N-alkylation of organonitrogen compounds catalyzed by methylene-linked bis-NHC half-sandwich ruthenium complexes

Zakaria Moutaoukil,a Emmanuel Serrano-Díez,a Isidro G. Collado,a Manuel Jiménez-Tenorio*b and José Manuel Botubol-Ares*a

*aUniversity of Cadiz, Departamento de Química Orgánica-INBIO, Facultad de Ciencias, Torre Sur, 4ª planta, 11510, Puerto Real, Cádiz

*bUniversity of Cadiz, Departamento de Ciencias de los Materiales e Ingeniería Metalúrgica y Química Inorgánica-INBIO, Facultad de Ciencias, Torre Norte, 1ª planta, 11510, Puerto Real, Cádiz

josemanuel.botubol@uca.es

1. Optimization of reaction conditions (Tables S1-S4) S2-S4
2. General method for the N-alkylation of amines with alcohols. Characterization data for compounds 6a-o, 8a-q, 9, 10a-b and 11 S5-S9
3. General method for the N-alkylation of amides with alcohols. Characterization data for compounds 13a-h S9-S11
4. General method for the N-alkylation of sulfonamides with alcohols. Characterization data for compounds 15a-i S11-S12
5. NMR spectra ... S13-S122
6. References ... S123-S125
1. Optimization of reaction conditions

Table S1. Initial Screening of Reaction Conditions for N-alkylation of Aniline with Benzyl Alcohol

<table>
<thead>
<tr>
<th>entry</th>
<th>catalyst (mol %)</th>
<th>base (mol %)</th>
<th>yield 6a (%)<sup>b</sup></th>
<th>yield 7a (%)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 (0.5)</td>
<td>K<sub>2</sub>CO<sub>3</sub> (10)</td>
<td>10</td>
<td>31</td>
</tr>
<tr>
<td>2</td>
<td>2 (0.5)</td>
<td>K<sub>2</sub>CO<sub>3</sub> (10)</td>
<td>18</td>
<td>48</td>
</tr>
<tr>
<td>3</td>
<td>3 (0.5)</td>
<td>K<sub>2</sub>CO<sub>3</sub> (10)</td>
<td>11</td>
<td>44</td>
</tr>
<tr>
<td>4</td>
<td>1 (0.5)</td>
<td>KOiPr (10)</td>
<td>70</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>2 (0.5)</td>
<td>KOiPr (10)</td>
<td>82</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>3 (0.5)</td>
<td>KOiPr (10)</td>
<td>75</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>1 (0.5)</td>
<td>NaOH (10)</td>
<td>93</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>2 (0.5)</td>
<td>NaOH (10)</td>
<td>89</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>3 (0.5)</td>
<td>NaOH (10)</td>
<td>85</td>
<td>11</td>
</tr>
<tr>
<td>10</td>
<td>1 (0.5)</td>
<td>tBuOK (10)</td>
<td>80</td>
<td>18</td>
</tr>
<tr>
<td>11</td>
<td>2 (0.5)</td>
<td>tBuOK (10)</td>
<td>92</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>3 (0.5)</td>
<td>tBuOK (10)</td>
<td>85</td>
<td>14</td>
</tr>
<tr>
<td>13</td>
<td>1 (0.5)</td>
<td>KOH (10)</td>
<td>93</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>2 (0.5)</td>
<td>KOH (10)</td>
<td>>99</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>3 (0.5)</td>
<td>KOH (10)</td>
<td>96</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>-</td>
<td>KOH (10)</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>17</td>
<td>2 (0.5)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

^aUnless noted otherwise, reactions were carried out with aniline (1.0 mmol), benzyl alcohol (1.0 mmol), base (10 mol %) and Ru cat. (0.5 mol %) in 2 mL of toluene at 100 ºC.^bDetermined by GC-MS after 2h.
Table S2. Solvent Screening for N-alkylation of Aniline with Benzyl Alcohol Using Complex 2\(^a\)

![Reaction Scheme]

<table>
<thead>
<tr>
<th>entry</th>
<th>solvent</th>
<th>yield 6a (%)(^b)</th>
<th>yield 7a (%)(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>toluene</td>
<td>>99</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>p-xylene</td>
<td>>99</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>1,4-dioxane</td>
<td>78</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>DMF</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>tBuOH</td>
<td>49</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>98</td>
<td>2</td>
</tr>
</tbody>
</table>

\(^a\)Unless noted otherwise, reactions were carried out with aniline (1.0 mmol), benzyl alcohol (1.0 mmol), KOH (10 mol %) and complex 2 (0.5 mol %) in 2 mL of solvent at 100 ºC.

\(^b\)Determined by GC-MS after 2h.

Table S3. Temperature Optimization for N-alkylation of Aniline with Benzyl Alcohol Using Complex 2\(^a\)

![Reaction Scheme]

<table>
<thead>
<tr>
<th>entry</th>
<th>T (ºC)</th>
<th>yield 6a (%)(^b)</th>
<th>yield 7a (%)(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>>99</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>80</td>
<td>>99</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
<td>75</td>
<td>25</td>
</tr>
</tbody>
</table>

\(^a\)Unless noted otherwise, reactions were carried out with aniline (1.0 mmol), benzyl alcohol (1.0 mmol), KOH (10 mol %) and complex 2 (0.5 mol %) in 2 mL of toluene. \(^b\)Determined by GC-MS after 2h.
Table S4. Optimization of the Amount of Complex 2 for N-alkylation of Aniline with Benzyl Alcohola

<table>
<thead>
<tr>
<th>entry</th>
<th>cat 2 (mol %)</th>
<th>yield 6a (%)b</th>
<th>yield 7a (%)b</th>
<th>TONc</th>
<th>TOF (h$^{-1}$)d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>>99</td>
<td>-</td>
<td>198</td>
<td>99</td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
<td>94</td>
<td>5</td>
<td>940</td>
<td>470</td>
</tr>
<tr>
<td>3e</td>
<td>0.1</td>
<td>6</td>
<td>78</td>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>0.05</td>
<td>90</td>
<td>10</td>
<td>1800</td>
<td>900</td>
</tr>
</tbody>
</table>

aUnless noted otherwise, reactions were carried out with aniline (2.0 mmol), benzyl alcohol (2.0 mmol), KOH (10 mol %) in 2 mL of toluene at 80ºC. bDetermined by CG-MS after 2h. cTurnover number (moles of aniline converted to 6a per mole of catalyst). dTurnover frequency (moles of aniline converted to 6a per mole of catalyst per hour). eThe reaction was carried out at 60ºC.
2. General method for the *N*-alkylation of amines with alcohols. Characterization data for compounds 6a-p, 8a-q, 9, 10a-b and 11.

The corresponding primary alcohols (1.0 mmol) and amines (1.0 mmol) were added to a solution of the ruthenium catalyst **2** (0.001 mmol, 0.8 mg) and KOH (0.1 mmol, 5.6 mg) in degassed toluene (2 mL) under argon. The reaction mixture was stirred at 80 ºC for 2 h and then evaluated by TLC and GC-MS. The reaction mixture was cooled to room temperature and the solvent evaporated under reduced pressure. The resulting crude product was purified by column chromatography on silica gel using mixtures of hexanes and ethyl acetate as eluents to afford the corresponding *N*-alkylated products.

