Supporting Information

Time-economical synthesis of selenofunctionalized heterocycles via I_2O_5 -mediated selenylative heterocyclization

Chen-Fan Zhou, Yun-Qian Zhang, Yong Ling, Liang Ming, Xia Xi, Gong-Qing Liu * , and Yanan

 $Zhang^*$

School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, People's Republic of China E-mail: gqliu@ntu.edu.cn; zhangyanan@gmail.com

Content

1. General information	S2
2. Photograph of the color of reaction mixture	S3
3. The proof of the formation of PhSeI in the reaction	S3
4. Comparison with reported protocol	S3
5. General procedure for the selenocyclizations	S5
6. Characterization data	S5
7. References	S32
8. ORTEP drawing of 5b and 13h	S33
9. Copies of NMR spectra	S35

1. General information

Solvents and reagents

Reagents were used as received without further purification unless otherwise indicated. Solvents were dried and distilled prior to use. Petroleum ether used had a boiling point range of $60-90^{\circ}$ C. Diselenides were prepared from the corresponding iodides with elemental selenium according to Braga's report.¹ Unsaturated alcohols and acids **10** were purchased from reagent manufacturer. Substrates **1**,² **4**³, **8**⁴ and **12**⁵ were prepared according to our previous works. Compounds **6** were synthesized via aldehyde allylation, subsequent Mitsunobu reaction with N-hydroxyphthalimide, N-deprotection and N-sulfonylation, as previously reported by Chemler.⁶

Chromatography

Chromatographic purification of products was performed as flash column chromatography on silica gel (200–300 meshes). Thin-layer chromatography (TLC) was carried out on silica plates (TLC Silica GF_{254}). Visualization of the compounds was accomplished by projecting UV-light onto the developed plates.

NMR spectra

NMR spectra were recorded on a Bruker Avance- III HD (¹H NMR: 400 MHz, ¹³C NMR: 100 MHz) spectrometer. Chemical shifts are referenced to residual solvent signals (CDCl₃: 7.26 ppm and 77.16 ppm for ¹H NMR and ¹³C NMR respectively) and reported in parts per million (ppm) relative to tetramethylsilane (TMS). Spin–spin coupling constants (*J*) were given in Hz. Multiplicities of NMR signals are abbreviated as follows: br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet.

Mass spectra

High resolution mass spectrometry (HRMS) analyses were carried out on a Thermo Fisher Q Exactive Mass Spectrometer, and the mass analyzer type is Orbitrap.

Melting points

Melting points were determined on glass slides using a WRX-4 digital display microscopic melting point apparatus and were presented uncorrected.

X-ray diffraction experiment

The crystal of compound **5b** and **13h** were obtained by slowly evaporating a mixture of ethyl acetate and *n*-hexane solution at ambient temperature. The data were collected at 100 K on a Rigaku Oxford Diffraction Supernova Dual Source, Cu at Zero equipped with an AtlasS2 CCD using Cu K α radiation.

2. Photograph of the color of reaction mixture

Fig. S1a at the beginning of the reaction Fig. S1b at the end of the reaction

Fig. S1c after adding an aqueous Na₂S₂O₃

3. The proof of the formation of PhSeI in the reaction

Figure S2. GC-MS spectra of PhSeI generated from the reaction of Ph₂Se₂ and I₂O₅

4. Comparison with reported protocol

Green Chem. 2019, 4976-4980	This work
[-] reaction condition: N ₂ , r.t.	[+] reaction condition: open air, r.t.
[-] reaction times: 2-2.5 h	[+] reaction times: 10 min
[-] reaction setup: electrochemical device	[+] reaction setup: flask
[+] selenium source: Ph ₂ Se ₂	[+] selenium source: Ph ₂ Se ₂
[+] additive: none	[+] additive: none
[-] yield: 50-93%	[+] yield: 73-93%

No method available	This work
	[+] reaction condition: open air, r.t.
	[+] reaction times: 10 min
	[+] reaction setup: flask
	[+] selenium source: Ph ₂ Se ₂
	[+] additive: none
	[+] yield: 68-96%

Synthesis 2002 2117–2123	This work
[+] reaction condition: open air, r.t.	[+] reaction condition: open air, r.t.
[-] reaction times: 24 h	[+] reaction times: 10 min
[+] reaction setup: flask	[+] reaction setup: flask
[-] selenium source: PhSeBr	[+] selenium source: Ph ₂ Se ₂
[-] additive: Na ₂ CO ₃	[+] additive: none
[-] yield: 73% yield, one example	[+] yield: 84-93%, 13 examples

$$R \xrightarrow{O} Ph_2Se_2 \longrightarrow R \xrightarrow{O} SePh$$

11
This work
[+] reaction condition: open air, r.t.
[+] reaction times: 10 min
[+] reaction setup: flask
[+] selenium source: Ph ₂ Se ₂
[+] additive: none
[+] yield: 73-93%

$$R \xrightarrow{O} R \xrightarrow{O} SePh$$

	IN IN
Adv. Synth. Catal. 2020, 1046–1052	This work
[+] reaction condition: open air, r.t.	[+] reaction condition: open air, r.t.
[-] reaction times: 2 h	[+] reaction times: 10 min
[-] reaction setup: electrochemical device	[+] reaction setup: flask
[+] selenium source: Ph ₂ Se ₂	[+] selenium source: Ph ₂ Se ₂
[+] additive: none	[+] additive: none
[-] yield: 63-91%	[+] yield: 73-93%

 $R \rightarrow OH + Ph_2Se_2 \rightarrow R \rightarrow O \rightarrow O$ SePh J. Org. Chem. 2021, 86, 8620-862 This work

[-] reaction condition: 80 °C, air	[+] reaction condition: r.t., open air
[-] reaction times: 24 h	[+] reaction times: 10 min
[+] reaction setup: flask	[+] reaction setup: flask
[+] selenium source: Ph ₂ Se ₂	[+] selenium source: Ph ₂ Se ₂
[-] additive: FeCl ₃	[+] additive: none
[-] yield: 80%, 88% yields, 2 examples	[+] yield: 73-93%, 9 examples

$R \rightarrow OH + Ph_2Se_2 \rightarrow R \rightarrow SePh$

Tetrahedron 1981, 4097-4109	This work
[-] reaction condition: -78 °C	[+] reaction condition: r.t.
[-] reaction times: not indicated	[+] reaction times: 10 min
[+] reaction setup: flask	[+] reaction setup: flask
[-] selenium source: N-phenylselenophthalimide	[+] selenium source: Ph ₂ Se ₂
[-] additive: base	[+] additive: none
[+] yield: 75-95%	[-] yield: 73-93%

$\overset{R}{\longrightarrow} \overset{H}{\overset{N}{\longrightarrow}} _{\operatorname{SO}_2 R'} + \operatorname{Ph}_2 \operatorname{Se}_2 \xrightarrow{R} \overset{N}{\overset{SO_2 R'}{\overset{SO_2 R'}{\overset{SO_2 R'}{\overset{SO_2 R'}{\overset{SO_2 R'}{\overset{SO_2 R'}{\overset{SO_2 R'}{\overset{SO_2 R'}{\overset{SO_2 R'}}}}$		
Org. Lett. 2019, 21, 885-889	This work	
[+] reaction condition: r.t., open air	[+] reaction condition: r.t., open air	
[-] reaction times: not indicated	[+] reaction times: 10 min	
[-] reaction setup: flask, lamp	[+] reaction setup: flask	
[+] selenium source: Ph ₂ Se ₂	[+] selenium source: Ph ₂ Se ₂	
[-] additive: 4CzIPN	[+] additive: none	
[+] yield: 98%, one example	[+] yield: 82-94%, 10 examples	

5. General procedure for the selenocyclizations

The reaction was carried out in an open air system. To a 10 mL vessel with magnetic stir bar were added 0.2 mmol substrates, 0.2 mmol diselenide, 0.2 mmol I_2O_5 and 2 mL of CH₃CN. The reaction mixture was stirred at room temperature and the reaction was monitored by TLC. Most of the cyclization reactions were completed within ten minutes. After completion of reaction, the reaction was next quenched with a saturated aqueous Na₂S₂O₃ solution and extracted with EtOAc. The combined organic layers were dried (Na₂SO₄) and concentrated to give a crude residue, which was purified by flash column chromatography.

6. Characterization data

Phenyl(2-phenyl-5-((phenylselanyl)methyl)-4,5-dihydrofuran-3-yl)methanone (3a).

Compound **3a** was prepared according to the general procedure and isolated as an oil (78 mg, 93% yield) after flash chromatography (petroleum ether/ethyl acetate = 20/1). ¹H NMR (400 MHz,

CDCl₃): δ 7.52 (dd, J = 6.4, 3.0 Hz, 2H), 7.36 (d, J = 7.2 Hz, 2H), 7.19 (dd, J = 7.4, 4.4 Hz, 3H), 7.17 – 7.03 (m, 4H), 6.97 (dt, J = 15.6, 7.7 Hz, 4H), 4.99 – 4.89 (m, 1H), 3.39 (dd, J = 15.2, 9.9 Hz, 1H), 3.32 (dd, J = 12.6, 5.5 Hz, 1H), 3.15 (dd, J = 12.6, 7.1 Hz, 1H), 3.05 (dd, J = 15.2, 7.4 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 192.3, 164.4, 137.9, 132.3, 130.1, 129.0, 128.8, 128.3, 128.2, 128.1, 127.9, 126.6, 126.5, 126.4, 110.6, 80.0, 37.5, 31.6. The data are in accordance with the literature.⁷

(5-((Phenylselanyl)methyl)-2-(*p*-tolyl)-4,5-dihydrofuran-3-yl)(*p*-tolyl)methanone (3b). Compound 3b was prepared according to the general procedure and isolated as an oil (80 mg, 89% yield) after flash chromatography (petroleum ether/ethyl acetate = 20/1). ¹H NMR (400 MHz, CDCl₃): δ 7.58 – 7.44 (m, 2H), 7.32 (d, *J* = 8.2 Hz, 2H), 7.25 – 7.19 (m, 3H), 6.99 (d, *J* = 8.2 Hz, 2H), 6.84 (d, *J* = 7.9 Hz, 2H), 6.79 (d, *J* = 7.9 Hz, 2H), 5.12 – 4.73 (m, 1H), 3.41 – 3.34 (m, 1H), 3.34 – 3.29 (m, 1H), 3.14 (dd, *J* = 12.6, 7.2 Hz, 1H), 3.02 (dd, *J* = 15.2, 7.3 Hz, 1H), 2.18 (s, 3H), 2.16 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 192.2, 163.6, 140.7, 139.2, 135.3, 132.2, 128.2, 128.0, 127.3, 127.2, 126.4, 126.1, 109.8, 79.6, 37.9, 31.5, 21.7, 20.4, 20.3. The data are in accordance with the literature.⁷

(4-Methoxyphenyl)(2-(4-methoxyphenyl)-5-((phenylselanyl)methyl)-4,5-dihydrofuran-3-yl)m ethanone (3c). Compound 3c was prepared according to the general procedure and isolated as an oil (76 mg, 79% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 7.56 – 7.48 (m, 2H), 7.48 – 7.41 (m, 2H), 7.27 – 7.19 (m, 3H), 7.08 (d, J = 8.8 Hz, 2H), 6.56 (d, J = 8.8 Hz, 2H), 6.52 (d, J = 8.9 Hz, 2H), 4.88 (dtd, J = 9.8, 7.2, 5.6 Hz, 1H), 3.67 (s, 3H), 3.65 (s, 3H), 3.45 – 3.33 (m, 1H), 3.33 – 3.27 (m, 1H), 3.13 (dd, J = 12.6, 7.0 Hz, 1H), 3.01 (dd, J = 15.1, 7.3 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 192.2, 163.7, 162.2, 160.8, 133.2, 131.6, 131.2, 131.0, 129.3, 129.3, 127.4, 122.4, 113.1, 113.0, 110.0, 80.4, 55.33, 55.27, 39.1, 32.6. The data are in accordance with the literature.⁷

(4-Fluorophenyl)(2-(4-fluorophenyl)-5-((phenylselanyl)methyl)-4,5-dihydrofuran-3-yl)metha none (3d). Compound 3d was prepared according to the general procedure and isolated as an oil (79 mg, 87% yield) after flash chromatography (petroleum ether/ethyl acetate = 15/1). ¹H NMR (400 MHz, CDCl₃): δ 7.67 – 7.56 (m, 2H), 7.47 (dd, J = 8.7, 5.5 Hz, 2H), 7.32 – 7.25 (m, 4H), 7.25 – 7.06 (m, 2H), 6.86 – 6.76 (m, 3H), 5.06 – 4.97 (m, 1H), 3.44 (dd, J = 15.3, 9.9 Hz, 1H), 3.37 (dd, J = 12.7, 5.5 Hz, 1H), 3.24 (dd, J = 12.7, 6.9 Hz, 1H), 3.11 (dd, J = 15.2, 7.4 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 191.5, 165.3 (d, $J_{C-F} = 101.8$ Hz), 164.0, 162.8(d, $J_{C-F} =$ 101.3 Hz), 135.1(d, $J_{C-F} = 3.1$ Hz), 133.3, 131.5 (d, $J_{C-F} = 8.7$ Hz), 131.3 (d, $J_{C-F} = 9.0$ Hz), 129.3, 129.1, 127.5, 126.0 (d, $J_{C-F} = 3.1$ Hz), 115.03 (d, $J_{C-F} = 4.9$ Hz), 114.81 (d, $J_{C-F} = 4.7$ Hz), 111.42, 38.6, 32.6. ¹⁹F NMR (376 MHz, CDCl₃): δ -107.4, -108.7. The data are in accordance with the literature.⁷

(4-Chlorophenyl)(2-(4-chlorophenyl)-5-((phenylselanyl)methyl)-4,5-dihydrofuran-3-yl)metha none (3e). Compound 3e was prepared according to the general procedure and isolated as an oil (78 mg, 80% yield) after flash chromatography (petroleum ether/ethyl acetate = 15/1). ¹H NMR (400 MHz, CDCl₃): δ 7.63 – 7.54 (m, 2H), 7.40 (d, J = 8.5 Hz, 2H), 7.33 – 7.21 (m, 4H), 7.13 – 7.07 (m, 5H), 5.12 – 4.99 (m, 1H), 3.43 (dd, J = 15.3, 9.9 Hz, 1H), 3.36 (dd, J = 12.7, 5.4 Hz, 1H), 3.23 (dd, J = 12.7, 6.8 Hz, 1H), 3.10 (dd, J = 15.3, 7.4 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 191.6, 164.0, 137.8, 137.2, 136.5, 133.3, 130.6, 130.3, 129.3, 129.1, 128.2, 128.13, 128.06, 127.6, 111.8, 81.2, 38.7, 32.5. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₄H₁₉Cl₂O₂Se 488.9922; Found 488.9991.

(4-Bromophenyl)(2-(4-bromophenyl)-5-((phenylselanyl)methyl)-4,5-dihydrofuran-3-yl)meth anone (3f). Compound 3f was prepared according to the general procedure and isolated as a yellow solid (90 mg, 78% yield) after flash chromatography (petroleum ether/ethyl acetate = 20/1). Mp: 94–96 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.55 – 7.44 (m, 2H), 7.32 – 7.17 (m, 7H), 7.16 (d, J = 8.5 Hz, 2H), 6.92 (d, J = 8.6 Hz, 2H), 5.05 – 4.89 (m, 1H), 3.35 (dd, J = 15.3, 9.9 Hz, 1H), 3.28 (dd, J = 12.7, 5.4 Hz, 1H), 3.15 (dd, J = 12.7, 6.9 Hz, 1H), 3.01 (dd, J = 15.3, 7.4 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 191.7, 164.1, 137.6, 133.3, 131.1, 131.0, 130.7, 130.4, 129.3, 129.1, 128.6, 127.6, 126.3, 124.9, 111.8, 81.3, 38.6, 32.5. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₄H₁₉Br₂O₂Se 576.8912; Found 576.8936.

1-(2-Ethyl-5-((phenylselanyl)methyl)-4,5-dihydrofuran-3-yl)propan-1-one (3g). Compound **3g** was prepared according to the general procedure and isolated as an oil (59 mg, 91% yield) after flash chromatography (petroleum ether/ethyl acetate = 15:1). ¹H NMR (400 MHz, CDCl₃): δ 7.68 – 7.45 (m, 2H), 7.20– 7.18 (m, 3H), 4.79 – 4.65 (m, 1H), 4.08 (q, J = 7.1 Hz, 2H), 3.13 (dd, J = 12.5, 5.5 Hz, 1H), 3.03 – 2.88 (m, 2H), 2.62 (dd, J = 14.8, 6.9 Hz, 2H), 2.57 – 2.49 (m, 1H), 1.19 (t, J = 7.1 Hz, 3H), 1.00 (t, J = 7.6 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 171.1, 164.9, 132.1, 128.2, 128.1, 126.3, 99.4, 79.8, 58.4, 34.5, 31.7, 20.2, 13.4, 10.1. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₂₁O₂Se 325.0701; Found 325.0703.

(5-Methyl-2-phenyl-5-((phenylselanyl)methyl)-4, 5-dihydrofuran-3-yl)(phenyl)methanone

(**3h**). Compound **3h** was prepared according to the general procedure and isolated as an oil (81 mg, 93% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 7.63 – 7.53 (m, 2H), 7.50 – 7.38 (m, 2H), 7.32 – 7.22 (m, 4H), 7.17 – 6.98 (m, 7H), 3.48 – 3.26 (m, 3H), 3.18 (d, *J* = 15.2 Hz, 1H), 1.67 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 193.5, 164.8, 139.1, 132.9, 131.0, 130.6, 130.1, 129.9, 129.3, 129.2, 128.9, 127.6, 127.5, 127.2, 111.8, 87.6, 44.0, 39.2, 26.8. The data are in accordance with the literature.⁷

Ethyl 4-benzoyl-5-phenyl-2-((phenylselanyl)methyl)-2,3-dihydrofuran-2-carboxylate (3i). Compound 3i was prepared according to the general procedure and isolated as an oil (79 mg, 80% yield) after flash chromatography (petroleum ether/ethyl acetate = 15/1). ¹H NMR (400 MHz, CDCl₃): δ 7.64 – 7.55 (m, 2H), 7.49 – 7.38 (m, 2H), 7.33 – 7.19 (m, 4H), 7.19 – 7.12 (m, 3H), 7.09 – 6.97 (m, 4H), 4.27 – 4.19 (m, 2H), 3.69 – 3.54 (m, 3H), 3.47 (d, *J* = 15.8 Hz, 1H), 1.29 (t, *J* = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 193.0, 170.8, 164.5, 138.5, 133.6, 131.4, 130.2, 129.8, 129.5, 129.3, 129.1, 129.0, 127.7, 127.6, 127.5, 111.2, 88.0, 62.2, 42.7, 34.9, 14.1. The data are in accordance with the literature.⁷ Phenyl(2-phenyl-7-(phenylselanyl)-3a,4,5,6,7,7a-hexahydrobenzofuran-3-yl)methanone (3j). Compound 3j was prepared according to the general procedure and isolated as an oil (67 mg, 73% yield) after flash chromatography (petroleum ether/ethyl acetate = 50/1). ¹H NMR (400 MHz, CDCl₃): δ 7.63 (dd, J = 7.3, 2.2 Hz, 2H), 7.49 – 7.36 (m, 2H), 7.34 – 7.25 (m, 3H), 7.06 – 6.89 (m, 7H), 4.73 (dd, J = 7.4, 5.8 Hz, 1H), 3.73 – 3.67 (m, 1H), 3.61 (q, J = 6.9 Hz, 1H), 2.09 – 1.99 (m, 2H), 1.83 – 1.75 (m, 1H), 1.73 – 1.63 (m, 1H), 1.56 – 1.48 (m, 2H), 1.47 – 1.41 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 192.5, 164.4, 137.9, 134.4, 130.4, 129.0, 128.4, 128.2, 128.1, 127.6, 127.5, 127.0, 126.7, 126.6, 116.5, 84.2, 43.1, 42.0, 27.8, 25.3, 20.0. The data are in accordance with the literature.⁷

2-((Phenylselanyl)methyl)-3,5,6,7-tetrahydrobenzofuran-4(2H)-one (**3k**). Compound **3k** was prepared according to the general procedure and isolated as an oil (46 mg, 75% yield) after flash chromatography (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃): δ 7.53 – 7.41 (m, 2H), 7.22 – 7.17 (m, 3H), 4.92 – 4.84 (m, 1H), 3.15 (dd, *J* = 12.7, 5.9 Hz, 1H), 3.01 (dd, *J* = 12.7, 6.8 Hz, 1H), 2.90 (ddt, *J* = 14.1, 9.8, 1.9 Hz, 1H), 2.57 (ddt, *J* = 14.8, 6.9, 1.9 Hz, 1H), 2.32 – 2.17 (m, 4H), 1.98 – 1.92 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 195.5, 177.0, 133.3, 129.2, 129.0, 127.5, 112.9, 84.4, 36.4, 32.7, 31.8, 23.9, 21.7. The data are in accordance with the literature.⁷

