Supplementary Information

for

Magnesium dicarboxylates promote the prenylation of phenolics that is extended to the total synthesis of icaritin

Jichao Zhang,^{a,b} Wei Xiong,^a Yongju Wen,^a Xuewen Fu,^a Xiaoxia Lu,^a

Guolin Zhang^a and Chun Wang^{*a}

^aChengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China. ^bUniversity of Chinese Academy of Sciences, Beijing 100049, China.

*E-mail: wangchun@cib.ac.cn

Table of Contents

1. Synthesis and Characterization of Magnesium DicarboxylatesS	2
2. Synthetic Procedures and Characterization Data of the CompoundsS	5
3. References	5
4. ¹ H & ¹³ C NMR Spectra of All Compounds	6

1. Synthesis and Characterization of Magnesium Dicarboxylates

FT-IR Spectra

Fig. S1A FT-IR Spectra of (a) malonate and (b) Magnesium malonate 4a

Fig. S1B FT-IR Spectra of (a) succinate and (b) Magnesium succinate 4b

Fig. S1C FT-IR Spectra of (a) glutarate and (b) Magnesium glutarate 4c

Fig. S1D FT-IR Spectra of (a) adipate and (b) Magnesium adipate 4d

Fig. S1E FT-IR Spectra of (a) phthalate and (b) Magnesium phthalate 4e

Fig. S1F FT-IR Spectra of (a) succinate and (b) Zinc succinate 4f

Thermal Gravity Analysis

Fig. S2 Thermal Gravity Analysis Curves of 4b (a) TGA and (b) DTG

2. Synthetic Procedures and Characterization Data of the

Compounds

1-(2,6-dihydroxy-3- (3-methylbut-2-en-1-yl)phenyl)ethan-1-one (3ba)

Obtained in MeCN with yield: 48% (0.211 g). White solid, mp: 79-80 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 13.31 (s, 1H), 10.79 - 10.52 (m, 1H), 7.13 (d, J = 8.3 Hz, 1H), 6.37 (d, J = 8.4 Hz, 1H), 5.22 (m, 1H), 3.13 (d, J

= 7.3 Hz, 2H), 2.65 (s, 3H), 1.70 (s, 3H), 1.65 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 205.94, 161.04, 159.22, 136.57, 131.90, 123.08, 119.30, 110.17, 106.47, 33.72, 27.30, 25.96, 18.04. HRMS-ESI (m/z) calcd for C₁₃H₁₇O₃ ([M+H]⁺): 221.1178; found: 221.1174.

2-(3-methylbut-2-en-1-yl)phenol (3ca₁) (known compound)^[1]

Obtained in MeCN with yield: 27% (0.120 g). White solid, mp: 124-126 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.47 (s, 1H), 10.65 (s, 1H), 7.53 (s, 1H), 6.30 (s, 1H), 5.33 – 5.13 (m, 1H), 3.16 (d, *J* = 7.2 Hz, 2H), 2.50 (s, 3H), 1.72 (s, 3H), 1.65 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 202.86, 163.23, 162.85, 132.61, 131.86, 123.16, 120.63, 113.01, 102.42, 27.96, 26.83, 25.96, 18.13. HRMS-ESI (m/z) calcd for C₁₃H₁₇O₃ ([M+H]⁺): 221.1178; found: 221.1172.

1-(2,4-dihydroxy-3-(3-methylbut-2-en-1-yl)phenyl)ethan-1-one (3ca₂)

HO + Obtained in MeCN with yield: 25% (0.110 g). White solid, mp: 153-154 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 13.05 (s, 1H), 10.55 (s, 1H), 7.64 (d, J = 8.8 Hz, 1H), 6.44 (d, J = 8.8 Hz, 1H), 5.18 – 5.12 (m, 1H), 3.20 (d, J = 7.2 Hz, 2H), 1.71 (s, 3H), 1.61 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 203.64, 162.68,

162.45, 131.18, 130.95, 122.74, 114.63, 112.91, 107.80, 26.57, 25.94, 21.61, 18.15. HRMS-ESI (m/z) calcd for C₁₃H₁₅O₃ ([M-H]⁻): 219.1027; found: 219.1029.