N-benzylaniline (6a). Pale yellow solid, mp 38-40 ºC (181.2 mg, 99% isolated yield) (flash chromatography 5% ethyl acetate/petroleum ether). 1H NMR (400 MHz, CDCl₃): δ 4.06 (br s, NH), 4.33 (s, 2H), 6.65 (d, J = 8.1 Hz, 2H), 6.72 (tt, J = 7.3, 1.1 Hz, 1H), 7.15-7.19 (m, 2H), 7.27-7.38 (m, 5H) ppm. 13C NMR (100 MHz, CDCl₃): δ 148.1, 139.4, 129.2 (2C), 128.6 (2C), 127.4 (2C), 127.2, 117.5, 112.8 (2C), 48.2 ppm.

N-(2-methylbenzyl)aniline (6b). Yellow oil (173.6 mg, 88%) (flash chromatography 5% ethyl acetate/petroleum ether). 1H NMR (400 MHz, CDCl₃): δ 2.38 (s, 3H), 3.90 (br s, NH), 4.28 (s, 2H), 6.65 (d, J = 7.6 Hz, 2H), 6.73 (tt, J = 7.3, 1.1 Hz, 1H), 7.17-7.22 (m, 5H), 7.34 (d, J = 6.6 Hz, 1H) ppm. 13C NMR (100 MHz, CDCl₃): δ 148.2, 136.9, 136.2, 130.3, 129.2 (2C), 128.1, 127.3, 126.0, 117.3, 112.6 (2C), 46.2, 18.8 ppm.

N-(3-methylbenzyl)aniline (6c). White solid, mp 42-44 ºC (189.4 mg, 96%) (flash chromatography 40% ethyl acetate/petroleum ether). 1H NMR (400 MHz, CDCl₃): δ 2.35 (s, 3H), 4.07 (br s, NH), 4.28 (s, 2H), 6.64 (d, J = 8.6 Hz, 2H), 6.72 (tt, J = 7.3, 1.1 Hz, 1H), 7.09 (d, J = 8.1 Hz, 1H), 7.16-7.23 (m, 5H) ppm. 13C NMR (100 MHz, CDCl₃): δ 148.1, 139.3, 138.1, 129.1 (2C), 128.4, 128.2, 127.9, 124.5, 117.4, 112.7 (2C), 117.3, 112.6 (2C), 48.2, 21.3 ppm.

N-(4-methylbenzyl)aniline (6d). White solid, mp 42-44 ºC (177.5 mg, 90%) (flash chromatography 5% ethyl acetate/petroleum ether). 1H NMR (400 MHz, CDCl₃): δ 2.45 (s, 3H), 4.36 (s, 2H), 6.72 (d, J = 8.2 Hz, 2H), 6.82 (tt, J = 7.3, 1.1 Hz, 1H), 7.24-7.29 (m, 4H), 7.35 (d, J = 8.2 Hz, 2H) ppm. 13C NMR (100 MHz, CDCl₃): δ 148.2, 136.8, 136.3, 129.3 (2C), 129.2 (2C), 127.5 (2C), 117.5, 112.8 (2C), 48.1, 21.1 ppm.

N-(4-fluorobenzyl)aniline (6e). Yellow oil (199.2 mg, 99%) (flash chromatography 5% ethyl acetate/petroleum ether). 1H NMR (400 MHz, CDCl₃): δ 4.06 (br s, NH), 4.38 (s, 2H), 6.74 (d, J = 7.5 Hz, 2H), 6.82 (tt, J = 7.5, 1.1 Hz, 1H), 7.15 (d, J = 8.7 Hz, 2H), 7.32 (dd, J = 8.7, 7.5 Hz, 2H), 7.41-7.46 (m, 2H) ppm. 13C NMR (100 MHz, CDCl₃): δ 148.2 (d, JCF = 245.0 Hz), 147.9, 135.0 (d, JCF = 8.0 Hz, 2C), 117.7, 115.4 (d, JCF = 21.4 Hz, 2C), 112.9 (2C), 47.6 ppm. 19F NMR (376 MHz, CDCl₃): δ -115.6 ppm.

N-(4-chlorobenzyl)aniline (6f). Yellow oil (204.6 mg, 94%) (flash chromatography 5% ethyl acetate/petroleum ether). 1H NMR (400 MHz, CDCl₃): δ 4.33 (s, 2H), 6.65 (d, J = 7.7 Hz, 2H), 6.79 (tt, J = 7.3, 1.1 Hz, 1H), 7.20-7.26 (m, 2H), 7.34 (m, 4H) ppm. 13C NMR (100 MHz, CDCl₃): δ 147.8, 138.0, 132.8, 129.3 (2C), 128.73 (2C), 128.67 (2C), 117.8, 112.9 (2C), 47.6 ppm.
N-benzylpyridin-2-amine (6g). White solid, mp 94-96 °C (182.4 mg, 99%) (flash chromatography 25% ethyl acetate/petroleum ether). 1H NMR (400 MHz, CDCl3): δ 4.51 (d, J = 5.8 Hz, 2H), 5.02 (br s, 2H), 6.37 (d, J = 8.4 Hz, 1H), 6.59 (dd, J = 7.1, 5.2, 0.9 Hz, 1H), 7.24-7.43 (m, 6H), 8.10 (d, J = 5.2 Hz, 1H) ppm. 13C NMR (100 MHz, CDCl3): δ 158.6, 148.1, 139.1, 137.4, 128.6 (2C), 127.3 (2C), 127.2, 113.1, 106.7, 46.3 ppm.

N-(4-methylbenzyl)pyridin-2-amine (6h). White solid, mp 74-76 °C (182.4 mg, 92%) (flash chromatography 25% ethyl acetate/petroleum ether). 1H NMR (400 MHz, CDCl3): δ 2.32 (s, 3H), 4.41 (d, J = 5.7 Hz, 2H), 5.01 (br s, 2H), 6.33 (d, J = 8.6 Hz, 1H), 6.54 (dd, J = 7.2, 5.0, 0.9 Hz, 1H), 7.12 (d, J = 7.8 Hz, 2H), 7.22 (d, J = 7.8 Hz, 2H), 7.36 (dd, J = 8.6, 7.2, 1.9 Hz, 1H), 8.05 (d, J = 5.0 Hz, 1H) ppm. 13C NMR (100 MHz, CDCl3): δ 158.6, 148.0, 137.4, 136.7, 136.0, 129.2 (2C), 127.3 (2C), 112.9, 106.6, 46.0, 21.0 ppm.

N-(4-methoxybenzyl)pyridin-2-amine (6i). White solid, mp 128-131 °C (212.1 mg, 99%) (flash chromatography 35% ethyl acetate/petroleum ether). 1H NMR (500 MHz, CDCl3): δ 3.79 (s, 3H), 4.41 (d, J = 5.4 Hz, 2H), 4.97 (br s, 2H), 6.36 (dt, J = 8.4, 1.0 Hz, 1H), 6.57 (dd, J = 7.1, 5.1, 1.0 Hz, 1H), 6.85-6.88 (m, 2H), 7.26-7.29 (m, 2H), 7.39 (dd, J = 8.4, 7.2, 1.9 Hz, 1H), 8.08 (dd, J = 5.1, 1.9, 1.0 Hz, 1H) ppm. 13C NMR (125 MHz, CDCl3): δ 158.8, 158.6, 148.0, 137.4, 131.1, 128.6 (2C), 113.9 (2C), 113.0, 106.7 55.2, 45.7 ppm.