1-(2-Phenyl-5-((phenylselanyl)methyl)-4,5-dihydrofuran-3-yl)ethan-1-one (3l). Compound **3l** was prepared according to the general procedure and isolated as an oil (39 mg 54% yield) after flash chromatography (petroleum ether/ethyl acetate = 20/1). ¹H NMR (400 MHz, CDCl₃): δ 7.62 – 7.53 (m, 4H), 7.49 – 7.44 (m, 1H), 7.40 (dd, *J* = 8.1, 6.5 Hz, 2H), 7.33 – 7.21 (m, 3H), 4.88 – 4.81 (m, 1H), 3.45 – 3.17 (m, 2H), 3.10 (dd, *J* = 12.7, 6.9 Hz, 1H), 2.90 (dd, *J* = 14.7, 7.2 Hz, 1H), 1.77 (d, *J* = 1.5 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 193.0, 168.4, 140.8, 133.2, 131.0, 129.2, 129.1, 128.3, 127.8, 127.4, 112.2, 81.3, 36.9, 32.6, 15.4. The data are in accordance with the literature.⁷

(2-Methyl-5-((phenylselanyl)methyl)-4,5-dihydrofuran-3-yl)(phenyl)methanone (31'). Compound 31' was prepared according to the general procedure and isolated as an oil (24 mg, 34% yield) after flash chromatography (petroleum ether/ethyl acetate = 20/1). ¹H NMR (400 MHz, CDCl₃): δ 7.53 – 7.46 (m, 2H), 7.45 – 7.28 (m, 5H), 7.23 – 7.16 (m, 3H), 4.90 – 4.81 (m, 1H), 3.36 – 3.14 (m, 2H), 3.06 (dd, *J* = 12.6, 7.3 Hz, 1H), 2.88 (dd, *J* = 15.2, 7.2 Hz, 1H), 1.87 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 194.6, 165.7, 133.3, 130.7, 130.6, 129.3, 129.2, 129.1, 128.3, 127.5, 114.3, 81.1, 37.1, 32.7, 28.9. The data are in accordance with the literature.⁷

Ethyl 2-ethyl-5-((phenylselanyl)methyl)-4,5-dihydrofuran-3-carboxylate (3m). Compound **3m** was prepared according to the general procedure and isolated as an oil (60 mg, 89% yield) after flash chromatography (petroleum ether/ethyl acetate = 15/1). ¹H NMR (400 MHz, CDCl₃): δ 7.52 – 7.40 (m, 2H), 7.25 – 7.07 (m, 3H), 4.75 – 4.67 (m, 1H), 3.13 (dd, *J* = 12.5, 5.3 Hz, 1H), 3.01 (ddt, *J* = 14.3, 10.1, 1.2 Hz, 1H), 2.94 (dd, *J* = 12.5, 7.5 Hz, 1H), 2.66 (dd, *J* = 14.2, 6.8 Hz, 1H), 2.55 (q, *J* = 7.7 Hz, 2H), 2.32 (q, *J* = 7.3 Hz, 2H), 1.03 – 1.97 (m, 6H). ¹³C{¹H} NMR (100 MHz,

CDCl₃): δ 196.4, 170.7, 132.1, 128.2, 128.1, 126.4, 108.4, 79.9, 34.8, 33.6, 31.6, 20.9, 10.0, 6.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₂₁O₃Se 341.0650; Found 341.0657.

Ethyl 2-phenyl-5-((phenylselanyl)methyl)-4,5-dihydrofuran-3-carboxylate (**3n**). Compound **3n** was prepared according to the general procedure and isolated as an oil (70 mg, 90% yield) after flash chromatography (petroleum ether/ethyl acetate = 30/1). ¹H NMR (400 MHz, CDCl₃): δ 7.72 – 7.59 (m, 2H), 7.58 – 7.45 (m, 2H), 7.37 – 7.25 (m, 3H), 7.21 – 7.18 (m, 3H), 4.83 (dtd, J = 10.1, 7.4, 5.5 Hz, 1H), 4.06 (q, J = 7.1 Hz, 2H), 3.23 (s, 1H), 3.24 – 3.17 (m, 1H), 3.04 (dd, J = 12.5, 7.6 Hz, 1H), 2.87 (dd, J = 15.4, 7.1 Hz, 1H), 1.13 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 164.2, 163.5, 132.2, 129.3, 128.8, 128.3, 128.2, 128.1, 126.5, 126.4, 101.0, 79.4, 58.8, 36.2, 31.5, 13.2. The data are in accordance with the literature.⁷

Methyl 2-(4-fluorophenyl)-5-((phenylselanyl)methyl)-4,5-dihydrofuran-3-carboxylate (30). Compound 30 was prepared according to the general procedure and isolated as an oil (68 mg, 87% yield) after flash chromatography (petroleum ether/ethyl acetate = 12/1). ¹H NMR (400 MHz, CDCl₃): δ 7.75 (d, J = 8.8 Hz, 2H), 7.63 – 7.42 (m, 2H), 7.05 – 7.00 (m, 3H), 7.03 (t, J = 8.8 Hz, 2H), 4.92 – 4.85 (m, 1H), 3.67 (s, 3H), 3.33 – 3.21 (m, 2H), 3.10 (dd, J = 12.7, 7.2 Hz, 1H), 2.93 (dd, J = 15.4, 7.1 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 165.6, 163.8 (d, $J_{C-F} = 249$ Hz), 163.7, 133.3, 131.6 (d, $J_{C-F} = 8.6$ Hz), 129.3, 129.1, 127.5, 125.8 (d, $J_{C-F} = 3.3$ Hz), 114.7 (d, $J_{C-F} = 21.7$ Hz), 101.5, 80.5, 51.1, 37.2, 32.6. ¹⁹F NMR (376 MHz, CDCl₃): δ -109.1. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₁₈FO₃Se 393.0400; Found 393.0408.

Ethyl 2-(4-methoxyphenyl)-5-((phenylselanyl)methyl)-4,5-dihydrofuran-3-carboxylate (3p). Compound 3p was prepared according to the general procedure and isolated as an oil (77 mg, 92% yield) after flash chromatography (petroleum ether/ethyl acetate = 25/1). ¹H NMR (400 MHz, CDCl₃): δ 7.67 (d, *J* = 8.9 Hz, 2H), 7.55 – 7.48 (m, 2H), 7.23 – 7.11 (m, 3H), 6.79 (d, *J* = 8.9 Hz, 2H), 4.83 – 4.73 (m, 1H), 4.06 (q, *J* = 7.1 Hz, 2H), 3.75 (s, 3H), 3.26 – 3.16 (m, 2H), 3.02 (dd, *J* = 12.5, 7.5 Hz, 1H), 2.84 (dd, *J* = 15.2, 7.1 Hz, 1H), 1.16 (t, *J* = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 164.4, 163.3, 160.2, 132.2, 130.1, 128.2, 126.3, 121.1, 111.9, 99.5, 79.1, 58.7, 54.3, 36.3, 31.6, 13.3. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₃O₄Se 419.0756; Found 419.0762.

1-(6-Methyl-2-((phenylselanyl)methyl)-3,4-dihydro-2*H***-pyran-5-yl)ethanone (3**q). Compound **3**q was prepared according to the general procedure and isolated as a white solid (47 mg, 76% yield) after flash chromatography (petroleum ether/ethyl acetate = 20/1). Mp: 195–197 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.67 – 7.34 (m, 2H), 7.30 – 7.24 (m, 3H), 4.06 – 4.00 (m, 1H), 3.20 (dd, J = 12.8, 5.9 Hz, 1H), 3.01 (dd, J = 12.7, 6.8 Hz, 1H), 2.48 – 2.38 (m, 1H), 2.36 – 2.27 (m, 1H), 2.19 (s, 3H), 2.16 (s, 3H), 2.14 – 2.07 (m, 1H), 1.72 – 1.62 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 198.9, 164.1, 132.9, 129.9, 129.2, 127.3, 109.9, 75.7, 31.7, 29.7, 26.4, 22.4, 21.0. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₅H₁₈NaO₂Se 333.0364; Found 333.0380.

(5-((Methylselanyl)methyl)-2-phenyl-4,5-dihydrofuran-3-yl)(phenyl)methanone (3ba). Compound 3ba was prepared according to the general procedure and isolated as an oil (58 mg, 81% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 7.50 – 7.39 (m, 2H), 7.31 – 7.13 (m, 4H), 7.13 – 7.00 (m, 4H), 5.10 – 5.03 (m, 1H), 3.46 (dd, *J* = 15.1, 9.8 Hz, 1H), 3.13 (dd, *J* = 15.1, 7.8 Hz, 1H), 3.01 (dd, *J* = 12.8, 5.6 Hz, 1H), 2.92 (dd, *J* = 12.7, 6.7 Hz, 1H), 2.12 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 193.4, 165.4, 139.0, 131.2, 130.01, 130.00, 129.3, 128.9, 127.7, 127.6, 111.8, 81.8, 38.8, 30.0, 5.3. The data are in accordance with the literature.⁷

(5-((Benzylselanyl)methyl)-2-phenyl-4,5-dihydrofuran-3-yl)(phenyl)methanone (3bb). Compound 3bb was prepared according to the general procedure and isolated as an oil (77 mg, 89% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 7.51 – 7.38 (m, 2H), 7.28 (d, *J* = 4.3 Hz, 4H), 7.24 – 7.11 (m, 5H), 7.11 – 7.03 (m, 4H), 5.02 – 4.93 (m, 1H), 3.87 (s, 2H), 3.38 (dd, *J* = 15.1, 9.8 Hz, 1H), 3.05 (dd, *J* = 15.1, 7.7 Hz, 1H), 2.92 (dd, *J* = 12.8, 5.7 Hz, 1H), 2.86 (dd, *J* = 12.8, 6.5 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 193.4, 165.3, 139.0, 138.9, 131.2, 130.04, 129.99, 129.4, 129.0, 128.9, 128.6, 127.67, 127.66, 127.0, 111.8, 81.7, 38.8, 28.4, 27.9. The data are in accordance with the literature.⁷

(5-((Phenethylselanyl)methyl)-2-phenyl-4,5-dihydrofuran-3-yl)(phenyl)methanone (3bc). Compound 3bc was prepared according to the general procedure and isolated as an oil (81 mg, 91% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 7.51 – 7.40 (m, 2H), 7.29 – 7.12 (m, 9H), 7.10 – 7.02 (m, 4H), 5.09 – 4.98 (m, 1H), 3.42 (dd, *J* = 15.1, 9.8 Hz, 1H), 3.23 – 3.08 (m, 1H), 3.07 – 2.85 (m, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 193.4, 165.4, 140.9, 139.0, 131.2, 130.04, 130.01, 129.4, 128.9, 128.5, 128.4, 127.68, 127.67, 126.4, 111.9, 82.0, 38.8, 37.2, 28.7, 26.0. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₆H₂₅O₂Se 449.1014; Found 449.1021.

(5-((Isobutylselanyl)methyl)-2-phenyl-4,5-dihydrofuran-3-yl)(phenyl)methanone (3bd). Compound 3bd was prepared according to the general procedure and isolated as an oil (76 mg, 95% yield) after flash chromatography (petroleum ether/ethyl acetate = 15/1). ¹H NMR (400 MHz, CDCl₃): δ 7.57 – 7.39 (m, 2H), 7.29 – 7.12 (m, 4H), 7.10 – 7.04 (m, 4H), 5.08 – 5.00 (m, 1H), 3.46 (dd, *J* = 15.1, 9.8 Hz, 1H), 3.12 (dd, *J* = 15.1, 7.7 Hz, 1H), 3.01 (dd, *J* = 12.6, 5.5 Hz, 1H), 2.92 (dd, *J* = 12.6, 7.0 Hz, 1H), 2.61 (d, *J* = 3.0 Hz, 1H), 2.60 (d, *J* = 3.0 Hz, 1H), 1.87 (dt, *J* = 13.3, 6.7 Hz, 1H), 1.01 (d, *J* = 2.0 Hz, 3H), 0.99 (d, *J* = 2.0 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 193.5, 165.5, 139.0, 131.1, 130.02, 130.00, 129.3, 128.9, 127.7, 127.6, 111.8, 81.9, 38.7, 35.1, 29.4, 29.0, 22.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₂₅O₂Se 401.1014; Found 401.1019.

(5-((Pentylselanyl)methyl)-2-phenyl-4,5-dihydrofuran-3-yl)(phenyl)methanone (3be). Compound 3be was prepared according to the general procedure and isolated as an oil (74 mg, 89% yield) after flash chromatography (petroleum ether/ethyl acetate = 15/1). ¹H NMR (400 MHz, CDCl₃): δ 7.52 – 7.35 (m, 2H), 7.29 – 7.11 (m, 4H), 7.12 – 7.01 (m, 4H), 5.05 (dtd, J = 9.8, 7.3, 5.5 Hz, 1H), 3.45 (dd, J = 15.1, 9.8 Hz, 1H), 3.12 (dd, J = 15.1, 7.7 Hz, 1H), 3.02 (dd, J = 12.6, 5.5 Hz, 1H), 2.92 (dd, J = 12.6, 6.9 Hz, 1H), 2.67 (td, J = 7.6, 1.7 Hz, 2H), 1.74 – 1.62 (m, 2H), 1.46 – 1.23 (m, 4H), 0.88 (t, J = 7.0 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 193.4, 165.4, 139.0, 131.1, 130.03, 129.99, 129.3, 128.9, 127.65, 127.61, 111.8, 82.0, 38.8, 32.0, 30.3, 28.4, 25.1, 22.2, 14.0. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₃H₂₇O₂Se 415.1171; Found 415.1176.

(5-((Heptylselanyl)methyl)-2-phenyl-4,5-dihydrofuran-3-yl)(phenyl)methanone (3bf). Compound 3bf was prepared according to the general procedure and isolated as a yellow solid (81 mg, 92% yield) after flash chromatography (petroleum ether/ethyl acetate = 30/1). Mp: 110–112 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.50 – 7.34 (m, 2H), 7.30 – 7.11 (m, 4H), 7.13 – 7.04 (m, 4H), 5.05 (dtd, J = 9.8, 7.3, 5.5 Hz, 1H), 3.46 (dd, J = 15.1, 9.8 Hz, 1H), 3.12 (dd, J = 15.2, 7.7 Hz, 1H), 3.02 (dd, J = 12.6, 5.5 Hz, 1H), 2.93 (dd, J = 12.7, 6.9 Hz, 1H), 2.68 (td, J = 7.5, 1.6 Hz, 2H), 1.75 – 1.64 (m, 2H), 1.45 – 1.20 (m, 8H), 0.87 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 193.4, 165.4, 139.0, 131.1, 130.03, 129.99, 129.3, 128.9, 127.64, 127.61, 111.8, 82.0, 38.8, 31.7, 30.7, 29.8, 28.8, 28.4, 25.1, 22.6, 14.1. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₅H₃₁O₂Se 443.1484; Found 443.1493.

(5-((Cyclohexylselanyl)methyl)-2-phenyl-4,5-dihydrofuran-3-yl)(phenyl)methanone (3bg). Compound 3bg was prepared according to the general procedure and isolated as an oil (78 mg, 92% yield) after flash chromatography (petroleum ether/ethyl acetate = 30/1). ¹H NMR (400 MHz, CDCl₃): δ 7.53 – 7.35 (m, 2H), 7.32 – 7.11 (m, 4H), 7.14 – 7.04 (m, 4H), 5.05 (dtd, *J* = 9.8, 7.4, 5.4 Hz, 1H), 3.46 (dd, *J* = 15.1, 9.8 Hz, 1H), 3.12 (dd, *J* = 15.2, 7.6 Hz, 1H), 3.08 – 3.00 (m, 2H), 2.94 (dd, *J* = 12.6, 7.1 Hz, 1H), 2.14 – 1.96 (m, 2H), 1.78 – 1.78 (m, 2H), 1.64 – 1.43 (m, 3H), 1.36 – 1.19 (m, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 193.4, 165.4, 139.1, 131.1, 130.05, 129.97, 129.3, 128.9, 127.64, 127.60, 111.8, 82.1, 39.5, 38.8, 34.7, 34.6, 27.0, 26.84, 26.81, 25.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₄H₂₇O₂Se 427.1171; Found 427.1178.

(5-(((4-Fluorophenyl)selanyl)methyl)-2-phenyl-4,5-dihydrofuran-3-yl)(phenyl)methanone

(**3bh**). Compound **3bh** was prepared according to the general procedure and isolated as a yellow solid (75 mg, 86% yield) after flash chromatography (petroleum ether/ethyl acetate = 20/1). Mp: 69–71 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.66 – 7.53 (m, 2H), 7.43 (dd, *J* = 8.3, 1.4 Hz, 2H), 7.30 – 6.86 (m, 10H), 4.99 (dtd, *J* = 9.9, 7.2, 5.6 Hz, 1H), 3.45 (dd, *J* = 15.2, 9.9 Hz, 1H), 3.34 (dd, *J* = 12.6, 5.6 Hz, 1H), 3.19 (dd, *J* = 12.6, 6.9 Hz, 1H), 3.12 (dd, *J* = 15.2, 7.5 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 193.4, 165.3, 162.7 (d, *J*_{C-F} = 247.7 Hz), 138.9, 136.1 (d, *J*_{C-F} = 7.8 Hz), 131.2, 130.1, 129.8, 129.3, 128.9, 127.7, 127.6, 123.5 (d, *J*_{C-F} = 3.5 Hz), 116.5 (d, *J*_{C-F} = 21.6 Hz), 111.7, 81.0, 38.6, 33.4. ¹⁹F NMR (376 MHz, CDCl₃: δ -113.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₄H₂₀FO₂Se 439.0607; Found 439.0615.

(5-(((4-Chlorophenyl)selanyl)methyl)-2-phenyl-4,5-dihydrofuran-3-yl)(phenyl)methanone

(**3bi**). Compound **3bi** was prepared according to the general procedure and isolated as a yellow solid (75 mg, 83% yield) after flash chromatography (petroleum ether/ethyl acetate = 15/1). Mp: $65-67 \,^{\circ}C$. ¹H NMR (400 MHz, CDCl₃): δ 7.51 (d, *J* = 8.5 Hz, 2H), 7.43 (d, *J* = 6.9 Hz, 2H), 7.31 – 7.13 (m, 4H), 7.13 – 6.99 (m, 6H), 5.01 (dtd, *J* = 9.9, 7.2, 5.7 Hz, 1H), 3.45 (dd, *J* = 15.3, 9.9 Hz, 1H), 3.35 (dd, *J* = 12.7, 5.6 Hz, 1H), 3.22 (dd, *J* = 12.7, 6.7 Hz, 1H), 3.12 (dd, *J* = 15.3, 7.4 Hz, 1Hz, 10.5 Hz, 10.5

1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 193.3, 165.2, 138.9, 134.8, 133.8, 131.2, 130.1, 129.8, 129.4, 129.3, 128.9, 127.7, 127.6, 127.4, 111.6, 80.9, 38.6, 33.0. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₄H₂₀ClO₂Se 455.0312; Found 455.0321.

(5-(((4-Methoxyphenyl)selanyl)methyl)-2-phenyl-4,5-dihydrofuran-3-yl)(phenyl)methanone (3bj). Compound 3bj was prepared according to the general procedure and isolated as an oil (80 mg, 89% yield) after flash chromatography (petroleum ether/ethyl acetate = 15/1). ¹H NMR (400 MHz, CDCl₃): δ 7.55 (d, J = 8.7 Hz, 2H), 7.43 (d, J = 6.9 Hz, 2H), 7.30 – 7.10 (m, 4H), 7.11 – 6.95 (m, 4H), 6.82 (d, J = 8.7 Hz, 2H), 4.97 (dtd, J = 9.8, 7.4, 5.5 Hz, 1H), 3.80 (s, 3H), 3.45 (dd, J = 15.2, 9.8 Hz, 1H), 3.30 (dd, J = 12.5, 5.5 Hz, 1H), 3.14 (dd, J = 7.4, 1.0 Hz, 1H), 3.10 (dd, J = 7.4, 3.8 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 193.4, 165.4, 159.7, 139.0, 136.2, 131.1, 129.99, 129.94, 129.4, 128.9, 127.7, 127.6, 118.9, 115.0, 111.7, 81.2, 55.3, 38.5, 33.5. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₅H₂₃O₃Se 451.0807; Found 451.0818.

Phenyl(2-phenyl-5-(((4-(trifluoromethoxy)phenyl)selanyl)methyl)-4,5-dihydrofuran-3-yl)met hanone (3bk). Compound 3bk was prepared according to the general procedure and isolated as an oil (93 mg, 92% yield) after flash chromatography (petroleum ether/ethyl acetate = 20/1). ¹H NMR (400 MHz, CDCl₃): δ 7.61 (d, J = 8.6 Hz, 2H), 7.44 (d, J = 6.8 Hz, 2H), 7.32 – 6.97 (m, 10H), 5.22 – 4.92 (m, 1H), 3.47 (dd, J = 15.2, 9.9 Hz, 1H), 3.38 (dd, J = 12.7, 5.6 Hz, 1H), 3.25 (dd, J = 12.7, 6.7 Hz, 1H), 3.14 (dd, J = 15.2, 7.4 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 193.3, 165.3, 148.8, 138.9, 134.9, 131.3, 130.1, 129.8, 129.3, 128.9, 127.7, 127.6, 127.5, 121.7, 120.4 (q, $J_{C-F} = 256$ Hz), 111.7, 80.8, 38.6, 33.1. ¹⁹F NMR (376 MHz, CDCl₃): δ -57.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₅H₂₀F₃O₃Se 505.0524; Found 505.0524.

