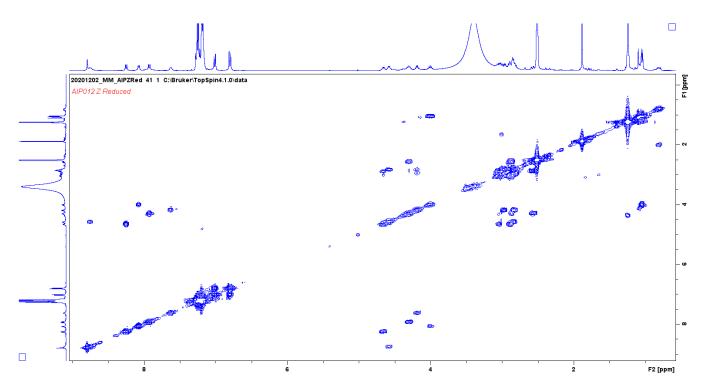


Figure S. 52. COSY NMR spectrum of compound 18 in DMSO-d₆.

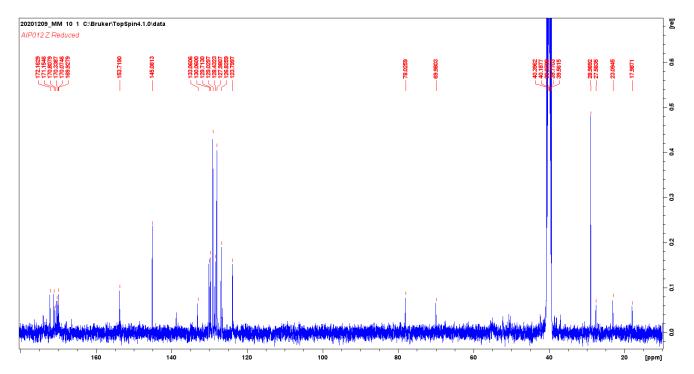


Figure S. 53. ¹³C NMR spectrum of compound 18 in DMSO.

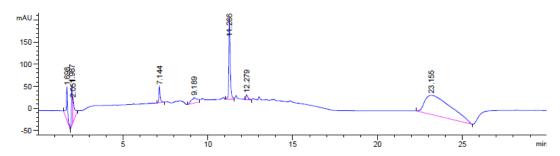


Figure S. 54. RP-HPLC chromatogram for compound 18 at 214 nm.

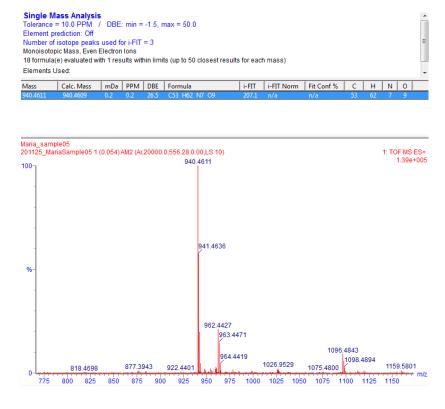


Figure S. 55. HRMS (ESI+) spectrum for compound 18.

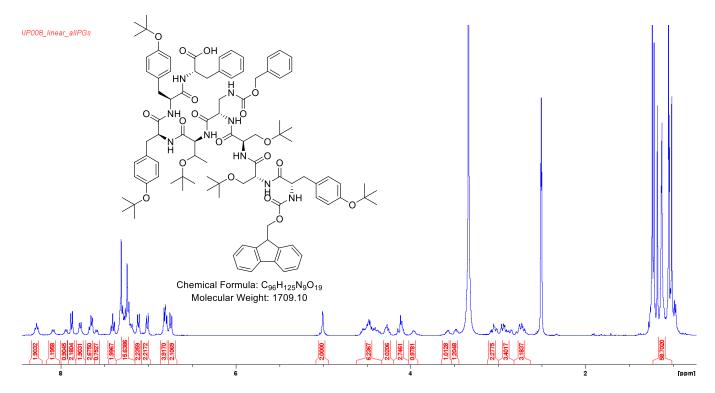


Figure S. 56. ¹H NMR spectrum for compound 19 in DMSO-d₆.

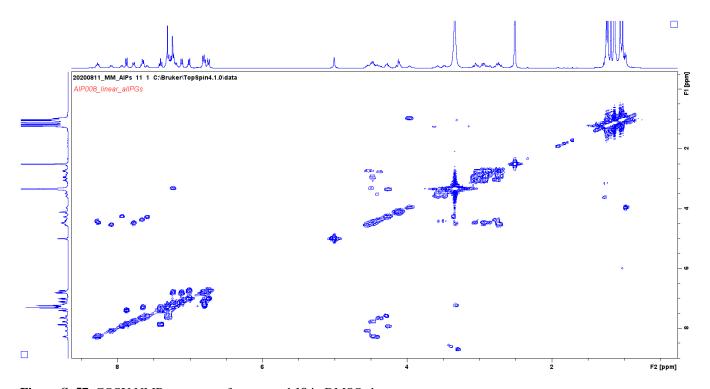


Figure S. 57. COSY NMR spectrum of compound 19 in DMSO- d_6 .

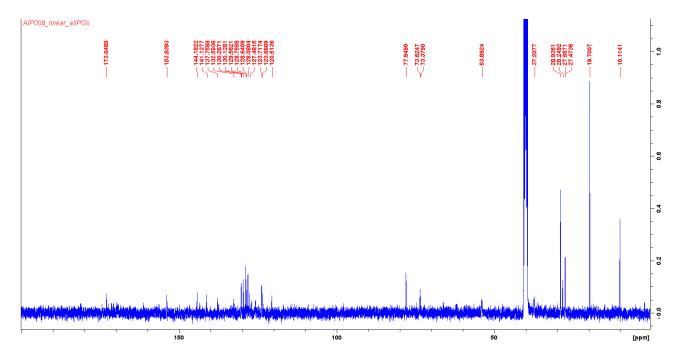


Figure S. 58. ¹³C NMR spectrum of compound 19 in DMSO.

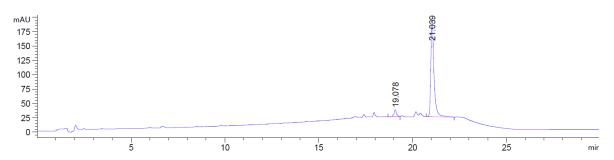
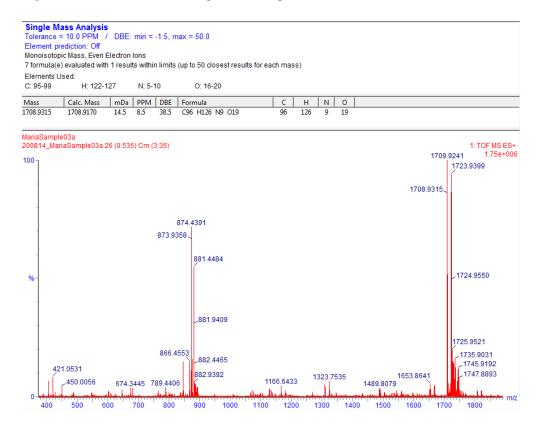



Figure S. 59. RP-HPLC chromatogram for compound 19 at 214 nm.

Figure S. 60. HRMS (ESI+) spectrum for compound **19**.

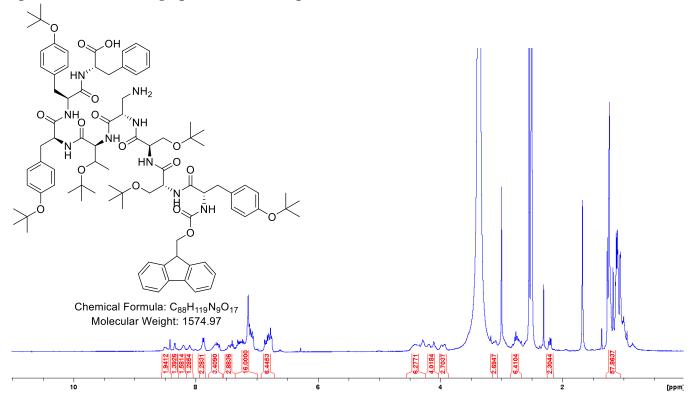


Figure S. 61. ¹H NMR spectrum for compound 20 in DMSO-d₆.

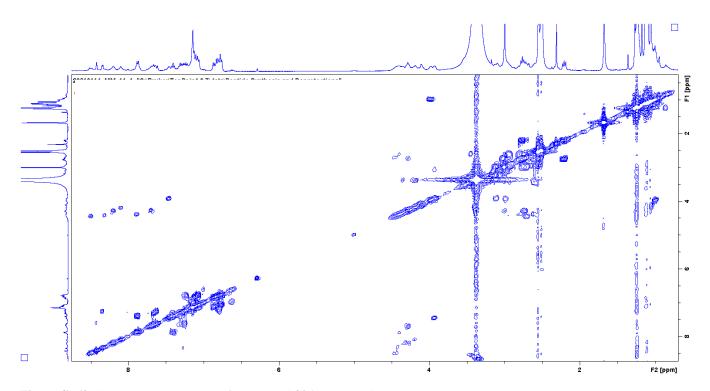


Figure S. 62. COSY NMR spectrum of compound 20 in DMSO-d₆.

