Metal-Free Sulfonylation of Arenes with N-Fluorobenzensulfonylimide

via Cleavage of S-N Bonds: Expeditious Synthesis of Diarylsulfones

(Supporting Information)

Xiaohui Zhang,‡,a Yueji Feng,‡,a Yanyan Tuo,a and Qing-Zhong Zheng*,a,b

a State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China

b State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100191, China

E-mail: qzzheng@nxu.edu.cn

Table of Contents

<table>
<thead>
<tr>
<th>General remarks</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimization of reaction conditions</td>
<td>S3</td>
</tr>
<tr>
<td>Experimental procedure and characterization data</td>
<td>S4-S13</td>
</tr>
<tr>
<td>Structural modification of β-estradiol derivative 5</td>
<td>S14</td>
</tr>
<tr>
<td>Synthesis of the intermediate 6 of an inhibitor of Farnesyl-protein transferase</td>
<td>S14</td>
</tr>
<tr>
<td>Gram-scale synthesis of EPAC2 antagonist 8</td>
<td>S15</td>
</tr>
<tr>
<td>Control Experiments</td>
<td>S16</td>
</tr>
<tr>
<td>References</td>
<td>S17</td>
</tr>
<tr>
<td>¹H NMR, ¹³C NMR and ¹⁹F spectra for products</td>
<td>S18-S79</td>
</tr>
</tbody>
</table>
General remarks

All manipulations were conducted with sealed tubes. 1H-NMR spectra were recorded on a Bruker AVIII-400 spectrometers. Chemical shifts (in ppm) were calibrated with Chloroform-d. 13C-NMR spectra were obtained by using the same NMR spectrometers and were calibrated with Chloroform-d. Analytical thin-layer chromatography (TLC) was conducted with TLC plates (Silica gel 60 F254, Qingdao Haiyang). Flash column chromatography was performed on silica gel 200-300 mesh with freshly distilled solvents. HRMS data were recorded on a maXis UHR-TOF mass spectrometer. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification.
Table S1. Optimization of reaction conditions (Representative results).a,b

\begin{center}
\begin{tabular}{cccc}
\hline
Entry & Acid (1.0 eq) & Time (h) & Yieldb (%) \\
\hline
1 & TfOH & 48 & 73 \\
2 & HCl (36\%) & 48 & 37 \\
3 & HNO\textsubscript{3} (65\%) & 48 & 65 \\
4 & AlCl\textsubscript{3} & 48 & 32 \\
5 & – & 48 & – \\
6 & TfOH & 30 & 75 \\
7 & TfOH & 36 & 79 \\
8 & TfOH & 44 & 75 \\
\hline
\end{tabular}
\end{center}

a Reaction conditions: 2a (1.0 mmol) and acid in 1a (2 mL) at 130 °C under air.

b Isolated yields.
Experimental procedure and characterization data

1) 1-Chloro-4-(phenylsulfonyl)benzene (3a) \(^\text{[1]}\)

![Image of 1-Chloro-4-(phenylsulfonyl)benzene]

Typical procedure:
The reaction of chlorobenzene (2.5 mmol, 281.0 mg), N-fluorobenzenesulfonylimide (2a) (0.5 mmol, 157.7 mg), trifluoromethanesulfonic acid (150 mol %, 66 μL), was carried out in 0.5 mL trifluoroacetic acid at 60 °C under air for 24 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 199.2 mg (79%) of 3a as solid: \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 7.93 (dd, \(J = 7.6, 1.6\) Hz, 2H), 7.89 (dd, \(J = 6.8, 2.0\) Hz, 2H), 7.58 (d, \(J = 7.6\) Hz, 1H), 7.52-7.47 (m, 4H). \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 141.1, 140.0, 139.8, 133.4, 129.5, 129.4, 129.1, 127.6. MS (70 eV): m/z (%): [M]\(^+\), 252 (45).

2) 1-Fluoro-4-(phenylsulfonyl)benzene (3b) \(^\text{[2]}\)

![Image of 1-Fluoro-4-(phenylsulfonyl)benzene]

The reaction of fluorobenzene (2.5 mmol, 240.3 mg), N-fluorobenzenesulfonylimide (2a) (0.5 mmol, 157.7 mg), trifluoromethanesulfonic acid (150 mol %, 66 μL), was carried out in 0.5 mL trifluoroacetic acid at 60 °C under air for 24 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 178.7 mg (76%) of 3b as solid: \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 7.99-7.93 (m, 4H), 7.58 (d, \(J = 6.0\) Hz, 1H), 7.57-7.50 (m, 2H), 7.18 (t, \(J = 8.8\) Hz, 2H). \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 165.3 (d, \(^1J_{C-F} = 254.7\) Hz), 141.3, 137.5 (d, \(^4J_{C-F} = 2.5\) Hz), 133.3, 130.4 (d, \(^3J_{C-F} = 9.4\) Hz), 129.3, 127.5, 116.5 (d, \(^2J_{C-F} = 22.4\) Hz). \(^19\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\): -104.2 ppm. MS (70 eV): m/z (%): [M]\(^+\), 236 (50).