(5-(((4-(*tert*-Butyl)phenyl)selanyl)methyl)-2-phenyl-4,5-dihydrofuran-3-yl)(phenyl)methanon e (3bl). Compound 3bl was prepared according to the general procedure and isolated as an oil (86 mg, 90% yield) after flash chromatography (petroleum ether/ethyl acetate = 20/1). ¹H NMR (400 MHz, CDCl₃): δ 7.53 (d, J = 8.4 Hz, 2H), 7.49 – 7.41 (m, 2H), 7.30 (d, J = 8.4 Hz, 2H), 7.24 – 7.11 (m, 4H), 7.11 – 6.99 (m, 4H), 5.01 (dtd, J = 9.9, 7.3, 5.4 Hz, 1H), 3.47 (dd, J = 15.2, 9.9 Hz, 1H), 3.37 (dd, J = 12.5, 5.4 Hz, 1H), 3.20 (dd, J = 13.0, 7.6 Hz, 1H), 3.15 (dd, J = 15.3, 7.4 Hz, 1H), 1.31 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 193.4, 165.5, 150.8, 139.0, 133.4, 131.2, 130.00, 129.95, 129.4, 128.9, 127.7, 127.6, 126.4, 125.5, 111.7, 81.1, 38.6, 34.6, 32.7, 31.3. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₈H₂₉O₂Se 477.1327; Found 477.1338.

(5-((Benzo[*d*][1,3]dioxol-5-ylselanyl)methyl)-2-phenyl-4,5-dihydrofuran-3-yl)(phenyl)methan one (3bm). Compound 3bm was prepared according to the general procedure and isolated as an oil (85 mg, 92% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 7.43 (d, *J* = 6.9 Hz, 2H), 7.28 – 6.93 (m, 10H), 6.72 (d, *J* = 7.9 Hz, 1H), 5.94 (s, 2H), 5.07 – 4.87 (m, 1H), 3.44 (dd, *J* = 15.2, 9.9 Hz, 1H), 3.30 (dd, *J* = 12.6, 5.5 Hz, 1H), 3.16 – 3.09 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 193.4, 165.4, 148.1, 147.9, 139.0, 131.2, 130.0, 129.9, 129.4, 128.9, 128.5, 127.7, 127.6, 119.9, 114.9, 111.7, 109.2, 101.3, 81.1, 38.5, 33.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₅H₂₁O₄Se 465.0600; Found 465.0607.

(5-((Naphthalen-2-ylselanyl)methyl)-2-phenyl-4,5-dihydrofuran-3-yl)(phenyl)methanone

(**3bn**). Compound **3bn** was prepared according to the general procedure and isolated as an oil (84 mg, 90%) after flash chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 8.48 (d, *J* = 7.7 Hz, 1H), 7.93 (d, *J* = 7.1 Hz, 1H), 7.89 – 7.77 (m, 2H), 7.69 – 7.52 (m, 2H), 7.47 – 7.33 (m, 3H), 7.27 – 6.97 (m, 8H), 4.98 – 4.90 (m, 1H), 3.50 – 3.37 (m, 2H), 3.23 (dd, *J* = 12.4, 7.2 Hz, 1H), 3.16 (dd, *J* = 15.2, 7.4 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 193.4, 165.4, 139.0, 134.5, 134.1, 133.8, 131.2, 130.0, 129.9, 129.3, 129.3, 129.1, 128.9, 128.8, 128.3, 127.8, 127.9, 127.7, 127.6, 127.0, 126.4, 125.8, 111.7, 81.1, 38.6, 32.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₈H₂₃O₂Se 471.0858; Found 471.0864.

Phenyl(2-phenyl-5-((thiophen-2-ylselanyl)methyl)-4,5-dihydrofuran-3-yl)methanone (3bo). Compound 3bo was prepared according to the general procedure and isolated as a yellow solid (75 mg, 88% yield) after flash chromatography (petroleum ether/ethyl acetate = 30/1). Mp: 82–84 °C. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 7.44 (d, J = 6.8 Hz, 2H), 7.40 (d, J = 5.3 Hz, 1H), 7.31 – 7.14 (m, 5H), 7.12 – 7.02 (m, 4H), 6.99 (dd, J = 5.3, 3.5 Hz, 1H), 5.01 (dtd, J = 9.9, 7.2, 5.7 Hz, 1H), 3.48 (dd, J = 15.2, 9.9 Hz, 1H), 3.30 (dd, J = 12.5, 5.8 Hz, 1H), 3.17 – 3.07 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 193.4, 165.4, 138.9, 136.3, 131.3, 131.2, 130.1, 129.9, 129.4, 128.9, 128.2, 127.7, 127.6, 122.5, 111.7, 80.9, 38.4, 35.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₁₉O₂SSe 427.0265; Found 427.0271.

3-(4-Chlorophenyl)-5-methyl-5-((phenylselanyl)methyl)oxazolidine-2,4-dione (**5a**). Compound **5a** was prepared according to the general procedure and isolated as a white solid (56 mg, 71% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1). Mp: 106–108 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.56 – 7.52 (m, 2H), 7.46 (d, *J* = 8.8 Hz, 2H), 7.39 (d, *J* = 8.8 Hz, 2H), 7.30 – 7.25 (m, 3H), 3.46 (d, *J* = 13.9 Hz, 1H), 3.41 (d, *J* = 13.9 Hz, 1H), 1.77 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 173.2, 152.8, 134.8, 133.6, 129.5, 129.42, 129.40, 128.7, 128.1, 126.8, 85.4, 34.4, 22.9. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₇H₁₄ClNO₃SeNa 417.9720; Found 417.9727.

3-(4-Bromophenyl)-5-methyl-5-((phenylselanyl)methyl)oxazolidine-2,4-dione (5b). Compound **5b** was prepared according to the general procedure and isolated as a white solid (65 mg, 74% yield) after flash chromatography (petroleum ether/ethyl acetate = 12/1). Mp: 120–122 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.54 (d, *J* = 8.8 Hz, 2H), 7.49 – 7.42 (m, 2H), 7.25 (d, *J* = 8.8 Hz, 2H), 7.23 – 7.16 (m, 3H), 3.38 (d, *J* = 13.9 Hz, 1H), 3.33 (d, *J* = 13.9 Hz, 1H), 1.69 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 172.1, 151.7, 132.5, 131.5, 128.9, 128.4, 127.6, 127.1, 126.0, 121.7, 84.4, 33.4, 21.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₅BrNO₃Se 439.9395; Found 439.9399.

3-(4-Iodophenyl)-5-methyl-5-((phenylselanyl)methyl)oxazolidine-2,4-dione (5c). Compound **5c** was prepared according to the general procedure and isolated as a white solid (72 mg, 74% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1). Mp: 138–139 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.81 (d, *J* = 8.7 Hz, 2H), 7.53 (dd, *J* = 7.6, 2.0 Hz, 2H), 7.36 – 7.23

(m, 3H), 7.19 (d, J = 8.7 Hz, 2H), 3.45 (d, J = 13.9 Hz, 1H), 3.40 (d, J = 13.9 Hz, 1H), 1.76 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 173.1, 152.7, 138.6, 138.5, 133.6, 130.7, 129.4, 128.7, 128.1, 127.2, 94.3, 85.4, 34.4, 22.8. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₇H₁₄INO₃SeNa 509.9076; Found 509.9076.

5-Methyl-5-((phenylselanyl)methyl)-3-(*p***-tolyl)oxazolidine-2,4-dione (5d)**. Compound 5d was prepared according to the general procedure and isolated as an oil (58 mg, 77% yield) after flash chromatography (petroleum ether/ethyl acetate = 12:1). ¹H NMR (400 MHz, CDCl₃): δ 7.61 – 7.51 (m, 2H), 7.34 – 7.17 (m, 7H), 3.45 (d, *J* = 13.8 Hz, 1H), 3.41 (d, *J* = 13.8 Hz, 1H), 2.40 (s, 3H), 1.76 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 173.6, 153.4, 139.2, 133.7, 130.0, 129.4, 128.9, 128.3, 128.0, 125.6, 85.3, 34.5, 22.9, 21.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₁₈NO₃Se 376.0446; Found 376.0453.

3-(4-Ethoxyphenyl)-5-methyl-5-((phenylselanyl)methyl)oxazolidine-2,4-dione (5e). Compound **5e** was prepared according to the general procedure and isolated as an oil (67 mg, 83% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 7.56 (dd, *J* = 7.3, 2.2 Hz, 2H), 7.37 – 7.16 (m, 5H), 6.97 (d, *J* = 9.0 Hz, 2H), 4.05 (q, *J* = 7.0 Hz, 2H), 3.45 (d, *J* = 13.8 Hz, 1H), 3.40 (d, *J* = 13.8 Hz, 1H), 1.75 (s, 3H), 1.43 (t, *J* = 7.0 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 173.8, 159.2, 153.6, 133.7, 129.4, 128.9, 128.0, 127.1, 123.3, 115.1, 85.3, 63.8, 34.6, 22.9, 14.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₂₀NO₄Se 406.0552; Found 406.0559.

5-Methyl-3-(naphthalen-2-yl)-5-((phenylselanyl)methyl)oxazolidine-2,4-dione (5f). Compound **5f** was prepared according to the general procedure and isolated as a white solid (66 mg, 81% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1). Mp: 119–121 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, J = 8.8 Hz, 1H), 7.84 – 7.78 (m, 3H), 7.59 – 7.39 (m, 5H), 7.26 – 7.09 (m, 3H), 3.44 (d, J = 13.8 Hz, 1H), 3.37 (d, J = 13.9 Hz, 1H), 1.73 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 173.6, 153.3, 133.6, 133.1, 133.0, 129.4, 129.4, 128.9, 128.3, 128.1, 127.8, 127.2, 126.7, 124.9, 122.9, 85.4, 34.5, 22.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₁₈NO₃Se 412.0446; Found 412.0449.

3-(Benzo[*d*][1,3]dioxol-5-yl)-5-methyl-5-((phenylselanyl)methyl)oxazolidine-2,4-dione (5g). Compound 5g was prepared according to the general procedure and isolated as an oil (63 mg, 78% yield) after flash chromatography (petroleum ether/ethyl acetate = 15:1). ¹H NMR (400 MHz, CDCl₃): δ 7.61 – 7.47 (m, 2H), 7.31 – 7.25 (m, 3H), 6.90 – 6.86 (m, 3H), 6.03 (s, 2H), 3.45 (d, *J* = 13.8 Hz, 1H), 3.40 (d, *J* = 13.9 Hz, 1H), 1.75 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 173.7, 153.3, 148.2, 148.2, 133.6, 129.4, 128.8, 128.1, 124.3, 120.0, 108.5, 107.2, 102.0, 85.4, 34.5, 22.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₁₆NO₅Se 406.0188; Found 406.0192.

5-Methyl-5-((phenylselanyl)methyl)-3-(3,4,5-trimethoxyphenyl)oxazolidine-2,4-dione (5h). Compound 5h was prepared according to the general procedure and isolated as an oil (72 mg, 80% yield) after flash chromatography (petroleum ether/ethyl acetate = 5/1). ¹H NMR (400 MHz, CDCl₃): δ 7.62 – 7.48 (m, 2H), 7.37 – 7.20 (m, 3H), 6.64 (s, 2H), 3.87 (s, 3H), 3.85 (s, 6H), 3.47 (d, J = 13.9 Hz, 1H), 3.43 (d, J = 13.9 Hz, 1H), 1.78 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 173.6, 153.6, 153.2, 138.5, 133.4, 129.4, 128.9, 128.0, 126.4, 103.5, 85.2, 60.9, 56.3, 34.4, 22.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₂NO₆Se 452.0607; Found 452.0607.

3-(Furan-2-ylmethyl)-5-methyl-5-((phenylselanyl)methyl)oxazolidine-2,4-dione (5i). Compound **5i** was prepared according to the general procedure and isolated as an oil (50 mg, 68% yield) after flash chromatography (petroleum ether/ethyl acetate = 12/1). ¹H NMR (400 MHz, CDCl₃): δ 7.39 (dd, *J* = 7.5, 2.0 Hz, 2H), 7.29 (dd, *J* = 1.8, 0.9 Hz, 1H), 7.23 – 7.15 (m, 3H), 6.39 – 6.28 (m, 1H), 6.25 (dd, *J* = 3.3, 1.9 Hz, 1H), 4.65 (d, *J* = 15.4 Hz, 1H), 4.59 (d, *J* = 15.4 Hz, 1H), 3.24 (s, 2H), 1.57 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 173.8, 153.8, 147.5, 142.9, 133.7, 129.2, 128.9, 128.0, 110.6, 109.8, 85.7, 36.5, 34.0, 22.7. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₆H₁₅NO₄SeNa 388.0059; Found 388.0068.

5-Methyl-5-((phenylselanyl)methyl)-3-(2-(thiophen-2-yl)ethyl)oxazolidine-2,4-dione (5j). Compound 5j was prepared according to the general procedure and isolated as an oil (56 mg, 71% yield) after flash chromatography (petroleum ether/ethyl acetate = 15/1). ¹H NMR (400 MHz, CDCl₃): δ 7.58 – 7.39 (m, 2H), 7.34 – 7.21 (m, 3H), 7.15 (dd, J = 5.1, 1.2 Hz, 1H), 6.92 (dd, J = 5.1, 3.4 Hz, 1H), 6.88 – 6.85 (m, 1H), 3.81 (td, J = 7.4, 2.0 Hz, 2H), 3.30 – 3.19 (m, 4H), 1.56 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 174.2, 154.2, 139.0, 133.6, 129.3, 129.0, 128.0, 127.1, 126.1, 124.4, 85.4, 41.2, 34.0, 27.4, 22.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₈NO₃SSe 396.0167; Found 396.0167.

3-Phenyl-5-((phenylselanyl)methyl)oxazolidin-2-one (**5k**). Compound **5k** was prepared according to the general procedure and isolated as a white solid (60 mg, 90% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1). Mp: 79–81 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.56 – 7.47 (m, 2H), 7.45 – 7.40 (m, 2H), 7.36 – 7.26 (m, 2H), 7.26 – 7.18 (m, 3H), 7.10 – 7.02 (m, 1H), 4.65 (tdd, *J* = 8.9, 6.4, 4.3 Hz, 1H), 4.04 (t, *J* = 8.8 Hz, 1H), 3.71 (dd, *J* = 9.1, 6.4 Hz, 1H), 3.30 (dd, *J* = 12.9, 4.3 Hz, 1H), 2.98 (dd, *J* = 12.8, 9.1 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 154.4, 138.1, 133.7, 129.5, 129.1, 128.1, 127.8, 124.1, 118.2, 71.7, 50.3, 31.0. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₆NO₂Se 334.0341; Found 334.0342.

5-((**Phenylselanyl**)**methyl**)-**3**-(*m*-tolyl)**oxazolidin-2**-**one** (**5I**). Compound **5I** was prepared according to the general procedure and isolated as an oil (64 mg, 93% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 7.56 – 7.44 (m, 2H), 7.32 – 7.03 (m, 6H), 6.87 (dd, *J* = 6.8, 1.6 Hz, 1H), 4.63 (tdd, *J* = 8.8, 6.3, 4.3 Hz, 1H), 4.01 (t, *J* = 8.8 Hz, 1H), 3.68 (dd, *J* = 9.2, 6.3 Hz, 1H), 3.28 (dd, *J* = 12.9, 4.3 Hz, 1H), 2.97 (dd, *J* = 12.8, 9.1 Hz, 1H), 2.28 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 154.4, 139.0, 138.0, 133.7, 129.5, 128.9, 128.1, 127.9, 125.0, 119.0, 115.4, 71.7, 50.4, 31.1, 21.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₈NO₂Se 348.0497; Found 348.0505.

3-(4-Bromophenyl)-5-((phenylselanyl)methyl)oxazolidin-2-one (5m). Compound 5m was prepared according to the general procedure and isolated as a white solid (76 mg, 93% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1). Mp: 80-81 °C. ¹H NMR (400 MHz,

CDCl₃): δ 7.53 – 7.45 (m, 2H), 7.38 (d, *J* = 9.0 Hz, 2H), 7.30 (d, *J* = 9.0 Hz, 2H), 7.25 – 7.19 (m, 3H), 4.65 (tdd, *J* = 8.8, 6.4, 4.3 Hz, 1H), 3.98 (t, *J* = 8.8 Hz, 1H), 3.65 (dd, *J* = 9.1, 6.4 Hz, 1H), 3.29 (dd, *J* = 12.9, 4.2 Hz, 1H), 2.97 (dd, *J* = 12.9, 9.1 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.1, 136.2, 132.6, 130.9, 128.5, 127.1, 126.7, 118.6, 115.8, 70.7, 49.0, 29.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₅BrNO₂Se 411.9446; Found 411.9450.

3-Pentyl-5-((phenylselanyl)methyl)oxazolidin-2-one (**5n**). Compound **5n** was prepared according to the general procedure and isolated as an oil (63 mg, 96% yield) after flash chromatography (petroleum ether/ethyl acetate = 5/1). ¹H NMR (400 MHz, CDCl₃): δ 7.99 – 7.45 (m, 2H), 7.40 – 7.12 (m, 3H), 4.62 – 4.56 (m, 1H), 3.64 (t, *J* = 8.7 Hz, 1H), 3.36 – 3.25 (m, 2H), 3.25 – 3.15 (m, 2H), 2.97 (dd, *J* = 12.8, 9.1 Hz, 1H), 1.61 – 1.45 (m, 2H), 1.39 – 1.10 (m, 4H), 0.89 (t, *J* = 7.0 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 157.5, 133.4, 129.5, 128.2, 127.9, 72.1, 49.5, 44.1, 31.2, 28.7, 27.0, 22.3, 14.0. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₂₂NO₂Se 328.0810; Found 328.0815.

3-Heptyl-5-((phenylselanyl)methyl)oxazolidin-2-one (**5o**). Compound **5o** was prepared according to the general procedure and isolated as an oil (66 mg, 93% yield) after flash chromatography (petroleum ether/ethyl acetate = 5/1). ¹H NMR (400 MHz, CDCl₃): δ 7.74 – 7.38 (m, 2H), 7.41 – 7.21 (m, 3H), 4.62 – 4.55 (m, 1H), 3.63 (t, *J* = 8.7 Hz, 1H), 3.34 – 3.26 (m, 2H), 3.23 – 3.19 (m, 2H), 2.97 (dd, *J* = 12.8, 9.2 Hz, 1H), 1.48 (q, *J* = 7.1 Hz, 2H), 1.37 – 1.20 (m, 8H), 0.88 (t, *J* = 6.8 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 157.5, 133.4, 129.4, 128.2, 127.9, 72.1, 49.5, 44.1, 31.7, 31.1, 28.9, 27.3, 26.6, 22.6, 14.1. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₂₆NO₂Se 356.1123; Found 356.1126.

5-((Phenylselanyl)methyl)oxazolidin-2-one (**5p**). Compound **5p** was prepared according to the general procedure and isolated as an oil (49 mg, 95% yield) after flash chromatography (petroleum ether/ethyl acetate = 2/1). ¹H NMR (400 MHz, CDCl₃): δ 7.74 – 7.46 (m, 2H), 7.30 – 7.27 (m, 3H), 6.53 (brs, 1H), 4.75 – 4.67(m, 1H), 3.69 (td, *J* = 8.7, 2.7 Hz, 1H), 3.41 – 3.27 (m, 2H), 3.00 (dd, *J* = 12.8, 8.9 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.9, 133.5, 129.5, 128.1, 127.9, 75.8, 45.8, 30.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₀H₁₂NO₂Se 258.0028; Found 258.0026.

6-((**Phenylselanyl**)**methyl**)-**1**,**3**-**oxazinan-2-one** (**5q**). Compound **5q** was prepared according to the general procedure and isolated as an oil (45 mg, 84% yield) after flash chromatography (petroleum ether/ethyl acetate = 1/1). ¹H NMR (400 MHz, CDCl₃): δ 7.61 – 7.48 (m, 2H), 7.37 – 7.16 (m, 3H), 5.26 (brs, 1H), 4.41 – 4.35 (m, 1H), 3.70 – 3.19 (m, 3H), 2.99 (dd, *J* = 13.0, 8.9 Hz, 1H), 2.35 – 2.02 (m, 1H), 2.00 – 1.66 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.6, 132.9, 129.4, 128.3, 127.6, 77.2, 39.0, 30.9, 25.6. HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₁₁H₁₃NNaO₂Se 294.0004; Found 294.0000.