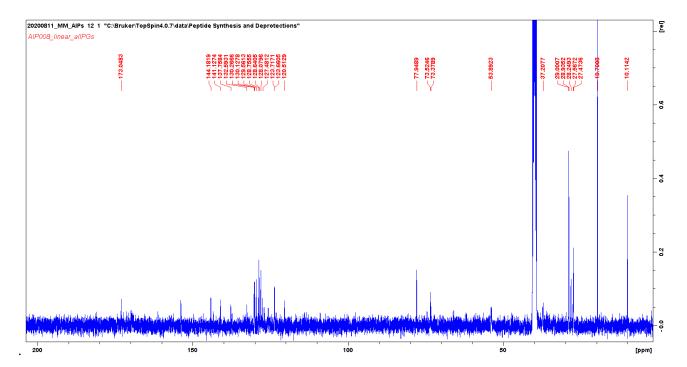


Figure S. 63. ¹³C NMR spectrum of compound 20 in DMSO.

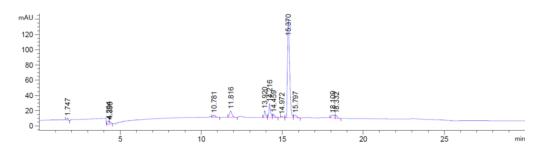
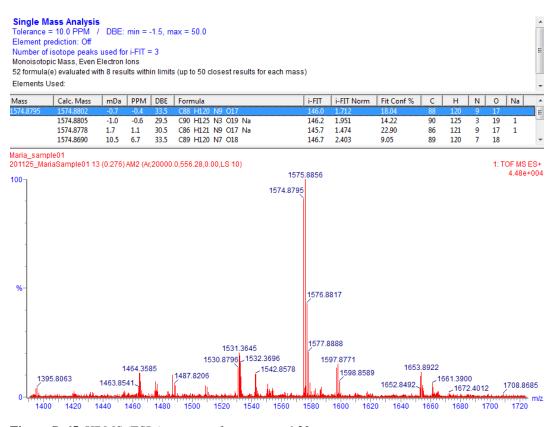



Figure S. 64. RP-HPLC chromatogram for compound 20 at 214 nm.

Figure S. 65. HRMS (ESI+) spectrum for compound **20**.

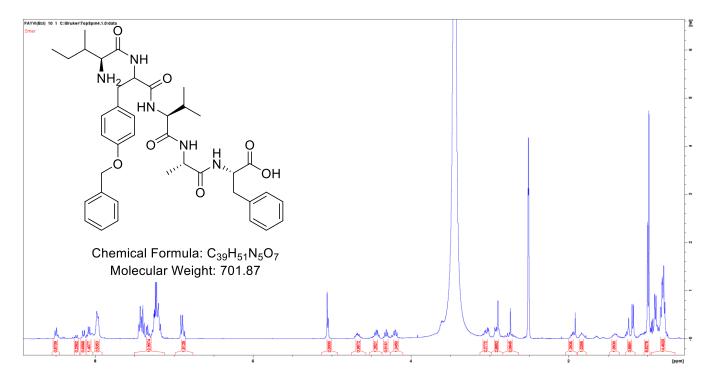


Figure S. 66. ¹H NMR spectrum for compound 21 in DMSO-d₆.

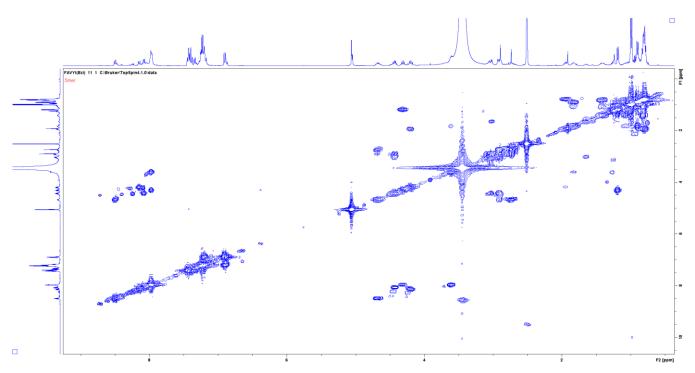


Figure S. 67. COSY NMR spectrum of compound 21 in DMSO-d₆.

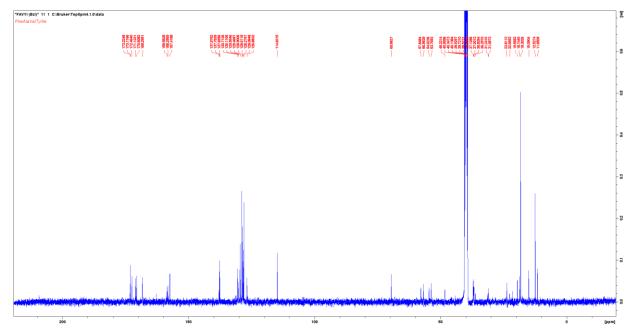


Figure S. 68. ¹³C NMR spectrum of compound 21 in DMSO.

Figure S. 69. RP-HPLC chromatogram for compound 21 at 214 nm.

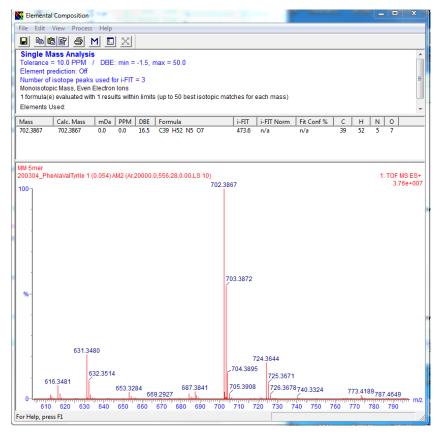


Figure S. 70. HRMS (ESI+) spectrum for compound 21.

Preliminary chromatographic Data for Compound 22

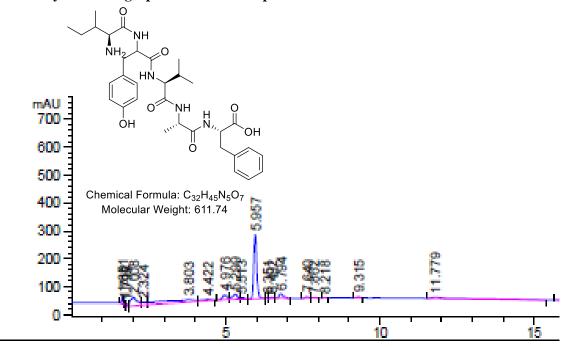


Figure S. 71. RP-HPLC chromatogram for compound 22 at 214 nm.

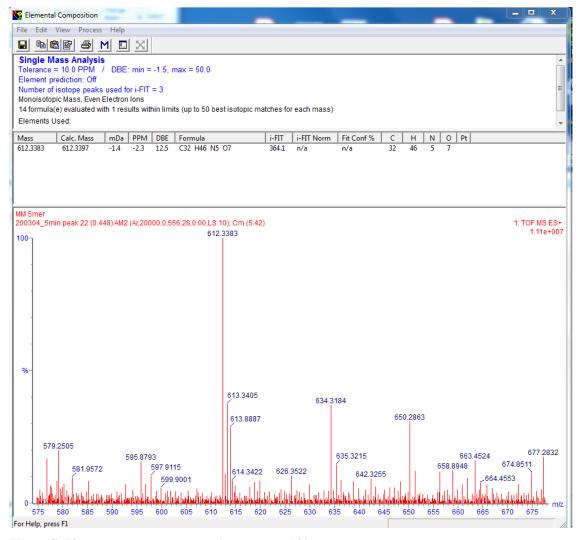


Figure S. 72. HRMS (ESI+) spectrum for compound 22.

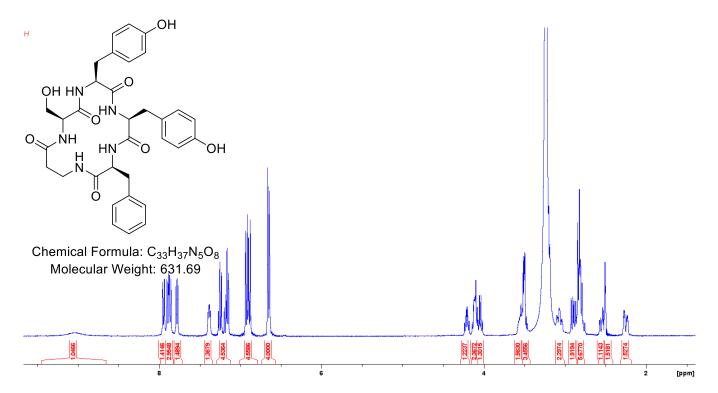


Figure S. 73. ¹H NMR spectrum for compound 23 in DMSO-d₆.

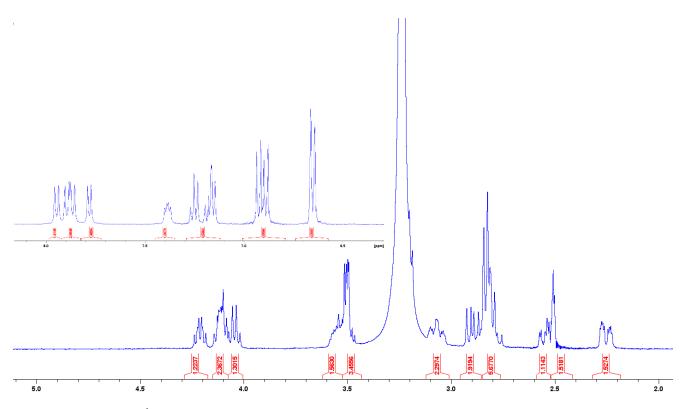


Figure S. 74. Expanded 1 H NMR spectrum for compound 23 (1 – 5 ppm), and an insert of 7 – 8 ppm.