N-(4-chlorobenzyl)pyridin-2-amine (6j). White solid, mp 104-106 °C (216.5 mg, 99%) (flash chromatography 30% ethyl acetate/petroleum ether). 1H NMR (400 MHz, CDCl3): δ 4.46 (d, J = 6.0 Hz, 2H), 5.04 (br s, 2H), 6.33 (d, J = 8.4 Hz, 1H), 6.59 (dd, J = 7.1, 5.1, 0.9 Hz, 1H), 7.25-7.29 (m, 4H), 7.38 (dd, J = 8.4, 7.1, 1.9 Hz, 1H), 8.07 (d, J = 5.1 Hz, 1H) ppm. 13C NMR (100 MHz, CDCl3): δ 158.4, 148.1, 137.8, 137.5, 132.8, 128.7 (2C), 113.9 (2C), 113.0, 106.7 55.2, 45.7 ppm.

N-(Benzo[1,3]dioxol-5-ylmethyl)aniline (6k). White solid, mp 78-80 °C (184.1 mg, 81%) (flash chromatography 5% ethyl acetate/petroleum ether). 1H NMR (400 MHz, CDCl3): δ 3.98 (br s, 2H), 4.23 (s, 2H), 5.94 (s, 2H), 6.61-6.65 (m, 2H), 6.72 (t, J = 7.6, 1.1 Hz, 1H), 6.77 (d, J = 7.6 Hz, 1H), 6.82-6.85 (m, 1H), 6.86-6.88 (m, 1H), 7.18 (dd, J = 8.6, 7.2 Hz, 2H) ppm. 13C NMR (100 MHz, CDCl3): δ 148.0, 147.9, 146.7, 133.3, 129.2 (2C), 120.6, 117.6, 112.8 (2C), 108.3, 108.0, 101.0, 48.1 ppm.

N-(3-((tert-butyldimethylsilyl)oxy)benzyl)aniline (6l). Colourless oil (163.0 mg, 52%) (flash chromatography 3% ethyl acetate/petroleum ether). 1H NMR (400 MHz, CDCl3): δ 0.15 (s, 6H), 0.95 (s, 9H), 4.23 (s, 2H), 5.94 (s, 2H), 6.61-6.65 (m, 2H), 6.72 (t, J = 7.6, 1.1 Hz, 1H), 6.77 (d, J = 7.6 Hz, 1H), 6.82-6.85 (m, 1H), 6.86-6.88 (m, 1H), 7.18 (dd, J = 8.6, 7.2 Hz, 2H) ppm. 13C NMR (100 MHz, CDCl3): δ 155.9, 147.3, 140.4, 129.6, 129.3, 120.6, 119.4, 119.0, 118.2, 113.5, 48.6, 25.7, 18.2, -4.42 ppm.

N-phenethylaniline (6m). Colourless oil (193.3 mg, 98%) (flash chromatography 5% ethyl acetate/petroleum ether). 1H NMR (400 MHz, CDCl3): δ 0.15 (s, 6H), 0.95 (s, 9H), 4.23 (s, 2H), 5.94 (s, 2H), 6.61-6.65 (m, 2H), 6.72 (t, J = 7.6, 1.1 Hz, 1H), 6.77 (d, J = 7.6 Hz, 1H), 6.82-6.85 (m, 1H), 6.86-6.88 (m, 1H), 7.18 (dd, J = 8.6, 7.2 Hz, 2H) ppm. 13C NMR (100 MHz, CDCl3): δ 148.0, 147.9, 146.7, 133.3, 129.2 (2C), 120.6, 117.6, 112.8 (2C), 108.3, 108.0, 101.0, 48.1 ppm.

N-(cyclopropylmethyl)aniline (6n). Yellow oil (145.7 mg, 99%) (flash chromatography 5% ethyl acetate/petroleum ether). 1H NMR (400 MHz, CDCl3): δ 0.32 (dt, J = 5.9, 4.4 Hz, 2H), 0.60-0.67
S7

(m, 2H), 1.12-1.24 (m, 1H), 3.04 (d, J = 6.9 Hz, 2H), 3.73 (br s, NH), 6.70 (d, J = 7.4 Hz, 2H), 6.79 (tt, J = 7.4, 1.1 Hz, 1H), 7.21-7.31 (m, 2H) ppm. 13C NMR (100 MHz, CDCl3): δ 148.4, 129.2 (2C), 117.3, 112.8 (2C), 49.1, 10.9, 3.4 (2C) ppm.

N-ethylpyridin-2-amine (6o). White solid, mp 78-80 °C (120.9 mg, 99%) (flash chromatography 10% ethyl acetate/petroleum ether). 1H NMR (400 MHz, CDCl3): δ 1.24 (t, J = 7.2 Hz, 3H), 3.28 (quint, J = 7.2 Hz, 2H), 4.45 (br s, NH), 6.35 (d, J = 8.6 Hz, 1H), 6.54 (ddd, J = 8.4, 1.9 Hz, 1H), 7.40 (ddd, J = 8.6, 7.2, 1.8 Hz, 1H), 8.06 (dd, J = 5.1, 1.8 Hz, 1H) ppm. 13C NMR (100 MHz, CDCl3): δ 158.8, 148.2, 137.4, 112.7 106.3, 36.9, 14.8 ppm.

N-methylpyridin-2-amine (6p). 10 Yellow oil (56.2 mg, 52%) (flash chromatography 50% ethyl acetate/petroleum ether). 1H NMR (400 MHz, CDCl3): δ 2.91 (d, J = 4.0 Hz, 3H), 4.64 (br s, NH), 6.39 (dt, J = 8.4, 1.0 Hz, 1H), 6.57 (ddd, J = 7.2, 5.1, 0.9 Hz, 1H), 7.44 (ddd, J = 8.4, 7.2, 1.9 Hz, 1H), 8.06 (ddd, J = 5.1, 1.9, 0.9 Hz, 1H) ppm. 13C NMR (100 MHz, CDCl3): δ 159.5, 147.4, 137.9, 112.6, 106.3, 29.1 ppm.

N-benzyl-2-bromoaniline (8a).3 White solid, mp 52-54 °C (215.0 mg, 82%) (flash chromatography 10% ethyl acetate/petroleum ether). 1H NMR (400 MHz, CDCl3): δ 4.41 (d, J = 5.7 Hz, 2H), 4.76 (br s, NH), 6.56-6.63 (m, 2H), 7.13 (ddd, J = 8.5, 7.4, 1.5 Hz, 1H), 7.27-7.32 (m, 1H), 7.33-7.39 (m, 4H), 7.45 (dd, J = 7.9, 1.5 Hz, 1H) ppm. 13C NMR (100 MHz, CDCl3): δ 147.0, 138.8, 131.9 (2C), 128.7 (2C), 127.4 (2C), 127.3, 123.1, 120.1, 115.3, 111.4, 47.9 ppm.