3) 1-Bromo-4-(phenylsulfonyl)benzene (3c) \(^\text{[2]}\)
The reaction of bromobenzene (2.5 mmol, 392.5 mg), N-fluorobenzenesulfonimide (2a) (0.5 mmol, 157.7 mg), trifluoromethanesulfonic (150 mol %, 66 μL), was carried out in 0.5 mL trifluoroacetic acid at 100 °C under air for 24 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 203.3 mg (68%) of 3c as solid. 1H NMR (400 MHz, CDCl3) δ: 7.92 (t, J = 1.2 Hz, 2H), 7.81 (dd, J = 6.4, 2.0 Hz, 2H), 7.65 (dd, J = 6.8, 2.0 Hz, 2H), 7.58 (d, J = 7.2 Hz, 1H), 7.52 (dd, J = 8.0, 7.2 Hz, 2H). 13C NMR (100 MHz, CDCl3) δ: 141.0, 140.6, 133.4, 132.5, 129.4, 129.1, 128.4, 127.6. MS (70 eV): m/z (%): [M]+, 296 (35).

4) 1-Iodo-4-(phenylsulfonyl)benzene (3d) [1]

The reaction of iodobenzene (2.5 mmol, 510.0 mg), N-fluorobenzenesulfonimide (2a) (0.5 mmol, 157.7 mg), trifluoromethanesulfonic (150 mol %, 66 μL), was carried out in 0.5 mL trifluoroacetic acid at 100 °C under air for 24 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 218.0 mg (63%) of 3d as solid. 1H NMR (400 MHz, CDCl3) δ: 7.93 (dd, J = 7.6, 1.6 Hz, 2H), 7.86 (dd, J = 6.4, 2.0 Hz, 2H), 7.65 (dd, J = 6.8, 2.0 Hz, 2H), 7.58 (d, J = 7.2 Hz, 1H), 7.52 (dd, J = 8.4, 6.8 Hz, 2H). 13C NMR (100 MHz, CDCl3) δ: 141.2, 141.0, 138.5, 133.4, 129.3, 129.0, 127.5, 101.0. MS (70 eV): m/z (%): [M]+, 344 (100).

5) Sulfonyldibenzene (3e) [2]

The reaction of benzene (1.25 mmol, 97.6 mg), N-fluorobenzenesulfonimide (2a) (0.25 mmol, 78.9 mg), trifluoromethanesulfonic (150 mol %, 33 μL), was carried out in 0.5 mL trifluoroacetic acid at 60 °C under air for 24 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 158.4 mg (73%) of 3e as solid. 1H NMR (400 MHz,
CDCl$_3$ δ: 7.95 (dd, $J = 8.0$, 1.2 Hz, 4H), 7.56 (dd, $J = 4.0$, 1.2 Hz, 2H), 7.51 (dd, $J = 8.0$, 7.2 Hz, 4H). 13C NMR (100 MHz, CDCl$_3$) δ: 141.4, 133.1, 129.2, 127.6. MS (70 eV): m/z (%): [M]$^+$, 218 (25).

6) 1-Methyl-4-(phenylsulfonyl)benzene (3f)

![Chemical structure](image)

The reaction of toluene (2.5 mmol, 230.4 mg), N-fluorobenzenesulfonimide (2a) (0.5 mmol, 157.7 mg), trifluoromethanesulfonic (150 mol %, 66 μL), was carried out in 0.5 mL trifluoroacetic acid at 100 °C under air for 24 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 185.8 mg (80%) (1.3:1) of 3f as solid.

(major): 1H NMR (400 MHz, CDCl$_3$) δ: 7.93 (t, $J = 1.6$ Hz, 2H), 7.83 (d, $J = 8.4$ Hz, 2H), 7.54 (d, $J = 7.6$ Hz, 1H), 7.49 (t, $J = 6.8$ Hz, 2H), 7.30 (d, $J = 8.4$ Hz, 2H), 2.40 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ: 144.1, 141.9, 138.6, 133.0, 129.9, 129.2, 127.7, 127.4, 21.5. (minor): 1H NMR (400 MHz, CDCl$_3$) δ: 8.22 (dd, $J = 8.0$, 1.6 Hz, 1H), 7.86 (t, $J = 1.2$ Hz, 2H), 7.57 (d, $J = 7.2$ Hz, 1H), 7.52-7.47 (m, 3H), 7.41 (d, $J = 8.0$ Hz, 1H), 7.23 (d, $J = 7.6$ Hz, 1H), 2.44 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ: 141.2, 138.7, 137.9, 133.6, 133.0, 132.6, 129.4, 129.0, 127.6, 126.4, 20.2. MS (70 eV): m/z (%): [M]$^+$, 232 (100).