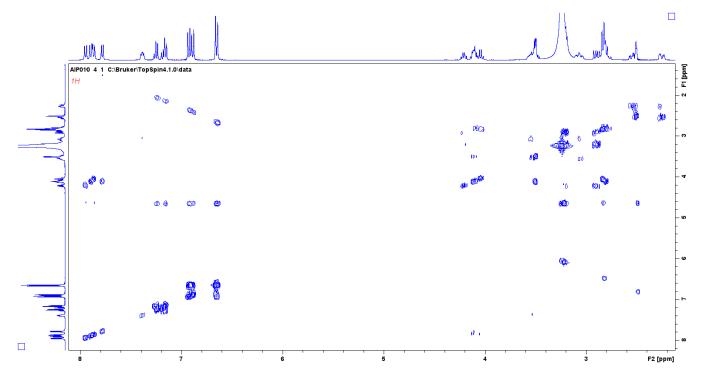


Figure S. 75. COSY NMR spectrum of compound 23 in DMSO-d₆.

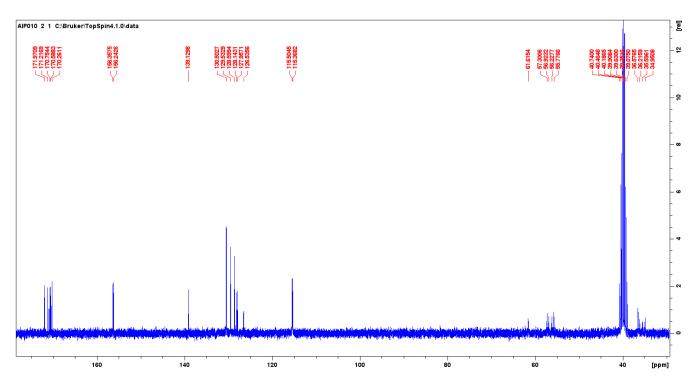


Figure S. 76. ¹³C NMR spectrum of compound 23 in DMSO.

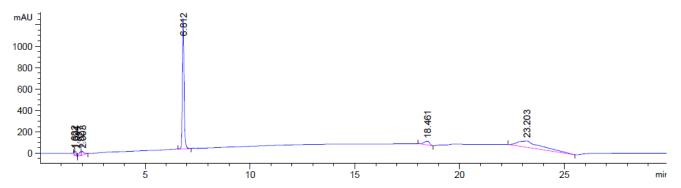


Figure S. 77. RP-HPLC chromatogram for compound 23 at 214 nm.

Single Mass Analysis Tolerance = 20.0 PPM /

Tolerance = 20.0 PPM / DBE: min = -1.5, max = 50.0

Element prediction: Off

Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions

48 formula(e) evaluated with 5 results within limits (all results (up to 1000) for each mass)

Elements Used:

Mass	Calc. Mass	mDa	PPM	DBE	Formula	i-FIT	i-FIT Norm	Fit Conf %	С	Н	N	0
632.2711	632.2720	-0.9	-1.4	17.5	C33 H38 N5 O8	326.1	0.212	80.93	33	38	5	8
	632.2662	4.9	7.7	26.5	C40 H34 N5 O3	331.0	5.104	0.61	40	34	5	3
	632.2761	-5.0	-7.9	21.5	C38 H38 N3 O6	329.6	3.701	2.47	38	38	3	6
	632.2648	6.3	10.0	21.5	C39 H38 N O7	330.3	4.408	1.22	39	38	1	7
	632.2608	10.3	16.3	17.5	C34 H38 N3 O9	327.8	1.912	14.77	34	38	3	9

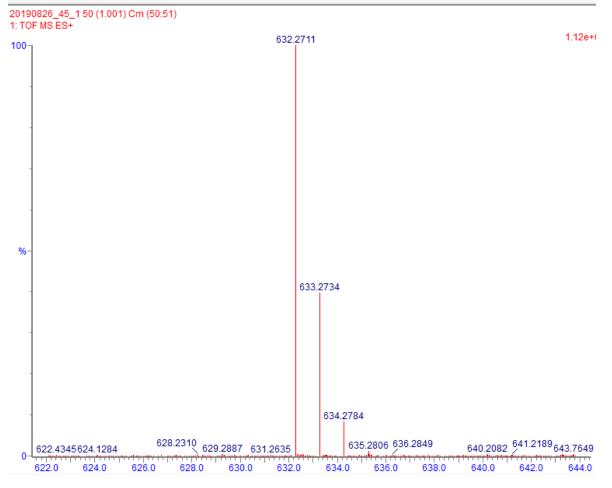


Figure S. 78. HRMS (ESI+) spectrum for compound 23.

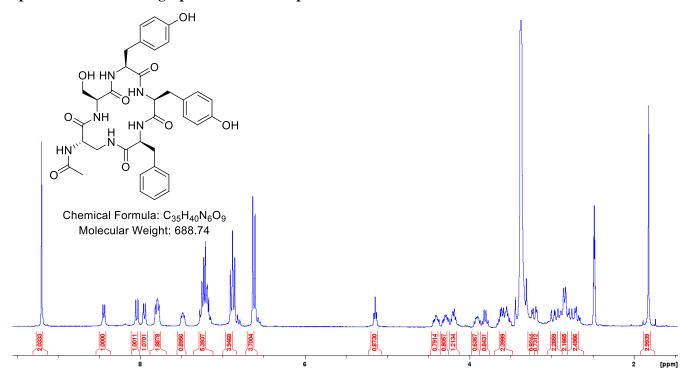
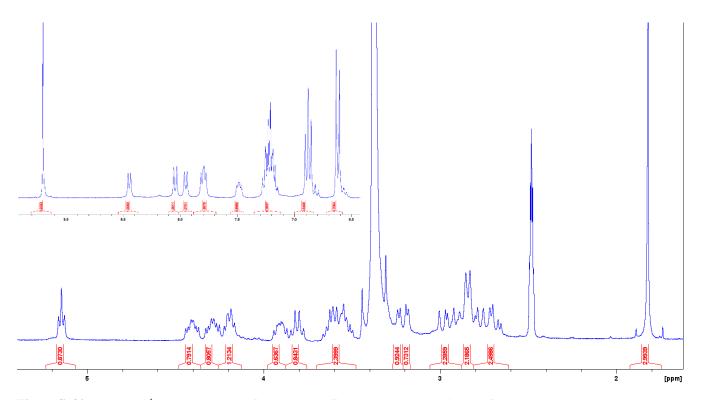



Figure S. 79. ¹H NMR spectrum for compound 7 in DMSO-d₆.

Figure S. 80. Expanded ¹H NMR spectrum for compound **7** (1-5 ppm), and an insert of 7-8 ppm.

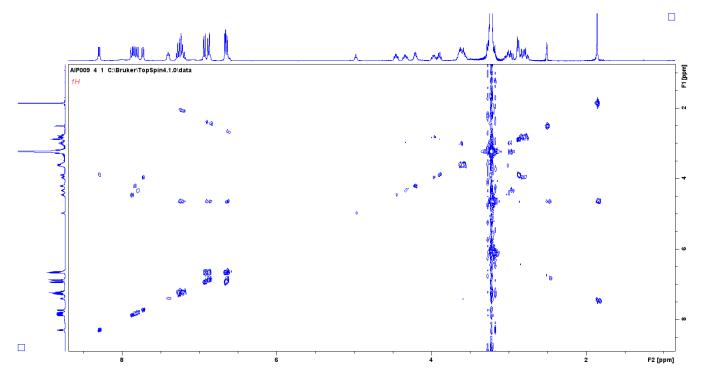
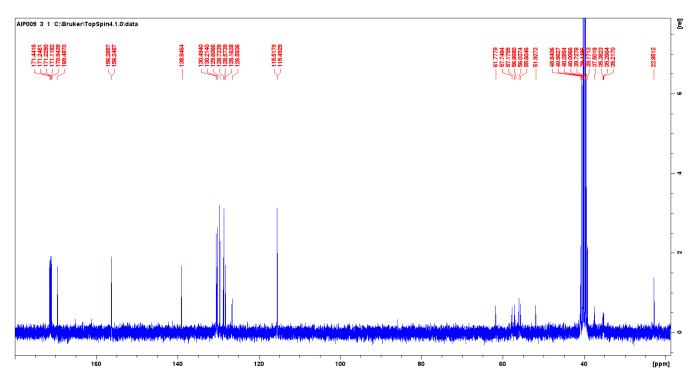



Figure S. 81. COSY NMR spectrum of compound 7 in DMSO-d₆.

Figure S. 82. ¹³C NMR spectrum of compound **7** in DMSO.

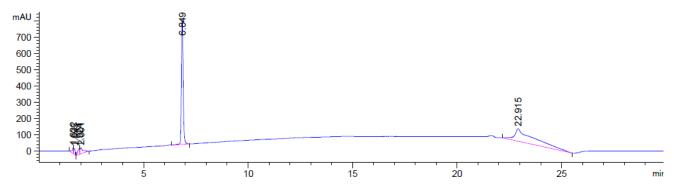
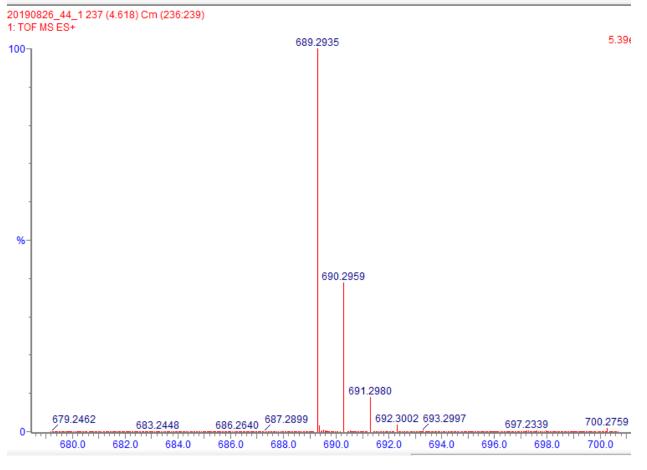


Figure S. 83. RP-HPLC chromatogram for compound 7 at 214 nm.