3-((Phenylselanyl)methyl)-2-tosylisoxazolidine (7a). Compound 7a was prepared according to the general procedure and isolated as an oil (70 mg, 88% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, *J* = 8.3 Hz, 2H),

7.60 – 7.50 (m, 2H), 7.40 – 7.10 (m, 5H), 4.47 – 4.20 (m, 1H), 3.96 (td, J = 7.8, 3.7 Hz, 1H), 3.90 – 3.82 (m, 1H), 3.40 (dd, J = 12.6, 5.0 Hz, 1H), 2.95 (dd, J = 12.6, 9.2 Hz, 1H), 2.56 – 2.31 (m, 4H), 2.22 – 2.08 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 145.1, 132.8, 132.5, 129.7, 129.3, 129.2, 129.0, 127.3, 70.1, 59.9, 35.0, 32.2, 21.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₂₀NO₃SSe 398.0324; Found 398.0332.

2-((4-Methoxyphenyl)sulfonyl)-3-((phenylselanyl)methyl)isoxazolidine (7b). Compound 7b was prepared according to the general procedure and isolated as an oil (74 mg, 90% yield) after flash chromatography (petroleum ether/ethyl acetate = 8/1). ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, *J* = 8.9 Hz, 2H), 7.66 – 7.44 (m, 2H), 7.39 – 7.19 (m, 3H), 6.96 (d, *J* = 8.9 Hz, 2H), 4.50 – 4.17 (m, 1H), 3.96 (td, *J* = 7.9, 3.9 Hz, 1H), 3.86 (s, 4H), 3.40 (dd, *J* = 12.6, 5.0 Hz, 1H), 2.94 (dd, *J* = 12.6, 9.2 Hz, 1H), 2.53 – 2.30 (m, 1H), 2.26 – 2.00 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 164.0, 132.8, 131.4, 129.3, 129.1, 127.3, 126.7, 114.3, 70.1, 60.0, 55.7, 35.1, 32.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₂₀NO₄SSe 414.0273; Found 414.0274.

2-((4-Nitrophenyl)sulfonyl)-3-((phenylselanyl)methyl)isoxazolidine (7c). Compound 7c was prepared according to the general procedure and isolated as a yellow solid (72 mg, 84% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1). Mp: 110–112 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.26 (d, *J* = 8.8 Hz, 2H), 7.97 (d, *J* = 8.8 Hz, 2H), 7.64 – 7.42 (m, 2H), 7.32 – 6.98 (m, 3H), 4.44 – 4.38 (m, 1H), 4.20 – 3.76 (m, 2H), 3.26 (dd, *J* = 12.7, 5.7 Hz, 1H), 2.92 (dd, *J* = 12.7, 8.2 Hz, 1H), 2.61 – 2.46 (m, 1H), 2.23 – 2.10 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 150.7, 141.9, 133.0, 130.4, 129.4, 128.9, 127.5, 124.1, 70.6, 59.5, 35.0, 32.1. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₇N₂O₅SSe 429.0018; Found 429.0015.

3-((Phenylselanyl)methyl)-2-(phenylsulfonyl)isoxazolidine (**7d**). Compound **7d** was prepared according to the general procedure and isolated as an oil (69 mg, 90% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, *J* = 8.4 Hz, 2H), 7.71 – 7.59 (m, 1H), 7.60 – 7.54 (m, 2H), 7.53 – 7.49 (m, 2H), 7.35 – 7.25 (m, 3H), 4.38 – 4.31(m, 1H), 4.00 – 3.95(m, 1H), 3.92 – 3.86 (m, 1H), 3.40 (dd, *J* = 12.6, 5.1 Hz, 1H), 2.96 (dd, *J* = 12.6, 9.1 Hz, 1H), 2.53 – 2.39 (m, 1H), 2.24 – 2.04 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 135.6, 134.0, 132.9, 129.3, 129.2, 129.1, 129.0, 127.4, 70.2, 59.9, 35.0, 32.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₈NO₃SSe 384.0167; Found 384.0167.

2-(Naphthalen-2-ylsulfonyl)-3-((phenylselanyl)methyl)isoxazolidine (7e). Compound 7e was prepared according to the general procedure and isolated as an oil (71 mg, 82% yield) after flash chromatography (petroleum ether/ethyl acetate = 15/1). ¹H NMR (400 MHz, CDCl₃): δ 8.44 (d, *J* = 1.9 Hz, 1H), 7.98 – 7.88 (m, 3H), 7.84 (dd, *J* = 8.7, 1.9 Hz, 1H), 7.75 – 7.54 (m, 4H), 7.41 – 7.16 (m, 3H), 4.46 – 4.30 (m, 1H), 4.01 – 3.94 (m, 1H), 3.92 – 3.86 (m, 1H), 3.44 (dd, *J* = 12.6, 5.1 Hz, 1H), 2.98 (dd, *J* = 12.6, 9.1 Hz, 1H), 2.58 – 2.28 (m, 1H), 2.23 – 2.05 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 135.4, 132.8, 132.6, 132.0, 131.1, 129.5, 129.43, 129.36, 129.33, 129.0, 128.0, 127.6, 127.4, 123.8, 70.2, 60.0, 35.1, 32.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₀NO₃SSe 434.0324; Found 434.0329.

2-(Ethylsulfonyl)-3-((phenylselanyl)methyl)isoxazolidine (**7f**). Compound **7f** was prepared according to the general procedure and isolated as an oil (61 mg, 92% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 7.65 – 7.45 (m, 2H), 7.33 – 7.10 (m, 3H), 4.55 – 4.48 (m, 1H), 4.28 (q, *J* = 7.6 Hz, 1H), 4.11 (td, *J* = 7.9, 3.8 Hz, 1H), 3.45 – 3.09 (m, 3H), 2.96 (dd, *J* = 12.6, 8.3 Hz, 1H), 2.58 (dtd, *J* = 11.8, 7.8, 3.8 Hz, 1H), 2.17 (dtd, *J* = 12.3, 8.4, 5.2 Hz, 1H), 1.39 (t, *J* = 7.5 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 132.8, 129.3, 129.3, 127.3, 70.8, 57.6, 45.0, 34.9, 32.5, 7.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₂H₁₈NO₃SSe 336.0167; Found 336.0171.

2-(Cyclopropylsulfonyl)-3-((phenylselanyl)methyl)isoxazolidine (**7g**). Compound **7g** was prepared according to the general procedure and isolated as an oil (61 mg, 88% yield) after flash chromatography (petroleum ether/ethyl acetate = 15/1). ¹H NMR (400 MHz, CDCl₃): δ 7.60 – 7.43 (m, 2H), 7.38 – 7.15 (m, 3H), 4.51 – 4.44 (m, 1H), 4.25 (dt, *J* = 8.8, 7.7 Hz, 1H), 4.11 (td, *J* = 7.9, 3.8 Hz, 1H), 3.27 (dd, *J* = 12.5, 5.4 Hz, 1H), 2.95 (dd, *J* = 12.6, 8.6 Hz, 1H), 2.70 – 2.43 (m, 2H), 2.17 (dtd, *J* = 12.2, 8.4, 5.3 Hz, 1H), 1.41 – 1.30 (m, 1H), 1.24 – 1.10 (m, 2H), 1.08 – 0.98 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 132.7, 129.3, 129.2, 127.3, 70.6, 58.7, 34.9, 32.4, 27.9, 6.4, 5.3 HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₈NO₃SSe 348.0167; Found 348.0173.

3-Methyl-3-((phenylselanyl)methyl)-2-tosylisoxazolidine (**7h**). Compound **7h** was prepared according to the general procedure and isolated as an oil (75 mg, 92% yield) after flash chromatography (petroleum ether/ethyl acetate = 20/1). ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, *J* = 8.3 Hz, 2H), 7.45 (dd, *J* = 6.5, 3.0 Hz, 2H), 7.21 (d, *J* = 8.1 Hz, 2H), 7.17 – 7.13 (m, 3H), 4.18 (ddd, *J* = 9.2, 7.2, 5.9 Hz, 1H), 3.83 (dt, *J* = 8.5, 6.8 Hz, 1H), 3.31 (d, *J* = 12.6 Hz, 1H), 3.13 (d, *J* = 12.6 Hz, 1H), 2.42 (ddd, *J* = 12.2, 8.6, 5.8 Hz, 1H), 2.34 (s, 3H), 2.28 (ddd, *J* = 12.2, 9.2, 6.4 Hz, 1H), 1.74 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 143.5, 134.3, 131.7, 129.9, 128.4, 128.1, 127.7, 126.1, 70.2, 68.5, 39.9, 38.3, 21.8, 20.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₂₂NO₃SSe 412.0480; Found 412.0472.

5-Methyl-3-((phenylselanyl)methyl)-2-tosylisoxazolidine (7i). Compound **7i** was prepared according to the general procedure and isolated as an oil (71 mg, 87% yield) after flash chromatography (petroleum ether/ethyl acetate = 30/1). The crude NMR indicated the presence of mixture of diastereomers (*cis* : *trans*== 1.7 : 1). The stereoechemistry of diastereomer has been determined via nOe analysis.

cis-Isomer, oil. ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, *J* = 8.0 Hz, 2H), 7.56 (d, *J* = 7.9 Hz, 2H), 7.39 – 7.03 (m, 5H), 4.35 – 4.22 (m, 1H), 4.15 – 3.83 (m, 1H), 3.49 (dd, *J* = 12.5, 4.5 Hz, 1H), 3.00 (dd, *J* = 12.4, 9.6 Hz, 1H), 2.56 (ddd, *J* = 12.5, 7.5, 5.4 Hz, 1H), 2.43 (s, 3H), 1.69 (ddd, *J* = 12.2, 10.0, 8.0 Hz, 1H), 1.18 (d, *J* = 6.0 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 145.0, 132.7, 132.6, 129.7, 129.3, 129.2, 129.0, 127.3, 78.2, 61.0, 42.7, 32.5, 21.7, 17.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₂₂NO₃SSe 412.0480; Found 412.0489.

trans-Isomer, oil. ¹H NMR (400 MHz, CDCl₃): δ 7.68 (d, J = 8.3 Hz, 2H), 7.60 – 7.49 (m, 2H), 7.40 – 7.20 (m, 5H), 4.38– 4.31 (m, 1H), 4.16– 4.09 (m, 1H), 3.36 (dd, J = 12.7, 4.9 Hz, 1H), 2.89

(dd, J = 12.7, 9.9 Hz, 1H), 2.43 (s, 3H), 2.24 (ddd, J = 12.6, 5.9, 2.1 Hz, 1H), 1.56 (ddd, J = 12.5, 9.7, 8.1 Hz, 1H), 1.17 (d, J = 6.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 145.0, 132.9, 131.3, 129.6, 129.5, 129.4, 128.8, 127.4, 61.7, 40.3, 31.2, 21.7, 18.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₂₂NO₃SSe 412.0480; Found 412.0482.

5-Allyl-3-((phenylselanyl)methyl)-2-tosylisoxazolidine (7j). Compound **7j** was prepared according to the general procedure and isolated as an oil (81 mg, 93% yield) after flash chromatography (petroleum ether/ethyl acetate = 35/1). The crude NMR indicated the presence of mixture of diastereomers (*cis* : *trans*== 2.1 : 1). The stereoechemistry of diastereomer was assigned by analogy to **7i**.

cis-Isomer, oil. ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, *J* = 8.3 Hz, 2H), 7.61 – 7.47 (m, 2H), 7.39 – 7.22 (m, 5H), 5.64 (ddt, *J* = 18.2, 9.4, 6.9 Hz, 1H), 5.23 – 4.77 (m, 2H), 4.43 – 4.18 (m, 1H), 4.03 (dq, *J* = 9.9, 6.0 Hz, 1H), 3.47 (dd, *J* = 12.5, 4.7 Hz, 1H), 2.98 (dd, *J* = 12.5, 9.6 Hz, 1H), 2.56 – 2.50 (m, 1H), 2.43 (s, 3H), 2.37 – 2.27 (m, 1H), 2.25 – 2.12 (m, 1H), 1.88 – 1.73 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 145.0, 132.8, 132.7, 132.5, 129.7, 129.3, 129.2, 128.9, 127.3, 118.1, 81.2, 60.6, 40.4, 36.8, 32.5, 21.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₄NO₃SSe 438.0637; Found 438.0646.

trans-Isomer, oil. ¹H NMR (400 MHz, CDCl₃): δ 7.70 (d, J = 8.3 Hz, 2H), 7.60 – 7.45 (m, 2H), 7.38 – 7.19 (m, 5H), 5.61 (ddt, J = 17.1, 10.3, 6.9 Hz, 1H), 5.13 – 4.90 (m, 2H), 4.34 – 4.14 (m, 2H), 3.34 (dd, J = 12.7, 5.0 Hz, 1H), 2.89 (dd, J = 12.7, 9.7 Hz, 1H), 2.47 – 2.40 (s, 4H), 2.27 (ddd, J = 12.6, 6.1, 2.1 Hz, 1H), 2.22 – 2.11 (m, 1H), 1.77 (ddd, J = 12.5, 9.6, 8.0 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 145.0, 133.2, 133.0, 131.6, 129.55, 129.49, 129.36, 128.8, 127.4, 117.9, 80.7, 61.2, 38.5, 38.1, 31.2, 21.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₄NO₃SSe 438.0637; Found 438.0639.

5-(Furan-2-yl)-3-((phenylselanyl)methyl)-2-tosylisoxazolidine (7k). Compound 7k was prepared according to the general procedure and isolated as an oil (82 mg, 89% yield) after flash chromatography (petroleum ether/ethyl acetate = 35/1). The crude NMR indicated the presence of mixture of diastereomers (*cis* : *trans*= 1.4 : 1). The stereoechemistry of diastereomer was assigned by analogy to 7i.

cis-Isomer, oil. ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, *J* = 8.4 Hz, 2H), 7.56 – 7.41 (m, 2H), 7.33 – 7.13 (m, 6H), 6.34 – 5.90 (m, 2H), 5.22 (dd, *J* = 8.6, 7.5 Hz, 1H), 4.50 (ddt, *J* = 9.1, 7.9, 5.6 Hz, 1H), 3.45 (dd, *J* = 12.6, 5.6 Hz, 1H), 3.05 (dd, *J* = 12.6, 9.1 Hz, 1H), 2.80 – 2.68 (m, 1H), 2.46 – 2.39 (m, 1H), 2.35 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 148.7, 145.1, 143.7, 133.0, 132.7, 129.7, 129.3, 129.2, 129.0, 127.4, 110.8, 110.5, 76.7, 60.5, 38.5, 32.4, 21.7. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₁H₂₁NO₄SSeNa 486.0249; Found 486.0263.

trans-Isomer, oil. ¹H NMR (400 MHz, CDCl₃): δ 7.56 – 7.44 (m, 4H), 7.27 – 7.25 (m, 3H), 7.19 – 7.17 (m, 1H), 7.12 (d, J = 8.0 Hz, 2H), 6.21 (dd, J = 3.4, 1.8 Hz, 1H), 6.16 (d, J = 3.3 Hz, 1H), 5.14 (dd, J = 8.7, 7.0 Hz, 1H), 4.19 (ddt, J = 8.6, 7.0, 4.3 Hz, 1H), 3.40 (dd, J = 12.8, 4.7 Hz, 1H), 2.91 (dd, J = 12.8, 9.9 Hz, 1H), 2.42 – 2.36 (m, 2H), 2.34 (s, 3H). ¹³C{¹H} NMR (100 MHz,

CDCl₃): δ 149.7, 144.8, 143.0, 133.2, 131.0, 129.6, 129.4, 128.7, 127.6, 110.5, 109.8, 75.1, 61.9, 37.4, 30.9, 21.7. HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₁H₂₁NO₄SSeNa 486.0249; Found 486.0259.

5-Phenyl-3-((phenylselanyl)methyl)-2-tosylisoxazolidine (7l). Compound **7l** was prepared according to the general procedure and isolated as an oil (86 mg, 91% yield) after flash chromatography (petroleum ether/ethyl acetate = 40/1). The crude NMR indicated the presence of mixture of diastereomers (*cis* : *trans*= 1.4 : 1). The stereoechemistry of diastereomer was assigned by analogy to **7i**.

cis-Isomer, oil. ¹H NMR (400 MHz, CDCl₃): δ 7.76 (d, *J* = 8.3 Hz, 2H), 7.64 – 7.50 (m, 2H), 7.37 – 7.04 (m, 10H), 4.96 (dd, *J* = 10.4, 5.6 Hz, 1H), 4.45 (dtd, *J* = 9.4, 7.7, 4.5 Hz, 1H), 3.56 (dd, *J* = 12.6, 4.5 Hz, 1H), 3.11 (dd, *J* = 12.6, 9.4 Hz, 1H), 2.84 (ddd, *J* = 12.8, 7.4, 5.7 Hz, 1H), 2.43 (s, 3H), 2.17 (ddd, *J* = 12.4, 10.4, 8.1 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 145.1, 136.3, 132.8, 132.4, 129.8, 129.3, 129.0, 128.8, 128.6, 127.3, 126.9, 83.4, 61.1, 43.3, 32.6, 21.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₃H₂₄NO₃SSe 474.0637; Found 474.0644.

trnas-Isomer, oil. ¹H NMR (400 MHz, CDCl₃): δ 7.67 (d, J = 8.3 Hz, 2H), 7.63 – 7.53 (m, 2H), 7.40 – 7.30 (m, 6H), 7.29 – 7.17 (m, 4H), 5.16 (dd, J = 11.0, 5.7 Hz, 1H), 4.42 – 4.27 (m, 1H), 3.46 (dd, J = 12.8, 4.8 Hz, 1H), 3.05 (dd, J = 12.8, 10.0 Hz, 1H), 2.54 (dd, J = 12.8, 5.7 Hz, 1H), 2.41 (s, 3H), 2.17– 2.09 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 145.1, 136.6, 133.1, 131.2, 129.6, 129.5, 129.4, 128.74, 128.67, 128.5, 127.5, 127.1, 82.4, 61.9, 40.9, 31.2, 21.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₃H₂₄NO₃SSe 474.0637; Found 474.0640.

5-(4-Chlorophenyl)-3-((phenylselanyl)methyl)-2-tosylisoxazolidine (7m). Compound **7m** was prepared according to the general procedure and isolated as an oil (88 mg, 87% yield) after flash chromatography (petroleum ether/ethyl acetate = 30/1). The crude NMR indicated the presence of mixture of diastereomers (*cis* : *trans*= 1.8 : 1). The stereoechemistry of diastereomer was assigned by analogy to **7i**.

Both diastereomers: δ 7.74 (d, J = 8.3 Hz, 2H, *cis* diastereomer), 7.65 (d, J = 8.3 Hz, 2H, *trans* diastereomer), 7.58 – 7.55 (m, 4H, both diastereomer), 7.34 – 7.17 (m, 18 both diastereomer), 5.13 (dd, J = 10.8, 5.8 Hz, 1H, *trans* diastereomer), 4.96 (dd, J = 10.2, 5.7 Hz, 1H, *cis* diastereomer), 4.52 – 4.41 (m, 1H, *cis* diastereomer), 4.40 – 4.25 (m, 1H, *trans* diastereomer), 3.53 (dd, J = 12.6, 4.5 Hz, 1H, *trans* diastereomer), 3.43 (dd, J = 12.8, 5.0 Hz, 1H, *cis* diastereomer), 3.08 (dd, J = 12.6, 9.4 Hz, 1H, *trans* diastereomer), 3.02 (dd, J = 12.8, 9.8 Hz, 1H, *cis* diastereomer), 2.82 (ddd, J = 12.9, 7.5, 5.7 Hz, 1H, *trans* diastereomer), 2.55 (ddd, J = 12.8, 5.9, 1.8 Hz, 1H, *cis* diastereomer), 2.42 (s, 3H, *cis* diastereomer), 2.41 (s, 3H, *trans* diastereomer), 2.20 – 2.08 (m, 2H, both diastereomer). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 145.3, 145.2, 135.3, 134.9, 134.6, 134.5, 133.1, 132.8, 132.3, 131.3, 129.7, 129.58, 129.56, 129.45, 129.38, 129.28, 128.9, 128.8, 128.7, 128.7, 128.5, 128.2, 127.6, 127.4, 82.6, 81.8, 61.8, 61.0, 43.2, 40.9, 32.6, 31.1, 21.8, 21.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₃H₂₃CINO₃SSE 508.0247; Found 508.0257.