7) 1-Isopropyl-4-(phenylsulfonyl)benzene (3g)

![Chemical structure](image)

The reaction of cumene (2.5 mmol, 300.4 mg), N-fluorobenzenesulfonimide (2a) (0.5 mmol, 157.7 mg), trifluoromethanesulfonic (150 mol %, 66 μL), was carried out in 0.5 mL trifluoroacetic acid at 100 °C under air for 24 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 256.2 mg (97%) (4:1) of 3g as solid.

(major): 1H NMR (400 MHz, CDCl$_3$) δ: 7.96-7.94 (m, 2H), 7.86 (dd, $J = 6.4$, 1.6 Hz, 2H), 7.54 (t, $J = 0.8$ Hz, 1H), 7.52-7.48 (m, 4H), 7.39 (s, 1H), 7.35 (d, $J = 8.4$ Hz, 2H), 2.94 (d, $J = 6.8$ Hz, 1H), 1.25 (d, $J = 7.6$ Hz, 3H), 1.23 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ: 154.8, 141.9, 138.8, 133.0, 129.2, 127.8, 127.6, 127.4, 34.2, 23.6. (minor): 1H NMR (400 MHz, CDCl$_3$) δ: 8.21 (dd, $J = 8.0$, 1.6
Hz, 1H), 7.86 (dd, J = 6.8, 1.6 Hz, 2H), 7.57-7.48 (m, 4H), 7.31 (d, J = 7.6 Hz, 1H), 2.86 (dd, J = 15.2, 7.2 Hz, 2H), 1.03 (t, J = 7.6 Hz, 3H). 13C NMR (100 MHz, CDCl$_3$) δ: 144.1, 141.9, 138.4, 133.7, 132.9, 130.9, 129.5, 129.0, 127.4, 126.2, 25.5, 15.0. MS (70 eV): m/z (%): [M]$^+$, 260 (80).

8) 1-(tert-Butyl)-4-(phenylsulfonyl)benzene (3h)$^{[5]}$

![Structure of 1-(tert-Butyl)-4-(phenylsulfonyl)benzene (3h)]

The reaction of tert-butylbenzene (2.5 mmol, 335.6 mg), N-fluorobenesulfonimide (2a) (0.5 mmol, 157.7 mg), trifluoromethanesulfonic (150 mol %, 66 μL), was carried out in 0.5 mL trifluoroacetic acid at 60 $^\circ$C under air for 24 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 251.4 mg (92%) of 3h as solid. 1H NMR (400 MHz, CDCl$_3$) δ: 7.96-7.94 (m, 2H), 7.86 (dd, J = 6.4, 1.6 Hz, 2H), 7.54 (t, J = 0.8 Hz, 1H), 7.52-7.48 (m, 4H), 1.31 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ: 154.8, 141.9, 138.8, 133.0, 129.2, 127.8, 127.6, 127.4, 34.2, 23.6. MS (70 eV): m/z (%): [M]$^+$, 274 (25).

9) 1-Cyclohexyl-4-(phenylsulfonyl)benzene (3i)

![Structure of 1-Cyclohexyl-4-(phenylsulfonyl)benzene (3i)]

The reaction of cyclohexylbenzene (2.5 mmol, 400.7 mg), N-fluorobenesulfonimide (2a) (0.5 mmol, 157.7 mg), trifluoromethanesulfonic (150 mol %, 66 μL), was carried out in 0.5 mL trifluoroacetic acid at 80 $^\circ$C under air for 24 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 224.8 mg (75%) (4:1) of 3i as solid. (major): 1H NMR (400 MHz, CDCl$_3$) δ: 7.95 (d, J = 7.2 Hz, 2H), 7.85 (d, J = 8.4 Hz, 2H), 7.57-7.48 (m, 3H), 7.31 (t, J = 8.4 Hz, 2H), 2.55 (d, J = 8.4 Hz, 1H), 1.84-1.74 (d, J = 6.4 Hz, 4H), 1.43-1.22 (m, 6H). 13C NMR (100 MHz, Chloroform-d) δ: 153.9, 141.9, 138.7, 133.0, 129.2, 127.8, 127.7, 127.5, 44.5, 34.0, 26.6, 26.0. (minor): 1H NMR (400 MHz, CDCl$_3$) δ: 8.27 (dd, J = 8.4, 1.6 Hz, 1H), 7.86 (dd, J = 7.2, 1.6 Hz, 2H), 7.56 (t, J = 4.4 Hz, 2H), 7.51 (t, J = 1.6 Hz, 2H), 7.40-7.36 (m, 2H), 1.67 (d, J = 6.8 Hz, 4H), 1.23 (t, J = 6.4 Hz, 6H). 13C NMR (100 MHz, CDCl$_3$) δ: 147.8, 142.5, 138.0, 133.8, 132.8, 129.0, 128.9, 128.8, 127.4, 126.0, 39.5, 33.7, 26.7, 25.9. HRMS
(EI), m/z calcd. for C₁₈H₂₀O₂S [M⁺]: 300.1184, found: 300.1177.