N-benzyl-4-bromoaniline (8c).11 White solid, mp 52-54 °C (215.0 mg, 82%) (flash chromatography 10% ethyl acetate/petroleum ether). 1H NMR (400 MHz, CDCl3): δ 4.08 (br s, NH), 4.31 (s, 2H), 6.51 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.7 Hz, 2H), 7.27-7.41 (m, 5H) ppm. 13C NMR (100 MHz, CDCl3): δ 147.0, 138.8, 131.9 (2C), 128.7 (2C), 127.4 (2C), 127.3, 123.1, 120.1, 115.3, 111.4, 47.9 ppm.

N-benzyl-4-chloroaniline (8d).11 Colourless oil (213.3 mg, 98%) (flash chromatography 5% ethyl acetate/petroleum ether). 1H NMR (400 MHz, CDCl3): δ 4.32 (s, 2H), 6.57 (d, J = 8.9 Hz, 2H), 7.14 (d, J = 8.9 Hz, 2H), 7.28-7.40 (m, 5H) ppm. 13C NMR (100 MHz, CDCl3): δ 146.6, 138.9, 129.0 (2C), 128.6 (2C), 127.36 (2C), 127.32, 122.0, 113.9 (2C), 48.3 ppm.

4-(benzylamino)benzonitrile (8e).12 White solid, mp 62-64 °C (202.0 mg, 97%) (flash chromatography 10% ethyl acetate/petroleum ether). 1H NMR (400 MHz, CDCl3): δ 4.37 (s, 2H), 4.60 (br s, NH), 6.54-6.63 (m, 2H), 7.28-7.37 (m, 5H), 7.38-7.44 (m, 2H) ppm. 13C NMR (100 MHz, CDCl3): δ 151.0, 137.8, 133.7 (2C), 128.8 (2C), 127.7, 127.3 (2C), 120.3, 112.4 (2C), 99.1, 47.5 ppm.

N-benzyl-4-methylaniline (8f).4 Yellow oil (195.3 mg, 99%) (flash chromatography 5% ethyl acetate/petroleum ether). 1H NMR (400 MHz, CDCl3): δ 2.36 (s, 3H), 3.98 (br s, NH), 4.39 (s, 2H), 6.79 (tt, J = 7.4, 1.1 Hz, 1H).
6.66 (d, J = 8.3 Hz, 2H), 7.10 (d, J = 8.3 Hz, 2H), 7.38 (m, 1H), 7.42-7.51 (m, 4H) ppm. 13C NMR (100 MHz, CDCl3): δ 145.8, 139.6, 129.6 (2C), 128.4 (2C), 128.1, 127.4 (2C), 127.0, 112.9 (2C), 48.5, 20.3 ppm.

N-benzynaphthalen-1-amine (8g). Brown solid, mp 58-60 ºC (231.0 mg, 99%) (flash chromatography 5% ethyl acetate/petroleum ether). 1H NMR (500 MHz, CDCl3): δ 4.52 (s, 2H), 4.84 (br s, N-H), 6.69 (dd, J = 7.4, 1.2 Hz, 1H), 7.32-7.54 (m, 9H), 7.84-7.89 (m, 2H) ppm. 13C NMR (100 MHz, CDCl3): δ 143.0, 139.0, 134.2, 128.5 (2C), 128.4, 127.6, 125.7, 124.7, 123.3, 119.9, 117.7, 104.8, 48.6 ppm.

N-benzylquinolin-2-amine (8h). Yellow solid, mp 91-93 ºC (231.9 mg, 99%) (flash chromatography 20% ethyl acetate/petroleum ether). 1H NMR (400 MHz, CDCl3): δ 4.75 (d, J = 5.5 Hz, 2H), 5.26 (br s, N-H), 6.61 (d, J = 8.9 Hz, 1H), 7.23-7.39 (m, 4H), 7.41-7.46 (m, 2H), 7.54-7.65 (m, 2H), 7.78-7.82 (m, 2H) ppm. 13C NMR (100 MHz, CDCl3): δ 156.6, 147.9, 139.3, 137.2, 129.4, 128.5 (2C), 127.6 (2C), 127.3, 127.1, 123.4, 122.0, 111.2, 45.7 ppm.

N-benzylpyrimidin-2-amine (8i). White solid, mp 74-76 ºC (183.4 mg, 99%) (flash chromatography 25% ethyl acetate/petroleum ether). 1H NMR (400 MHz, CDCl3): δ 4.63 (d, J = 5.7 Hz, 2H), 6.44 (t, J = 4.8 Hz, 1H), 6.67 (br s, N-H), 7.23-7.40 (m, 5H), 8.08 (br s, 2H) ppm. 13C NMR (100 MHz, CDCl3): δ 162.2, 157.8 (2C), 139.0, 128.4 (2C), 127.5 (2C), 127.1, 110.4, 45.4 ppm.

N-benzylbenzo[d]thiazol-2-amine (8j). White solid, mp 154-156 ºC (209.2 mg, 99%) (flash chromatography 20% ethyl acetate/petroleum ether). 1H NMR (400 MHz, CDCl3): δ 4.64 (s, 2H), 6.37 (br s, N-H), 7.08 (dt, J = 7.6, 1.2 Hz, 1H), 7.23-7.43 (m, 6H), 7.45 (dd, J = 8.2, 1.2 Hz, 1H), 7.57 (dd, J = 7.9, 1.2 Hz, 1H) ppm. 13C NMR (100 MHz, CDCl3): δ 167.6, 152.2, 137.4, 130.4 (2C), 128.8, 127.8 (2C), 127.6, 126.0, 121.6, 120.8, 118.9, 49.4 ppm.

(E)-N-benzyl-4-styrylaniline (8k). White solid, mp 88-90 ºC (171.2 mg, 60%) (flash chromatography 3% ethyl acetate/petroleum ether). 1H NMR (400 MHz, CDCl3): δ 4.36 (s, 2H), 6.64 (d, J = 8.5 Hz, 2H), 6.89 (d, J = 16.3 Hz, 1H), 7.01 (d, J = 16.3 Hz, 1H), 7.16-7.22 (m, 1H), 7.44-7.47 (m, 2H) ppm. 13C NMR (100 MHz, CDCl3): δ 147.7, 150.6, 128.7 (2C), 128.5 (2C), 127.7 (2C), 127.4, 127.3 (2C), 127.2, 126.7, 126.0 (2C), 124.5, 112.9, 48.1 ppm.

Dibenzylamine (8l). Colourless oil (148.0 mg, 75%) (flash chromatography 20% ethyl acetate/petroleum ether). 1H NMR (400 MHz, CDCl3): δ 1.57 (br s, N-H), 3.74 (s, 4H), 7.16-7.28 (m, 10H) ppm. 13C NMR (100 MHz, CDCl3): δ 140.3 (2C), 128.4 (4C), 128.1 (4C), 126.9 (2C), 53.2 (2C) ppm.