2-Phenyl-5-((phenylselanyl)methyl)-4,5-dihydrooxazole (9a). Compound 9a was prepared

according to the general procedure and isolated as an oil (56 mg, 88% yield) after flash chromatography (petroleum ether/ethyl acetate = 6/1). ¹H NMR (400 MHz, CDCl₃): δ 7.79 – 7.75 (m, 2H), 7.48 (dd, *J* = 6.5, 3.0 Hz, 2H), 7.37 (t, *J* = 7.4 Hz, 1H), 7.29 (t, *J* = 7.5 Hz, 2H), 7.19 – 7.15 (m, 3H), 4.84 – 4.73 (m, 1H), 4.06 (dd, *J* = 15.0, 9.5 Hz, 1H), 3.73 (dd, *J* = 15.0, 6.9 Hz, 1H), 3.19 (dd, *J* = 12.7, 5.4 Hz, 1H), 2.95 (dd, *J* = 12.7, 7.5 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 162.6, 132.3, 130.3, 128.2, 127.9, 127.2, 127.1, 126.6, 126.5, 77.8, 59.2, 30.9. The data are in accordance with the literature.⁸

5-((**Phenylselanyl**)**methyl**)-**2**-(*p*-tolyl)-**4**,**5**-dihydrooxazole (**9b**). Compound **9b** was prepared according to the general procedure and isolated as an oil (62 mg, 94% yield) after flash chromatography (petroleum ether/ethyl acetate = 5/1). ¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, *J* = 8.1 Hz, 2H), 7.65 – 7.50 (m, 2H), 7.31 – 7.22 (m, 3H), 7.18 (d, *J* = 8.0 Hz, 2H), 4.90 – 4.83 (m, 1H), 4.14 (dd, *J* = 14.9, 9.5 Hz, 1H), 3.80 (dd, *J* = 14.9, 6.8 Hz, 1H), 3.28 (dd, *J* = 12.7, 5.4 Hz, 1H), 3.03 (dd, *J* = 12.7, 7.5 Hz, 1H), 2.38 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 163.9, 141.8, 133.4, 129.3, 129.0, 128.9, 128.1, 127.5, 124.8, 78.8, 60.2, 32.0, 21.6. The data are in accordance with the literature.⁸

2-(4-Chlorophenyl)-5-((phenylselanyl)methyl)-4,5-dihydrooxazole (9c). Compound **9c** was prepared according to the general procedure and isolated as an oil (57 mg, 81% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 7.68 (d, *J* = 8.4 Hz, 2H), 7.51 – 7.46 (m, 2H), 7.26 (d, *J* = 8.4 Hz, 2H), 7.23 – 7.16 (m, 3H), 4.86 – 4.76 (m, 1H), 4.06 (dd, *J* = 15.1, 9.5 Hz, 1H), 3.73 (dd, *J* = 15.0, 6.9 Hz, 1H), 3.18 (dd, *J* = 12.8, 5.5 Hz, 1H), 2.97 (dd, *J* = 12.8, 7.3 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 162.8, 137.5, 133.4, 129.5, 129.3, 128.9, 128.6, 127.5, 126.1, 79.2, 60.3, 31.9. The data are in accordance with the literature.⁹

2-(4-Bromophenyl)-5-((phenylselanyl)methyl)-4,5-dihydrooxazole (9d). Compound **9d** was prepared according to the general procedure and isolated as an oil (68 mg, 86% yield) after flash chromatography (petroleum ether/ethyl acetate = 12/1). ¹H NMR (400 MHz, CDCl₃): δ 7.60 (d, *J* = 8.5 Hz, 2H), 7.49 – 7.44 (m, 2H), 7.41 (d, *J* = 8.5 Hz, 2H), 7.23 – 7.15 (m, 3H), 4.89 – 4.76 (m, 1H), 4.04 (dd, *J* = 15.1, 9.5 Hz, 1H), 3.71 (dd, *J* = 15.1, 6.9 Hz, 1H), 3.17 (dd, *J* = 12.8, 5.5 Hz, 1H), 2.96 (dd, *J* = 12.8, 7.3 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 161.8, 132.3, 130.5, 128.6, 128.2, 127.8, 126.5, 125.5, 124.9, 78.1, 59.3, 30.8. The data are in accordance with the literature.⁹

2-(4-Nitrophenyl)-5-((phenylselanyl)methyl)-4,5-dihydrooxazole (9e). Compound **9e** was prepared according to the general procedure and isolated as a yellow solid (67 mg, 93% yield) after flash chromatography (petroleum ether/ethyl acetate = 5/1). ¹H NMR (400 MHz, CDCl₃): δ 8.12 (d, *J* = 8.9 Hz, 2H), 7.88 (d, *J* = 8.8 Hz, 2H), 7.63 – 7.35 (m, 2H), 7.20 – 7.16 (m, 3H), 4.98 – 4.86 (m, 1H), 4.12 (dd, *J* = 15.5, 9.6 Hz, 1H), 3.79 (dd, *J* = 15.5, 7.0 Hz, 1H), 3.19 (dd, *J* = 12.9, 5.5 Hz, 1H), 3.02 (dd, *J* = 13.0, 7.0 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 161.9, 149.4, 133.4, 129.3, 129.1, 128.8, 127.6, 123.5, 79.7, 60.5, 31.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for

C₁₆H₁₅N₂O₃Se 363.0242; Found 363.0244.

4-(5-((Phenylselanyl)methyl)-4,5-dihydrooxazol-2-yl)benzonitrile (**9f**). Compound **9f** was prepared according to the general procedure and isolated as an oil (57 mg, 83% yield) after flash chromatography (petroleum ether/ethyl acetate = 8/1). ¹H NMR (400 MHz, CDCl₃): δ 7.83 (d, *J* = 8.4 Hz, 2H), 7.58 (d, *J* = 8.4 Hz, 2H), 7.51 – 7.37 (m, 2H), 7.27 – 7.11 (m, 3H), 4.90 – 4.82 (m, 1H), 4.11 (dd, *J* = 15.4, 9.6 Hz, 1H), 3.78 (dd, *J* = 15.4, 7.0 Hz, 1H), 3.18 (dd, *J* = 12.9, 5.5 Hz, 1H), 3.01 (dd, *J* = 12.9, 7.1 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 162.2, 133.4, 132.1, 131.7, 129.3, 128.8, 128.7, 127.6, 118.3, 114.7, 79.5, 60.4, 31.8. The data are in accordance with the literature⁹.

2-(5-((Phenylselanyl)methyl)-4,5-dihydrooxazol-2-yl)phenol (9g). Compound **9g** was prepared according to the general procedure and isolated as an oil (56 mg, 85% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 12.02 (brs, 1H), 7.55 (dd, *J* = 6.5, 3.0 Hz, 2H), 7.49 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.34 (ddd, *J* = 8.7, 7.4, 1.8 Hz, 1H), 7.29 – 7.25 (m, 3H), 6.98 (d, *J* = 8.4 Hz, 1H), 6.81 (td, *J* = 7.5, 1.0 Hz, 1H), 4.85 (dtd, *J* = 9.4, 7.2, 5.2 Hz, 1H), 4.16 (dd, *J* = 14.6, 9.4 Hz, 1H), 3.83 (dd, *J* = 14.6, 6.9 Hz, 1H), 3.27 (dd, *J* = 12.8, 5.3 Hz, 1H), 3.03 (dd, *J* = 12.8, 7.6 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 165.4, 159.8, 133.5, 133.3, 129.3, 128.6, 128.1, 127.7, 118.6, 116.7, 110.6, 78.3, 58.7, 31.6. The data are in accordance with the literature.⁹

5-((**Phenylselanyl**)**methyl**)-**2**-(**4**-vinylphenyl)-**4**,**5**-dihydrooxazole (**9**h). Compound **9**h was prepared according to the general procedure and isolated as an oil (66 mg, 96% yield) after flash chromatography (petroleum ether/ethyl acetate = 5/1). ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, *J* = 8.0 Hz, 2H), 7.49 – 7.46 (m, 2H), 7.37 – 7.31 (m, 2H), 7.22 – 7.09 (m, 3H), 6.64 (dd, *J* = 17.6, 10.9 Hz, 1H), 5.74 (d, *J* = 17.6 Hz, 1H), 5.25 (d, *J* = 10.9 Hz, 1H), 4.83 – 4.75 (m, 1H), 4.07 (dd, *J* = 15.0, 9.4 Hz, 1H), 3.73 (dd, *J* = 15.0, 6.9 Hz, 1H), 3.19 (dd, *J* = 12.7, 5.5 Hz, 1H), 2.96 (dd, *J* = 12.7, 7.4 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 162.4, 139.3, 135.1, 132.3, 128.2, 127.4, 126.4, 125.8, 125.0, 114.6, 77.8, 59.2, 30.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₁₈NOSe 344.0548; Found 344.0556.

2-(Naphthalen-2-yl)-5-((phenylselanyl)methyl)-4,5-dihydrooxazole (9i). Compound 9i was prepared according to the general procedure and isolated as an oil (67 mg, 91% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 9.04 (d, *J* = 8.6 Hz, 1H), 7.95 – 7.86 (m, 2H), 7.83 – 7.76 (m, 1H), 7.55 – 7.48 (m, 3H), 7.46 – 7.42 (m, 1H), 7.38 (dd, *J* = 8.2, 7.3 Hz, 1H), 7.25 – 7.07 (m, 3H), 4.95 – 4.82 (m, 1H), 4.25 (dd, *J* = 15.0, 9.5 Hz, 1H), 3.92 (dd, *J* = 15.0, 6.8 Hz, 1H), 3.28 (dd, *J* = 12.6, 5.4 Hz, 1H), 3.06 (dd, *J* = 12.6, 7.5 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 163.6, 133.7, 133.4, 132.0, 131.1, 129.3, 129.1, 128.9, 128.5, 127.5, 127.3, 126.3, 126.1, 124.6, 124.3, 77.7, 61.0, 32.0. The data are in accordance with the literature.⁷

5-((Phenylselanyl)methyl)-2-(1H-pyrrol-2-yl)-4,5-dihydrooxazole (9j). Compound 9j was prepared according to the general procedure and isolated as a yellow solid (46 mg, 75% yield)

after flash chromatography (petroleum ether/ethyl acetate = 6/1). Mp: 86–88 °C.¹H NMR (400 MHz, CDCl₃): δ 10.12 (brs, 1H), 7.74 – 7.49 (m, 2H), 7.36 – 7.27 (m, 3H), 6.87 (dd, *J* = 2.6, 1.5 Hz, 1H), 6.67 (dd, *J* = 3.6, 1.4 Hz, 1H), 6.22 – 6.20 (m, 1H), 4.97 – 4.72 (m, 1H), 4.09 (dd, *J* = 14.3, 9.3 Hz, 1H), 3.75 (dd, *J* = 14.3, 6.7 Hz, 1H), 3.27 (dd, *J* = 12.7, 5.3 Hz, 1H), 3.01 (dd, *J* = 12.7, 7.7 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 158.7, 133.4, 129.3, 128.8, 127.6, 122.2, 119.8, 113.0, 109.8, 79.0, 59.3, 31.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₁₅N₂OSe 307.0344; Found 307.0350.

2-(Furan-2-yl)-5-((phenylselanyl)methyl)-4,5-dihydrooxazole (9k). Compound 9k was prepared according to the general procedure and isolated as an oil (52 mg, 85% yield) after flash chromatography (petroleum ether/ethyl acetate = 7/1). ¹H NMR (400 MHz, CDCl₃): δ 7.61 – 7.36 (m, 3H), 7.30 – 7.05 (m, 3H), 6.78 (d, *J* = 3.4 Hz, 1H), 6.38 (dd, *J* = 3.5, 1.8 Hz, 1H), 4.89 – 4.71 (m, 1H), 4.07 (dd, *J* = 15.0, 9.4 Hz, 1H), 3.75 (dd, *J* = 15.0, 6.9 Hz, 1H), 3.20 (dd, *J* = 12.7, 5.2 Hz, 1H), 2.94 (dd, *J* = 12.8, 7.8 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.0, 144.2, 141.8, 134.0, 132.3, 128.2, 126.5, 113.3, 110.4, 78.1, 59.0, 30.5. The data are in accordance with the literature.⁷

5-((**Phenylselanyl**)**methyl**)-**2**-(**thiophen-2-yl**)-**4**,**5**-**dihydrooxazole** (**9l**). Compound **9l** was prepared according to the general procedure and isolated as an oil (58 mg, 90% yield) after flash chromatography (petroleum ether/ethyl acetate = 5/1). ¹H NMR (400 MHz, CDCl₃): δ 7.55 – 7.45 (m, 2H), 7.41 (d, *J* = 3.7 Hz, 1H), 7.35 (d, *J* = 5.0 Hz, 1H), 7.25 – 7.11 (m, 3H), 6.97 (dd, *J* = 4.8, 3.6 Hz, 1H), 4.86 – 4.71 (m, 1H), 4.06 (dd, *J* = 14.9, 9.4 Hz, 1H), 3.73 (dd, *J* = 14.9, 6.8 Hz, 1H), 3.21 (dd, *J* = 12.7, 5.2 Hz, 1H), 2.96 (dd, *J* = 12.7, 7.8 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 158.5, 132.4, 132.3, 129.2, 128.8, 128.2, 127.7, 126.5, 126.5, 78.4, 59.2, 30.7. The data are in accordance with the literature.⁷

5-((Phenylselanyl)methyl)-2-(pyridin-3-yl)-4,5-dihydrooxazole (9m). Compound **9m** was prepared according to the general procedure and isolated as an oil (61 mg, 97% yield) after flash chromatography (petroleum ether/ethyl acetate = 1/2). ¹H NMR (400 MHz, CDCl₃): δ 9.03 (d, *J* = 2.0 Hz, 1H), 8.68 (dd, *J* = 4.8, 1.7 Hz, 1H), 8.09 (d, *J* = 7.9 Hz, 1H), 7.56 (dd, *J* = 6.4, 3.0 Hz, 2H), 7.37 - 7.11 (m, 4H), 4.98 - 4.90 (m, 1H), 4.17 (dd, *J* = 15.1, 9.5 Hz, 1H), 3.85 (dd, *J* = 15.2, 7.0 Hz, 1H), 3.27 (dd, *J* = 12.8, 5.3 Hz, 1H), 3.09 (dd, *J* = 12.9, 7.2 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 161.8, 152.0, 149.4, 135.4, 133.4, 129.3, 128.8, 127.6, 123.8, 123.1, 79.2, 60.2, 31.8. The data are in accordance with the literature.⁹

5-((**Phenylselanyl**)**methyl**)-**2**-(**1**-ferroceneyl)-**4**,**5**-dihydrooxazole (**9n**). Compound **9n** was prepared according to the general procedure and isolated as an oil (64 mg, 76% yield) after flash chromatography (petroleum ether/ethyl acetate = 5/1). ¹H NMR (400 MHz, CDCl₃): δ 7.65 – 7.44 (m, 2H), 7.31 – 7.10 (m, 3H), 4.76 – 4.69 (m, 1H), 4.63 (dd, *J* = 9.2, 1.9 Hz, 2H), 4.25 (t, *J* = 1.9 Hz, 2H), 4.11 (s, 5H), 3.93 (dd, *J* = 14.5, 9.3 Hz, 1H), 3.61 (dd, *J* = 14.5, 6.7 Hz, 1H), 3.20 (dd, *J* = 12.6, 5.1 Hz, 1H), 2.96 (dd, *J* = 12.6, 7.6 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 165.3, 132.3, 128.3, 128.0, 126.5, 77.2, 69.3, 69.3, 69.1, 68.6, 67.9, 67.9, 59.1, 30.9. HRMS (ESI) m/z:

 $[M + H]^+$ Calcd for C₂₀H₂₀FeNOSe 426.0054; Found 426.0061.

5-Methyl-2-phenyl-5-((phenylselanyl)methyl)-4,5-dihydrooxazole (**9o**). Compound **9o** was prepared according to the general procedure and isolated as an oil (61 mg, 92% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 7.84 – 7.75 (m, 2H), 7.58 – 7.49 (m, 2H), 7.47 – 7.41 (m, 1H), 7.36 (dd, *J* = 8.2, 6.8 Hz, 2H), 7.26 – 7.17 (m, 3H), 4.01 (d, *J* = 14.8 Hz, 1H), 3.79 (d, *J* = 14.8 Hz, 1H), 3.27 (s, 2H), 1.57 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 163.0, 133.1, 131.2, 130.4, 129.2, 128.2, 128.1, 127.9, 127.2, 85.8, 65.6, 38.4, 26.0. The data are in accordance with the literature.⁷

2-Phenyl-6-((phenylselanyl)methyl)-5,6-dihydro-4H-1,3-oxazine (9p). Compound **9p** was prepared according to the general procedure and isolated as an oil (51 mg, 77% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 7.91 – 7.80 (m, 2H), 7.66 – 7.52 (m, 2H), 7.45 – 7.37 (m, 1H), 7.35 – 7.31 (m, 2H), 7.31 – 7.23 (m, 3H), 4.40 (dtd, *J* = 9.5, 6.4, 2.9 Hz, 1H), 3.68 (ddd, *J* = 16.9, 5.4, 3.0 Hz, 1H), 3.56 (ddd, *J* = 16.9, 10.4, 5.1 Hz, 1H), 3.29 (dd, *J* = 12.7, 6.4 Hz, 1H), 3.12 (dd, *J* = 12.8, 6.4 Hz, 1H), 2.12 (ddt, *J* = 13.5, 5.1, 3.0 Hz, 1H), 1.78 (dtd, *J* = 13.5, 10.2, 5.4 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.5, 133.7, 133.0, 130.4, 129.8, 129.3, 128.0, 127.3, 127.0, 74.3, 42.8, 32.4, 27.0. The data are in accordance with the literature.⁹

2-Cyclohexyl-5-((phenylselanyl)methyl)-4,5-dihydrooxazole (9q). Compound **9q** was prepared according to the general procedure and isolated as an oil (52 mg, 81% yield) after flash chromatography (petroleum ether/ethyl acetate = 5/1). ¹H NMR (400 MHz, CDCl₃): δ 7.48 – 7.45 (m, 2H), 7.20 – 7.15 (t, *J* = 3.2 Hz, 3H), 4.58 (dq, *J* = 9.5, 6.6 Hz, 1H), 3.83 (dd, *J* = 14.3, 9.4 Hz, 1H), 3.50 (dd, *J* = 14.3, 6.6 Hz, 1H), 3.07 (dd, *J* = 12.6, 5.4 Hz, 1H), 2.86 (dd, *J* = 12.6, 7.4 Hz, 1H), 2.37 – 2.03 (m, 1H), 1.83 – 1.79 (m, 2H), 1.71 – 1.57 (m, 2H), 1.40 – 1.10 (m, 6). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 169.9, 132.2, 128.2, 128.0, 126.4, 76.9, 58.4, 36.4, 31.0, 28.7, 24.8, 24.6. The data are in accordance with the literature.⁷

2-(Adamantan-1-yl)-5-((phenylselanyl)methyl)-4,5-dihydrooxazole (**9r**). Compound **9r** was prepared according to the general procedure and isolated as an oil (60 mg, 80% yield) after flash chromatography (petroleum ether/ethyl acetate = 5/1). ¹H NMR (400 MHz, CDCl₃): δ 7.47 – 7.44 (m, 2H), 7.21 – 7.17 (m, 3H), 4.63 – 4.54 (m, 1H), 3.81 (dd, *J* = 14.3, 9.4 Hz, 1H), 3.50 (dd, *J* = 14.4, 6.5 Hz, 1H), 3.06 (dd, *J* = 12.5, 5.3 Hz, 1H), 2.83 (dd, *J* = 12.5, 7.5 Hz, 1H), 1.93 – 1.86 (m, 3H), 1.79 – 1.76 (m, 6H), 1.71 – 1.58 (m, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 172.4, 132.2, 128.2, 128.1, 126.3, 76.8, 58.4, 38.4, 35.5, 34.2, 31.0, 26.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₆NOSe 376.1174; Found 376.1182.

4-(5-((Phenylselanyl)methyl)-4,5-dihydrooxazol-2-yl)-N,N-dipropylbenzenesulfonamide (9s). Compound **9s** was prepared according to the general procedure and isolated as a white solid (88 mg, 92% yield) after flash chromatography (petroleum ether/ethyl acetate = 3/1). Mp: $73-75^{\circ}$ C.¹H NMR (400 MHz, CDCl₃): δ 7.94 (d, J = 8.6, Hz, 2H), 7.80 (d, J = 8.5 Hz, 2H), 7.62 – 7.48 (m, 2H), 7.37 – 7.20 (m, 3H), 4.98 – 4.90 (m, 1H), 4.19 (dd, J = 15.3, 9.6 Hz, 1H), 3.86 (dd, J = 15.3,

7.0 Hz, 1H), 3.27 (dd, J = 12.9, 5.5 Hz, 1H), 3.11 – 3.06(m, 5H), 1.54 (q, J = 7.4 Hz, 4H), 0.86 (t, J = 7.4 Hz, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 162.5, 142.6, 133.4, 131.1, 129.3, 128.8, 128.7, 127.6, 126.9, 79.4, 60.4, 49.9, 31.8, 21.9, 11.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₂₉N₂O₃SSe 481.1059; Found 481.1063.

N-(3-Chloro-2-methylphenyl)-3-(5-((phenylselanyl)methyl)-4,5-dihydrooxazol-2-yl)pyridin-2 -**amine (9t)**. Compound **9t** was prepared according to the general procedure and isolated as a white solid (84 mg, 92% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1). Mp: 127–129 °C. ¹H NMR (400 MHz, CDCl₃): δ 10.73 (brs, 1H), 8.23 (dd, *J* = 4.8, 2.0 Hz, 1H), 7.97 (dd, *J* = 6.5, 2.9 Hz, 1H), 7.84 (dd, *J* = 7.7, 2.0 Hz, 1H), 7.65 – 7.47 (m, 2H), 7.39 – 7.22 (m, 3H), 7.18 – 7.04 (m, 2H), 6.65 (dd, *J* = 7.7, 4.8 Hz, 1H), 4.90 – 4.82 (m, 1H), 4.25 (dd, *J* = 14.9, 9.4 Hz, 1H), 3.93 (dd, *J* = 14.9, 6.9 Hz, 1H), 3.28 (dd, *J* = 12.8, 5.5 Hz, 1H), 3.08 (dd, *J* = 12.9, 7.2 Hz, 1H), 2.39 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 162.9, 154.9, 150.8, 139.9, 138.1, 134.7, 133.5, 129.3, 128.7, 128.5, 127.6, 126.5, 124.3, 121.4, 113.0, 105.8, 77.9, 60.0, 31.8, 15.4. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₂₁ClN₃OSe 458.0533; Found 458.0540.