Single Mass AnalysisTolerance = 20.0 PPM / DBE: min = -1.5, max = 50.0

Element prediction: Off


Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions

40 formula(e) evaluated with 3 results within limits (all results (up to 1000) for each mass)

Elements Used:

Mass	Calc. Mass	mDa	PPM	DBE	Formula	i-FIT	i-FIT Norm	Fit Conf %	С	Н	N
689.2935	689.2935	0.0	0.0	18.5	C35 H41 N6 O9	722.6	0.049	95.17	35	41	6
	689.2975	-4.0	-5.8	22.5	C40 H41 N4 O7	727.8	5.254	0.52	40	41	4
	689,2823	11.2	16.2	18.5	C36 H41 N4 O10	725.7	3.145	4.31	36	41	4

Figure S. 84. HRMS (ESI+) spectrum for compound **7**.

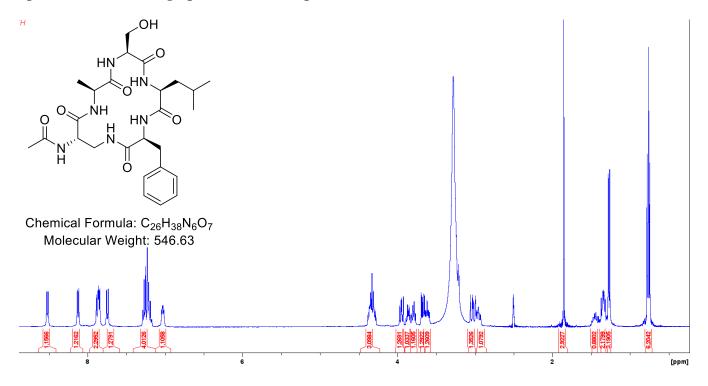


Figure S. 85. ¹H NMR spectrum for compound 24 in DMSO-d₆.

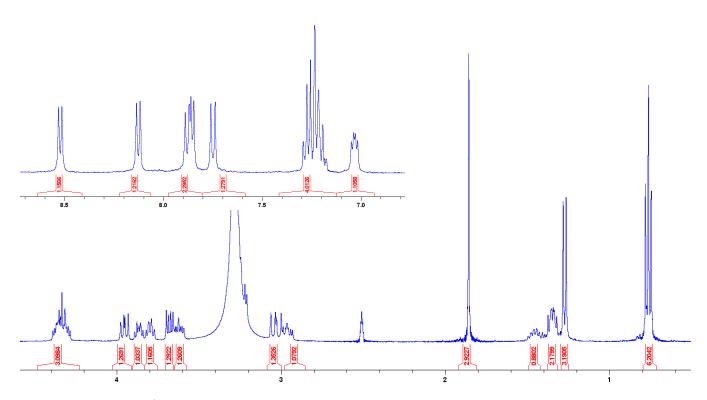


Figure S. 86. Expanded ${}^{1}H$ NMR spectrum for compound 24 (1 – 5 ppm), and an insert of 7 – 8 ppm.

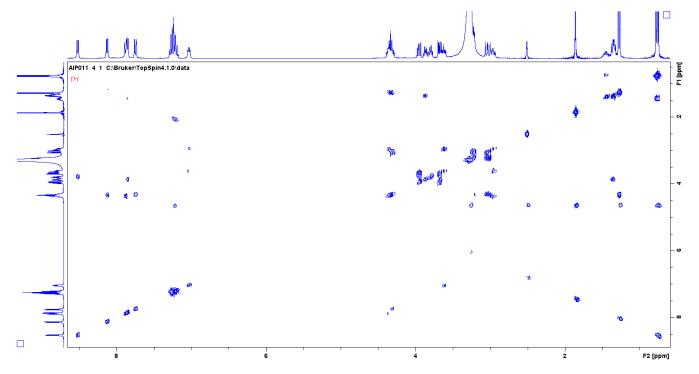
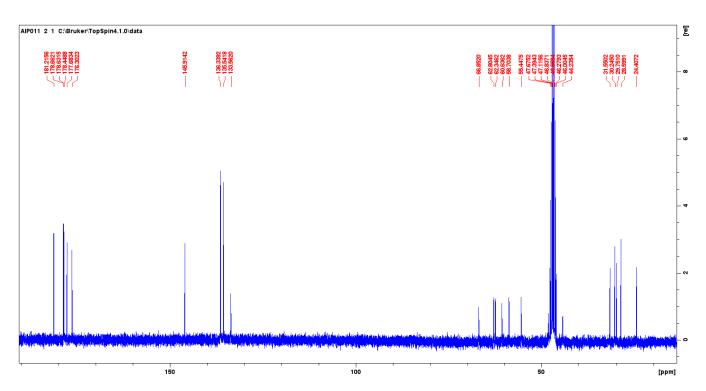



Figure S. 87. COSY NMR spectrum of compound 24 in DMSO-d₆.

Figure S. 88. ¹³C NMR spectrum of compound **24** in DMSO.

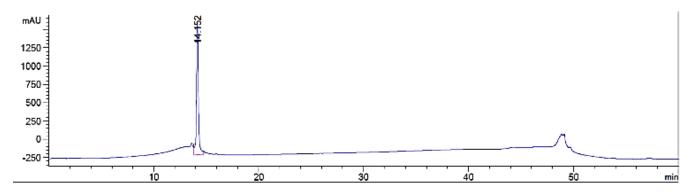


Figure S. 89. RP-HPLC chromatogram for compound 24 at 214 nm.

547.2881

547.2880

0.1

0.2

10.5

C26 H39 N6 O7

Single Mass Analysis Tolerance = 20.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 Monoisotopic Mass, Even Electron Ions 48 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: Mass Calc. Mass mDa PPM DBE Formula i-FIT i-FIT Norm Fit Conf % Н N 0 C

608.7

n/a

n/a

26

39 6

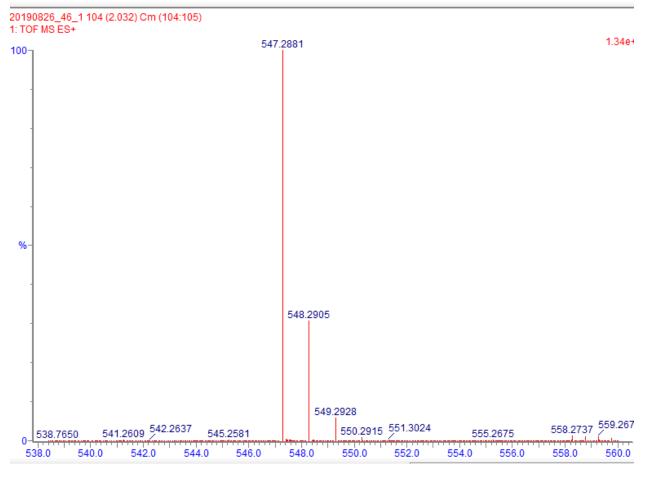


Figure S. 90. HRMS (ESI+) spectrum for compound 24.

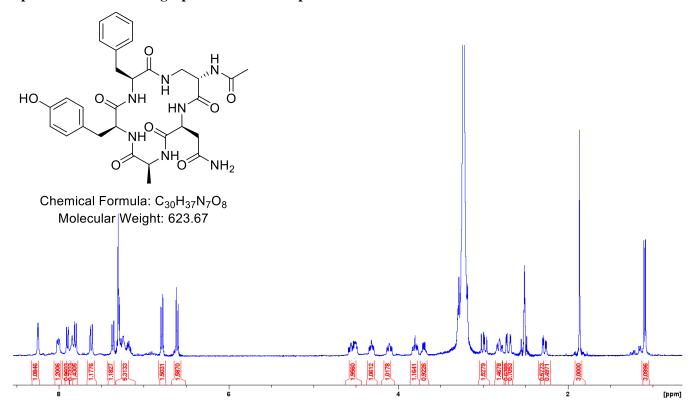
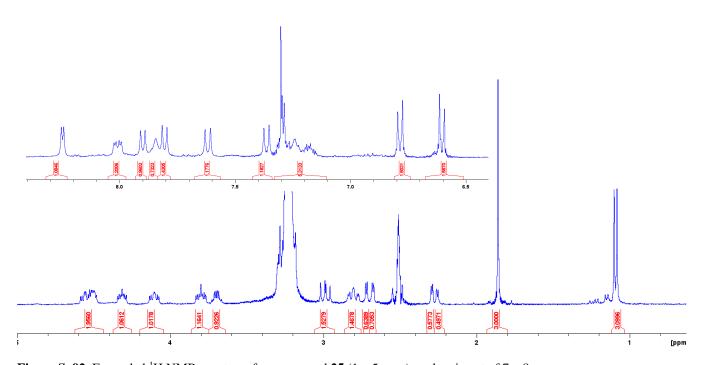



Figure S. 91. ¹H NMR spectrum for compound 25 in DMSO-d₆.

Figure S. 92. Expanded 1 H NMR spectrum for compound **25** (1 – 5 ppm), and an insert of 7 – 8 ppm.



Figure S. 93. COSY NMR spectrum of compound 25 in DMSO-d₆.

