Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information

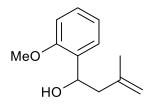
Synthesis of 2-hydroxytetrahydrofurans by Wacker-type oxidation of 1,1-disubstituted alkenes

Rina Tanaka,[†] Saki Komori,[†] Yuhei Shimizu,[‡] Yasutaka Kataoka[†] and Yasuyuki Ura^{†,*}

[†]Department of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara 630-8506, Japan

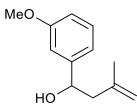
[‡]Synthesis Research Laboratory, Kurashiki Research Center, Kuraray Co., Ltd., 2045-1, Sakazu, Kurashiki, Okayama 710-0801, Japan

ura@cc.nara-wu.ac.jp


General Information	S2
Preparation of Substrates 1	S2
Synthesis of 2-Hydroxytetrahydrofurans 2	S11
Synthesis of 3–6	S23
Table S1 Optimization of reaction conditions using 1a as a substrate.	S25
Table S2 Optimization of reaction conditions using 1b as a substrate.	S26
Scheme S1 Limitation of substrates.	S27
Scheme S2 Control experiment using $1e$ as a substrate in D ₂ O/DMF.	S27
¹ H and ¹³ C NMR Spectra of 1–6	S28
References	S68

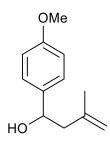
General Information

PdCl₂(MeCN)₂¹ was prepared as described in the literature. Deionized water was used as a solvent. Dehydrated DMF was purchased from FUJIFILM Wako Pure Chemical Corporation. BQ was purified by sublimation. Isoprenol (**1a**) was obtained from Kuraray Co., Ltd and was used as received. Other chemicals were also commercially available and were used without further purification. Flash column chromatography was performed using silica gel SILICYCLE SiliaFlash F60 (40–63 μ m, 230–400 mesh). NMR spectra were recorded on either a Bruker AV-300N (300 MHz (¹H), 75 MHz (¹³C)) spectrometer or a JEOL JNM-AL400 (400 MHz (¹H), 100 MHz (¹³C)) spectrometer. Chemical shift values (σ) were expressed relative to SiMe₄. High-resolution mass spectra were recorded on a JEOL JMS-T100LC spectrometer (ESI-TOF MS) with positive ionization mode.

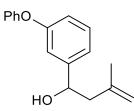

Preparation of Substrates 1

Substrate 1b was prepared as described in the literature.² Substrates 1c–1p were synthesized similarly to 1b.² Substrate 1q was prepared similarly as described in the literature.³

Synthesis of 1-(2-methoxyphenyl)-3-methyl-3-buten-1-ol (1c)

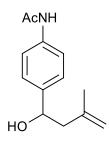

The reaction was performed under an argon atmosphere. DMF (54.5 mL) and β -methallyl chloride (3.21 mL, 33.0 mmol, 1.1 eq.) were added to a dried reaction vessel. To the solution, *o*-anisaldehyde (4.09 g, 30.0 mmol, 1.0 eq.), SnCl₂·2H₂O (10.2 g, 45.0 mmol, 1.5 eq.), and NaI (6.75 g, 45.0 mmol, 1.5 eq.) were added. The reaction mixture was stirred at room temperature for 18 h. A mixture of NH₄F aq. (25% solution, 30 mL) and *t*-butyl methyl ether (60 mL) was added to the reaction mixture. After separation, the aqueous layer was extracted with *t*-butyl methyl ether (30 mL × 3). The collected organic layer was dried over Na₂SO₄. After filtration and concentration under vacuum, the residue was purified by silica gel column chromatography (hexane/ethyl acetate = 9/1) to afford compound **1c** as a white solid (2.64 g, 13.7 mmol, 46% yield). The NMR spectral data for **1c** were in accordance with those reported in the literature.⁴

Synthesis of 1-(3-methoxyphenyl)-3-methyl-3-buten-1-ol (1d)