10) 1-Methoxy-4-(phenylsulfonyl)benzene (3j)

\[
\text{MeO} \quad \text{S} \quad \text{O} \quad \text{Ph}
\]

The reaction of anisole (2.5 mmol, 270.4 mg), N-fluorobenzenesulfonylimide (2a) (0.5 mmol, 157.7 mg), trifluoromethanesulfonic (150 mol %, 66 μL), was carried out in 0.5 mL trifluoroacetic acid at 100 °C under air for 24 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 224.0 mg (90%) (1.5:1) of 3j as solid.

(major): ¹H NMR (400 MHz, CDCl₃) δ: 7.92 (t, J = 6.8 Hz, 2H), 7.88 (dd, J = 7.2, 2.0 Hz, 2H), 7.54 (d, J = 7.2 Hz, 1H), 7.50 (t, J = 1.6 Hz, 2H), 6.97 (dd, J = 7.2, 2.4 Hz, 2H), 3.85 (s, 3H).

¹³C NMR (100 MHz, Chloroform-d) δ: 163.3, 142.3, 133.0, 132.8, 129.9, 129.2, 127.3, 114.5, 55.6. (minor): ¹H NMR (400 MHz, CDCl₃) δ: 8.17 (dd, J = 7.6, 1.6 Hz, 1H), 7.97 (t, J = 1.2 Hz, 2H), 7.56 (dd, J = 7.6, 2.0 Hz, 2H), 7.49 (t, J = 7.2 Hz, 2H), 7.12 (d, J = 7.6 Hz, 1H), 6.91 (d, J = 8.4 Hz, 1H), 3.76 (s, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ: 157.0, 141.1, 135.5, 132.9, 129.8, 128.9, 128.4, 128.3, 120.5, 112.4, 55.8. MS(70 eV): m/z (%): [M⁺], 248 (60).

11) 4-(Phenylsulfonyl)phenol (3k)

\[
\text{O} \quad \text{S} \quad \text{O} \quad \text{Ph}
\]

The reaction of phenol (0.8 mmol, 75.3 mg), N-fluorobenzenesulfonylimide (2a) (0.4 mmol, 126.4 mg), trifluoromethanesulfonic (500 mol %, 177 μL), was carried out in 1.0 mL trifluoroacetic acid at 100 °C under air for 12 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 29.2 mg (16%) of 3k as solid. ¹H NMR (400 MHz, CDCl₃) δ: 7.94-7.90 (m, 2H), 7.86-7.82 (m, 2H), 7.57-7.47 (m, 3H), 6.93-6.89 (m, 2H), 5.62 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ: 160.6, 141.8, 133.7, 132.07, 130.0, 129.3, 127.1, 116.2. HRMS: m/z [M+Na⁺]: calcd for C₁₂H₁₀NaO₃S: 257.0243; found: 257.0241.

12) 1,4-Dimethyl-2-(phenylsulfonyl)benzene (3m)
The reaction of \(p \)-xylene (2.5 mmol, 268.1 mg), \(N \)-fluorobenzenesulfonylimide (2a) (0.5 mmol, 157.7 mg), trifluoromethanesulfonic (150 mol %, 66 \(\mu \)L), was carried out in 0.5 mL trifluoroacetic acid at 60 °C under air for 24 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 152.3 mg (62%) of 3m as solid. \(^1\)H NMR (400 MHz, CDCl\(_3 \)) \(\delta \): 8.05 (d, \(J = 0.8 \) Hz, 1H), 7.86 (t, \(J = 1.6 \) Hz, 2H), 7.56 (d, \(J = 7.2 \) Hz, 1H), 7.50 (dd, \(J = 8.0, 6.8 \) Hz, 2H), 7.28 (d, \(J = 0.8 \) Hz, 1H), 7.11 (d, \(J = 8.0 \) Hz, 1H). \(^{13}\)C NMR (100 MHz, CDCl\(_3 \)) \(\delta \): 141.2, 138.2, 136.3, 134.6, 134.3, 132.8, 132.5, 129.6, 128.9, 127.4, 20.8, 19.6. MS (70 eV): m/z (%): [M]\(^+\), 246 (90).