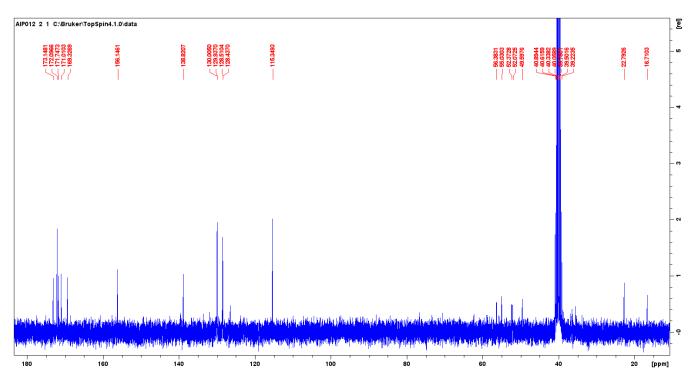


Figure S. 94. ¹³C NMR spectrum of compound 25 in DMSO.

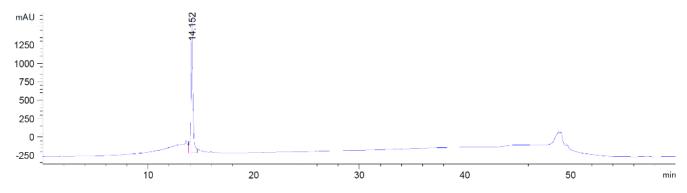


Figure S. 95. RP-HPLC chromatogram for compound 25 at 214 nm.

Single Mass Analysis

Tolerance = 20.0 PPM / DBE: min = -1.5, max = 50.0

Element prediction: Off

Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions

71 formula(e) evaluated with 6 results within limits (all results (up to 1000) for each mass)

Elements Used:

Mass	Calc. Mass	mDa	PPM	DBE	Formula	i-FIT	i-FIT Norm	Fit Conf %	С	Н	N	0
624.2780	624.2782	-0.2	-0.3	15.5	C30 H38 N7 O8	312.8	0.399	67.10	30	38	7	8
	624.2822	-4.2	-6.7	19.5	C35 H38 N5 O6	315.7	3.266	3.82	35	38	5	6
	624.2723	5.7	9.1	24.5	C37 H34 N7 O3	317.2	4.738	0.88	37	34	7	3
	624.2710	7.0	11.2	19.5	C36 H38 N3 O7	316.4	3.963	1.90	36	38	3	7
	624.2862	-8.2	-13.1	23.5	C40 H38 N3 O4	318.8	6.326	0.18	40	38	3	4
	624.2670	11.0	17.6	15.5	C31 H38 N5 O9	313.8	1.342	26.13	31	38	5	9

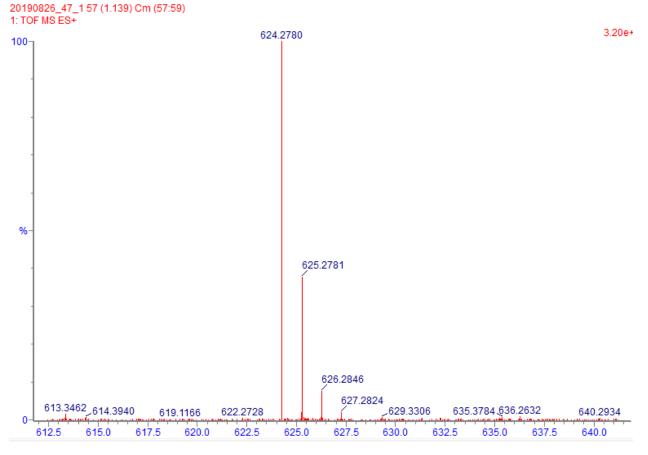


Figure S. 96. HRMS (ESI+) spectrum for compound 25.

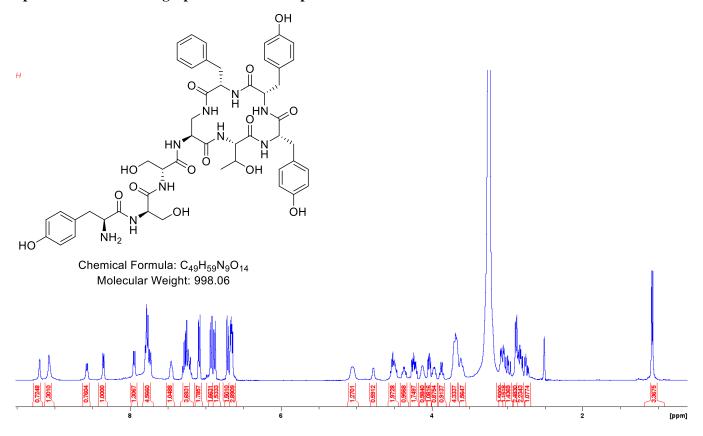
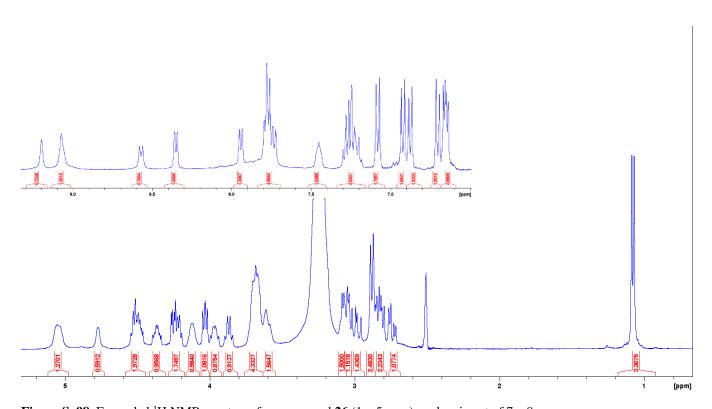



Figure S. 97. ¹H NMR spectrum for compound 26 in DMSO-d₆.

Figure S. 98. Expanded 1 H NMR spectrum for compound **26** (1 – 5 ppm), and an insert of 7 – 8 ppm.

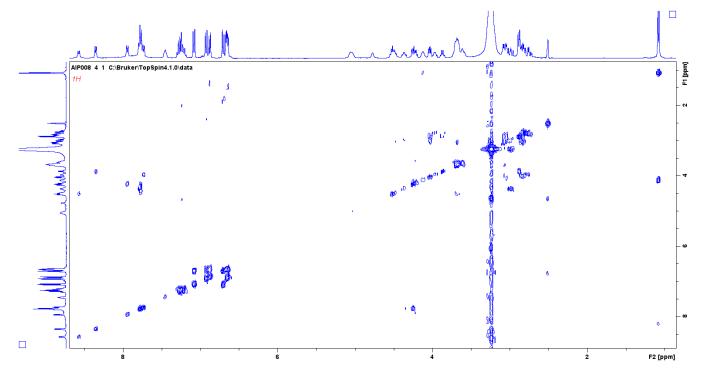


Figure S. 99. COSY NMR spectrum of compound 26 in DMSO-d₆.

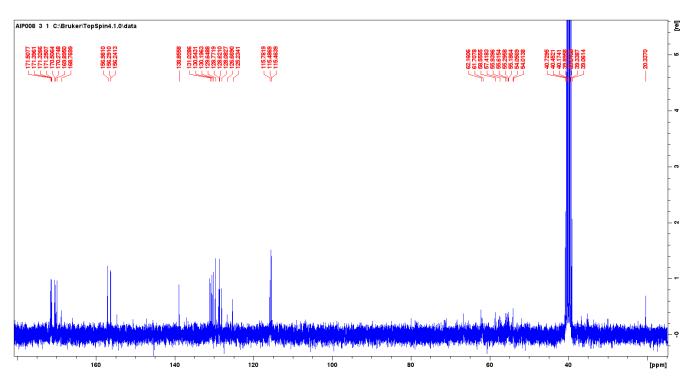


Figure S. 100. ¹³C NMR spectrum of compound 26 in DMSO.

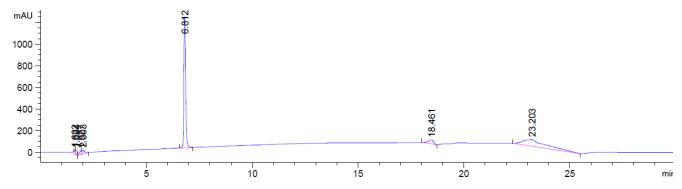
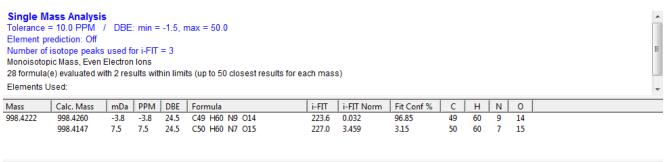



Figure S. 101. RP-HPLC chromatogram for compound 26 at 214 nm.

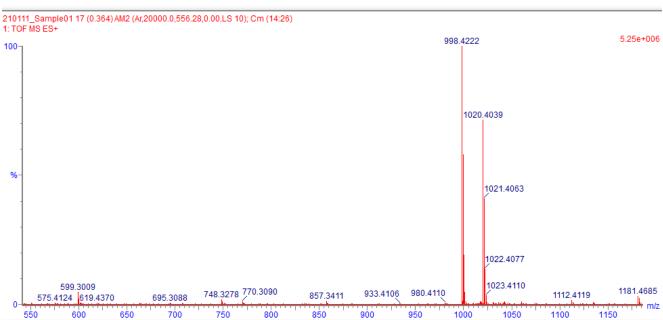


Figure S. 102. HRMS (ESI+) spectrum for compound 26.