E-1-(2,4-dihydroxy-3-(3-methylbut-2-en-1-yl)-phenyl-3(4-hydroxyphenyl)prop-2-en-1-one

 $(3da_1)$ (known compound)^[2]

Obtained in MeCN with yield: 22% (0.140 g). Yellow solid, mp: 168-170 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 13.49 (s, 1H), 10.68 (s, 1H), 10.15 (s, 1H), 7.98 (s, 1H), 7.86 – 7.64 (m, 4H), 6.95 – 6.75 (m, 2H), 6.33 (s, 1H), 5.37 – 5.06 (m,

1H), 3.22 (d, J = 7.1 Hz, 2H), 1.72 (s, 3H), 1.68 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 191.78, 164.50, 163.41, 160.68, 144.47, 132.13, 131.64, 131.22, 126.25, 123.87, 120.92, 117.99, 116.29, 113.15, 102.74, 28.43, 25.95, 18.25. HRMS-ESI (m/z) calcd for C₂₀H₂₁O₄ ([M+H]⁺): 325.1440; found: 325.1431.

(*E*)-1-(2,4-dihydroxy-3-(3-methylbut-2-en-1-yl)phenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one (3da₂)

Obtained in MeCN with yield: 18% (0.115 g). Yellow solid, mp: 154-156 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 14.02 (s, 1H), 10.57 (s, 1H) , 10.16 (s, 1H), 8.05 (d, J = 9.0 Hz, 1H), 7.76 (s, 4H), 6.95 – 6.75 (m, 2H), 6.48 (d, J = 8.9 Hz, 1H), 5.20 – 5.16 (m, 1H), 3.24 (d, J = 7.2 Hz, 2H), 1.73 (s, 3H), 1.62 (s, 3H). ¹³C

NMR (101 MHz, DMSO-d₆) & 192.21, 164.00, 162.73, 160.69, 144.59, 131.66, 130.92, 130.27,

126.23, 122.82, 117.82, 116.30, 114.90, 113.16, 107.76, 25.96, 21.74, 18.19. HRMS-ESI (m/z) calcd for $C_{20}H_{20}NaO_4$ ([M+Na]⁺): 347.1259; found: 347.1250.

2-(3-methylbut-2-en-1-yl)benzene-1,3,5-triol (3ea) (known compound)^[3]

NMR (101 MHz, DMSO- d_6) δ 156.66, 156.17, 128.84, 125.10, 105.67, 94.53, 25.99, 22.00, 18.09. HRMS-ESI (m/z) calcd for C₁₁H₁₄O₃Na ([M+Na]⁺): 217.0841; found: 217.1064.

5-(hydroxymethyl)-4- (3-methylbut-2-en-1-yl)benzene-1,3-diol (3fa)

HRMS-ESI (m/z) calcd for $C_{12}H_{16}O_3Na$ ([M+Na]⁺): 231.0997; found: 231.1009.

4-(3-methylbut-2-en-1-yl)benzene-1,3-diol (3ga₁) (known compound)^[4]

Obtained in DMF with yield: 45% (0.160 g). Colorless oil. ¹H NMR (400 MHz, DMSO- d_6) δ 9.03 (s, 2H), 6.75 (d, J = 8.2 Hz, 1H), 6.26 (d, J = 2.5 Hz, 1H), 6.13 (dd, J = 8.1, 2.4 Hz, 1H), 5.27-5.17 (m, 1H), 3.08 (d, J = 7.5

Hz, 2H), 1.67 (s, 3H), 1.64 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 156.60, 155.92, 130.77, 129.92, 124.18, 118.31, 106.36, 102.82, 27.77, 25.99, 18.01. HRMS-ESI (m/z) calcd for C₁₁H₁₅O₂ ([M+H]⁺): 179.1072; found: 179.1072.

2-(3-methylbut-2-en-1-yl)benzene-1,3-diol (3ga₂)

2-(3-methylbut-2-en-1-yl)benzene-1,4-diol (3ha) (known compound)^[5]

= 7.4 Hz, 2H), 1.69 (s, 3H), 1.65 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 150.16, 147.67, 131.57, 128.49, 123.42, 116.34, 115.78, 113.16, 28.44, 26.01, 18.06. HRMS-ESI (m/z) calcd for C₁₁H₁₅O₂ ([M+H]⁺): 179.1072; found: 179.1071.