13) 1-Chloro-4-methyl-2-(phenylsulfonyl)benzene (3n)

The reaction of 1-chloro-4-methylbenzene (2.5 mmol, 316.5 mg), \(N \)-fluorobenzenesulfonylimide (2a) (0.5 mmol, 157.7 mg), trifluoromethanesulfonic (150 mol %, 66 \(\mu \)L), was carried out in 0.5 mL trifluoroacetic acid at 100 °C under air for 24 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 170.0 mg (64%) of 3n as solid. \(^1\)H NMR (400 MHz, CDCl\(_3 \)) \(\delta \): 8.22 (d, \(J = 2.0 \) Hz, 1H), 7.88 (t, \(J = 1.6 \) Hz, 2H), 7.60 (d, \(J = 7.2 \) Hz, 1H), 7.53 (dd, \(J = 8.0, 6.8 \) Hz, 2H), 7.45 (dd, \(J = 8.0, 2.4 \) Hz, 1H), 7.17 (d, \(J = 8.0 \) Hz, 1H), 2.40 (s, 3H). \(^{13}\)C NMR (100 MHz, CDCl\(_3 \)) \(\delta \): 140.5, 140.3, 136.3, 134.0, 133.5, 133.4, 132.5, 129.2, 129.1, 127.8, 19.6. HRMS (EI), m/z calcd. for C\(_{13}\)H\(_{11}\)ClO\(_2\)S [M]\(^+\): 266.0168, found: 266.0174.

14) 2,4-Dimethyl-1-(phenylsulfonyl)benzene (3o) \(^6\)

The reaction of \(m \)-xylene (2.5 mmol, 265.0 mg), \(N \)-fluorobenzenesulfonylimide (2a) (0.5 mmol, 157.7 mg), trifluoromethanesulfonic (150 mol %, 66 \(\mu \)L), was carried out in 0.5 mL trifluoroacetic
acids at 60 °C under air for 24 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 208.0 mg (84%) of 3o as solid. 1H NMR (400 MHz, CDCl$_3$) δ: 8.11 (d, J = 0.8 Hz, 1H), 7.84 (t, J = 1.6 Hz, 2H), 7.60 (d, J = 7.6 Hz, 1H), 7.51-7.47 (m, 2H), 7.20 (d, J = 8.0 Hz, 1H), 7.04 (s, 1H), 2.39 (s, 3H), 2.37 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ: 144.4, 141.5, 137.7, 135.8, 133.3, 132.8, 129.6, 128.9, 127.5, 127.0, 21.3, 20.1. MS (70 eV): m/z (%): [M]$^+$, 246 (60).

15) 2,4-Dichloro-1-(phenylsulfonyl)benzene (3p)

The reaction of 1,3-dichlorobenzene (2.5 mmol, 371.2 mg), N-fluorobenzenesulfonimide (2a) (0.5 mmol, 157.7 mg), trifluoromethanesulfonic (150 mol %, 66 μL), was carried out in 0.5 mL trifluoroacetic acid at 100 °C under air for 24 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 169.6 mg (59%) of 3p as solid. 1H NMR (400 MHz, CDCl$_3$) δ: 8.31 (d, J = 8.8 Hz, 1H), 7.94 (dd, J = 7.2, 5.6 Hz, 2H), 7.62 (d, J = 7.6 Hz, 1H), 7.53 (t, J = 7.2 Hz, 2H), 7.49-7.45 (m, 2H). 13C NMR (100 MHz, CDCl$_3$) δ: 140.6, 139.6, 137.0, 133.9, 133.7, 132.0, 131.8, 129.0, 128.5, 127.6. HRMS (EI), m/z calcd. for C$_{12}$H$_8$Cl$_2$O$_2$S [M]$^+$: 285.9622, found: 285.9625.

16) 2-Chloro-1-methyl-4-(phenylsulfonyl)benzene (3q) $^{[7]}$

The reaction of 1-chloro-2-methylbenzene (2.5 mmol, 316.5 mg), N-fluorobenzenesulfonimide (2a) (0.5 mmol, 157.7 mg), trifluoromethanesulfonic (150 mol %, 66 μL), was carried out in 0.5 mL trifluoroacetic acid at 100 °C under air for 24 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 225.6 mg (85%) (3.5:1) of 3q as solid. (major): 1H NMR (400 MHz, CDCl$_3$) δ: 7.96 (m, 2H), 7.81 (d, J = 2.0 Hz, 1H), 7.71 (dd, J = 8.4, 2.0 Hz, 1H), 7.58 (d, J = 6.0 Hz, 1H), 7.56-7.49 (m, 2H), 7.45 (d, J = 8.4 Hz, 1H), 2.40
(d, J = 2.4 Hz, 3H). 13C NMR (100 MHz, CDCl$_3$) δ: 141.2, 139.9, 139.7, 137.7, 133.3, 129.9, 129.7, 129.3, 127.6, 126.3, 20.1. (minor): 1H NMR (400 MHz, CDCl$_3$) δ: 7.95 – 7.91 (m, 3H), 7.72 (dd, J = 8.0, 2.4 Hz, 1H), 7.59 -7.57 (m, 1H), 7.54-7.50 (m, 2H), 7.36 (d, J = 8.0 Hz, 1H), 2.41 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ: 142.2, 139.9, 139.7, 137.7, 133.3, 129.7, 129.3, 127.6, 126.3, 20.1.