2-(5-(2,5-Dimethylphenoxy)-2-methylpentan-2-yl)-5-((phenylselanyl)methyl)-4,5-dihydrooxa zole (9u). Compound **9u** was prepared according to the general procedure and isolated as an oil (84 mg, 95% yield) after flash chromatography (petroleum ether/ethyl acetate = 5/1). ¹H NMR (400 MHz, CDCl₃): δ 7.56 – 7.34 (m, 2H), 7.27 – 6.98 (m, 3H), 6.90 (d, *J* = 7.4 Hz, 1H), 6.56 (d, *J* = 7.5 Hz, 1H), 6.52 –6.50 (m, 1H), 4.64 – 4.52 (m, 1H), 3.85 – 3.75 (m, 3H), 3.50 (dd, *J* = 14.4, 6.6 Hz, 1H), 3.05 (dd, *J* = 12.5, 5.1 Hz, 1H), 2.80 (dd, *J* = 12.5, 7.8 Hz, 1H), 2.21 (s, 3H), 2.09 (s, 3H), 1.74 – 1.49 (m, 4H), 1.13 (s, 3H), 1.12 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 171.8, 155.9, 135.3, 132.2, 129.2, 128.2, 127.9, 126.4, 122.5, 119.6, 110.9, 77.2, 66.9, 58.6, 35.9, 35.4, 30.8, 24.7, 24.6, 23.9, 20.4, 14.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₄H₃₂NO₂Se 446.1593; Found 446.1582.

(4-Chlorophenyl)(4-((2-(5-((phenylselanyl)methyl)-4,5-dihydrooxazol-2-yl)propan-2-yl)oxy)p henyl)methanone (9v). Compound 9v was prepared according to the general procedure and isolated as an oil (92 mg, 90% yield) after flash chromatography (petroleum ether/ethyl acetate = 3/1). ¹H NMR (400 MHz, CDCl₃): δ 7.73 – 7.68 (m, 4H), 7.53 – 7.46 (m, 2H), 7.44 (d, *J* = 8.5 Hz, 2H), 7.27 – 7.24 (m, 3H), 7.01 (d, *J* = 8.8 Hz, 2H), 4.86 – 4.63 (m, 1H), 4.03 (dd, *J* = 14.8, 9.5 Hz, 1H), 3.73 (dd, *J* = 14.9, 6.8 Hz, 1H), 3.11 (dd, *J* = 12.6, 4.7 Hz, 1H), 2.84 (dd, *J* = 12.7, 8.3 Hz, 1H), 1.71 (s, 3H), 1.69 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 194.3, 168.8, 160.0, 138.4, 136.4, 133.3, 132.0, 131.2, 130.5, 129.3, 128.6, 128.5, 127.6, 117.8, 79.3, 59.7, 31.4, 26.1, 26.0. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₆H₂₅ClNO₃Se 514.0683; Found 514.0690.

2-Phenyl-5-((phenylselanyl)methyl)-4,5-dihydrothiazole (**9**w). Compound **9**w was prepared according to the general procedure and isolated as an oil (56 mg, 85% yield) after flash chromatography (petroleum ether/ethyl acetate = 20/1). ¹H NMR (400 MHz, CDCl₃): δ 7.89 – 7.75 (m, 2H), 7.58 – 7.51 (m, 2H), 7.48 – 7.36 (m, 3H), 7.33 – 7.27 (m, 3H), 4.60 (dd, *J* = 16.2, 3.1 Hz, 1H), 4.30 (dd, *J* = 16.2, 7.9 Hz, 1H), 4.15 – 4.01 (m, 1H), 3.16 (dd, *J* = 12.5, 6.1 Hz, 1H),

3.04 (dd, J = 12.6, 9.2 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 167.2, 133.6, 133.2, 131.3, 129.3, 128.8, 128.5, 128.3, 127.6, 69.4, 50.8, 33.6. The data are in accordance with the literature.⁹ **2-Phenyl-4-((phenylselanyl)methyl)-4,5-dihydro-1H-imidazole** (**9x**). Compound **9x** was prepared according to the general procedure and isolated as an oil (48 mg, 76% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, *J* = 8.5 Hz, 2H), 7.58 – 7.55 (m, 2H), 7.48 – 7.44 (m, 1H), 7.40 – 7.36 (m, 2H), 7.30 – 7.16 (m, 3H), 4.92 – 4.85 (m, 1H), 4.15 (dd, *J* = 15.0, 9.5 Hz, 1H), 3.82 (dd, *J* = 15.0, 6.9 Hz, 1H), 3.29 (dd, *J* = 12.7, 5.4 Hz, 1H), 3.05 (dd, *J* = 12.7, 7.4 Hz, 1H), 1.77 (brs, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 163.7, 133.4, 131.3, 129.3, 128.9, 128.3, 128.2, 127.6, 127.5, 78.9, 60.3, 32.0. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₆H₁₆N₂NaSe 339.0371; Found 339.0374.

(*E*)-2-Phenyl-5-((phenylselanyl)methylene)-4,5-dihydrooxazole (9y). Compound 9y was prepared according to the general procedure and isolated as an oil (41 mg, 65% yield) after flash chromatography (petroleum ether/ethyl acetate = 20/1). ¹H NMR (400 MHz, CDCl₃): δ 7.99 (d, *J* = 7.0 Hz, 2H), 7.68 – 7.49 (m, 1H), 7.51 – 7.38 (m, 4H), 7.36 – 7.13 (m, 3H), 6.21 (t, *J* = 3.0 Hz, 1H), 4.77 (d, *J* = 3.0 Hz, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 163.7, 161.7, 132.1, 131.4, 129.6, 129.3, 128.6, 128.0, 126.5, 126.5, 85.3, 59.0. The data are in accordance with the literature.⁹

(*E*)-2-(Furan-2-yl)-5-((phenylselanyl)methylene)-4,5-dihydrooxazole (9z). Compound 9z was prepared according to the general procedure and isolated as an oil (43 mg, 71% yield) after flash chromatography (petroleum ether/ethyl acetate = 20/1). ¹H NMR (400 MHz, CDCl₃): δ 7.61 (d, *J* = 1.8 Hz, 1H), 7.50 – 7.37 (m, 2H), 7.33 – 7.14 (m, 3H), 7.06 (d, *J* = 3.5 Hz, 1H), 6.54 (dd, *J* = 3.5, 1.8 Hz, 1H), 6.21 (t, *J* = 3.0 Hz, 1H), 4.75 (d, *J* = 2.9 Hz, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 160.7, 155.9, 146.0, 141.7, 131.2, 129.7, 129.3, 126.6, 115.4, 111.8, 86.0, 58.7. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₄H₁₁NNaO₂Se 327.9847; Found 327.9836.

(*E*)-5-((Phenylselanyl)methylene)-2-(thiophen-2-yl)-4,5-dihydrooxazole (9aa). Compound 9aa was prepared according to the general procedure and isolated as an oil (43 mg, 67% yield) after flash chromatography (petroleum ether/ethyl acetate = 18/1). ¹H NMR (400 MHz, CDCl₃): δ 7.69 (d, *J* = 4.9 Hz, 1H), 7.53 (d, *J* = 5.0 Hz, 1H), 7.46 – 7.34 (m, 2H), 7.34 – 7.19 (m, 3H), 7.13 (dd, *J* = 5.0, 3.7 Hz, 1H), 6.20 (t, *J* = 3.0 Hz, 1H), 4.74 (d, *J* = 3.0 Hz, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 161.3, 159.5, 131.3, 131.0, 130.8, 129.7, 129.3, 128.9, 127.8, 126.5, 85.6, 58.9. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₄H₁₁NNaOSSe 343.9619; Found 343.9622.

(*E*)-4,4-dimethyl-2-phenyl-5-((phenylselanyl)methylene)-4,5-dihydrooxazole (9ab). Compound 9ab was prepared according to the general procedure and isolated as an oil (53 mg, 78% yield) after flash chromatography (petroleum ether/ethyl acetate = 15/1). ¹H NMR (400 MHz, CDCl₃): δ 7.99 (d, *J* = 7.0 Hz, 2H), 7.60 – 7.39 (m, 4H), 7.39 – 7.15 (m, 4H), 6.20 (s, 1H), 1.68 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 167.4, 159.0, 132.7, 131.8, 129.5, 129.2, 128.5, 128.1, 126.5, 126.3, 86.1, 71.0, 27.3. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₈H₁₇NNaOSe 366.0368; Found 366.0380. **5-((Phenylselanyl)methyl)dihydrofuran-2(3***H***)-one (11a). Compound 11a was prepared according to the general procedure and isolated as an oil (49 mg, 96% yield) after flash chromatography (petroleum ether/ethyl acetate = 5/1). ¹H NMR (400 MHz, CDCl₃): \delta 7.48 – 7.45 (m, 2H), 7.22 – 7.19 (m, 3H), 4.60 – 4.54 (m, 1H), 3.20 (dd,** *J* **= 12.9, 4.8 Hz, 1H), 2.93 (dd,** *J* **= 12.9, 7.9 Hz, 1H), 2.51 – 2.36 (m, 2H), 2.36 – 2.28 (m, 1H), 1.92 – 1.82 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): \delta 175.6, 132.2, 128.3, 127.8, 126.7, 78.3, 30.9, 27.75, 26.6. The data are in accordance with the literature.¹⁰**

4,4-Dimethyl-5-((phenylselanyl)methyl)dihydrofuran-2(3*H***)-one (11b). Compound 11b was prepared according to the general procedure and isolated as an oil (54 mg, 95% yield) after flash chromatography (petroleum ether/ethyl acetate = 8/1). ¹H NMR (400 MHz, CDCl₃): \delta 7.58 – 7.40 (m, 2H), 7.28 – 7.15 (m, 3H), 4.22 (dd,** *J* **= 8.4, 4.8 Hz, 1H), 3.02 (dd,** *J* **= 12.9, 8.4 Hz, 1H), 2.94 (dd,** *J* **= 12.9, 4.9 Hz, 1H), 2.35 (d,** *J* **= 17.0 Hz, 1H), 2.28 (d,** *J* **= 17.0 Hz, 1H), 1.12 (s, 3H), 0.99 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): \delta 174.1, 132.1, 128.3, 127.4, 126.5, 86.3, 43.7, 38.8, 25.5, 24.7, 20.3. The data are in accordance with the literature.¹⁰**

6-(**Phenylselanyl**)**hexahydro-**2*H*-**cyclopenta**[*b*]**furan-2-one** (**11c**). Compound **11c** was prepared according to the general procedure and isolated as an oil (47 mg, 83% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 7.60 – 7.43 (m, 2H), 7.30 – 7.18 (m, 3H), 4.84 (d, *J* = 6.3 Hz, 1H), 4.03 – 3.69 (m, 1H), 3.08 – 3.01(m, 1H), 2.75 (dd, *J* = 18.4, 10.0 Hz, 1H), 2.27 (dd, *J* = 18.4, 2.5 Hz, 1H), 2.23 – 2.13 (m, 2H), 1.87 – 1.69 (m, 1H), 1.60 – 1.43 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 175.9, 132.6, 128.4, 127.6, 126.8, 89.5, 45.2, 36.1, 35.0, 31.5, 29.0. The data are in accordance with the literature.¹⁰

trans-5-Phenyl-4-(phenylselanyl)dihydrofuran-2(*3H*)-one (11d). Compound 11d was prepared according to the general procedure and isolated as an oil (57 mg, 90% yield) after flash chromatography (petroleum ether/ethyl acetate = 15/1). ¹H NMR (400 MHz, CDCl₃): δ 7.58 – 7.45 (m, 2H), 7.44 – 7.33 (m, 4H), 7.32 – 7.24 (m, 4H), 5.37 (d, *J* = 6.9 Hz, 1H), 3.74 (td, *J* = 8.3, 6.9 Hz, 1H), 3.03 (dd, *J* = 18.0, 8.3 Hz, 1H), 2.66 (dd, *J* = 18.0, 8.4 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 174.6, 137.3, 136.1, 129.6, 129.1, 128.9, 128.8, 126.0, 125.8, 86.2, 42.3, 36.0. The data are in accordance with the literature.¹¹

6-(Phenylselanyl)hexahydro-2*H*-3,5-methanocyclopenta[*b*]furan-2-one (11e). Compound 11e was prepared according to the general procedure and isolated as an oil (50 mg, 85% yield) after flash chromatography (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 7.51 – 7.38 (m, 2H), 7.26 – 7.16 (m, 3H), 4.68 (d, *J* = 5.0 Hz, 1H), 3.26 (d, *J* = 2.5 Hz, 1H), 3.17 (t, *J* = 4.8 Hz, 1H), 2.50 (dd, *J* = 11.3, 4.8 Hz, 1H), 2.45 (d, *J* = 3.7 Hz, 1H), 2.22 – 2.13 (m, 1H), 2.04 (ddd, *J* = 13.3, 11.3, 3.9 Hz, 1H), 1.73 (dt, *J* = 13.3, 2.2 Hz, 1H), 1.61 (dq, *J* = 11.4, 1.9 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 179.1, 132.0, 128.4, 126.6, 113.0, 85.4, 48.3, 45.5, 41.3, 37.3, 35.8, 34.3. The data are in accordance with the literature.¹⁰

3a-(Phenylselanyl)hexahydrobenzofuran-2(3H)-one (11f). Compound 11f was prepared according to the general procedure and isolated as an oil (54 mg, 91% yield) after flash

chromatography (petroleum ether/ethyl acetate = 15/1). ¹H NMR (400 MHz, CDCl₃): δ 7.71 – 7.57 (m, 2H), 7.51 – 7.40 (m, 1H), 7.38 – 7.34 (m, 2H), 4.36 (t, *J* = 3.8 Hz, 1H), 2.70 (d, *J* = 16.9 Hz, 1H), 2.48 (d, *J* = 16.9 Hz, 1H), 12.04–1.98 (m, 2H), 1.94 – 1.85 (m, 1H), 1.80 – 1.46 (m, 5H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 175.2, 138.3, 129.7, 129.5, 125.4, 82.0, 47.0, 44.9, 33.3, 25.1, 21.5, 19.6. The data are in accordance with the literature.¹²

4-(Phenylselanyl)-6-oxabicyclo[3.2.1]octan-7-one (**11g**). Compound **11g** was prepared according to the general procedure and isolated as a white solid (50 mg, 89% yield) after flash chromatography (petroleum ether/ethyl acetate = 15/1). Mp=75-76 °C. ¹H NMR (400 MHz, CDCl₃): 7.60 – 7.52 (m, 2H), 7.37 – 7.19 (m, 3H), 4.83 (t, J = 4.3 Hz, 1H), 3.67 (t, J = 5.1 Hz, 1H), 2.68 – 2.64 (m, 1H), 2.41 – 2.23 (m, 3H), 2.07 – 2.01 (m, 1H), 1.97 – 1.77 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 178.2, 134.2, 129.4, 128.6, 128.2, 79.8, 41.1, 38.7, 33.7, 25.7, 23.7. The data are in accordance with the literature.¹²

6-((**Phenylselanyl**)**methyl**)**tetrahydro-2***H***-pyran-2-one** (**11h**). Compound **11h** was prepared according to the general procedure and isolated as an oil (49 mg, 92% yield) after flash chromatography (petroleum ether/ethyl acetate = 20/1). ¹H NMR (400 MHz, CDCl₃): δ 7.59 – 7.42 (m, 2H), 7.29 – 7.25 (m, 3H), 4.47 – 4.40 (m, 1H), 3.25 (dd, *J* = 12.9, 4.9 Hz, 1H), 3.02 (dd, *J* = 12.9, 7.8 Hz, 1H), 2.56 (dd, *J* = 17.8, 6.5 Hz, 1H), 2.43 (dd, *J* = 17.8, 9.1 Hz, 1H), 2.19 – 2.11 (m, 1H), 1.96 – 1.86 (m, 1H), 1.85 – 1.73 (m, 1H), 1.61 – 1.52 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 171.1, 132.8, 129.4, 129.3, 127.4, 79.8, 32.2, 29.4, 27.4, 18.4. The data are in accordance with the literature.¹⁰

3,8-Bis((phenylselanyl)methyl)-2,7-dioxaspiro[4.4]nonane-1,6-dione (11i). Compound **11i** was prepared according to the general procedure and isolated as an oil (84 mg, 85% yield) in an inseperable mixture of diastereomers after flash chromatography (petroleum ether/ethyl acetate = 10/1). Major isomer, ¹H NMR (400 MHz, CDCl₃): δ 7.57 – 7.51 (m, 4H), 7.37 – 7.22 (m, 6H), 5.18 – 4.91 (m, 2H), 3.29 (ddd, *J* = 13.4, 9.1, 4.6 Hz, 2H), 3.03 (ddd, *J* = 13.0, 7.9, 3.8 Hz, 2H), 2.90 (dd, *J* = 13.3, 6.4 Hz, 1H), 2.84 (dd, *J* = 13.1, 6.0 Hz, 1H), 1.99 (ddd, *J* = 13.3, 9.1, 6.6 Hz, 2H). Minor isomer, ¹H NMR (400 MHz, CDCl₃): δ 7.57 – 7.51 (m, 4H), 7.37 – 7.22 (m, 6H), 4.65 – 4.57 (m, 2H), 3.37 (dd, *J* = 12.8, 5.2 Hz, 2H), 3.19 (ddd, *J* = 13.3, 9.1, 4.3 Hz, 2H), 2.71 (dd, *J* = 13.8, 6.5 Hz, 2H), 2.37 (dd, *J* = 13.8, 7.5 Hz, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 173.6, 173.2, 172.9, 172.8, 133.5, 133.43, 133.36, 133.30, 129.5, 129.5, 129.49, 128.47, 128.45, 128.2, 128.1, 128.0, 127.88, 127.85, 78.2, 78.0, 77.5, 53.5, 53.2, 52.3, 39.7, 38.6, 38.3, 37.4, 31.8, 31.5, 31.1, 30.8, 29.7. The data are in accordance with the literature.¹³

2-((Phenylselanyl)methyl)tetrahydrofuran (**11j**). Compound **11j** was prepared according to the general procedure and isolated as an oil (42 mg, 88% yield) after flash chromatography (petroleum ether/ethyl acetate = 30/1). ¹H NMR (400 MHz, CDCl₃): δ 7.44 (d, *J* = 7.6 Hz, 2H), 7.20 – 7.14 (m, 3H), 4.06 – 3.97 (m, 1H), 3.87 – 3.80 (m, 1H), 3.69 (dd, *J* = 14.2, 7.8 Hz, 1H), 3.05 (dd, *J* = 12.1, 5.8 Hz, 1H), 2.91 (dd, *J* = 12.2, 6.8 Hz, 1H), 2.03 – 1.94 (m, 1H), 1.89 – 1.75

(m, 2H), 1.59 - 1.50 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 131.5, 129.3, 128.0, 125.8, 77.3, 67.3, 32.0, 30.5, 24.9. The data are in accordance with the literature.¹⁰

3,3-Dimethyl-2-((phenylselanyl)methyl)tetrahydrofuran (11k). Compound 11k was prepared according to the general procedure and isolated as an oil (51 mg, 95% yield) after flash chromatography (petroleum ether/ethyl acetate = 60/1). ¹H NMR (400 MHz, CDCl₃): δ 7.49 – 7.42 (m, 2H), 7.26 – 7.13 (m, 3H), 3.83 (q, *J* = 8.1 Hz, 1H), 3.76 (td, *J* = 8.5, 5.1 Hz, 1H), 3.56 (dd, *J* = 8.2, 4.9 Hz, 1H), 2.93 – 2.86 (m, 2H), 1.87 – 1.65 (m, 2H), 1.00 (s, 3H), 0.90 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 131.4, 129.8, 128.0, 125.7, 84.8, 64.5, 40.4, 40.2, 27.6, 24.6, 20.5. The data are in accordance with the literature.¹⁰

2-((Phenylselanyl)methyl)-2,3-dihydrobenzofuran (111). Compound **111** was prepared according to the general procedure and isolated as a white solid (55 mg, 95% yield) after flash chromatography (petroleum ether/ethyl acetate = 60/1). Mp=59-61 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.62 – 7.41 (m, 2H), 7.35 – 7.21 (m, 3H), 7.18 – 7.03 (m, 2H), 6.81 (d, *J* = 7.4 Hz, 1H), 6.72 (d, *J* = 8.0 Hz, 1H), 4.94 – 4.87 (m, 1H), 3.37 – 3.22 (m, 2H), 3.06 (dd, *J* = 12.5, 7.7 Hz, 1H), 2.99 (dd, *J* = 15.9, 6.9 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.2, 133.1, 129.4, 129.3, 128.1, 127.4, 126.2, 125.1, 120.6, 109.6, 81.9, 35.6, 32.8. The data are in accordance with the literature.⁸