2-(3-methylbut-2-en-1-yl)phenol (3ia')

Obtained in MeCN with yield: 14% (0.045 g). Colorless oil. ¹H NMR (400 MHz, DMSO- d_6) δ 9.25 (s, 1H), 6.99 (m, 2H), 6.76 (m, 1H), 6.70 (m, 1H), 5.27 (m, 1H), 3.20 (d, J = 7.4 Hz, 2H), 1.70 (s, 3H), 1.67 (s, 3H). ¹³C NMR (101

MHz, DMSO-*d*₆) δ 155.30, 131.55, 129.69, 127.83, 127.07, 123.39, 119.32, 115.24, 28.43, 26.00, 18.08. HRMS-ESI (m/z) calcd for C₁₁H₁₅O ([M+H]⁺): 163.1123; found: 163.1195.

4-(3-methylbut-2-en-1-yl)phenol (3ia")

H Obtained in MeCN with yield: 44% (0.143 g). Colorless oil. ¹H NMR (400 MHz, DMSO- d_6) δ 9.12 (s, 1H), 6.94 (d, J = 8.3 Hz, 2H), 6.65 (d, J = 8.4 Hz, 2H), 5.28 – 5.21 (m, 1H), 3.18 (d, J = 7.4 Hz, 2H), 1.69 (s, 3H), 1.67 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 155.73, 131.81, 129.41, 124.49, 115.53, 33.29, 25.97, 18.08. HRMS-ESI (m/z) calcd for C₁₁H₁₃O ([M-H]⁻): 161.0972; found: 161.0969.

5-(3-methylbut-2-en-1-yl)benzo[d][1,3]dioxol-4-ol (3ja)

OH

Obtained in MeCN with yield: 49% (0.200 g). Colorless oil. ¹H NMR (400 MHz, DMSO- d_6) δ 8.98 (s, 1H), 6.56 (s, 1H), 6.41 (s, 1H), 5.84 (s, 2H), 5.31 – 5.16 (m, 1H), 3.11 (d, J = 7.4 Hz, 2H), 1.68 (s, 3H), 1.65 (s, 3H). ¹³C

NMR (101 MHz, DMSO- d_6) δ 149.49, 145.63, 139.95, 131.45, 123.69, 119.52, 109.21, 100.74, 97.94, 28.16, 25.97, 18.06. HRMS-ESI (m/z) calcd for C₁₂H₁₅O₃ ([M+H]⁺): 207.1021; found: 207.1031.

3-(3-methylbut-2-en-1-yl)benzene-1,2-diol (3ka')

DMSO-*d*₆) δ 145.31, 143.29, 131.26, 128.60, 123.61, 120.21, 119.07, 113.40, 28.53, 26.00, 18.08. HRMS-ESI (m/z) calcd for C₁₁H₁₃O₂ ([M-H]⁻): 177.0921; found: 177.0912.

4-(3-methylbut-2-en-1-yl)benzene-1,2-diol (3ka")

Obtained in MeCN with yield: 43% (0.152 g). Colorless oil. ¹H NMR (400 MHz, DMSO- d_6) δ 8.70 (s, 1H), 8.57 (s, 1H), 6.61 (d, J = 7.9 Hz, 1H), 6.53 (d, J = 2.1 Hz, 1H), 6.39 (dd, J = 8.0, 2.1 Hz, 1H), 5.28 – 5.20 (m, 1H), 3.11 (d, J = 7.4 Hz, 2H), 1.69 (s, 3H), 1.66 (s, 3H). ¹³C NMR (101 MHz,

DMSO-*d*₆) δ 145.50, 143.59, 132.50, 131.27, 124.53, 119.12, 116.00, 115.88, 33.49, 26.00, 18.06. HRMS-ESI (m/z) calcd for C₁₁H₁₄NaO₂ ([M+Na]⁺): 201.0891; found: 201.0886.

1-(2-hydroxy-5-(3-methylbut-2-en-1-yl)phenyl)ethan-1-one (3la)

OH

OH
 IH NMR (400 MHz, DMSO- d_6) δ 11.78 (s, 1H), 7.66 (d, $J = 2.2$ Hz, 1H),
7.32 (dd, $J = 8.5$, 2.3 Hz, 1H), 6.89 (d, $J = 8.4$ Hz, 1H), 5.31 – 5.26 (m,
1H), 3.28 (d, $J = 7.4$ Hz, 2H), 2.63 (s, 3H), 1.71 (s, 3H), 1.70 (s, 3H). 13 C

NMR (101 MHz, DMSO-*d*₆) δ 204.80, 159.40, 136.72, 132.44, 132.38, 130.72, 123.73, 120.57, 118.05, 33.08, 28.13, 25.96, 18.18. HRMS-ESI (m/z) calcd for C₁₃H₁₆NaO₂ ([M+Na]⁺): 227.1048; found: 227.1043.