17) 1,3,5-Trimethyl-2-(phenylsulfonyl)benzene (3r)$^{[1]}$

![1,3,5-Trimethyl-2-(phenylsulfonyl)benzene (3r)](image)

The reaction of mesitylene (2.5 mmol, 300.5 mg), N-fluorobenzenesulfonimide (2a) (0.5 mmol, 157.7 mg), trifluoromethanesulfonic (150 mol %, 66 μL), was carried out in 0.5 mL trifluoroacetic acid at 80 $^\circ$C under air for 24 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 183.2 mg (70%) of 3s as solid. 1H NMR (400 MHz, CDCl$_3$) δ: 7.78 (t, J = 1.2, Hz, 2H), 7.54 (s, 1H), 7.47 (t, J = 1.6, Hz, 2H), 6.94 (s, 2H), 2.59 (s, 6H), 2.30 (s, 3H) ppm. 13C NMR (100 MHz, CDCl$_3$) δ: 143.4, 143.4, 140.0, 133.7, 132.5, 132.2, 128.8, 126.2, 22.8, 21.0 ppm. MS (70 eV): m/z (%): [M]$^+$, 260 (40).

18) 1-Chloro-4-tosylbenzene (4a)$^{[8]}$

![1-Chloro-4-tosylbenzene (4a)](image)

The reaction of chlorobenzene (2.5 mmol, 281.0 mg), N-fluoro-4-methyl-N-tosylbenzenesulfonamide (2b) (0.5 mmol, 171.7 mg), trifluoromethanesulfonic (150 mol %, 66 μL), was carried out in 0.5 mL trifluoroacetic acid at 60 $^\circ$C under air for 24 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 204.3 mg (76%) of 4a as solid. 1H NMR (400 MHz, CDCl$_3$) δ: 7.86 (dd, J = 19.2, 6.8 Hz, 4H), 7.46 (d, J = 6.8 Hz, 2H), 7.31 (d, J =8.0 Hz, 2H), 2.41 (s, 3H) ppm. 13C NMR (100 MHz, CDCl$_3$) δ: 144.1, 141.9, 133.0, 129.9, 129.2, 127.7, 127.5, 21.6. MS (70 eV): m/z (%): [M]$^+$, 266 (60).

19) 1-Fluoro-4-tosylbenzene (4b)$^{[21]}$
The reaction of fluorobenzene (2.5 mmol, 242.7 mg), N-fluoro-4-methyl-N-tosylbenzenesulfonamide (4b) (0.5 mmol, 171.7 mg), trifluoromethanesulfonic (150 mol %, 66 μL), was carried out in 0.5 mL trifluoroacetic acid at 60 °C under air for 24 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 204.7 mg (82%) of 4b as solid. 1H NMR (400 MHz, CDCl3) δ: 7.94 (dd, J = 8.8, 5.6 Hz, 2H), 7.81 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 7.16 (dd, J = 8.8, 7.6 Hz, 2H), 2.40 (s, 3H). 13C NMR (100 MHz, CDCl3) δ: 165.3 (d, 1J_{C-F} = 253.6 Hz), 144.3, 138.4, 138.0 (d, 4J_{C-F} = 2.5 Hz), 130.3 (d, 3J_{C-F} = 9.4 Hz), 130.0, 127.6, 116.5 (d, 2J_{C-F} = 21.9 Hz), 21.6. 19F NMR (376 MHz, CDCl3): δ -104.2 ppm. MS (70 eV): m/z (%): [M]+, 250 (100).

20) 4,4'-Sulfonylbis(methylbenzene) (4c)[8]

The reaction of toluene (2.5 mmol, 230.4 mg), N-fluoro-4-methyl-N-tosylbenzenesulfonamide (2b) (0.5 mmol, 171.7 mg), trifluoromethanesulfonic (150 mol %, 66 μL), was carried out in 0.5 mL trifluoroacetic acid at 60 °C under air for 24 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 201.7 mg (82%) (3:1) of 4c as solid. (major): 1H NMR (400 MHz, CDCl3) δ: 7.81 (d, J = 7.6 Hz, 4H), 7.26 (d, J = 8.0 Hz, 4H), 2.35 (s, 6H). 13C NMR (100 MHz, CDCl3) δ: 143.8, 138.8, 129.7, 127.3, 21.3. (minor): 1H NMR (400 MHz, CDCl3) δ: 8.19 (dd, J = 7.6, 1.2 Hz, 1H), 7.75 (d, J = 8.0 Hz, 2H), 7.47 (td, J = 7.5, 1.6 Hz, 1H), 7.42 - 7.33 (m, 1H), 7.32 - 7.27 (m, 2H), 7.22 (dd, J = 7.4, 1.4 Hz, 1H), 2.44 (s, 3H), 2.41 (s, 3H). 13C NMR (100 MHz, CDCl3) δ: 143.9, 139.0, 138.1, 133.4, 132.5, 129.6, 129.2, 127.7, 126.4, 21.5, 20.1. HRMS: m/z [M+Na]+: calcld for C14H14NaO2S: 269.0607; found: 269.0605.