The reaction was performed under an argon atmosphere. DMF (54.5 mL), *m*-methoxybenzadehyde (3.66 mL, 30.0 mmol, 1.0 eq.), and β -methallyl chloride (3.21 mL, 33.0 mmol, 1.1 eq.) were added to a dried reaction vessel. To the solution, SnCl₂·2H₂O (10.2 g, 45.0 mmol, 1.5 eq.) and NaI (6.75 g, 45.0 mmol, 1.5 eq.) were added. The reaction mixture was stirred at room temperature for 18 h. A mixture of NH₄F aq. (25% solution, 30 mL) and *t*-butyl methyl ether (60 mL) was added to the reaction mixture. After separation, the aqueous layer was extracted with *t*-butyl methyl ether (30 mL×3). The collected organic layer was dried over Na₂SO₄. After filtration and concentration under vacuum, the residue was purified by silica gel column chromatography (hexane/ethyl acetate = 9/1) to afford compound **1d** as a yellow oil (3.71 g, 19.3 mmol, 64% yield).

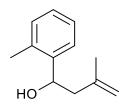
¹H NMR (300 MHz, CDCl₃) δ 7.38–6.76 (m, 4H), 4.96 (t, *J* = 1.6 Hz, 1H), 4.89 (d, *J* = 0.9 Hz, 1H), 4.82 (dt, *J* = 2.3, 6.7 Hz, 1H), 3.84 (s, 3H), 2.44 (d, *J* = 6.5 Hz, 2H), 2.21 (s, 1H), 1.83 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 159.9, 146.0, 142.5, 129.6, 118.2, 114.2, 113.1, 111.4, 71.5, 55.4, 48.5, 22.5. HRMS (ESI): *m*/*z* calcd for C₁₂H₁₆NaO₂ [M+Na]⁺ 215.1048, found 215.1046.

Synthesis of 1-(4-methoxyphenyl)-3-methyl-3-buten-1-ol (1e)

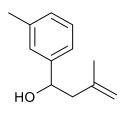

The reaction was performed under an argon atmosphere. DMF (54.5 mL), *p*-methoxybenzadehyde (3.65 mL, 30.0 mmol, 1.0 eq.), and β -methallyl chloride (3.21 mL, 33.0 mmol, 1.1 eq.) were added to a dried reaction vessel. To the solution, SnCl₂·2H₂O (10.2 g, 45.0 mmol, 1.5 eq.) and NaI (6.75 g, 45.0 mmol, 1.5 eq.) were added. The reaction mixture was stirred at room temperature for 18 h. A mixture of NH₄F aq. (25% solution, 30 mL) and *t*-butyl methyl ether (60 mL) was added to the reaction mixture. After separation, the aqueous layer was extracted with *t*-butyl methyl ether (30 mL×3). The collected organic layer was dried over Na₂SO₄. After filtration and concentration under vacuum, the residue was purified by silica gel column chromatography (hexane/ethyl acetate = 9/1) to afford compound **1e** as a pale yellow oil (3.73 g, 19.4 mmol, 65% yield). The NMR spectral data for **1e** were in accordance with those reported in the literature.⁵

Synthesis of 3-methyl-1-(3-phenoxyphenyl)-3-buten-1-ol (1f)

The reaction was performed under an argon atmosphere. DMF (27.3 mL), 3-phenoxybenzaldehyde (2.58 mL, 15.0 mmol, 1.0 eq.), and β -methallyl chloride (1.61 mL, 16.5 mmol, 1.1 eq.) were added to a dried reaction vessel. To the solution, SnCl₂·2H₂O (5.08 g, 22.5 mmol, 1.5 eq.) and NaI (3.37 g, 22.5 mmol, 1.5 eq.) were added. The reaction mixture was stirred at room temperature for 18 h. A mixture of NH₄F aq. (25% solution, 15 mL) and *t*-butyl methyl ether (30 mL) was added to the reaction mixture. After separation, the aqueous layer was extracted with *t*-butyl methyl ether (20 mL×3). The collected organic layer was dried over Na₂SO₄. After filtration and concentration under vacuum, the residue was purified by silica gel column chromatography (hexane/ethyl acetate = 9/1) to afford compound **1f** as a pale yellow oil (3.30 g, 13.0 mmol, 86% yield).