N-benzyl-1-phenylethanamine (8m). Colourless oil (171.1 mg, 81%) (flash chromatography 5% ethyl acetate/petroleum ether). 1H NMR (500 MHz, CDCl3): δ 1.39 (br s, N-H), 3.74 (s, 4H), 7.16-7.28 (m, 10H) ppm. 13C NMR (100 MHz, CDCl3): δ 145.5, 140.6, 128.4 (2C), 128.3 (2C), 128.1 (2C), 126.9, 126.8, 126.7 (2C), 57.5, 51.6, 24.5 ppm.

N-benzylcyclohexanamine (8n). Pale yellow oil (153.4 mg, 81%) (flash chromatography petroleum ether/ethyl acetate/Et3N 4:1:0.05). 1H NMR (400 MHz, CDCl3): δ 1.11-1.23 (m, 5H),
1.61-1.66 (m, 1H), 1.73-1.82 (m, 2H), 1.88-1.92 (m, 1H), 3.76 (s, 2H), 7.19-7.22 (m, 1H), 7.27-7.31 (m, 4H) ppm. 13C NMR (100 MHz, CDCl$_3$): δ 141.1, 128.3 (2C), 128.1 (2C), 126.8, 55.9, 50.5, 33.0 (2C), 25.9, 24.9 (2C) ppm.

1-benzylpyrrolidine (8o). Yellow oil (132.2 mg, 82%) (flash chromatography 2% MeOH/DCM). 1H NMR (500 MHz, CDCl$_3$): δ 1.76-1.78 (m, 4H), 2.51-2.54 (m, 4H), 3.63 (s, 2H), 7.22-7.34 (m, 5H) ppm. 13C NMR (125 MHz, CDCl$_3$): δ 138.7, 128.9 (2C), 128.1 (2C), 126.9, 60.4, 53.9 (2C), 23.2 (2C) ppm.

1-(4-methoxybenzyl)pyrrolidine (8p). Pale yellow oil (118.6 mg, 62%) (flash chromatography petroleum ether/ethyl acetate/Et$_3$N 7:1:0.2). 1H NMR (400 MHz, CDCl$_3$): δ 1.74-1.80 (m, 4H), 2.47-2.51 (m, 4H), 3.55 (s, 2H), 3.79 (s, 3H), 6.81-6.88 (m, 2H), 7.24 (d, $J = 8.6$ Hz, 2H) ppm. 13C NMR (100 MHz, CDCl$_3$): δ 158.6, 130.0 (2C), 128.2, 113.5 (2C), 60.0, 55.2, 54.0 (2C), 23.4 (2C) ppm.

1-benzylpiperidine (8q). Light orange oil (61.3 mg, 35%) (flash chromatography petroleum ether/ethyl acetate/Et$_3$N 4:1:0.05). 1H NMR (400 MHz, CDCl$_3$): δ 1.41-1.46 (m, 2H), 1.56-1.61 (m, 4H), 2.40 (br s, 4H), 3.50 (s, 2H), 7.30-7.31 (m, 3H), 7.35-7.39 (m, 2H) ppm. 13C NMR (100 MHz, CDCl$_3$): δ 138.0, 129.4 (2C), 128.1 (2C), 127.0, 63.6, 54.3 (2C), 25.7 (2C), 24.2 ppm.

N-phenylpyrrolidine (9). Colourless oil (75.1 mg, 51%) (flash chromatography 5% ethyl acetate/petroleum ether). 1H NMR (400 MHz, CDCl$_3$): δ 2.02-2.08 (m, 4H), 3.31-3.37 (m, 4H), 6.63 (d, $J = 7.7$ Hz, 2H), 6.71 (t, $J = 7.7$ Hz, 1H), 7.25-7.31 (m, 2H) ppm. 13C NMR (100 MHz, CDCl$_3$): δ 147.9, 129.1 (2C), 115.4, 111.6 (2C), 47.6 (2C), 25.4 (2C) ppm.

1,2,3,4-Tetrahydroquinoxaline (10a). Yellow solid, mp 99-101 ºC (41.6 mg, 31%) (flash chromatography 15% ethyl acetate/petroleum ether). 1H NMR (400 MHz, CDCl$_3$): δ 3.41 (s, 4H), 6.47-6.52 (m, 2H), 6.56-6.60 (m, 2H) ppm. 13C NMR (100 MHz, CDCl$_3$): δ 133.6 (2C), 118.8 (2C), 114.7 (2C), 41.4 (2C) ppm.

1,4-dihydroquinoxaline (10b). Amorphous yellow solid (66.1 mg, 50%) (flash chromatography 15% ethyl acetate/petroleum ether). 1H NMR (400 MHz, CDCl$_3$): δ 7.74-7.81 (m, 2H), 8.08-8.15 (m, 2H), 8.84 (s, 2H) ppm. 13C NMR (100 MHz, CDCl$_3$): δ 145.0 (2C), 143.0 (2C), 130.1 (2C), 129.5 (2C) ppm.

Indole (11). The title compound was prepared according to the general procedure using 2-aminophenethyl alcohol (2744.0 mg, 20 mmol) and was purified by flash chromatography (10% ethyl acetate/petroleum ether) to yield the title compound (2319.6 mg, 99% isolated yield) as a white solid, mp 52-53 ºC. 1H NMR (400 MHz, CDCl$_3$): δ 6.57 (ddd, $J = 3.1, 2.0, 1.0$ Hz, 1H), 7.13 (ddd, $J = 8.1, 7.1, 1.1$ Hz, 1H), 7.18-7.23 (m, 2H), 7.40 (ddd, $J = 8.1, 1.8, 8.0$ Hz, 1H), 7.66 (ddd, $J = 8.1, 1.8, 0.8$ Hz, 1H), 8.12 (br s, NH) ppm. 13C NMR (100 MHz, CDCl$_3$): δ 135.7, 127.8, 124.1, 122.0, 120.7, 119.8, 111.0, 102.6 ppm.

The corresponding primary alcohols (1.0 mmol) and amides (1.0 mmol) were added to a solution of the ruthenium catalyst 2 (0.005 mmol, 3.86 mg) and KOH (0.1 mmol, 5.6 mg) in degassed p-
xylene (2 mL) under argon. The reaction mixture was stirred at 140 ºC for 16 h and then evaluated by TLC and GC-MS. The mixture was cooled to room temperature. The reaction crude was purified by silica gel column using petroleum ether and ethyl acetate mixtures to afford compounds 13a-h.

N-benzylbenzamide (13a).
White solid, mp 99-101 ºC (209.1 mg, 99%) (flash chromatography 50% ethyl acetate/petroleum ether).

\[^1H \text{NMR (400 MHz, CDCl}_3\] : \(\delta \) 4.60 (d, \(J = \) 5.8 Hz, 2H), 6.76 (br s, 1H), 7.25-7.34 (m, 5H), 7.39 (tt, \(J = \) 8.4, 1.4 Hz, 2H), 7.45-7.50 (m, 1H), 7.77-7.80 (m, 2H) ppm.

\[^13C \text{NMR (100 MHz, CDCl}_3\] : \(\delta \) 167.4, 138.2, 134.3, 131.4, 128.6 (2C), 128.4 (2C), 127.8 (2C), 127.4, 126.9 (2C), 44.0 ppm.