2-methoxy-6-(3-methylbut-2-en-1-yl)phenol (3ma') (known compound)^[6]

120.59, 115.81, 112.85, 55.97, 33.71, 25.97, 18.10. HRMS-ESI (m/z) calcd for $C_{12}H_{16}NaO_2$ ([M+Na]⁺): 215.1048; found: 215.1063.

2-methoxy-4-(3-methylbut-2-en-1-yl)phenol (3ma") (known compound)^[7]

MHz, DMSO-*d*₆) δ 146.87, 146.19, 134.39, 131.59, 124.26, 118.96, 116.01, 112.86, 56.19, 33.46, 25.98, 18.08. HRMS-ESI (m/z) calcd for C₁₂H₁₆NaO₂ ([M+Na]⁺): 215.1048; found: 215.1063.

4-methoxy-2-(3-methylbut-2-en-1-yl)phenol (3na)

115.62, 111.61, 55.68, 28.64, 25.98, 18.10. HRMS-ESI (m/z) calcd for $C_{12}H_{15}O_2$ ([M-H]⁻): 191.1078; found: 191.1064.

1-(2,4-dihydroxy-6-((3-methylbut-2-en-1-yl)oxy)phenyl)ethan-1-one (5aa)

(known compound)^[8]

Obtained in K₂CO₃/acetone with yield: 28% (0.132 g). White solid, mp: 106-107 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 13.84 (s, 1H), 10.60 (s, 1H), 5.99 (d, J = 2.3 Hz, 1H), 5.86 (d, J = 2.1 Hz, 1H), 5.49 (t, J = 6.7

Hz, 1H), 4.57 (d, J = 6.6 Hz, 2H), 1.77 (s, 3H), 1.72 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 202.70, 166.76, 165.50, 162.94, 138.35, 119.44, 105.18, 95.95, 92.65, 65.84, 33.15, 25.89, 18.52. HRMS-ESI (m/z) calcd for C₁₃H₁₆O₄Na ([M+Na]⁺): 259.0946; found: 259.0938.

1-(2,4-dihydroxy-6-((3-methylbut-2-en-1-yl)oxy)phenyl)ethan-1-one (5aa')

¹H NMR (400 MHz, DMSO-*d*₆) δ 12.30 (s, 2H), 5.94 (s, 2H), 5.38 (t, J = 1.6 Hz, 1H), 4.52 (d, J = 6.8 Hz, 2H), 2.58 (s, 3H), 1.74 (s, 3H), 1.70 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 203.44, 166.75, 164.50, 162.94,

138.21, 119.67, 105.19, 94.11, 92.65, 65.03, 32.94, 25.89, 18.48. HRMS-ESI (m/z) calcd for $C_{13}H_{16}O_4Na$ ([M+Na]⁺): 259.0946; found: 259.0938.

3-((3-methylbut-2-en-1-yl)oxy)phenol (5ga)

Scheme S1 Synthesis of prenyl ether 5ga

To the solution of **1g** (0.220 g, 2.0 mmol) in dry acetone (10 mL) was added prenyl bromide **2a** (0.28 mL, 2.4 mmol) at 0 °C. Then, NaOH (0.160 g, 4.0 mmol) was added and the mixture was stirred for 3 h at room temperature under argon. Then, the reaction was stirred for 3 h at room temperature under argon. The progress of the reaction was monitored by TLC. After completion of the reaction, the mixture was poured into ice-cold water. The resulted solution was adjusted to PH=7.0 with 1M HCl (aq) and extracted with ethyl acetate. The organic phase was washed with water (3×10) and dried over anhydrous Na₂SO₄. After removing of the solvents, the residue was purified by flash silica gel column chromatography with petroleum ether-ethyl acetate (10:1, v/v) to give the product **5ga**. Yield: 61% (0.217 g). Colorless oil. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.40 (s, 1H), 7.03 (t, *J* = 8.0 Hz, 1H), 6.41 – 6.29 (m, 3H), 5.40 (m, 1H), 4.44 (d, *J* = 6.6 Hz, 2H), 1.74 (s, 3H), 1.69 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 160.12, 159.01, 137.13, 130.21, 120.59, 108.16, 105.67, 102.31, 64.50, 25.87, 18.43. HRMS-ESI (m/z) calcd for C₁₁H₁₅O₂ ([M+H]⁺): 179.1072; found: 179.1063.