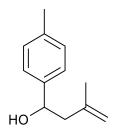

¹H NMR (300 MHz, CDCl₃) δ 7.42–6.83 (m, 9H), 4.91 (s, 1H), 4.83 (s, 1H), 4.81–4.73 (m, 1H), 2.42–2.35 (m, 2H), 2.09 (s, 1H), 1.77 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 157.5, 157.4, 146.4, 142.3, 129.9, 129.9, 123.3, 120.8, 119.0, 118.0, 116.5, 114.4, 71.2, 48.5, 22.5. HRMS (ESI): *m*/*z* calcd for C₁₇H₁₈NaO₂ [M+Na]⁺ 277.1205, found 277.1200.

Synthesis of 1-(4-acetamidophenyl)-3-methyl-3-buten-1-ol (1g)


The reaction was performed under an argon atmosphere. DMF (27.3 mL), 4-acetamidobenzaldehyde (2.45 g, 15.0 mmol, 1.0 eq.), and β -methallyl chloride (1.61 mL, 16.5 mmol, 1.1 eq.) were added to a dried reaction vessel. To the solution, SnCl₂·2H₂O (5.08 g, 22.5 mmol, 1.5 eq.) and NaI (3.37 g, 22.5 mmol, 1.5 eq.) were added. The reaction mixture was stirred at room temperature for 18 h. A mixture of NH₄F aq. (25% solution, 15 mL) and *t*-butyl methyl ether (30 mL) was added to the reaction mixture. After separation, the aqueous layer was extracted with *t*-butyl methyl ether (20 mL×3). The collected organic layer was dried over Na₂SO₄. After filtration and concentration under vacuum, the residue was purified by silica gel column chromatography (hexane/ethyl acetate = 2/3) to afford compound **1g** as a white solid (1.20 g, 5.49 mmol, 37% yield).

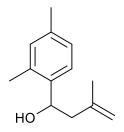
¹H NMR (300 MHz, CDCl₃) δ 7.46 (d, J = 8.5 Hz, 2H), 7.31 (d, J = 8.5 Hz, 2H), 7.13 (br s, 1H), 4.90 (s, 1H), 4.83 (s, 1H), 4.77 (dt, J = 2.1, 6.9 Hz, 1H), 2.38 (d, J = 6.9 Hz, 2H), 2.16 (s, 3H), 2.08 (d, J = 2.3 Hz, 1H), 1.77 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 168.4, 142.4, 140.2, 137.3, 126.6 (2C), 120.0 (2C), 114.3, 71.2, 48.4, 24.7, 22.5. HRMS (ESI): m/z calcd for C₁₃H₁₇NNaO₂ [M+Na]⁺ 242.1157, found 242.1163.

Synthesis of 3-methyl-1-(2-methylphenyl)-3-buten-1-ol (1h)


The reaction was performed under an argon atmosphere. DMF (27.3 mL), *o*-tolualdehyde (1.76 mL, 15.0 mmol, 1.0 eq.), and β -methallyl chloride (1.61 mL, 16.5 mmol, 1.1 eq.) were added to a dried reaction vessel. To the solution, SnCl₂·2H₂O (5.08 g, 22.5 mmol, 1.5 eq.) and NaI (3.37 g, 22.5 mmol, 1.5 eq.) were added. The reaction mixture was stirred at room temperature for 18 h. A mixture of NH₄F aq. (25% solution, 15 mL) and *t*-butyl methyl ether (30 mL) was added to the reaction mixture. After separation, the aqueous layer was extracted with *t*-butyl methyl ether (20 mL×3). The collected organic layer was dried over Na₂SO₄. After filtration and concentration under vacuum, the residue was purified by silica gel column chromatography (hexane/ethyl acetate = 9/1) to afford compound **1h** as a pale yellow oil (1.56 g, 8.86 mmol, 59% yield). The NMR spectral data for **1h** were in accordance with those reported in the literature.⁵

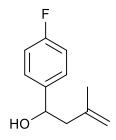
Synthesis of 3-methyl-1-(3-methylphenyl)-3-buten-1-ol (1i)