5. Chromatographic Data for Cbz Deprotection Optimisation Trials

5.1. Chromatographic Data for 10% Pd/C Cbz Hydrogenolysis of Compound 8

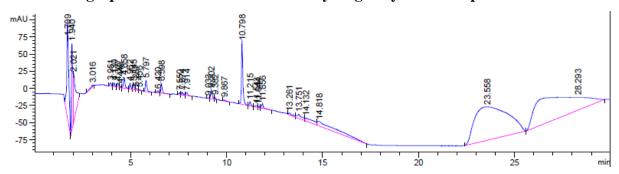


Figure S. 103. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 10% Pd/C, 20 °C, 0.5 mL/min

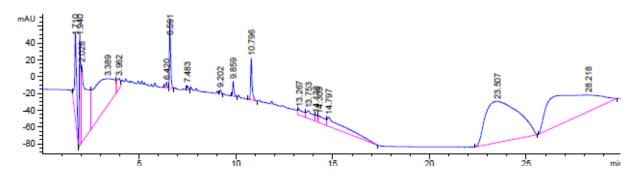


Figure S. 104. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 10% Pd/C, 20 °C, 1.0 mL/min

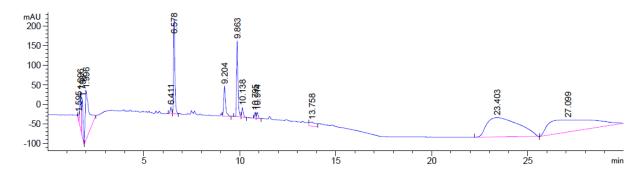


Figure S. 105. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 10% Pd/C, 20 °C, 2.0 mL/min

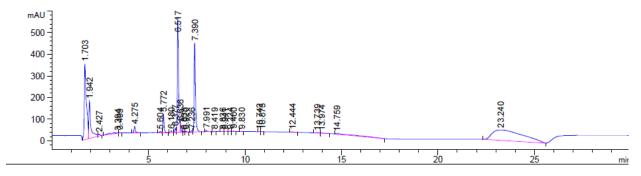


Figure S. 106. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 10% Pd/C, 40 °C, 0.5 mL/min

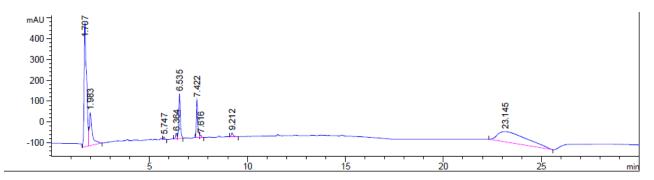


Figure S. 107. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 10% Pd/C, 40 °C, 1.0 mL/min

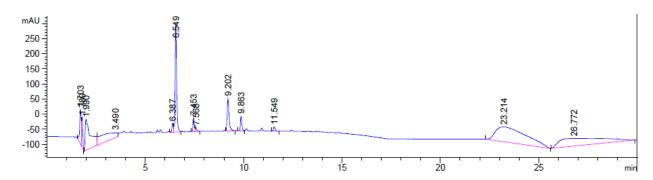


Figure S. 108. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 10% Pd/C, 40 °C, 2.0 mL/min

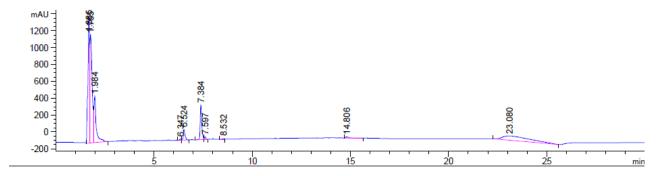


Figure S. 109. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 10% Pd/C, 60 °C, 0.5 mL/min

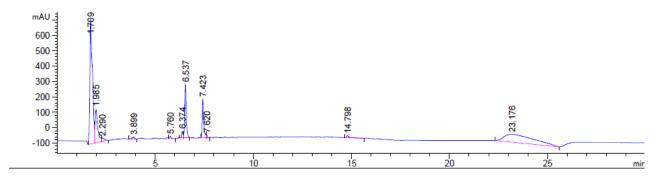


Figure S. 110. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 10% Pd/C, 60 °C, 1.0 mL/min

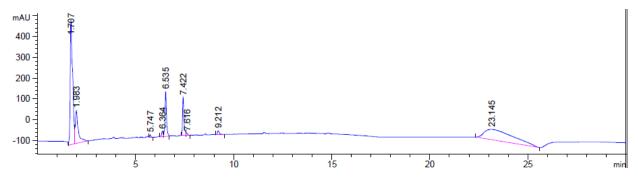


Figure S. 111. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 10% Pd/C, 60 °C, 2.0 mL/min

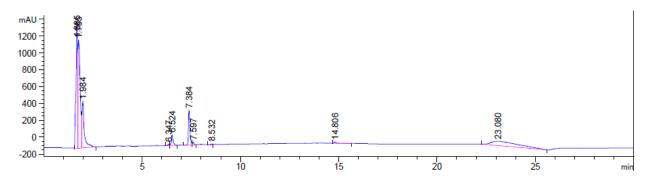


Figure S. 112. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 10% Pd/C, 80 °C, 0.5 mL/min

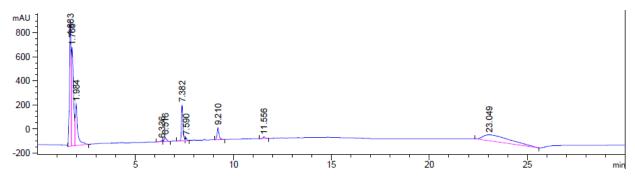


Figure S. 113. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 10% Pd/C, 80 °C, 1.0 mL/min

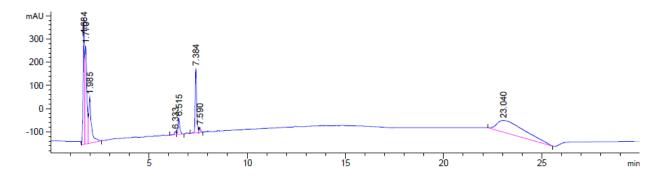


Figure S. 114. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 10% Pd/C, 80 °C, 2.0 mL/min

5.2 Chromatographic Data for Catalyst Trials for Cbz Hydrogenolysis of Compound 8

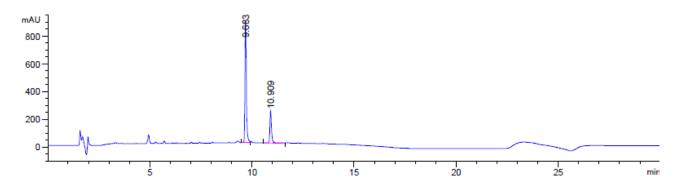


Figure S. 115. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under CuO/Al_2O_3 , across all flow rates (0.5 - 2.0 mL/min), and temperatures $(20 - 80 \text{ }^{\circ}\text{C})$.

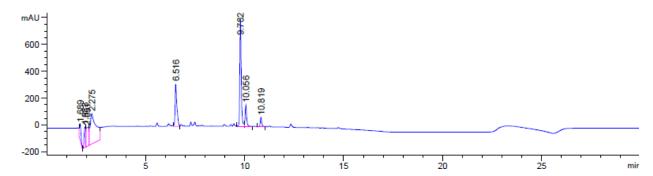


Figure S. 116. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 10% Pd/CaCO₃, 20 °C, 0.5 mL/min.

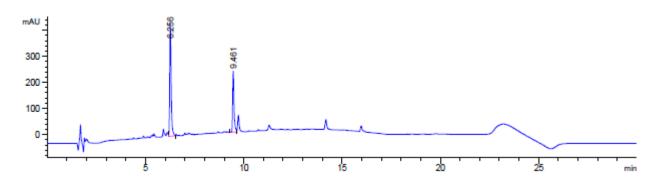


Figure S. 117. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 10% Pd/CaCO₃, 20 °C, 1.0 mL/min.

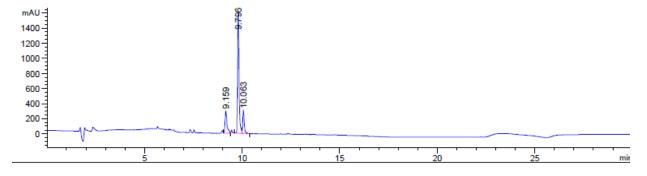


Figure S. 118. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 10% Pd/CaCO₃, 20 °C, 2.0 mL/min.

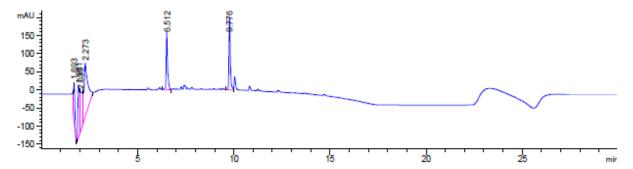


Figure S. 119. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 10% Pd/CaCO₃, 40 °C, 0.5 mL/min

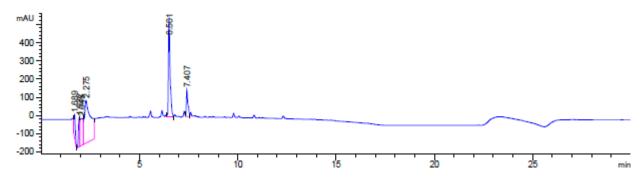


Figure S. 120. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 10% Pd/CaCO₃, 40 °C, 1.0 mL/min

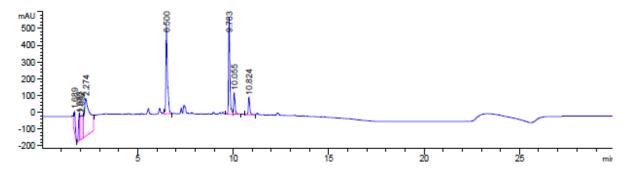


Figure S. 121. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 10% Pd/CaCO₃, 40 °C, 2.0 mL/min.