6-(**Phenylselanyl**)**hexahydro-**2*H*-3,5-methanocyclopenta[*b*]furan (11m). Compound 11m was prepared according to the general procedure and isolated as an oil (46 mg, 82% yield) after flash chromatography (petroleum ether/ethyl acetate =30/1). ¹H NMR (400 MHz, CDCl₃): δ 7.52 – 7.34 (m, 2H), 7.26 – 7.10 (m, 3H), 4.26 (d, *J* = 5.0 Hz, 1H), 3.74 (dd, *J* = 8.0, 4.3 Hz, 1H), 3.64 (d, *J* = 8.0 Hz, 1H), 3.02 (d, *J* = 2.4 Hz, 1H), 2.61 (t, *J* = 4.6 Hz, 1H), 2.36 – 2.30 (m, 1H), 2.16 (d, *J* = 4.2 Hz, 1H), 2.05 – 1.98 (m, 1H), 1.95 (d, *J* = 11.2 Hz, 1H), 1.64 – 1.45 (m, 1H), 1.13 (dt, *J* = 12.7, 2.4 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 131.4, 129.3, 128.1, 125.7, 85.4, 73.4, 52.1, 45.6, 38.8, 37.4, 36.8, 35.9. The data are in accordance with the literature.¹⁰

4-(Phenylselanyl)-6-oxabicyclo[3.2.1]octane (**11n**). Compound **11n** was prepared according to the general procedure and isolated as an oil (45 mg, 85% yield) after flash chromatography (petroleum ether/ethyl acetate = 40/1). ¹H NMR (400 MHz, CDCl₃): δ 7.51 – 7.49 (m, 2H), 7.37 – 7.00 (m, 3H), 4.42 (t, *J* = 5.2 Hz, 1H), 3.87 (d, *J* = 7.9 Hz, 1H), 3.81 (dd, *J* = 8.1, 4.4 Hz, 1H), 3.50 (t, *J* = 5.1 Hz, 1H), 2.38 – 2.36 (m, 1H), 2.34 – 2.16 (m, 1H), 2.07 (d, *J* = 11.7 Hz, 1H), 1.97 – 1.67 (m, 3H), 1.67 – 1.42 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 133.5, 130.2, 129.1, 127.2, 78.1, 71.9, 45.7, 35.1, 34.5, 26.9, 25.7. The data are in accordance with the literature.¹⁴

2-((Phenylselanyl)methyl)tetrahydro-2*H***-pyran (110)**. Compound **110** was prepared according to the general procedure and isolated as an oil (41 mg, 81% yield) after flash chromatography (petroleum ether/ethyl acetate = 70/1). ¹H NMR (400 MHz, CDCl₃): δ 7.47 – 7.40 (m, 2H), 7.23 – 7.11 (m, 3H), 4.06 – 3.85 (m, 1H), 3.50 – 3.25 (m, 2H), 3.00 (dd, *J* = 12.2, 6.9 Hz, 1H), 2.86 (dd, *J* = 12.2, 5.6 Hz, 1H), 1.78 – 1.67 (m, 2H), 1.56 – 1.23 (m, 4H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 131.3, 129.7, 128.0, 125.7, 76.0, 67.7, 32.6, 30.7, 24.7, 22.3. The data are in accordance with the

literature.¹⁰

3,8-Bis((**phenylselanyl**)**methyl**)-**2,7-dioxaspiro**[**4.4**]**nonane** (**11p**). Compound **11p** was prepared according to the general procedure and isolated as an oil (81 mg, 87% yield) inseparable mixture of isomers (ratio 1:1:1) after flash chromatography (petroleum ether/ethyl acetate = 40/1). ¹H NMR (400 MHz, CDCl₃): δ 8.02 – 7.45 (m, 4H), 7.29 – 7.21 (m, 6H), 4.28 – 4.05 (m, 1H), 3.84 (dd, *J* = 32.7, 8.5 Hz, 2H), 3.78 – 3.67 (m, 1H), 3.58 (d, *J* = 8.6 Hz, 2H), 3.21 – 3.06 (m, 2H), 3.06 – 2.88 (m, 2H), 2.22 – 2.04 (m, 2H), 1.78 – 1.66 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 132.69, 132.66, 132.64 130.0, 130.03, 130.01, 129.99, 129.97, 127.1, 127.0, 78.4, 78.3, 78.23, 78.21, 77.6, 77.4, 76.9, 76.2, 51.9, 51.5, 43.0, 42.9, 42.3, 41.6, 33.13, 33.10, 33.0, 32.9. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₁H₂₄NaO₂Se₂ 490.9999; Found 490.9983.

4,4-Diphenyl-2-((phenylselanyl)methyl)-1-tosylpyrrolidine (13a). Compound **13a** was prepared according to the general procedure and isolated as an oil (96 mg, 88% yield) after flash chromatography (petroleum ether/ethyl acetate=20/1). ¹H NMR (400 MHz, CDCl₃): δ 7.49 – 7.42 (m, 2H), 7.28 – 7.20 (m, 5H), 7.19 – 7.12 (m, 4H), 7.09 – 6.91 (m, 8H), 4.40 (d, *J* = 10.1 Hz, 1H), 3.65 – 3.57 (m, 1H), 3.54 (dd, *J* = 12.5, 2.9 Hz, 1H), 3.41 (d, *J* = 10.2 Hz, 1H), 2.64 – 2.50 (m, 2H), 2.24 (s, 3H), 2.23 – 2.19 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 143.9, 143.8, 142.3, 132.0, 128.5, 128.2, 127.8, 127.6, 127.5, 127.4, 126.4, 126.1, 125.7, 125.5, 125.35, 125.30, 58.4, 57.8, 51.0, 41.5, 31.4, 20.4. The data are in accordance with the literature.¹⁰

4,4-Diphenyl-2-((phenylselanyl)methyl)-1-(phenylsulfonyl)pyrrolidine (13b). Compound 13b was prepared according to the general procedure and isolated as a white solid (93 mg, 87% yield) after flash chromatography (petroleum ether/ethyl acetate=20/1). mp=127-129 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.49 – 7.43 (m, 2H), 7.42 – 7.35 (m, 3H), 7.28 – 7.22 (m, 5H), 7.20 – 7.15 (m, 4H), 7.12 – 7.00 (m, 4H), 6.98 – 6.93 (m, 2H), 4.41 (d, *J* = 10.2 Hz, 1H), 3.67 – 3.58 (m, 1H), 3.54 (dd, *J* = 12.5, 2.9 Hz, 1H), 3.45 (d, *J* = 10.2 Hz, 1H), 2.64 – 2.54 (m, 2H), 2.29 – 2.19 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 143.8, 143.7, 135.2, 132.1, 131.6, 128.2, 127.9, 127.6, 127.5, 126.4, 126.1, 125.7, 125.6, 125.56, 125.50, 125.3, 58.5, 57.7, 51.0, 41.5, 31.4. The data are in accordance with the literature.¹⁰

1-(Ethylsulfonyl)-4,4-diphenyl-2-((phenylselanyl)methyl)pyrrolidine (13c). Compound 13c was prepared according to the general procedure and isolated as an oil (82 mg, 85% yield) after flash chromatography (petroleum ether/ethyl acetate=10/1). ¹H NMR (400 MHz, CDCl₃): δ 7.45 – 7.38 (m, 2H), 7.31 – 7.22 (m, 2H), 7.23 – 7.14 (m, 7H), 7.13 – 7.05 (m, 4H), 4.20 (dd, *J* = 10.7, 1.6 Hz, 1H), 4.09 – 3.91 (m, 2H), 3.43 (dd, *J* = 12.3, 3.0 Hz, 1H), 3.03 (ddd, *J* = 13.0, 7.0, 1.6 Hz, 1H), 2.79 (dd, *J* = 12.3, 9.6 Hz, 1H), 2.63 – 2.39 (m, 3H), 1.11 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 144.0, 143.2, 131.2, 128.5, 128.2, 127.7, 127.6, 125.9, 125.8, 125.7, 125.6, 125.5, 58.4, 58.2, 52.1, 44.6, 42.5, 31.9, 6.9. The data are in accordance with the literature.¹⁰

4,4-Diallyl-2-((phenylselanyl)methyl)-1-tosylpyrrolidine (**13d**). Compound **13d** was prepared according to the general procedure and isolated as an oil (81 mg, 85% yield) after flash chromatography (petroleum ether/ethyl acetate=20/1). ¹H NMR (400 MHz, CDCl₃): δ 7.58 – 7.48

(m, 2H), 7.46 – 7.39 (m, 2H), 7.27 – 7.23 (m, 3H), 7.14 (d, J = 8.0 Hz, 2H), 5.68 – 5.54 (m, 1H), 5.49 – 5.35 (m, 1H), 5.07 – 4.93 (m, 2H), 4.91 – 4.85 (m, 1H), 4.65 (dq, J = 16.8, 1.5 Hz, 1H), 3.73 (dd, J = 12.3, 2.9 Hz, 1H), 3.56 (dtd, J = 10.5, 7.7, 2.9 Hz, 1H), 3.19 (d, J = 10.7 Hz, 1H), 3.03 (dd, J = 10.7, 1.1 Hz, 1H), 2.88 (dd, J = 12.3, 10.2 Hz, 1H), 2.33 (s, 3H), 2.02 (d, J = 7.5 Hz, 2H), 1.91 (ddd, J = 13.2, 7.5, 1.1 Hz, 1H), 1.57 – 1.46 (m, 2H), 1.29 (dd, J = 14.0, 7.9 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 142.5, 133.2, 132.5, 132.2, 132.1, 128.6, 128.2, 128.2, 126.5, 126.1, 117.5, 117.4, 58.3, 57.8, 42.3, 41.2, 39.5, 38.2, 33.0, 20.5. The data are in accordance with the literature.¹⁰

4,4-Dimethyl-2-((phenylselanyl)methyl)-1-tosylpyrrolidine (13e). Compound **13e** was prepared according to the general procedure and isolated as a yellow solid (79 mg, 94% yield) after flash chromatography (petroleum ether/ethyl acetate=20/1). mp=103-104 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.57 – 7.47 (m, 2H), 7.42 (d, *J* = 8.3 Hz, 2H), 7.27 – 7.22 (m, 3H), 7.13 (d, *J* = 8.3 Hz, 2H), 3.76 (dd, *J* = 12.2, 2.9 Hz, 1H), 3.59 (dtd, *J* = 10.6, 7.7, 2.9 Hz, 1H), 3.14 (d, *J* = 10.5 Hz, 1H), 2.97 (dd, *J* = 10.5, 1.2 Hz, 1H), 2.89 (dd, *J* = 12.3, 10.4 Hz, 1H), 2.31 (s, 3H), 1.79 (dd, *J* = 12.8, 7.4 Hz, 1H), 1.51 (dd, *J* = 12.8, 8.0 Hz, 1H), 0.95 (s, 3H), 0.36 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 142.3, 133.1, 131.7, 128.5, 128.4, 128.2, 126.5, 125.96, 61.0, 58.9, 45.7, 36.2, 33.0, 25.4, 24.8, 20.5. The data are in accordance with the literature.¹⁰

3-((**Phenylselanyl**)**methyl**)-**2**-tosyl-**2**-azaspiro[**4.4**]**nonane** (**13f**). Compound **13f** was prepared according to the general procedure and isolated as an oil (79 mg, 88% yield) after flash chromatography (petroleum ether/ethyl acetate=20/1). ¹H NMR (400 MHz, CDCl₃): δ 7.52 (d, *J* = 7.6 Hz, 2H), 7.41 (d, *J* = 8.3 Hz, 2H), 7.30 – 7.21 (m, 3H), 7.13 (d, *J* = 8.0 Hz, 2H), 3.75 (dd, *J* = 12.3, 3.0 Hz, 1H), 3.56 – 3.49 (m, 1H), 3.24 (d, *J* = 10.2 Hz, 1H), 2.94 (d, *J* = 10.2 Hz, 1H), 2.88 (dd, *J* = 12.3, 10.7 Hz, 1H), 2.32 (s, 3H), 1.84 (dd, *J* = 12.9, 7.4 Hz, 1H), 1.64 (dd, *J* = 12.8, 6.8 Hz, 1H), 1.56 – 1.31 (m, 6H), 0.87 (ddd, *J* = 12.6, 8.2, 6.9 Hz, 1H), 0.73 (ddd, *J* = 13.2, 7.8, 6.0 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 142.4, 132.9, 131.7, 128.5, 128.3, 128.2, 126.5, 126.0, 59.4, 59.0, 47.3, 43.2, 35.6, 35.4, 32.7, 23.5, 23.2, 20.5. The data are in accordance with the literature.¹⁰

2-((Phenylselanyl)methyl)-1-tosylindoline (**13g**). Compound **13g** was prepared according to the general procedure and isolated as an oil (79 mg, 89% yield) after flash chromatography (petroleum ether/ethyl acetate=20/1). ¹H NMR (400 MHz, CDCl₃): δ 7.57 (d, *J* = 8.1 Hz, 1H), 7.55 – 7.44 (m, 2H), 7.34 – 7.22 (m, 5H), 7.17 – 7.09 (m, 1H), 7.05 – 6.99 (m, 2H), 6.98 – 6.88 (m, 2H), 4.20 – 4.10 (m, 1H), 3.58 (dd, *J* = 12.5, 3.5 Hz, 1H), 2.85 (dd, *J* = 12.5, 10.8 Hz, 1H), 2.80 – 2.76 (m, 2H), 2.24 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 142.9, 140.3, 133.5, 131.4, 129.9, 128.5, 128.2, 127.8, 126.8, 126.1, 125.9, 124.2, 123.7, 116.0, 60.5, 33.0, 32.0, 20.5. The data are in accordance with the literature.¹⁰

2-((Phenylselanyl)methyl)-1-(thiophen-2-ylsulfonyl)pyrrolidine (13h). Compound 13h was prepared according to the general procedure and isolated as a white solid (63 mg, 82% yield) after flash chromatography (petroleum ether/ethyl acetate=12/1). mp= 90-92°C. ¹H NMR (400 MHz,

CDCl₃): δ 7.58 – 7.40 (m, 3H), 7.30 (dd, J = 3.7, 1.3 Hz, 1H), 7.27 – 7.14 (m, 3H), 6.98 (dd, J = 5.0, 3.7 Hz, 1H), 3.67 – 3.61 (m, 1H), 3.52 (dd, J = 12.6, 6.4 Hz, 1H), 3.49 – 3.39 (m, 1H), 3.16 – 3.10 (m, 1H), 2.80 (dd, J = 12.6, 10.8 Hz, 1H), 1.85 – 1.71 (m, 2H), 1.69 – 1.57 (m, 1H), 1.50 – 1.39 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 135.8, 131.2, 131.1, 130.8, 128.3, 128.2, 126.4, 125.8, 59.3, 49.0, 31.6, 30.0, 22.9. The data are in accordance with the literature.¹⁰

1-(5-Chloro-2-((2-((phenylselanyl)methyl)pyrrolidin-1-yl)sulfonyl)thiophen-3-yl)ethanone

(13i). Compound 13i was prepared according to the general procedure and isolated as an oil (77 mg, 83% yield) after flash chromatography (petroleum ether/ethyl acetate=1/1). ¹H NMR (400 MHz, CDCl₃): δ 7.67 – 7.43 (m, 2H), 7.37 – 7.17 (m, 3H), 6.97 (s, 1H), 4.17 – 3.81 (m, 1H), 3.68 – 3.25 (m, 3H), 2.91 (dd, *J* = 12.5, 10.4 Hz, 1H), 2.52 (s, 3H), 2.10 – 1.83 (m, 3H), 1.78 – 1.67 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 196.1, 143.7, 136.1, 135.7, 132.5, 129.4, 129.2, 127.0, 126.7, 60.6, 49.7, 32.8, 31.2, 24.1. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₇H₁₈ClNNaO₃S₂Se 485.9474; Found 485.9460.

1-(4-((2-((Phenylselanyl)methyl)pyrrolidin-1-yl)sulfonyl)phenyl)-5-(*p*-tolyl)-3-(trifluorometh yl)-1H-pyrazole (13j). Compound 13j was prepared according to the general procedure and isolated as a white solid (99 mg, 82% yield) after flash chromatography (petroleum ether/ethyl acetate = 3/1). mp=125-126°C. ¹H NMR (400 MHz, CDCl₃): δ 7.50 – 7.46 (m, 4H), 7.30 (d, *J* = 8.6 Hz, 2H), 7.23 – 7.15 (m, 3H), 7.09 (d, *J* = 8.0 Hz, 2H), 6.99 (d, *J* = 8.0 Hz, 2H), 6.66 (s, 1H), 3.51 – 3.46 (m, 2H), 3.45 – 3.37 (m, 1H), 3.00 (dt, *J* = 9.8, 7.3 Hz, 1H), 2.73 (dd, *J* = 12.8, 11.4 Hz, 1H), 2.31 (s, 3H), 1.87 – 1.69 (m, 2H), 1.63 – 1.55 (m, 1H), 1.47 – 1.35 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 144.3, 143.1 (q, *J*_{C-F} = 38.5 Hz), 141.4, 138.8, 135.3, 131.8, 128.7, 128.2, 128.0, 127.7, 127.4, 126.1, 124.6, 124.5, 120.0 (q, *J*_{C-F} = 269.1 Hz), 105.2, 59.1, 49.0, 31.8, 30.0, 22.8, 20.3. ¹⁹F NMR (376 MHz, CDCl₃): δ -62.4. The data are in accordance with the literature.¹⁰

3-(Phenylselanyl)-1H-indole (14). Yellow solid (19 mg, 35% yield). Eluent: petroleum ether/ethyl acetate = 20/1. Mp=135-136 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.36 (brs, 1H), 7.56 (d, J = 7.9 Hz, 1H), 7.40 (d, J = 2.5 Hz, 1H), 7.36 (d, J = 8.1 Hz, 1H), 7.23 – 7.13 (m, 3H), 7.13 – 6.97 (m, 4H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 135.3, 132.8, 130.2, 128.9, 127.9, 127.6, 124.5, 121.9, 119.8, 119.3, 110.3, 97.1. The data are in accordance with the literature.¹⁵

Phenyl(2,4,6-trimethoxyphenyl)selane (**15**). Yellow solid (18 mg, 28% yield). Eluent: petroleum ether/ethyl acetate = 25/1. Mp=135-136 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.41 – 6.70 (m, 5H), 6.14 (s, 2H), 3.79 (s, 3H), 3.72 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 161.9, 160.9, 132.5, 127.7, 127.6, 124.2, 96.0, 90.1, 55.3, 54.4. The data are in accordance with the literature.¹⁵

7. References

- D. Singh, A. M. Deobald, L. R. S. Camargo, G. Tabarelli, O. E. D. Rodrigues and A. L. Braga, Org. Lett., 2010, 12, 3288.
- 2. J. Liu, Q.-Y. Liu, X.-X. Fang, G.-Q. Liu and Y. Ling, Org. Biomol. Chem., 2018, 16, 7454.
- 3. W. Yi, X.-X. Fang, Q.-Y. Liu and G.-Q. Liu, *Eur. J. Org. Chem.*, 2018, 2018, 6671.

- 4. G.-Q. Liu, C.-H. Yang and Y.-M. Li, J. Org. Chem., 2015, 80, 11339.
- 5. G.-Q. Liu, Z.-Y. Ding, L. Zhang, T.-T. Li, L. Li, L. Duan and Y.-M. Li, *Adv. Synth. Catal.*, 2014, **356**, 2303.
- 6. S. D. Karyakarte, T. P. Smith and S. R. Chemler, J. Org. Chem., 2012, 77, 7755.
- Z. Guan, Y. Wang, H. Wang, Y. Huang, S. Wang, H. Tang, H. Zhang and A. Lei, *Green Chem.*, 2019, 21, 4976.
- Q.-B. Zhang, P.-F. Yuan, L.-L. Kai, K. Liu, Y.-L. Ban, X.-Y. Wang, L.-Z. Wu and Q. Liu, Org. Lett., 2019, 21, 885.
- 9. S. Mallick, M. Baidya, K. Mahanty, D. Maiti and S. De Sarkar, *Adv. Synth. Catal.*, 2020, **362**, 1046.
- 10. P.-F. Wang, W. Yi, Y. Ling, L. Ming, G.-Q. Liu and Y. Zhao, *Chin. Chem. Lett.*, 2021, **32**, 2587.
- 11. S. E. Denmark and M. G. Edwards, J. Org. Chem., 2006, 71, 7293.
- 12. K. C. Nicolaou, S. P. Seitz, W. J. Sipio and J. F. Blount, J. Am. Chem. Soc., 1979, 101, 3884.
- 13. A. Toshimitsu, T. Aoai, H. Owada, S. Uemura and M. Okano, *Tetrahedron*, 1985, **41**, 5301.
- 14. Y. Inouye, K. Tokuhisa, M. Mitsuya and H. Kakisawa, Bull. Chem. Soc. Japan, 1990, 63, 2444.
- 15. Q.-B. Zhang, Y.-L. Ban, P.-F. Yuan, S.-J. Peng, J.-G. Fang, L.-Z. Wu and Q. Liu, *Green Chem.*, 2017, **19**, 5559.