The reaction was performed under an argon atmosphere. DMF (27.3 mL), *m*-tolualdehyde (1.76 mL, 15.0 mmol, 1.0 eq.), and β -methallyl chloride (1.61 mL, 16.5 mmol, 1.1 eq.) were added to a dried reaction vessel. To the solution, SnCl₂·2H₂O (5.08 g, 22.5 mmol, 1.5 eq.) and NaI (3.37 g, 22.5 mmol, 1.5 eq.) were added. The reaction mixture was stirred at room temperature for 18 h. A mixture of NH₄F aq. (25% solution, 15 mL) and *t*-butyl methyl ether (30 mL) was added to the reaction mixture. After separation, the aqueous layer was extracted with *t*-butyl methyl ether (20 mL×3). The collected organic layer was dried over Na₂SO₄. After filtration and concentration under vacuum, the residue was purified by silica gel column chromatography (hexane/ethyl acetate = 9/1) to afford compound **1i** as a pale yellow oil (1.42 g, 8.06 mmol, 54% yield).

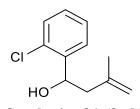

¹H NMR (400 MHz, CDCl₃) δ 7.30–7.04 (m, 4H), 4.92 (s, 1H), 4.85 (d, *J* = 0.7 Hz, 1H), 4.82–4.73 (m, 1H), 2.47–2.31 (m, 2H), 2.34 (s, 3H), 2.07 (s, 1H), 1.79 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 144.1, 142.6, 138.2, 128.5, 128.4, 126.6, 123.0, 114.2, 71.5, 48.5, 22.5, 21.6. HRMS (ESI): *m/z* calcd for C₁₂H₁₆NaO [M+Na]⁺ 199.1099, found 199.1109.

Synthesis of 3-methyl-1-(4-methylphenyl)-3-buten-1-ol (1j)

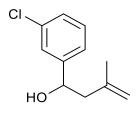
The reaction was performed under an argon atmosphere. DMF (40.0 mL), *p*-tolualdehyde (2.36 mL, 20.0 mmol, 1.0 eq.), and β -methallyl chloride (2.14 mL, 22.0 mmol, 1.1 eq.) were added to a dried reaction vessel. To the solution, SnCl₂·2H₂O (6.77 g, 30.0 mmol, 1.5 eq.) and NaI (4.50 g, 30.0 mmol, 1.5 eq.) were added. The reaction mixture was stirred at room temperature for 18 h. A mixture of NH₄F aq. (25% solution, 25 mL) and *t*-butyl methyl ether (50 mL) was added to the reaction mixture. After separation, the aqueous layer was extracted with *t*-butyl methyl ether (30 mL×3). The collected organic layer was dried over Na₂SO₄. After filtration and concentration under vacuum, the residue was purified by silica gel column chromatography (hexane/ethyl acetate = 9/1) to afford compound **1j** as a pale yellow oil (1.31 g, 7.44 mmol, 37% yield).


¹H NMR (300 MHz, CDCl₃) δ 7.28 (d, *J* = 8.0 Hz, 2H), 7.14 (d, *J* = 8.0 Hz, 2H), 4.90 (d, *J* = 1.1 Hz, 1H), 4.84 (d, *J* = 1.1 Hz, 1H), 4.79–4.74 (m, 1H), 2.41–2.39 (m, 2H), 2.33 (s, 3H), 2.06 (d, *J* = 2.4 Hz, 1H), 1.78 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 142.7, 141.2, 137.3, 129.2 (2C), 125.9 (2C), 114.1, 71.4, 48.5, 22.5, 21.3. HRMS (ESI): *m*/*z* calcd for C₁₂H₁₆NaO [M+Na]⁺ 199.1099, found 199.1109.