N-(4-fluorobenzyl)benzamide (13b).
White solid, mp 113-115 ºC (226.9 mg, 99%) (flash chromatography 50% ethyl acetate/petroleum ether).

\[^1H \text{NMR (500 MHz, CDCl}_3\] : \(\delta \) 4.53 (d, \(J = \) 5.8 Hz, 2H), 6.95-7.00 (m, 3H), 7.25 (dd, \(J = \) 8.5, 5.5 Hz, 2H), 7.37 (t, \(J = \) 7.7 Hz, 1H), 7.47 (tt, \(J = \) 7.7, 1.1 Hz, 1H), 7.78 (d, \(J = \) 7.0 Hz, 2H) ppm.

\[^13C \text{NMR (125 MHz, CDCl}_3\] : \(\delta \) 167.4, 162.0 (d, \(J_{C-F} = \) 245.5 Hz), 134.12, 134.06 (d, \(J_{C-F} = \) 3.3 Hz), 131.5, 129.3 (d, \(J_{C-F} = \) 8.1 Hz), 128.4 (2C), 126.9 (2C), 115.4 (d, \(J_{C-F} = \) 21.5 Hz), 43.2 ppm.

N-(4-methoxybenzyl)benzamide (13c).
White solid, mp 95-96º (219.6 mg, 91%) (flash chromatography 55% ethyl acetate/petroleum ether).

\[^1H \text{NMR (400 MHz, CDCl}_3\] : \(\delta \) 3.76 (s, 3H), 4.51 (d, \(J = \) 5.6 Hz, 2H), 6.84 (m, 3H), 7.23 (d, \(J = \) 8.8 Hz, 2H), 7.26-7.41 (m, 2H), 7.42-7.51 (m, 1H), 7.69-7.90 (m, 2H) ppm.

\[^13C \text{NMR (100 MHz, CDCl}_3\] : \(\delta \) 167.3, 158.8, 134.3, 131.3, 130.3, 129.1 (2C), 128.4 (2C), 126.9 (2C), 113.9 (2C), 55.2, 43.4 ppm.

N-(cyclopropylmethyl)benzamide (13d).
White solid, mp 77-79 ºC (173.5 mg, 99%) (flash chromatography 50% ethyl acetate/petroleum ether).

\[^1H \text{NMR (400 MHz, CDCl}_3\] : \(\delta \) 0.19-0.27 (m, 2H), 0.47-0.55 (m, 2H), 0.98-1.09 (m, 1H), 3.28 (t, \(J = \) 6.4 Hz, 2H), 6.50 (br s, 1H), 7.39 (d, \(J = \) 7.6 Hz, 2H), 7.46 (t, \(J = \) 7.6 Hz, 1H), 7.77 (d, \(J = \) 7.6 Hz, 2H) ppm.

\[^13C \text{NMR (100 MHz, CDCl}_3\] : \(\delta \) 167.4, 134.7, 131.2, 128.4 (2C), 126.8 (2C), 44.8, 10.7, 3.4 ppm.

N-pentylbenzamide (13e).
Pale yellow oil (141.5 mg, 74%) (flash chromatography 40% ethyl acetate/petroleum ether).

\[^1H \text{NMR (400 MHz, CDCl}_3\] : \(\delta \) 0.88 (t, \(J = \) 6.8 Hz, 3H), 1.27-1.39 (m, 4H), 1.54-1.64 (m, 2H), 3.37-3.44 (m, 2H), 6.38 (br s, 1H), 7.38 (t, \(J = \) 7.4 Hz, 2H), 7.42-7.51 (m, 1H), 7.75 (d, \(J = \) 7.4 Hz, 2H) ppm.

\[^13C \text{NMR (100 MHz, CDCl}_3\] : \(\delta \) 167.5, 134.8, 131.2, 128.4 (2C), 126.8 (2C), 40.0, 29.3, 29.1, 22.3, 13.9 ppm.

N-benzyl-4-methoxybenzamide (13f).
White solid, mp 126-128 ºC (224.4 mg, 96%) (flash chromatography 50% ethyl acetate/petroleum ether).

\[^1H \text{NMR (400 MHz, CDCl}_3\] : \(\delta \) 3.82 (s, 3H), \(J_{C-F} = \) 1.27-1.39 (m, 4H), 1.54-1.64 (m, 2H), 3.37-3.44 (m, 2H), 6.38 (br s, 1H), 7.38 (t, \(J = \) 7.4 Hz, 2H), 7.42-7.51 (m, 1H), 7.75 (d, \(J = \) 7.4 Hz, 2H) ppm.

\[^13C \text{NMR (100 MHz, CDCl}_3\] : \(\delta \) 167.0, 162.2, 138.5, 128.8 (2C), 128.7 (2C), 127.8 (2C), 127.4, 126.6, 113.7 (2C), 55.4, 44.0 ppm.

N-benzylisonicotinamide (13g).
White solid, mp 85-87 ºC (210.1 mg, 99%) (flash chromatography 60% ethyl acetate/petroleum ether).

\[^1H \text{NMR (400 MHz, CDCl}_3\] : \(\delta \) 3.82 (s, 3H), \(J_{C-F} = \) 1.27-1.39 (m, 4H), 1.54-1.64 (m, 2H), 3.37-3.44 (m, 2H), 6.38 (br s, 1H), 7.38 (t, \(J = \) 7.4 Hz, 2H), 7.42-7.51 (m, 1H), 7.75 (d, \(J = \) 7.4 Hz, 2H) ppm.

\[^13C \text{NMR (100 MHz, CDCl}_3\] : \(\delta \) 167.5, 134.8, 131.2, 128.4 (2C), 126.8 (2C), 40.0, 29.3, 29.1, 22.3, 13.9 ppm.

S10
N-benzylpropionamide (13h). White solid, mp 50-52 °C (161.6 mg, 99%) (flash chromatography 50% ethyl acetate/petroleum ether). 1H NMR (400 MHz, CDCl$_3$): δ 1.18 (t, $J = 7.6$ Hz, 3H), 2.25 (q, $J = 7.6$ Hz, 2H), 4.44 (d, $J = 5.7$ Hz, 2H), 5.75 (br s, 1H), 7.25-7.36 (m, 5H) ppm. 13C NMR (100 MHz, CDCl$_3$): δ 173.6, 138.4, 128.7 (2C), 127.8 (2C), 127.5, 43.6, 29.7, 9.8 ppm.

4. **General method for the N-alkylation of sulfonamides with alcohols.**

Characterization data for compounds 15a-j.

The corresponding primary alcohols (1 mmol) and sulfonamides (1 mmol) were added to a solution of the ruthenium catalyst 2 (0.025 mmol, 19.3 mg) and KOH (0.1 mmol, 5.6 mg) in degassed p-xylene (2 mL) under argon. The reaction mixture was stirred at 140 °C for 16 h and then evaluated by TLC and GC-MS. The mixture was cooled to room temperature. The reaction crude was purified by silica gel column using petroleum ether and ethyl acetate mixtures to afford compounds 15a-j.