1-(5,7-dihydroxy-2,2-dimethylchroman-8-yl)ethan-1-one (6aa) (known compound)^[9]

HO Obtained in MeCN with yield: 25% (0.118 g). White solid, mp: 147-148 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 14.11 (s, 1H), 10.62 (s, 1H), 5.80 (s, 1H), 2.57 (s, 3H), 2.45 (t, J = 6.7 Hz, 2H), 1.72 (t, J = 6.8 Hz, 2H), 1.26 (s, 6H). ¹³C NMR (101 MHz, DMSO- d_6) δ 203.30, 163.63, 160.82, 160.35, 104.56, 99.99, 95.19,

76.09, 32.88, 31.88, 26.82, 16.14. HRMS-ESI (m/z) calcd for $C_{13}H_{17}O_4$ ([M+H]⁺): 237.1127; found: 237.1113.

2,2-dimethylchromane-5,7-diol (6ea) (known compound)^[10]

Obtained in MeCN with yield: 33% (0.128 g). Colorless oil. ¹H NMR (400 MHz, DMSO- d_6) δ 9.11 (s, 1H), 8.85 (s, 1H), 5.84 (d, J = 2.3 Hz, 1H), 5.60 (d, J = 2.3Hz, 1H), 2.40 (t, J = 6.8 Hz, 2H), 1.64 (t, J = 6.8 Hz, 2H), 1.21 (s, 6H). ¹³C NMR (101 MHz, DMSO- d_6) δ 156.79, 156.41, 155.27, 99.55, 95.06, 94.93,

73.77, 32.53, 26.88, 16.88. HRMS-ESI (m/z) calcd for $C_{13}H_{13}O_3$ ([M-H]]): 193.0870; found: 193.0867.

5-(hydroxymethyl)-2,2-dimethylchroman-7-ol (6fa)

142.12, 109.00, 106.68, 102.11, 73.53, 61.11, 32.69, 26.87, 18.24. HRMS-ESI (m/z) calcd for C₁₂H₁₅O₃ ([M-H]⁻): 207.1027; found: 207.1046.

2,2-dimethylchroman-7-ol (6ga) (known compound)^[10]

Obtained in MeCN with yield: 11% (0.040 g). Colorless oil. ¹H NMR (400 MHz, DMSO- d_6) δ 9.07 (s, 1H), 6.82 (d, J = 8.2 Hz, 1H), 6.25 (dd, J = 8.2, 2.5 Hz, 1H), 6.11 (d, J = 2.4 Hz, 1H), 2.59 (t, J = 6.7 Hz, 2H), 1.69 (t, J = 6.6 Hz, 2H), 1.24 (s, 6H). ¹³C NMR (101 MHz, DMSO- d_6) δ 156.96, 154.65, 130.20, 111.54, 107.91, 103.54, 74.12, 32.93, 27.03, 21.59. HRMS-ESI (m/z) calcd for C₁₁H₁₅O₂ ([M+H]⁺): 179.1072;

found: 179.1071.

2,2-dimethylchroman-6-ol (6ha) (known compound)^[10]

Obtained in MeCN with yield: 21% (0.075 g). Colorless oil. ¹H NMR (400 MHz, DMSO- d_6) δ 8.69 (s, 1H), 6.63 – 6.37 (m, 3H), 2.63 (t, J = 6.8 Hz, 2H), 1.68 (t, J = 6.8Hz, 2H), 1.22 (s, 6H). ¹³C NMR (101 MHz, DMSO- d_6) δ 150.55, 146.59, 121.59, 117.49, 115.56, 114.66, 73.55, 32.74, 26.95, 22.53. HRMS-ESI (m/z) calcd for C₁₁H₁₅O₂ ([M+H]⁺): 179.1072; found: 179.1068.