Synthesis of 3-methyl-1-(2,4-dimethylphenyl)-3-buten-1-ol (1k)

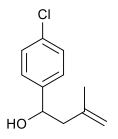

The reaction was performed under an argon atmosphere. DMF (27.3 mL), 2,4-dimethylbenzaldehyde (2.16 mL, 15.0 mmol, 1.0 eq.), and β -methallyl chloride (1.61 mL, 16.5 mmol, 1.1 eq.) were added to a dried reaction vessel. To the solution, SnCl₂·2H₂O (5.08 g, 22.5 mmol, 1.5 eq.) and NaI (3.37 g, 22.5 mmol, 1.5 eq.) were added. The reaction mixture was stirred at room temperature for 18 h. A mixture of NH₄F aq. (25% solution, 15 mL) and *t*-butyl methyl ether (30 mL) was added to the reaction mixture. After separation, the aqueous layer was extracted with *t*-butyl methyl ether (20 mL×3). The collected organic layer was dried over Na₂SO₄. After filtration and concentration under vacuum, the residue was purified by silica gel column chromatography (hexane/ethyl acetate = 9/1) to afford compound **1k** as a yellow oil (2.11 g, 11.1 mmol, 74% yield).

¹H NMR (300 MHz, CDCl₃) δ 7.39 (d, J = 7.9 Hz, 1H), 7.08–6.91 (m, 2H), 5.04–4.96 (m, 1H), 4.92 (t, J = 1.6 Hz, 1H), 4.88 (d, J = 8.4 Hz, 1H), 2.46–2.25 (m, 2H), 2.30 (s, 3H), 2.29 (s, 3H), 2.00 (d, J = 2.3 Hz, 1H), 1.82 (s, 3H). ¹³C{¹H NMR (100 MHz, CDCl₃) δ 142.9, 139.3, 136.8, 134.2, 131.2, 127.1, 125.2, 114.0, 67.9, 47.3, 22.4, 21.1, 19.0.

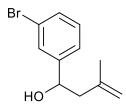

Synthesis of 1-(4-fluorophenyl)-3-methyl-3-buten-1-ol (11)

The reaction was performed under an argon atmosphere. DMF (54.5 mL), *p*-fluorobenzadehyde (3.16 mL, 30.0 mmol, 1.0 eq.), and β -methallyl chloride (3.21 mL, 33.0 mmol, 1.1 eq.) were added to a dried reaction vessel. To the solution, SnCl₂·2H₂O (10.2 g, 45.0 mmol, 1.5 eq.) and NaI (6.75 g, 45.0 mmol, 1.5 eq.) were added. The reaction mixture was stirred at room temperature for 18 h. A mixture of NH₄F aq. (25% solution, 30 mL) and *t*-butyl methyl ether (60 mL) was added to the reaction mixture. After separation, the aqueous layer was extracted with *t*-butyl methyl ether (30 mL×3). The collected organic layer was dried over Na₂SO₄. After filtration and concentration under vacuum, the residue was purified by silica gel column chromatography (hexane/ethyl acetate = 9/1) to afford compound **11** as a pale yellow oil (3.66 g, 20.3 mmol, 68% yield). The NMR spectral data for **11** were in accordance with those reported in the literature.⁵

Synthesis of 1-(2-chlorophenyl)-3-methyl-3-buten-1-ol (1m)

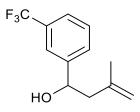

The reaction was performed under an argon atmosphere. DMF (27.3 mL), *o*-chlorobenzaldehyde (1.69 mL, 15.0 mmol, 1.0 eq.), and β -methallyl chloride (1.61 mL, 16.5 mmol, 1.1 eq.) were added to a dried reaction vessel. To the solution, SnCl₂·2H₂O (5.08 g, 22.5 mmol, 1.5 eq.) and NaI (3.37 g, 22.5 mmol, 1.5 eq.) were added. The reaction mixture was stirred at room temperature for 18 h. A mixture of NH₄F aq. (25% solution, 15 mL) and *t*-butyl methyl ether (30 mL) was added to the reaction mixture. After separation, the aqueous layer was extracted with *t*-butyl methyl ether (20 mL×3). The collected organic layer was dried over Na₂SO₄. After filtration and concentration under vacuum, the residue was purified by silica gel column chromatography (hexane/ethyl acetate = 9/1) to afford compound **1m** as a pale yellow oil (2.20 g, 11.2 mmol, 75% yield). The NMR spectral data for **1m** were in accordance with those reported in the literature.⁶

Synthesis of 1-(3-chlorophenyl)-3-methyl-3-buten-1-ol (1n)