N-benzylbenzenesulfonamide (15a). White solid, mp 78-80 °C (205.2 mg, 83%) (flash chromatography 20% ethyl acetate/petroleum ether). 1H NMR (400 MHz, CDCl$_3$): δ 4.15 (d, $J = 6.2$ Hz, 2H), 4.79 (t, $J = 6.2$ Hz, 1H), 7.16-7.22 (m, 2H), 7.23-7.29 (m, 3H), 7.47-7.55 (m, 2H), 7.56-7.61 (m, 1H), 7.85-7.90 (m, 2H) ppm. 13C NMR (100 MHz, CDCl$_3$): δ 139.9, 136.1, 132.7, 129.1 (2C), 128.7 (2C), 128.1, 127.9, 127.8 (2C), 127.1 (2C), 127.0 (2C), 114.0 (2C), 55.3, 46.8 ppm.

N-(4-methoxybenzyl)benzenesulfonamide (15b). White solid, mp 105-107 °C (133.1 mg, 48%) (flash chromatography 30% ethyl acetate/petroleum ether). 1H NMR (400 MHz, CDCl$_3$): δ 3.76 (s, 3H), 4.06 (d, $J = 6.1$ Hz, 2H), 4.71 (t, $J = 6.1$ Hz, 1H), 6.78 (d, $J = 8.8$ Hz, 2H), 7.08 (d, $J = 8.8$ Hz, 2H), 7.54-7.61 (m, 1H), 7.84-7.89 (m, 2H) ppm. 13C NMR (100 MHz, CDCl$_3$): δ 159.3, 139.9, 132.6, 129.2 (2C), 129.1 (2C), 128.1, 127.1 (2C), 114.0 (2C), 55.3, 46.8 ppm.

N-(4-chlorobenzyl)benzenesulfonamide (15c). White solid, mp 112-114 °C (183.1 mg, 65%) (flash chromatography 20% ethyl acetate/petroleum ether). 1H NMR (400 MHz, CDCl$_3$): δ 4.10 (d, $J = 6.3$ Hz, 2H), 5.00 (t, $J = 6.3$ Hz, 1H), 7.12 (d, $J = 8.4$ Hz, 2H), 7.22 (d, $J = 8.4$ Hz, 2H), 7.50 (dd, $J = 8.3$, 6.9 Hz, 2H), 7.56-7.62 (m, 1H), 7.84 (d, $J = 8.3$ Hz, 2H) ppm. 13C NMR (100 MHz, CDCl$_3$): δ 139.8, 134.8, 133.7, 132.8, 129.16, 129.15, 128.8, 127.0, 46.5 ppm.

N-(pentyl)benzenesulfonamide (15d). Yellow oil (122.7 mg, 54%) (flash chromatography 10% ethyl acetate/petroleum ether). 1H NMR (400 MHz, CDCl$_3$): δ 0.82 (t, $J = 6.8$ Hz, 3H), 1.19-1.26 (m, 4H), 1.43 (quint, $J = 7.0$ Hz, 2H), 2.93 (td, $J = 7.0$, 6.2 Hz, 2H), 4.58 (t, $J = 6.2$ Hz, 1H), 7.47-7.59 (m, 3H), 7.85-7.88 (m, 2H) ppm. 13C NMR (100 MHz, CDCl$_3$): δ 140.0, 133.4, 132.5, 129.0 (2C), 127.0 (2C), 43.2, 29.2, 28.6, 22.1, 13.8 ppm.

N-Benzyl-4-methylbenzenesulfonamide (15e). White solid, mp 161-163 °C (224.7 mg, 86%) (flash chromatography 20% ethyl acetate/petroleum ether). 1H NMR (400 MHz, CDCl$_3$) δ 0.82 (t, $J = 6.8$ Hz, 3H), 1.19-1.26 (m, 4H), 1.43 (quint, $J = 7.0$ Hz, 2H), 2.93 (td, $J = 7.0$, 6.2 Hz, 2H), 4.58 (t, $J = 6.2$ Hz, 1H), 7.19-7.23 (m, 2H), 7.25-7.34 (m, 5H), 7.77 (t, $J = 8.2$ Hz, 2H) ppm. 13C NMR (100 MHz, CDCl$_3$): δ 143.4, 136.8, 136.3, 129.7 (2C), 128.6, 127.80 (2C), 127.77 (2C), 127.1, 47.2, 21.5 ppm.

N-Benzyl-3-methoxybenzenesulfonamide (15f). White solid, mp 80-81 °C (210.8 mg, 76%) (flash chromatography 25% ethyl acetate/petroleum ether). 1H NMR (400 MHz, CDCl$_3$): δ 3.82
(s, 3H), 4.15 (d, J = 6.2 Hz, 2H), 5.24 (t, J = 6.2 Hz, 1H), 7.10 (ddd, J = 8.0, 2.6, 1.1 Hz, 1H), 7.19-7.30 (m, 5H), 7.38 (t, J = 1.8, Hz, 1H), 7.41 (d, J = 8.0, Hz, 1H), 7.46 (ddd, J = 8.0, 1.8, 1.1 Hz, 1H) ppm. 13C NMR (100 MHz, CDCl$_3$): δ 159.8, 140.9, 136.2, 130.1, 128.5 (2C), 127.76 (2C), 127.74, 119.15, 119.12, 111.6, 55.5, 47.2 ppm.

N-Benzyl-(phenyl)methanesulfonamide (15g).31 White solid, mp 145-146 $^\circ$C (235.2 mg, 90%) (flash chromatography 20% ethyl acetate/petroleum ether). 1H NMR (400 MHz, CDCl$_3$): δ 4.05 (d, J = 6.1 Hz, 2H), 4.12 (s, 2H), 4.43 (t, J = 6.1 Hz, 1H), 7.18-7.29 (m, 10H) ppm. 13C NMR (100 MHz, CDCl$_3$): δ 136.8, 130.6 (2C), 129.2, 128.80 (2C), 128.78 (2C), 128.7, 128.1, 128.0 (2C), 59.4, 47.6 ppm.

N-Benzylmethanesulfonamide (15h).27 White solid, mp 58-61 $^\circ$C (157.4 mg, 85%) (flash chromatography 20% ethyl acetate/petroleum ether). 1H NMR (400 MHz, CDCl$_3$): δ 2.82 (s, 3H), 4.29 (d, J = 6.2 Hz, 2H), 4.96 (br s, 1H), 7.38-7.27 (m, 5H) ppm. 13C NMR (100 MHz, CDCl$_3$): δ 136.7, 128.8 (2C), 128.0, 127.8 (2C), 47.1, 41.0 ppm.