21) 1-Methyl-4-(phenylsulfonyl)benzene (3f)[2]

The reaction of benzene (2.5 mmol, 195.3 mg), N-fluoro-4-methyl-N-tosylbenzenesulfonamide (2b) (0.5 mmol, 171.7 mg), trifluoromethanesulfonic (150 mol %, 66 μL), was carried out in 0.5 mL
trifluoroacetic acid at 60 °C under air for 24 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 80.1 mg (34%) of 3f as solid. 1H NMR (400 MHz, CDCl$_3$) δ: 7.93 (t, $J = 1.6$ Hz, 2H), 7.83 (d, $J = 8.4$ Hz, 2H), 7.54 (d, $J = 7.6$ Hz, 2H), 7.49 (t, $J = 6.8$ Hz, 2H), 7.30 (d, $J = 8.4$ Hz, 2H), 2.40 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ: 144.1, 141.9, 138.6, 133.0, 129.9, 129.2, 127.7, 127.4, 21.5. MS (70 eV): m/z (%): [M]$^+$, 232 (100).

22) 1-Methyl-4-(phenylsulfonyl)benzene (3f)$^{[2]}$

![Chemical structure of 1-Methyl-4-(phenylsulfonyl)benzene](image)

The reaction of benzene (2.5 mmol, 195.3 mg), N-fluoro-4-methyl-N-(phenylsulfonyl)benzenesulfonamide (2c) (0.5 mmol, 164.7 mg), trifluoromethanesulfonic (150 mol %, 66 μL), was carried out in 0.5 mL trifluoroacetic acid at 100 °C under air for 24 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 70.1 mg (60%) of 3f as solid. 1H NMR (400 MHz, CDCl$_3$) δ: 7.93 (t, $J = 1.6$ Hz, 2H), 7.83 (d, $J = 8.4$ Hz, 2H), 7.54 (d, $J = 7.6$ Hz, 2H), 7.49 (t, $J = 6.8$ Hz, 2H), 7.30 (d, $J = 8.4$ Hz, 2H), 2.40 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ: 144.1, 141.9, 138.6, 133.0, 129.9, 129.2, 127.7, 127.4, 21.5. MS (70 eV): m/z (%): [M]$^+$, 232 (100).

23) Sulfonyldibenzene (3e)$^{[2]}$

![Chemical structure of Sulfonyldibenzene](image)

The reaction of benzene (2.5 mmol, 195.3 mg), N-fluoro-4-nitro-N-(phenylsulfonyl)benzenesulfonamide (2d) (0.5 mmol, 180.2 mg), trifluoromethanesulfonic (150 mol %, 66 μL), was carried out in 0.5 mL trifluoroacetic acid at 60 °C under air for 24 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 40.1 mg (35%) of 3e as solid. 1H NMR (400 MHz, CDCl$_3$) δ: 7.95 (dd, $J = 8.0$, 1.2 Hz, 4H), 7.56 (dd, $J = 4.0$, 1.2 Hz, 2H), 7.51 (dd, $J = 8.0$, 7.2 Hz, 4H). 13C NMR (100 MHz, CDCl$_3$) δ: 141.4, 133.1, 129.2, 127.6. MS (70 eV): m/z (%): [M]$^+$, 218 (25).
Structural modification of β-estradiol derivative 5

(8R,9S,13S,14S)-3,17-Dimethoxy-13-methyl-2-(phenylsulfonyl)-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthrene (5)

The reaction of (8R,9S,13S,14S)-3,17-dimethoxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthrene (0.25 mmol, 75.0 mg), N-fluoro-N-(phenylsulfonyl)benzenesulfonamide (2a) (0.0625 mmol, 19.8 mg), trifluoromethanesulfonic (600 mol %, 33 μL), was carried out in 0.5 mL trifluoroacetic acid at 30 °C under air for 24 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 30.2 mg (55%) of 5 as solid.

1H NMR (400 MHz, CDCl3) δ: 8.04 (s, 1H), 7.97-7.95 (m, 2H), 7.56-7.52 (m, 1H), 7.46 (dd, J = 14.8, 7.6 Hz, 2H), 6.58 (s, 1H), 3.69 (s, 3H), 3.47 (s, 3H), 3.32 (dd, J = 16.8, 8.4 Hz, 1H), 2.85 (dd, J = 8.8, 4.2 Hz, 2H), 2.42 (dt, J = 12.9, 3.5 Hz, 1H), 2.27- 2.14 (m, 1H), 2.08 (ddd, J = 13.8, 9.5, 3.5 Hz, 2H), 1.88 (ddt, J = 12.3, 4.4, 2.5 Hz, 1H), 1.75-1.22 (m, 8H). 13C NMR (100 MHz, CDCl3) δ: 154.7, 145.4, 141.9, 133.1, 132.6, 128.4, 128.2, 126.8, 126.9, 126.1, 112.7, 90.6, 76.7, 57.9, 55.8, 50.2, 43.7, 43.2, 38.3, 37.8, 30.1, 27.7, 26.7, 26.4, 23.0, 11.5. HRMS (EI), m/z calcd. for C26H32O4S [M]+: 440.2021, found: 440.2028.