The reaction was performed under an argon atmosphere. DMF (27.3 mL), *m*-chlorobenzaldehyde (1.69 mL, 15.0 mmol, 1.0 eq.), and β -methallyl chloride (1.61 mL, 16.5 mmol, 1.1 eq.) were added to a dried reaction vessel. To the solution, SnCl₂·2H₂O (5.08 g, 22.5 mmol, 1.5 eq.) and NaI (3.37 g, 22.5 mmol, 1.5 eq.) were added. The reaction mixture was stirred at room temperature for 18 h. A mixture of NH₄F aq. (25% solution, 15 mL) and *t*-butyl methyl ether (30 mL) was added to the reaction mixture. After separation, the aqueous layer was extracted with *t*-butyl methyl ether (20 mL×3). The collected organic layer was dried over Na₂SO₄. After filtration and concentration under vacuum, the residue was purified by silica gel column chromatography (hexane/ethyl acetate = 9/1) to afford compound **1n** as a pale yellow oil (2.37 g, 12.0 mmol, 80% yield).

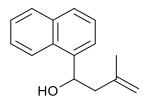
¹H NMR (300 MHz, CDCl₃) δ 7.38 (d, *J* = 1.8 Hz, 1H), 7.29–7.20 (m, 3H), 4.94 (t, *J* = 1.5 Hz, 1H), 4.85 (s, 1H), 4.81–4.73 (m, 1H), 2.45–2.29 (m, 2H), 2.16 (d, *J* = 2.4 Hz, 1H), 1.79 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 146.3, 142.1, 134.5, 129.8, 127.7, 126.1, 124.0, 114.7, 70.8, 48.6, 22.4.

Synthesis of 1-(4-chlorophenyl)-3-methyl-3-buten-1-ol (10)

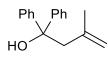

The reaction was performed under an argon atmosphere. DMF (54.5 mL) and β -methallyl chloride (3.21 mL, 33.0 mmol, 1.1 eq.) were added to a dried reaction vessel. To the solution, *p*-chlorobenzadehyde (4.22 g, 30.0 mmol, 1.0 eq.), SnCl₂·2H₂O (10.2 g, 45.0 mmol, 1.5 eq.), and NaI (6.75 g, 45.0 mmol, 1.5 eq.) were added. The reaction mixture was stirred at room temperature for 18 h. A mixture of NH₄F aq. (25% solution, 30 mL) and *t*-butyl methyl ether (60 mL) was added to the reaction mixture. After separation, the aqueous layer was extracted with *t*-butyl methyl ether (30 mL × 3). The collected organic layer was dried over Na₂SO₄. After filtration and concentration under vacuum, the residue was purified by silica gel column chromatography (hexane/ethyl acetate = 9/1) to afford compound **10** as a pale yellow oil (3.70 g, 18.8 mmol, 63% yield). The NMR spectral data for **10** were in accordance with those reported in the literature.⁷

Synthesis of 1-(3-bromophenyl)-3-methyl-3-buten-1-ol (1p)

The reaction was performed under an argon atmosphere. DMF (27.3 mL) and 3-bromobenzaldehyde (2.13 mL, 15.0 mmol, 1.0 eq.), β -methallyl chloride (1.61 mL, 16.5 mmol, 1.1 eq.) were added to a dried reaction vessel. To the solution, SnCl₂·2H₂O (5.08 g, 22.5 mmol, 1.5 eq.), and NaI (3.37 g, 22.5 mmol, 1.5 eq.) were added. The reaction mixture was stirred at room temperature for 18 h. A mixture of NH4F aq. (25% solution, 15 mL) and *t*-butyl methyl ether (30 mL) was added to the reaction mixture. After separation, the aqueous layer was extracted with *t*-butyl methyl ether (20 mL × 3). The collected organic layer was dried over Na₂SO₄. After filtration and concentration under vacuum, the residue was purified by silica gel column chromatography (hexane/ethyl acetate = 9/1) to afford compound **1p** as a pale yellow oil (2.26 g, 9.36 mmol, 62% yield).