8. ORTEP drawing of 5b and 13h

Fig. S3. ORTEP drawing of 5b. Hydrogen atoms were omitted for clarity.

2	
CCDC	2093778
Empirical formula	C ₁₇ H ₁₄ BrNO ₃ Se
Formula weight	439.16
Temperature/K	200.00(10)
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	12.5541(7)
b/Å	6.6650(4)

Table S1 Crystal data and structure refinement for **5b**.

c/Å	20.2899(11)
α/	90
β/	103.002(6)
γ/	90
Volume/Å ³	1654.19(17)
Z	4
$\rho_{calc}g/cm^3$	1.763
μ/mm^{-1}	4.699
F(000)	864.0
Crystal size/mm ³	$0.14 \times 0.12 \times 0.09$
Radiation	Mo K α (λ = 0.71073)
2Θ range for data collection/	4.12 to 49.996
Index ranges	$-14 \le h \le 14, -7 \le k \le 6, -18 \le l \le 24$
Reflections collected	7572
Independent reflections	2898 [$R_{int} = 0.0355$, $R_{sigma} = 0.0461$]
Data/restraints/parameters	2898/0/209
Goodness-of-fit on F ²	1.037
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0333, wR_2 = 0.0599$
Final R indexes [all data]	$R_1 = 0.0484, wR_2 = 0.0659$
Largest diff. peak/hole / e Å ⁻³	0.53/-0.43

Fig. S4. ORTEP drawing of 13. Hydrogen atoms were omitted for clarity.

CCDC	2116754
Empirical formula	$C_{15}H_{17}NO_2S_2Se$
Formula weight	386.37
Temperature/K	100.01(11)
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	8.0638(5)
b/Å	8.2150(7)
c/Å	24.112(2)

Table S1 Crystal data and structure refinement for 13h.

α/	90
β/	90
γ/	90
Volume/Å ³	1597.3(2)
Z	4
$\rho_{calc}g/cm^3$	1.607
μ/mm^{-1}	2.615
F(000)	784.0
Crystal size/mm ³	0.13 ×0.11 ×0.1
Radiation	Mo K α (λ = 0.71073)
2 Θ range for data collection/°	5.238 to 49.996
Index ranges	$-8 \le h \le 9, -9 \le k \le 7, -23 \le l \le 28$
Reflections collected	7121
Independent reflections	2808 [$R_{int} = 0.0524, R_{sigma} = 0.0793$]
Data/restraints/parameters	2808/12/202
Goodness-of-fit on F ²	1.066
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0485, wR_2 = 0.0876$
Final R indexes [all data]	$R_1 = 0.0588, wR_2 = 0.0923$
Largest diff. peak/hole / e Å ⁻³	0.49/-0.69
Flack parameter	0.49(2)

9. Copies of NMR spectra

¹³C{¹H} NMR (100 MHz, CDCl₃) of **3a**

- 80.0

-- 37.5 -- 31.5

С

¹³C{¹H} NMR (100 MHz, CDCl₃) of **3c**

S43

S48

 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7

¹H NMR (400 MHz, CDCl₃) of **3i**

S56

S72

S73

3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 f1 (ppm)

S88

S92

f1 (ppm)

200 190

170 160

S94

CIT

¹H NMR (400 MHz, CDCl₃) of **3bn**

f1 (ppm)

2222833445733555555	44 44 30 30	11
	ຕ່ຕ່ຕ່ຕ່	,
		1

¹H NMR (400 MHz, CDCl₃) of **5a**

48	44	42	39
ς α	ė	က်	ς Ω
\sim	1		

¹H NMR (400 MHz, CDCl₃) of **5b**

 47 42 38	.76
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~
	1

0 SePh ő

¹H NMR (400 MHz, CDCl₃) of **5c**

. 4.0 f1 (ppm) 7.5 7.0 6.5 6.0 5.5 5.0 4.5 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

8.0

80	87	82	82	8	80	80	79	79	53	52	52	52	51	51	50	50	49	48	48	47	47	46	46	45	44	43	23	23	22	22	2	2	20	20	18	18	45	42	39	35	73
<u>г</u> г	. ∖	∠.	∠.	Υ.	∼	Υ.	∠.	۷.	۲.	۲.	۲.	∠.	∼.	∼	Υ.	۲.	۷.	۲.	۲.	Ч.	∼	∼	Γ.	۲.	Γ.	Ν.	۷.	Γ.	Ь.	∼	Υ.	۷.	۷.	۲.	۷.	Υ.	<i>ю</i>	С	ю.	ς.	. .

rrrr

¹H NMR (400 MHz, $CDCl_3$) of **5f**

55 55 55 55 55 55 55 55 55 55 55 55 55	240 240 38 38 40 40 40 40 40 40 40 40 40 40 40 40 40
	ຕໍ່ຕໍ່ຕໍ່ຕໍ່ຕໍ່ຕໍ່ຕໍ່

0 SePh ő Ο

¹H NMR (400 MHz, $CDCI_3$) of **5g**

440 40 339 339 29 29 29 29 29 29	22 23 23 23 23 23 23 23 23 23 23 23 23 2	20 20 19 19 17 17 17 17 16 17 36 36	35 35 35 35 35 35 35 26 26 25 25 25 25 25 25	.63 .63 .61 .57 .57 .57
アファファファ	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	レフレフレレレの	0000004	- 00444

 \cap SePh ö ¹H NMR (400 MHz, CDCl₃) of **5**i

 \cap SePh 0

¹H NMR (400 MHz, CDCl₃) of **5j**

ົ	ົ	<i>с</i>	×α) α	0 (Ω	\sim	ົ	\sim	· ~	σ.) () ¬	1	4	က	က	2	\sim	7 1			ω	\sim		- ແ) (ו פ	ŝ	ŝ	4	4	က	<u></u>	~	· ~	-α	ັ) r	~ (0	ŝ	\mathcal{O}		0	∞	ပ	$\sim $	$\supset \circ$	νı		ŝ
4	4	4	• 4		t '	4	4	က	ന	∩ (°)	0	10	10	V I	\sim	2	2	2	\sim	1 C	v (N	ဖ	ဖ	Ś	ົ) (b (Q	ဖ	ဖ	ဖ	ဖ	ဖ	ယ	C) σ	ົσ) (00	0	യ	ဖ	က	က	\sim	1 こ	10	$\supset c$	ה מ	ົ	ດ
\sim	\sim	\sim	. ト	- ト	< I		\sim	\sim	\sim	~	\sim	. r	- 1	~	\sim	\sim	\sim	\sim	\sim	· ト	- 1	 	4	4	4		t 7	4.	4	4	4	4	4	4	4	4	- r) () (n c	o	က	З	З	З	ŝ) ო) (n c	V (\sim	2
																											1																								- 1	

¹H NMR (400 MHz, CDCl₃) of **5m**

¹H NMR (400 MHz, CDCl₃) of **7e**

S160

¹H NMR (400 MHz, CDCl₃) of **9b**

¹H NMR (400 MHz, CDCl₃) of **9c**

¹H NMR (400 MHz, CDCl₃) of **9d**

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR (100 MHz, CDCl_3) of 9d

SePh

 O_2N

¹H NMR (400 MHz, CDCl₃) of **9e**

f1 (ppm)

¹H NMR (400 MHz, CDCl₃) of **9f**

162.15	133.39 132.06 131.71 129.28 128.69 128.69 118.26 114.70	79.51	60.41

- 31.81

SePh NC Ň

 $^{13}\text{C}\{^1\text{H}\}$ NMR (100 MHz, CDCl_3) of 9f

S193

¹H NMR (400 MHz, $CDCl_3$) of **9h**

162.45	139.33 135.10 135.20 128.20 126.45 126.45 125.03 114.62 114.62	77.83	59.23

-30.90

 $^{13}\text{C}\{^1\text{H}\}$ NMR (100 MHz, CDCl_3) of 9h

¹H NMR (400 MHz, CDCl₃) of **9i**

57	57	56	56	200	21	55	28	28	27	i a		ά	87	87	68	68	67	67	22	22	5	j č	- c	202	86	86	85	84	84	83	83	83	82	12	60	08	00	78	76	74	72	30	28	27	25	40	02	8	98
Ζ.	۷.	7	2	r	÷	2	Ч.	۷.	\sim	: c	i c	o.	0	0	<u>ن</u>	<u>ن</u>	0	0	9 G	i o	i u	v	۰ ۰	4	4	4.	4	4	4	4	4	4	4.	4	4	4	4	ς.	ы.	ы.	ю.	С	С	ŝ	i n	С	ю.	<i>с</i> і.	ц N
			_									_						L	_ L	L	_	L L	٫					L.	ر																				

6	17 79	98 53 53	30	44
55.	44.	50 8 33 33 50 8 33 33	13.	1 0
<u></u>	$\overline{}$		~	
		$\langle \langle \langle \rangle \rangle$	1	

SePh Ο

 $^{13}\text{C}\{^1\text{H}\}$ NMR (100 MHz, CDCl_3) of 9k

0	ດ	ω	ω	ω	ω	\sim	N		ဖ	S	0	0	ດ	ω	ω	ω	\sim	ω	ω	\sim	~	\sim	ဖ	ω	0	0	o	\sim	S	Э	S	4	2	0	Э	З	2		0	0	ω	ω	ω	0	S	က
S	4	4	4	4	4	4	4	4	З	Э	2	2						ດ	o	ດ	ດ	ດ	ດ	σ	ω	ω	0	0	0	0	\sim	\sim	\sim	\sim	2	2	2	2	2	2			ດ	ດ	ດ	ດ
\sim	\sim	\sim	\sim	\sim	\sim	7	\sim	7	9	9	ဖ	9	9	9	9	4	4	4	4	4	4	З	З	З	З	З	Э	Э	З	Э	Э	З	Э	2	2	2	2									

¹H NMR (400 MHz, CDCl₃) of **9**I

SePh

 $^{13}\text{C}\{^1\text{H}\}$ NMR (100 MHz, CDCl_3) of 9I

ന	\sim	ົ	ω	ω	\sim	0	ω	\sim	\sim	യ	ι LC) (N	- T	· 0	ာ	- 00		ധ	ι LC	עכ	ດຈ	4	4	ŝ	4	ന	က	2	<u></u>			0	ω	ဖ	4	ω	ဖ	4	\sim	റ	- 00) ແ	ເດ) –	െ	ထ	ပ်င	,
0	0	ဖ	ဖ	ဖ	ω		0	S	S	S	LC,	\sim	\sim) m	2	\sim	\sim	5	こ	1 C	V C	N	2	ດ	ດ	ດ	ດ	ົດ	တ	ດ	ດ	2				ω	ω	ω	ω	\sim	\sim	10	1 0	1 -	0	0	$\cdot \circ$,
റ	ര്.	ω.	ω	ω.	ω.	ω.	ω.	~	~	~	~	Ī	. ~	~	~	\sim	~			N	Ľ r	<u> </u>	Ň	4.	4.	4	4.	4	4	4	4.	4	4	4	4.	ы.	<i>с</i> і.	<i>с</i> і.	с		ι Ω	i c	်င်	i ci		с	്ന്	5
Ľ					ΞŪ	<u> </u>		. L			. · ,	• ,	·.				<u> </u>	·			. ·			1	J																							

¹H NMR (400 MHz, CDCl₃) of **9m**

¹H NMR (400 MHz, $CDCl_3$) of **90**

SePh

¹H NMR (400 MHz, $CDCl_3$) of **9**q

 $^{13}\text{C}\{^1\text{H}\}$ NMR (100 MHz, CDCl_3) of 9q

\sim	\sim	ω	S		0	ດ	ດ	ω	ω	\sim	ດ	~	~	ဖ	ŝ	4	2	~	ω	2	~	ດ	\sim	ω	~	S	4	Q	4	2		2			\sim	9	\sim	0	9	4	З	З	\sim		0	σ
4	4	4	4	2	2			$\overline{}$			S	S	ഹ	S	S	ω	ω	ω	\sim	S	ŝ	4	4	0	0	0	0	ω	ω	ω	ω	o	o	ဂ	\sim	\sim	ဖ	ဖ	ဖ	ဖ	ဖ	ဖ	ဖ	ဖ	ဖ	S
Γ.	7	∼.	Γ.	Γ.	∼.	~	~	7	~	~	4.	4.	4	4.	4.		က်	က်	ന	က်	က်		с	с	с	<i>с</i> і.	ς.	N.	ы.	ы.	ы.	<u>-</u>	. .	<u>–</u>	<u>–</u>	<u>-</u>	<u> </u>
5	-1										Ē	, i		L.	Ľ.			L			L					_		Ĺ	-1-	Ĺ		_	_	_	< C	2										

¹H NMR (400 MHz, $CDCI_3$) of **9r**

nPr O N-S nPr O N

¹³C{¹H} NMR (100 MHz, CDCl₃) of **9s**

S220

ő	4	8	5	5	90	90	52	52	9	9	4	4	9	ŝ	8	ĝ	2	ő	ő	2	2	g	000	8	൭	9	<u>ר</u>	<u>ה</u>	$\sum_{i=1}^{n} \sum_{j=1}^{n}$	ວິເ	3 2	- 2	2 2	ဂ္ဂ	8	2	g	g	2	5	32	22	4	2	2
Ψ.	Ψ.								7.	<u>.</u>	<u>.</u>	<u>.</u>	<u>ч</u>	2	~		2	2	2	Ņ	Ņ	Ņ	<u>.</u>	<u>.</u>	Ξ.	<u> </u>	<u> </u>	<u> </u>		ວິດ		0 U		~	~	~	~	<u> </u>	0.	2	2	<u> </u>	2	<u> </u>	<u> </u>
1	1	~	5	~	~	~	~	1	5	~	1	~	~	5	5	<u> </u>	5	~	1	1	~	~	Ā	7	7	7	7	יד	יד	5.0	50	2.6	ניסינ	(1)	0	69	65	(1)	(i)	ey.	ey.	0	(r) 	ey .	5

¹H NMR (400 MHz, $CDCI_3$) of **9x**

¹H NMR (400 MHz, CDCl₃) of **9y**

61	60	4	4	4	40	39	39	28	27	26	25	25	23	2	07	00	55	55	54	54	2	2	20	76	75
7	\sim	7	►.	7	N.	7	7	7	7	N.	7	7	N.	7	7	7	Ö	Ö	Ö	Ö	ف	ю.	Ö	4	4

SePh 0-Ν

¹H NMR (400 MHz, $CDCl_3$) of **9z**

¹H NMR (400 MHz, CDCl₃) of **9aa**

¹H NMR (400 MHz, CDCl₃) of **9ab**

¹H NMR (400 MHz, CDCl₃) of **11b**

¹H NMR (400 MHz, CDCl₃) of **11d**

		0	0	ດ	ດ	4	2	2	2	~	\sim	ဖ	S	4	\sim	ဖ	S	\sim	~	0	ŝ	4	Э		0	ດ	\sim	~ (7 C	< r	ν μ) <		~	ດ	ω	\sim	\sim	ø	ဖ	S	4	4	3	
Q	Ø	Q	Q	S	S	4	4	4	4	Э	Э	Э	Э	З	З	З	З	~	ဖ	ŝ	4	0	0	0	0	ດ	ω	N 1	$\sim \circ$	οc	ОŰ	с	ഗ	ဖ	ŝ	S	S	S	S	S	S	S	S	S	S
				. •	. •							. •	. •	. •				- :	- :	- :		- :	. :	- :	- :				•	•	•	•	•				•	•	•	•					•
\sim	4	4	4	N	\sim	\sim	\sim	\sim	\sim	\mathbf{N}	\sim			~ '		- 7				~									<u></u>	<u> </u>															
5	- 1	1													_					L								-	-	L			L L		- 1	7									

PhSe

¹H NMR (400 MHz, CDCl₃) of **11g**

S251

SePh ¹³C{¹H} NMR (100 MHz, CDCl₃) of **11j**

4	3	2	2	$\sum_{i=1}^{n}$	$\sum_{i=1}^{n}$	ŝ	4	က္	2	0	ø	စ္ခ	ŝ	2	$\sum_{i=1}^{n}$	0	4	ŝ	2	Σ	č	N	Ξ	Ξ	õ	O.	0 O	O,	S	ŝ	N	2	$\sum_{i=1}^{n}$	0	O.	စ္	0		<u>o</u>	ト	്യ	54	. C	10	∞	ې د	2
цО.	ιΩ.	цО.	ιΩ.	ഹ	ശ	Ņ	Ņ	Ņ	Γ.	Γ.	0	0	Ω	œ	œ	œ	<u> </u>	<u></u>	<u></u>	<u> </u>	တ္	တ္	တ္	တ္	တ္	ω	œ	œ	က	က	က	က	က	က	Ņ	Ņ	2	2	0	0	C	20	e c	, c	$\frac{1}{2}$	်ဝ	Ŋ.
\sim	\sim	\sim	\sim	\sim	\sim	\sim	2	\sim	\sim	\sim	\sim	\sim	9	9	9	ဖ	9	9	9	9	4	4	4	4	4	4	4	4	З	З	З	З	З	З	З	З	Э	e	Э	()	3	<u>ა</u> ო	((()) ო	5	1 0	N

130.25 129.11 127.22 33.47

78.05	71.86	

 35.11
34.46
26.92
25.67 - 45.74

PhSe $^{13}\text{C}\{^1\text{H}\}$ NMR (100 MHz, CDCl₃) of 11n

SePh

 $^{13}C{^{1}H} NMR (100 \text{ MHz}, \text{CDCI}_{3}) \text{ of } 110$

\sim	ဖ	S	S	4	\sim	ഹ	က	Э	\sim		ω	\sim	ဖ	S	4	З	ω	ဖ	ഹ	ന) う	1 ~		- ($\supset c$	ות	\sim	ŝ	4	Э	С	2	2	ດ	ဖ	S	С	2	2	0	ດ	\sim	ω	4	က	2	0
4	4	4	4	4	\sim	2	2	2	\sim	\sim							0	0	0	C) C	$\sim $	> c	> C	$\supset c$	ກ	တ	ດ	σ	ດ	ດ	ດ	4	З	S	S	S	ŝ	4	4	ŝ	ഹ	Ω I	\sim	\sim	2	2
\sim	. ト	- ト	- ト	~ r	<u> </u>	0	9	9	9	9	9	9	4	4	З	З	Э	Э	З	က	N	2	N	2	2	2	2																				
. i	. i .	1	1	1	1				- i -	i (1						1	÷.						1				1									1							÷.	1		

$$\begin{array}{c} \begin{array}{c} 143.9\\ 142.3\\ 142.3\\ 122.0\\ 122.6\\ 122.6\\ 122.5\\ 122.3\\ 1225.3\\ 1$$

¹³C{¹H} NMR (100 MHz, CDCl₃) of **13a**

¹H NMR (400 MHz, CDCl₃) of **13b**

 $\begin{array}{c} 7.42\\$

ס מ מ מ מ א מ מ א מ מ א מ מ מ		~	
4 6 7 8 8 7 7 6 6 6 6 6	4. C. O. D.	<u>.</u>	റ
44000000000000000	4 7 2 2 8 8	33	Ö
	V 2 SI		1

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR (100 MHz, CDCl_3) of 13c

 $^{13}\text{C}\{^1\text{H}\}$ NMR (100 MHz, CDCl₃) of 13e

ന	\sim	<u>_</u>	· ~	· N	0	ഹ	S	4	4	က	Э	4	2	\sim	Q	4	З	ഹ	ന	ဖ	ပ	<u> </u>) m	~	ω	\sim	ഹ	N	ĉ		ဖ	ŝ	<i>с</i>	<u> </u>	0	ດ	ω	\sim	\sim	ω	ω	\sim	9	ŝ	4	\mathcal{O}
ഹ	ι LC,	ഹ	ι LΩ	・4	4	2	N	2	2	2	2			\sim	\sim	\sim	\sim	2	\sim	ာ) O.	ာ	റ	റ	ø	ω	ω	က	ω	ω	ဖ	ဖ	ဖ	യ	ŝ	4	4	4	4	Э	Э	З	ĉ	<i>с</i>	<i>с</i>	\mathcal{O}
~		~	Ň	` ~ `	~	~	~	~	~	~	~	~	~	m.	m.	m.	m.	, m	, with	i	i ni	i	i ni	i	i	i	i	i	<u> </u>	<u> </u>	—	<u> </u>	—	<u> </u>	<u> </u>	<u> </u>	<u> </u>									
							17	17		17	17	17	17	<u>.</u>	~	V 2													٠.	٠.	٠.	٠.	٠.	` .	٠.	<u>`</u> .	` .	٠.	` .	٠.	` .	`.				

¹H NMR (400 MHz, $CDCI_3$) of **13f**

142.4 132.9 128.5 128.3 128.2 126.0	59.4 59.0	47.3 35.6 35.6 32.6 23.5 23.5 23.5

∕Ts N SePh ¹³C{¹H} NMR (100 MHz, CDCl₃) of **13g**

¹³C{¹H} NMR (100 MHz, CDCl₃) of **13h**

 $\begin{array}{c} -59.1 \\ -48.9 \\ -48.9 \\ \end{array}$

S290

¹H NMR (400 MHz, CDCl₃) of **14**