Synthesis of the intermediate 6 of an inhibitor of Farnesyl-protein transferase

4-Bromo-2-methyl-1-(phenylsulfonyl)benzene (6) [9]

The reaction of 1-bromo-3-methylbenzene (1.25 mmol, 427.6 mg), N-fluoro-N-(phenylsulfonyl)benzenesulfonamide (2a) (0.5 mmol, 158.0 mg), trifluoromethanesulfonic (0.75 mmol, 66 μL), was carried out in 0.5 mL trifluoroacetic acid at 60 °C under air for 24 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 196.0 mg (63%) of 6 as solid. (major): 1H NMR (400 MHz, CDCl3) δ: 8.04 (s, 1H), 7.97-7.95 (m, 2H), 7.56-7.52 (m, 1H), 7.46 (dd, J = 14.8, 7.6 Hz, 2H), 6.58 (s, 1H), 3.69 (s, 3H), 3.47 (s, 3H), 3.32 (dd, J = 16.8, 8.4 Hz, 1H), 2.85 (dd, J = 8.8, 4.2 Hz, 2H), 2.42 (dt, J = 12.9, 3.5 Hz, 1H), 2.27- 2.14 (m, 1H), 2.08 (ddd, J = 13.8, 9.5, 3.5 Hz, 2H), 1.88 (ddt, J = 12.3, 4.4, 2.5 Hz, 1H), 1.75-1.22 (m, 8H).
MHz, CDCl$_3$) δ: 8.08 (d, $J = 8.4$ Hz, 1H), 7.85 (m, 2H), 7.59 (d, $J = 3.6$ Hz, 1H), 7.54-7.50 (m, 3H), 7.40 (d, $J = 1.2$ Hz, 1H), 2.41 (s, 3H) ppm. 13C NMR (100 MHz, CDCl$_3$) δ: 140.8, 139.9, 138.0, 135.4, 133.2, 130.9, 129.7, 129.1, 128.5, 127.6, 20.0 ppm. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 56.1 mg (18%) of 6 (minor) as solid. (minor): 1H NMR (400 MHz, CDCl$_3$) δ: 8.29 (d, $J = 8.0$ Hz, 1H), 7.94 (d, $J = 7.6$ Hz, 2H), 7.58 (d, $J = 3.6$ Hz, 1H), 7.52-7.48 (m, 3H), 7.33 (d, $J = 8.0$ Hz, 1H), 2.39 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ: 146.0, 140.2, 136.9, 136.0, 133.2, 131.3, 128.7, 128.5, 128.4, 120.9, 21.0. HRMS: m/z [M+Na]$^+$: calcd for C$_{13}$H$_{11}$BrNaO$_2$S: 332.9555; found: 332.9553.

Gram-scale synthesis of EPAC2 antagonist 8

1,3,5-Trimethyl-2-tosylbenzene (8) $^{[6]}$

![1,3,5-Trimethyl-2-tosylbenzene (8)]

The reaction of mesitylene (23.1 mmol, 2.78 g), N-fluoro-4-methyl-N-tosylbenzenesulfonamide (2b) (4.62 mmol, 1.59 g), trifluoromethanesulfonic (150 mol %, 66 μL), was carried out in 0.5 mL CH$_3$CN at 130 $^\circ$C under air for 36 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford 2.38 g (94%) of 8 as solid. 1H NMR (400 MHz, CDCl$_3$) δ: 7.67 (d, $J = 8.4$ Hz, 2H), 7.26 (t, $J = 5.6$ Hz, 2H), 6.93 (s, 2H), 2.59 (s, 6H), 2.40 (s, 3H), 2.29 (s, 3H) ppm. 13C NMR (100 MHz, CDCl$_3$) δ: 143.3, 143.1, 140.5, 139.9, 134.1, 132.1, 129.4, 126.2, 22.8, 21.5, 21.0 ppm. HRMS: m/z [M+Na]$^+$: calcd for C$_{16}$H$_{18}$NaO$_2$S: 297.0920; found: 297.0917.
Scheme S1 Control Experiments

Typical procedure:

The reaction of chlorobenzene 1a (2.5 mmol, 281.0 mg), 2 (0.5 mmol), trifluoromethanesulfonic (150 mol %, 66 μL), was carried out in 0.5 mL trifluoroacetic acid at 60 °C under air for 24 h as monitored by TLC. The resulting mixture was concentrated and purified by flash chromatography on silica gel to afford the product.
References

1H NMR, 13C NMR and 19F NMR spectra for products
3J (minor)
4c (minor)