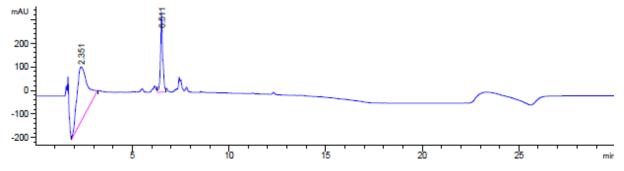


Figure S. 122. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 10% Pd/CaCO₃, 60 °C, 0.5 mL/min

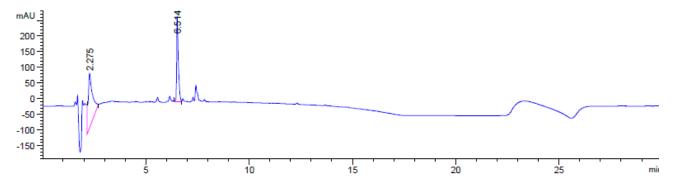


Figure S. 123. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 10% Pd/CaCO₃, 60 °C, 1.0 mL/min

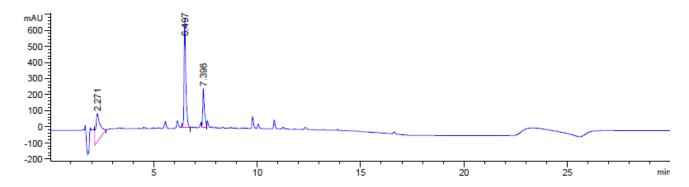


Figure S. 124. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 10% Pd/CaCO₃, 60 °C, 2.0 mL/min

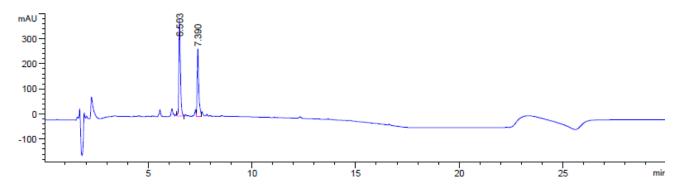


Figure S. 125. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 10% Pd/CaCO₃, 80 °C, 0.5 mL/min

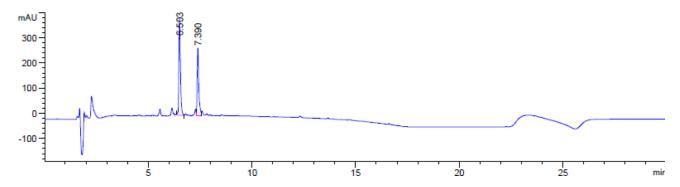


Figure S. 126. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 10% Pd/CaCO₃, 80 °C, 1.0 mL/min

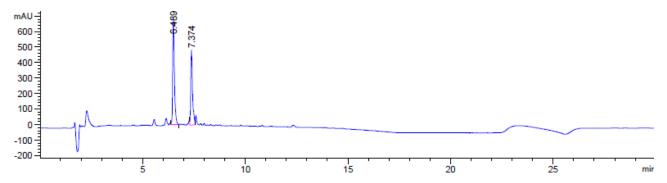


Figure S. 127. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 10% Pd/CaCO₃, 80 °C, 1.0 mL/min

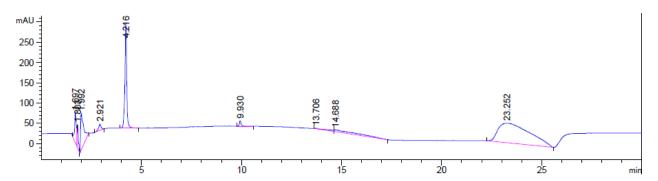


Figure S. 128. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 20% Pd(OH)₂/C, 20 °C 0.5 mL/min

Figure S. 129. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 20% Pd(OH)₂/C, 20 °C 1.0 mL/min

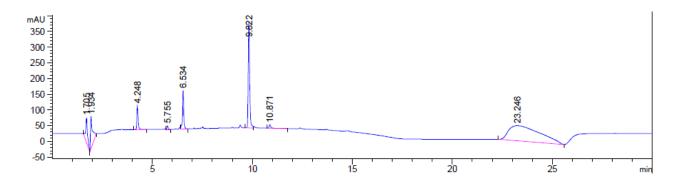


Figure S. 130. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 20% Pd(OH)₂/C, 20 °C 2.0 mL/min

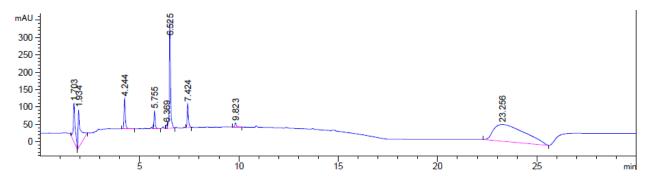


Figure S. 131. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 20% Pd(OH)₂/C, 40 °C 0.5 mL/min

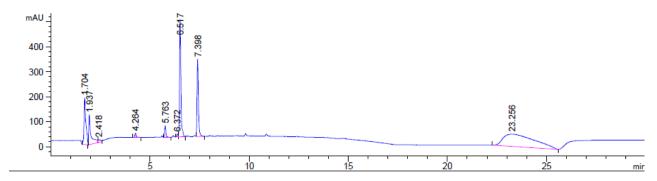


Figure S. 132. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 20% Pd(OH)₂/C, 40 °C 1.0 mL/min

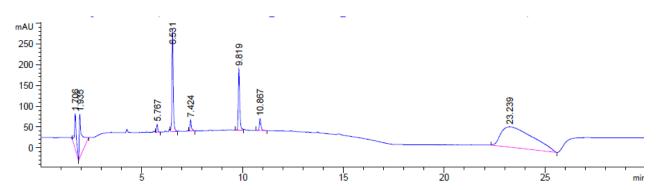


Figure S. 133. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 20% Pd(OH)₂/C, 40 °C 2.0 mL/min

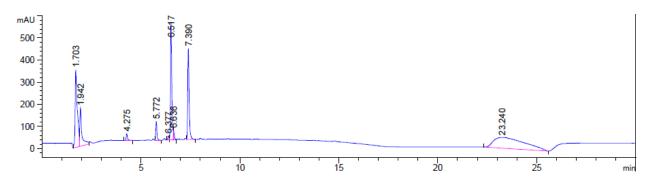


Figure S. 134. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 20% Pd(OH)₂/C, 60 °C 0.5 mL/min

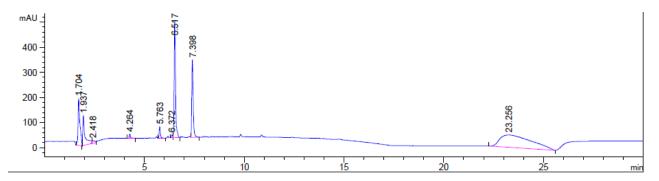


Figure S. 135. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 20% Pd(OH)₂/C, 60 °C 1.0 mL/min

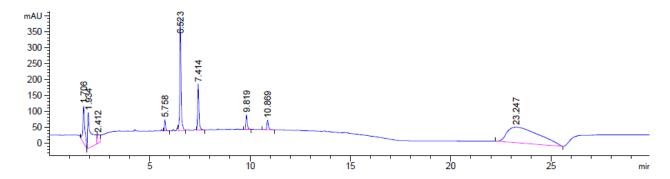


Figure S. 136. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 20% Pd(OH)₂/C, 60 °C 2.0 mL/min

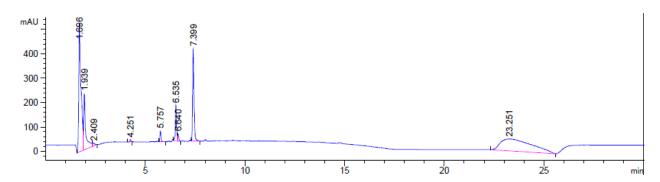


Figure S. 137. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 20% Pd(OH)₂/C, 80 °C 0.5 mL/min

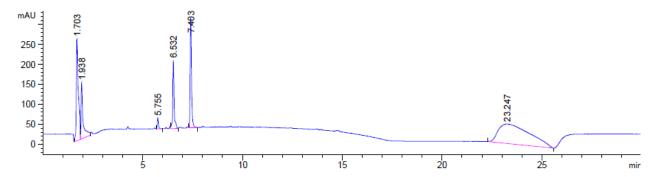
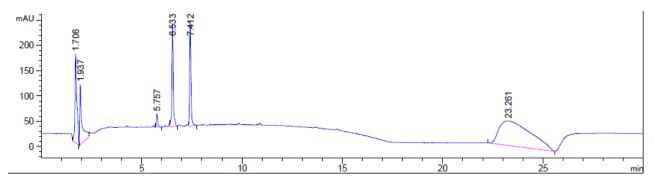
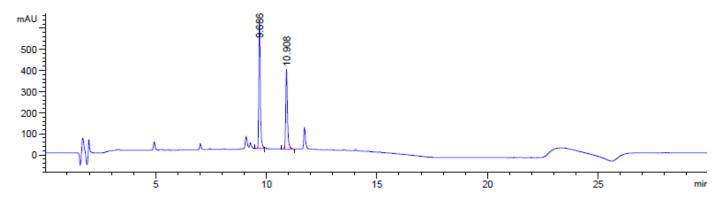
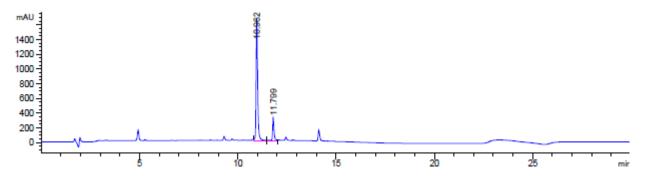
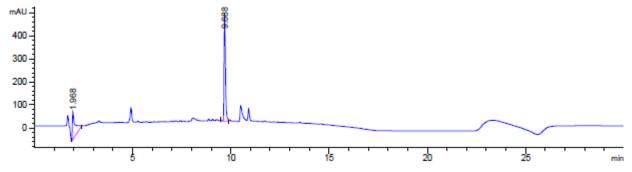
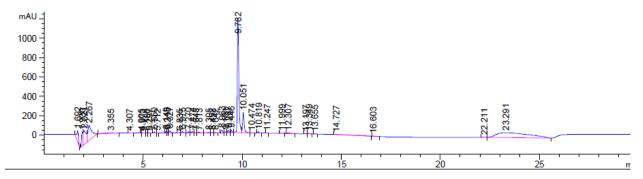
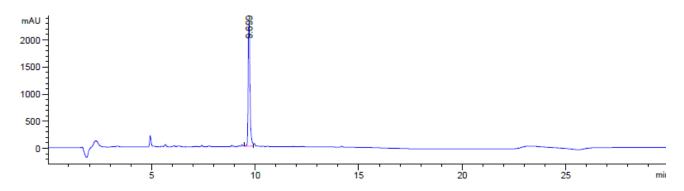