Scheme S2 The reaction of 1g with BnBr in the presence of 4b

Phenols **1g** (2.0 mmol, 1.0 equiv) and **4b** (2.0 mmol, 1.0 equiv) were sequencely added in DMF (10 mL) and stirred at room temperature for 5min. Then, benzyl bromide (2.4 mmol, 1.2 equiv) was dropwisely added and the mixture was stirred at 60 °C for 96 h under argon. After cooling to temperature, the mixture was poured into ice-cold water and extracted with ethyl acetate. The organic layer was washed with water (3×10) and dried with anhydrous Na₂SO₄. After removing of the solvent, the crude product was further purified by reversed-phase column chromatography with MeOH-H₂O (70%, v/v) to afford *C*-benzylated phenols **10** and **11** (5:1, mol/mol).

10: Yield: 60% (0.240 g). White solid, mp: 75-76 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 9.21 (s, 1H), 9.04 (s, 1H), 7.28 – 7.20 (m, 2H), 7.20 – 7.15 (m, 2H), 7.13 (m, 1H), 6.79 (d, J = 8.1 Hz, 1H), 6.30 (d, J = 2.4 Hz, 1H), 6.15 (dd, J = 8.1, 2.4 Hz, 1H), 3.74 (s, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 157.01, 156.07, 142.50, 131.09, 128.95, 128.50, 125.86, 118.39, 106.53, 102.88, 35.11. HRMS-ESI (m/z) calcd for C₁₃H₁₁O₂ ([M-H]⁻): 199.0759; found: 199.0748.

11: Yield: 12% (0.048 g). White solid, mp: 117-118 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 9.19 (s, 2H), 7.27 – 7.14 (m, 4H), 7.09 (d, J = 6.8 Hz, 1H), 6.80 (t, J = 8.0 Hz, 1H), 6.30 (d, J = 8.0 Hz, 2H), 3.82 (s, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 156.64, 142.37, 128.85, 128.24, 127.15, 125.61, 114.43, 106.66, 28.88. HRMS-ESI (m/z) calcd for C₁₃H₁₁O₂ ([M-H]⁻): 199.0759; found: 199.0747.

(*E*)-1-(2-hydroxy-4,6-bis(methoxymethoxy)-3-(3-methylbut-2-en-1-yl)phenyl)-3-(4-methoxyp henyl)prop-2-en-1-one (15)

Scheme S3 The reaction of 12 and p-anisaldehyde promoted by pyrrolidine in MeOH

To the solution of **12** (0.320g, 1.0 mmol) in MeOH (10 mL) was added p-anisaldehyde (0.13 mL, 1.1 mmol) at room temperature. Then, the reaction temperature was raised to 50 °C and stirred for 16 h under an atmospheric condition. The progress of the reaction was monitored by TLC. After completion of the reaction, the mixture was poured into ice-cold water. The obtained solution was adjusted to PH=7.0 with 1M HCl (aq) and extracted with ethyl acetate. The organic layer was washed with water (3×10) and dried with anhydrous Na₂SO₄. After removing of solvent, the residue obtained was purified over flash column chromatography with petroleum ether/ethyl acetate (5:1, v/v) as the eluent to give **15**. Yield: 75% (0.330 g). Yellow solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 13.78 (s, 1H), 7.87 – 7.64 (m, 4H), 7.12 – 6.95 (m, 2H), 6.40 (s, 1H), 5.33 (d, *J* = 19.0 Hz, 4H), 5.13 (t, *J* = 1.5 Hz, 1H), 3.82 (s, 3H), 3.42 (s, 3H), 3.40 (s, 3H), 3.22 (d, *J* = 7.2 Hz, 2H), 1.72 (s, 3H), 1.60 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 193.22, 162.82, 161.81, 160.65, 158.22, 143.13, 130.99, 130.83, 127.84, 125.18, 122.90, 115.09, 110.92, 107.51, 95.67, 94.16, 92.83, 57.02, 56.50, 55.84, 25.94, 21.70, 18.09. HRMS-ESI (m/z) calcd for C₂₅H₃₁O₇ ([M+H]⁺): 443.2070; found: 443.2056.

3. References

N. Tadigoppula, V. Korthikunta, S. Gupta, P. Kancharla, T. Khaliq, A. Soni, R.K. Srivastava, K. Srivastava, S.K. Puri, K.S.R. Raju, Wahajuddin, P.S. Sijwali and V. Kumar, *J. Med. Chem.*, 2013, 56, 31-45.