N-(4-(diethylamino)benzyl)-4-methoxybenzenesulfonamide (15i). The title compound was prepared according to the general procedure using 4-methoxybenzenesulfonamide (3744.0 mg, 20 mmol) and 4-(diethylamino)benzyl alcohol (3580.0 mg, 20 mmol) and was purified by flash chromatography (20% ethyl acetate/petroleum ether) to yield the title compound (250.9 mg, 72% isolated yield) as a white solid, mp 83-85 $^\circ$C. 1H NMR (400 MHz, CDCl$_3$): δ1.12 (t, J = 7.2 Hz, 6H), 3.30 (q, J = 7.2 Hz, 4H), 3.86 (s, 3H), 3.97 (d, J = 5.9 Hz, 2H), 4.62 (br s, 1H), 6.54 (d, J = 8.8 Hz, 2H), 6.95 (d, J = 8.8 Hz, 2H), 6.98 (d, J = 8.8 Hz, 2H), 7.79 (d, J = 8.8 Hz, 2H) ppm. 13C NMR (100 MHz, CDCl$_3$): δ162.7, 147.3, 131.5, 129.2 (4C), 122.3, 114.1 (2C), 111.6 (2C), 55.5, 46.9, 44.2 (2C), 12.4 (2C) ppm. IR (film): 3271, 2976, 1615, 1524, 1314, 1258, 1147, 1042, 890, 837, 802, 557 cm$^{-1}$. HRMS (ESI/TOF) m/z: calcd for C$_{28}$H$_{32}$SO$_3$N$_2$ ([M+H]$^+$), 349.1586; found, 349.1609.
5. NMR spectrum

1H NMR (400 MHz, CDCl$_3$) for 6a
13C NMR (100 MHz, CDCl$_3$) for 6a
1H NMR (400 MHz, CDCl$_3$) for 6b
$^{13}\text{C} \text{ NMR (100 MHz, CDCl}_3\text{) for 6b}$
1H NMR (400 MHz, CDCl$_3$) for 6c

![NMR Spectrum Image]
1H NMR (400 MHz, CDCl$_3$) for 6d
13C NMR (100 MHz, CDCl$_3$) for 6d
1H NMR (400 MHz, CDCl$_3$) for 6e
13C NMR (100 MHz, CDCl$_3$) for 6e
$^{19}\text{F NMR (376 MHz, CDCl}_{3}\text{) for 6e}$
\[^1\text{H NMR (400 MHz, CDCl}_3\text{)} \text{ for 6f} \]
13C NMR (100 MHz, CDCl$_3$) for 6f
1H NMR (400 MHz, CDCl$_3$) for 6g
13C NMR (100 MHz, CDCl$_3$) for 6g
1H NMR (500 MHz, CDCl$_3$) for 6
13C NMR (125 MHz, CDCl$_3$) for 6i
1H NMR (400 MHz, CDCl$_3$) for 6j
13C NMR (100 MHz, CDCl$_3$) for 6j
1H NMR (400 MHz, CDCl$_3$) for 6k
13C NMR (100 MHz, CDCl$_3$) for 6I
1H NMR (400 MHz, CDCl$_3$) for 6m
$^{13}\text{C NMR (100 MHz, CDCl}_3\text{) for 6m}$
\(^1\)H NMR (400 MHz, CDCl\(_3\)) for 6n
$^{13}\text{C NMR (100 MHz, CDCl}_3\text{) for 6n}$
1H NMR (400 MHz, CDCl$_3$) for 6a
13C NMR (100 MHz, CDCl$_3$) for 6p
1H NMR (400 MHz, CDCl$_3$) for 8a
13C NMR (100 MHz, CDCl$_3$) for 8a
NH

Br

$^1\text{H NMR}$ (400 MHz, CDCl$_3$) for 8b
13C NMR (100 MHz, CDCl$_3$) for 8b
1H NMR (400 MHz, CDCl$_3$) for 8c
13C NMR (100 MHz, CDCl$_3$) for 8c
1H NMR (400 MHz, CDCl$_3$) for 8d
13C NMR (100 MHz, CDCl$_3$) for 8d
^H NMR (400 MHz, CDCl_3) for 8e
13C NMR (100 MHz, CDCl$_3$) for 8e
1H NMR (400 MHz, CDCl$_3$) for 8f
13C NMR (100 MHz, CDCl$_3$) for 8f
1H NMR (400 MHz, CDCl$_3$) for 8g
13C NMR (100 MHz, CDCl$_3$) for 8g
1H NMR (400 MHz, CDCl$_3$) for 8h
13C NMR (100 MHz, CDCl$_3$) for 8h
1H NMR (400 MHz, CDCl$_3$) for 8i
13C NMR (100 MHz, CDCl$_3$) for 8i
1H NMR (400 MHz, CDCl$_3$) for 8j
13C NMR (100 MHz, CDCl$_3$) for 8k
1H NMR (400 MHz, CDCl$_3$) for 8I
13C NMR (100 MHz, CDCl$_3$) for 81
"1H NMR (500 MHz, CDCl$_3$) for 8m"
13C NMR (125 MHz, CDCl$_3$) for 8m
13C NMR (100 MHz, CDCl$_3$) for 8n
1H NMR (500 MHz, CDCl$_3$) for 8a
1H NMR (400 MHz, CDCl$_3$) for 8p

MeO

[Chemical structure image]
1H NMR (100 MHz, CDCl$_3$) for 8p
1H NMR (400 MHz, CDCl$_3$) for 8q
13C NMR (100 MHz, CDCl$_3$) for 8q
13C NMR (100 MHz, CDCl$_3$) for 9
1H NMR (400 MHz, CDCl$_3$) for 10a
13C NMR (100 MHz, CDCl$_3$) for 10a
1H NMR (400 MHz, CDCl$_3$) for 10b
13C NMR (100 MHz, CDCl$_3$) for 10b
1H NMR (400 MHz, CDCl$_3$) for 11
\(^{13}\text{C NMR (100 MHz, CDCl}_3\text{)}\) for 11
1H NMR (400 MHz, CDCl$_3$) for 13a
13C NMR (100 MHz, CDCl$_3$) for 13a

The diagram shows a chemical structure and a graph with various peaks, indicating the chemical shifts observed in the NMR experiment.
1H NMR (400 MHz, CDCl$_3$) for 13b
13C NMR (100 MHz, CDCl$_3$) for 13b
^{19}F NMR (376 MHz, CDCl$_3$) for 13b
1H NMR (400 MHz, CDCl$_3$) for 13c
13C NMR (100 MHz, CDCl$_3$) for 13c
1H NMR (400 MHz, CDCl$_3$) for 13d
13C NMR (100 MHz, CDCl$_3$) for 13d
1H NMR (400 MHz, CDCl$_3$) for 13e
13C NMR (100 MHz, CDCl$_3$) for 13e
1H NMR (400 MHz, CDCl$_3$) for 13f
13C NMR (100 MHz, CDCl$_3$) for 13g
1H NMR (400 MHz, CDCl$_3$) for 13h
13C NMR (100 MHz, CDCl$_3$) for 13h
1H NMR (400 MHz, CDCl$_3$) for 15a
13C NMR (100 MHz, CDCl$_3$) for 15a
1H NMR (400 MHz, CDCl$_3$) for 15b
13C NMR (100 MHz, CDCl$_3$) for 15b
1H NMR (400 MHz, CDCl$_3$) for 15c
13C NMR (400 MHz, CDCl$_3$) for **15c**
1H NMR (400 MHz, CDCl$_3$) for 15d
13C NMR (100 MHz, CDCl$_3$) for 15d
13C NMR (100 MHz, CDCl$_3$) for 15e
13C NMR (100 MHz, CDCl$_3$) for 15f
1H NMR (400 MHz, CDCl3) for 15g
13C NMR (100 MHz, CDCl$_3$) for 15g
1H NMR (400 MHz, CDCl$_3$) for 15h
$^{13}\text{C NMR (100 MHz, CDCl}_3\text{) for 15h}$
1H NMR (400 MHz, CDCl$_3$) for 15i
13C NMR (100 MHz, CDCl$_3$) for 15i
6. References