Figure S. 138. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 20% Pd(OH)₂/C, 80 °C 1.0 mL/min


Figure S. 139. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 20% Pd(OH)₂/C, 80 °C 2.0 mL/min


Figure S. 140. HPLC chromatogram for Cbz hydrogenolysis of compound **8** under Nickel Sponge, across all flow rates (0.5-2.0 mL/min), and temperatures $(20-80 \text{ }^{\circ}\text{C})$


Figure S. 141. HPLC chromatogram for Cbz hydrogenolysis of compound **8** under Raney Copper, across all flow rates (0.5 - 2.0 mL/min), and temperatures $(20 - 80 \,^{\circ}\text{C})$.

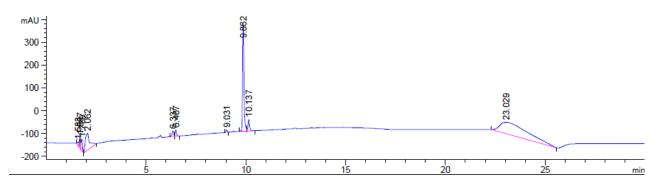

Figure S. 142. HPLC chromatogram for Cbz hydrogenolysis of compound **8** under Raney Nickel, across all flow rates (0.5 - 2.0 mL/min), and temperatures $(20 - 80 \,^{\circ}\text{C})$.

Figure S. 143. HPLC chromatogram for Cbz hydrogenolysis of compound **8** under Rh(COD)(dppf), across all flow rates (0.5 - 2.0 mL/min), and temperatures $(20 - 80 \text{ }^{\circ}\text{C})$.

Figure S. 144. HPLC chromatogram for Cbz hydrogenolysis of compound **8** under Fibrecat1001, across all flow rates (0.5 - 2.0 mL/min), and temperatures $(20 - 80 \,^{\circ}\text{C})$.

Figure S. 145. HPLC chromatogram for Cbz hydrogenolysis of compound **8** under Pd(II) Encat, across all flow rates (0.5 - 2.0 mL/min), and temperatures (20 - 80 °C).

5.3 Chromatographic Data for Differing H₂ Saturation Trials for Cbz Hydrogenolysis of Compound 8

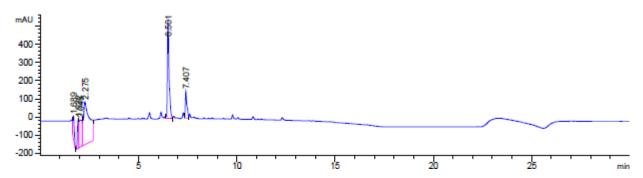


Figure S. 146. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 10% Pd/CaCO₃, 40 °C, 1.0 mL/min, 100% H₂

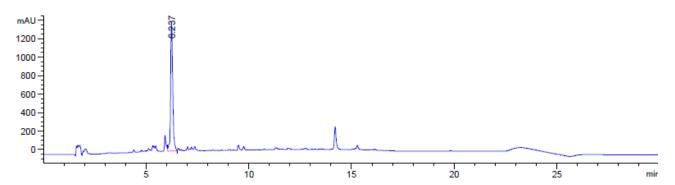


Figure S. 147. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 10% Pd/CaCO₃, 40 °C, 1.0 mL/min, 75% H₂

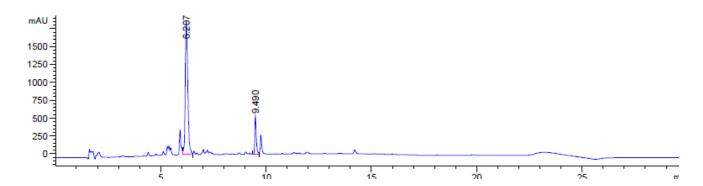


Figure S. 148. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 10% Pd/CaCO₃, 40 °C, 1.0 mL/min, 50% H₂

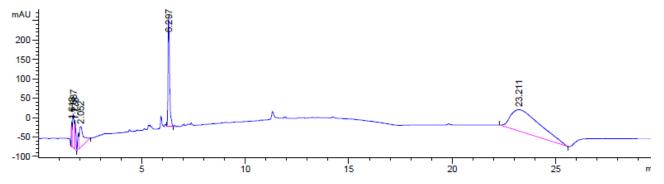


Figure S. 149. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 10% Pd/CaCO₃, 40 °C, 1.0 mL/min, 25% H₂

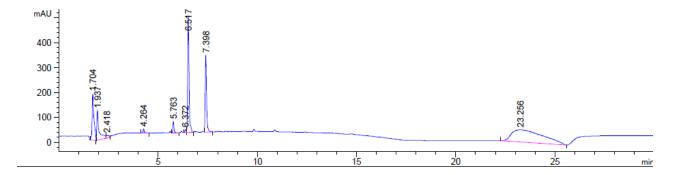


Figure S. 150. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 20% Pd(OH)₂/C, 40 °C, 1.0 mL/min, 100% H₂

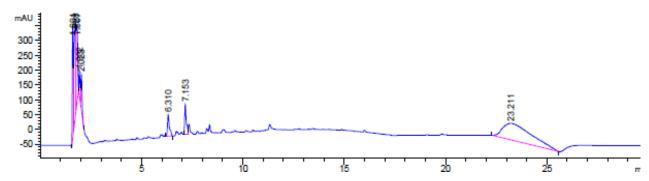


Figure S. 151. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 20% Pd(OH)₂/C, 40 °C, 1.0 mL/min, 75% H₂

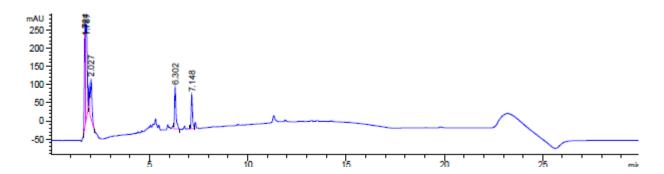


Figure S. 152. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 20% Pd(OH)₂/C, 40 °C, 1.0 mL/min, 50% H₂

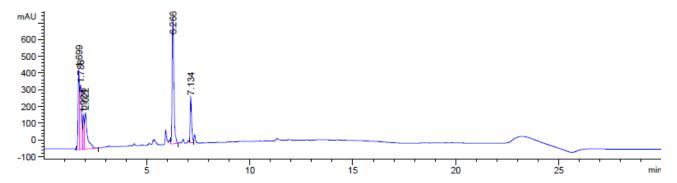
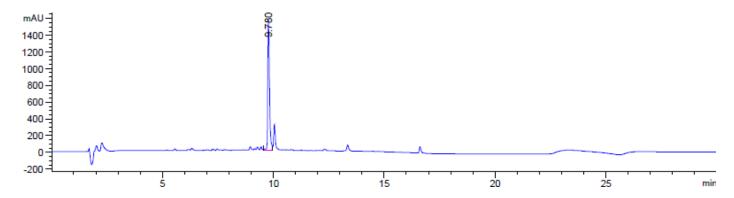
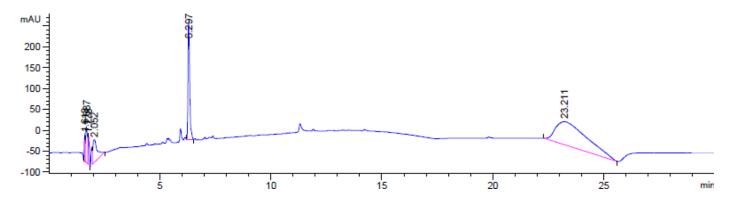




Figure S. 153. HPLC chromatogram for Cbz hydrogenolysis of compound 8 under 20% Pd(OH)₂/C, 40 °C, 1.0 mL/min, 25% H₂

Figure S. 154. HPLC Chromatogram for Cbz hydrogenolysis of compound **8** under 10% Pd/CaCO₃ in a 9:1 CHCl3:MeOH solvent system, with acid doping and catalyst washing.

Figure S. 155. HPLC Chromatogram for Cbz hydrogenolysis of compound **8** under the optimised conditions of 10% Pd/CaCO₃, in MeOH, 40 °C, 1.0 mL/min.

- 1. L. K. Spare, M. Menti, D. G. Harman, J. R. Aldrich-Wright and C. P. Gordon, *Reaction Chemistry & Engineering*, 2019, **4**, 1309-1317.
- 2. L. K. Spare, V. Laude, D. G. Harman, J. R. Aldrich-Wright and C. P. Gordon, *Reaction Chemistry & Engineering*, 2018, 3, 875-882.
- 3. C. Dankers, J. Tadros, D. G. Harman, J. R. Aldrich-Wright, T. V. Nguyen and C. P. Gordon, *ACS Combinatorial Science*, 2020, **22**, 255-267.