[2] K. Sugamoto, Y.-I. Matsusita, K. Matsui, C. Kurogi and T. Matsui, *Tetrahedron*, 2011, 67, 5346-5359.

[3] S.B. Raikar, P. Nuhant, B. Delpech and C. Marazano, Eur. J. Org. Chem., 2008, 8, 1358-1369.

[4] I.Yu. Chukicheva, I.V. Fedorova, N.A. Nizovtsev, A.A. Korolera, O.G. Shevchenko and A.V. Kuchin, *Chem. Nat. Compd.*, 2018, 54, 875-882.

[5] H.-C. Yang, J.-S. Yu, K.-B. Oh, D.-S. Shin, W.-J. Cho, J. Shin and S. Kim, Arch. Pharmacal Res., 2007, **30**, 955-961.

[6] L.W. Bieber, A.A. Chiappeta, M.A. De Moraes E Souza, R.M. Generino, *J. Nat. Prod.*, 1990, 53, 706-709.

[7] P. Ballester, M. Capo, J.M. Saa, Tetrahedron Lett., 1990, 131, 1339-1342.

[8] P. Basabe, M.de Roman, I.S. Marcos, D. Diez, A. Blanco, O. Bodero, F. Mollinedo, B.G. Sierra and J.G. Urones, *Eur. J. Med. Chem.*, 2010, 45, 4258-4269.

[9] T. Narender, K.P. Reddy and Shweta, Synth. Commun., 2009, 39, 384-394.

[10] R.H. Cichewicz, V.A. Kenyon, S. Whitman, N.M. Morales, J.F. Arguello, T.R. Holman and P. Crews, J. Am. Chem. Soc., 2004, 126, 14910-14920.

[11] C. Petronzi, R. Filosu, A. Peduto, M.C. Monti, L. Margarucci, A. Massa, S.F. Ercolino, V.Bizzarro, L. Parente, R. Riccio and P. de Caprariis, *Eur. J. Med. Chem.*, 2011, 46, 488-496.

4. NMR Spectra of All Compounds

¹H NMR (400 MHz, DMSO- d_6) spectrum of **3aa**

¹H NMR (400 MHz, DMSO-*d*₆) spectrum of **3ba**

 $^{13}C{^{1}H}$ NMR (101 MHz, DMSO- d_6) spectrum of **3ba**

¹H NMR (400 MHz, DMSO- d_6) spectrum of **3ca**₁

 $^{13}C{^{1}H}$ NMR (101 MHz, DMSO- d_6) spectrum of $3ca_1$

¹H NMR (400 MHz, DMSO- d_6) spectrum of **3ca**₂

 $^{13}C{^{1}H}$ NMR (101 MHz, DMSO- d_6) spectrum of $3ca_2$

¹H NMR (400 MHz, DMSO- d_6) spectrum of **3da**₁

 $^{13}C{^{1}H}$ NMR (101 MHz, DMSO- d_6) spectrum of **3da**₁

¹H NMR (400 MHz, DMSO- d_6) spectrum of **3da**₂

 $^{13}C{^{1}H}$ NMR (101 MHz, DMSO- d_6) spectrum of $3da_2$

¹H NMR (400 MHz, DMSO- d_6) spectrum of **3ea**

 $^{13}C{^{1}H}$ NMR (101 MHz, DMSO- d_6) spectrum of **3ea**

¹H NMR (400 MHz, DMSO- d_6) spectrum of **3fa**

 $^{13}C{^{1}H}$ NMR (101 MHz, DMSO- d_6) spectrum of **3fa**

¹H NMR (400 MHz, DMSO- d_6) spectrum of **3ga**₁

 $^{13}C{^{1}H}$ NMR (101 MHz, DMSO- d_6) spectrum of **3ga**₁

¹H NMR (400 MHz, DMSO- d_6) spectrum of **3ga**₂

 $^{13}C{}^{1}H} NMR (101 MHz, DMSO-d_6) spectrum of$ **3ga**₂

¹H NMR (400 MHz, DMSO- d_6) spectrum of **3ha**

 $^{13}C{^{1}H}$ NMR (101 MHz, DMSO- d_6) spectrum of **3ha**

 $^{13}C{^{1}H}$ NMR (101 MHz, DMSO- d_6) spectrum of **3ia'**

¹H NMR (400 MHz, DMSO- d_6) spectrum of **3ia**"

¹³C{¹H} NMR (101 MHz, DMSO-*d*₆) spectrum of **3ia**"

¹H NMR (400 MHz, DMSO- d_6) spectrum of **3ja**

 $^{13}C{^{1}H}$ NMR (101 MHz, DMSO- d_6) spectrum of **3ja**

¹H NMR (400 MHz, DMSO- d_6) spectrum of **3ka'**

 $^{13}C{^{1}H}$ NMR (101 MHz, DMSO- d_6) spectrum of **3ka'**

¹H NMR (400 MHz, DMSO- d_6) spectrum of **3ka**"

 $^{13}C{^{1}H}$ NMR (101 MHz, DMSO- d_6) spectrum of **3ka**"

¹H NMR (400 MHz, DMSO-*d*₆) spectrum of **3la**

 $^{13}C{^{1}H}$ NMR (101 MHz, DMSO- d_6) spectrum of **3la**

¹H NMR (400 MHz, DMSO- d_6) spectrum of **3ma'**

 $^{13}C{^{1}H}$ NMR (101 MHz, DMSO- d_6) spectrum of **3ma'**

¹H NMR (400 MHz, DMSO-*d*₆) spectrum of **3ma**"

 $^{13}C{^{1}H}$ NMR (101 MHz, DMSO- d_6) spectrum of **3ma**"

¹H NMR (400 MHz, DMSO- d_6) spectrum of **3na**

 $^{13}C{^{1}H}$ NMR (101 MHz, DMSO- d_6) spectrum of **3na**

¹H NMR (400 MHz, DMSO- d_6) spectrum of **5aa**

 $^{13}C{^{1}H}$ NMR (101 MHz, DMSO- d_6) spectrum of **5aa**

¹H NMR (400 MHz, DMSO- d_6) spectrum of a mixture of **5aa** and **5aa'** (5:1)

 $^{13}C{^{1}H}$ NMR (101 MHz, DMSO- d_6) spectrum of a mixture of **5aa** and **5aa'** (5:1)

¹H NMR (400 MHz, DMSO- d_6) spectrum of **5ga**

 $^{13}C{^{1}H}$ NMR (101 MHz, DMSO- d_6) spectrum of **5ga**

¹H NMR (400 MHz, DMSO-*d*₆) spectrum of **6aa**

 $^{13}C{^{1}H}$ NMR (101 MHz, DMSO- d_6) spectrum of **6aa**

¹H NMR (400 MHz, DMSO- d_6) spectrum of **6ea**

¹³C{¹H} NMR (101 MHz, DMSO-*d*₆) spectrum of **6ea**

¹H NMR (400 MHz, DMSO-*d*₆) spectrum of **6fa**

 $^{13}C{^{1}H}$ NMR (101 MHz, DMSO- d_6) spectrum of **6fa**

¹H NMR (400 MHz, DMSO- d_6) spectrum of **6ga**

 $^{13}C{^{1}H}$ NMR (101 MHz, DMSO- d_6) spectrum of **6ga**

¹H NMR (400 MHz, DMSO- d_6) spectrum of **6ha**

 $^{13}C{^{1}H}$ NMR (101 MHz, DMSO- d_6) spectrum of **6ha**

¹H NMR (400 MHz, DMSO- d_6) spectrum of **10**

¹³C{¹H} NMR (101 MHz, DMSO- d_6) spectrum of **10**

¹H NMR (400 MHz, DMSO- d_6) spectrum of **11**

¹³C{¹H} NMR (101 MHz, DMSO- d_6) spectrum of **11**

¹³C{¹H} NMR (101 MHz, DMSO- d_6) spectrum of **12**

¹H NMR (400 MHz, CDCl₃) spectrum of **13**

 $^{13}\text{C}\{^1\text{H}\}$ NMR (101 MHz, CDCl₃) spectrum of 13

¹H NMR (400 MHz, DMSO- d_6) spectrum of **14**

 $^{13}C{^{1}H}$ NMR (101 MHz, DMSO- d_6) spectrum of **14**

¹H NMR (400 MHz, DMSO- d_6) spectrum of **15**

 $^{13}C{^{1}H}$ NMR (101 MHz, DMSO- d_6) spectrum of **15**