¹H NMR (300 MHz, CDCl₃) δ 7.54 (t, *J* = 1.7 Hz, 1H), 7.43–7.16 (m, 3H), 4.94 (t, *J* = 1.5 Hz, 1H), 4.85 (d, *J* = 0.8 Hz, 1H), 4.80–4.72 (m, 1H), 2.46–2.29 (m, 2H), 2.16 (d, *J* = 2.4 Hz, 1H), 1.79 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 146.5, 142.1, 130.6, 130.1, 129.0, 124.5, 122.7, 114.7, 70.7, 48.6, 22.4.

Synthesis of 3-methyl-1-(3-trifluoromethylphenyl)-3-buten-1-ol (1q)

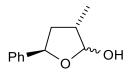

DMF The reaction was performed under an argon atmosphere. (27.3)mL), 3-(trifluoromethyl)benzaldehyde (2.01 mL, 15.0 mmol, 1.0 eq.), and β -methallyl chloride (1.61 mL, 16.5 mmol, 1.1 eq.) were added to a dried reaction vessel. To the solution, SnCl₂·2H₂O (5.08 g, 22.5 mmol, 1.5 eq.) and NaI (3.37 g, 22.5 mmol, 1.5 eq.) were added. The reaction mixture was stirred at room temperature for 18 h. A mixture of NH₄F aq. (25% solution, 15 mL) and *t*-butyl methyl ether (30 mL) was added to the reaction mixture. After separation, the aqueous layer was extracted with *t*-butyl methyl ether (20 mL×3). The collected organic layer was dried over Na₂SO₄. After filtration and concentration under vacuum, the residue was purified by silica gel column chromatography (hexane/ethyl acetate = 9/1) to afford compound 1q as a pale yellow oil (2.58 g, 11.2 mmol, 75% yield). ¹H NMR (300 MHz, CDCl₃) δ 7.64 (s, 1H), 7.56–7.42 (m, 3H), 4.96 (t, J = 1.5 Hz, 1H), 4.87 (s, 1H), 4.89–4.81 (m, 1H), 2.47–2.30 (m, 2H), 2.22 (d, J = 2.2 Hz, 1H), 1.80 (s, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 145.1, 142.0, 130.9 (q, ²*J*_{CF} = 32 Hz), 129.3 (q, ⁴*J*_{CF} = 1.0 Hz), 129.0, 124.4 (q, ³*J*_{CF} = 3.8

Hz), 124.3 (q, ${}^{1}J_{CF} = 270.6$ Hz), 122.7 (q, ${}^{3}J_{CF} = 3.8$ Hz), 114.9, 70.8, 48.7, 22.4.

Synthesis of 3-methyl-1-(1-naphthyl)-3-buten-1-ol (1r)

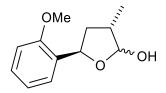
The reaction was performed under an argon atmosphere. DMF (27.3 mL), 1-naphthylaldehyde (2.20 mL, 15.0 mmol, 1.0 eq.), and β -methallyl chloride (1.61 mL, 16.5 mmol, 1.1 eq.) were added to a dried reaction vessel. To the solution, SnCl₂·2H₂O (5.08 g, 22.5 mmol, 1.5 eq.) and NaI (3.37 g, 22.5 mmol, 1.5 eq.) were added. The reaction mixture was stirred at room temperature for 18 h. A mixture of NH₄F aq. (25% solution, 15 mL) and *t*-butyl methyl ether (30 mL) was added to the reaction mixture. After separation, the aqueous layer was extracted with *t*-butyl methyl ether (20 mL×3). The collected organic layer was dried over Na₂SO₄. After filtration and concentration under vacuum, the residue was purified by silica gel column chromatography (hexane/ethyl acetate = 9/1) to afford compound **1r** as a white solid (1.64 g, 7.71 mmol, 51% yield). The NMR spectral data for **1r** were in accordance with those reported in the literature.⁸

Synthesis of 1,1-diphenyl-3-methyl-3-buten-1-ol (1s)


The reaction was performed under an argon atmosphere. A reaction vessel equipped with a reflux condenser and a three-way cock was dried. Mg (1.64 g, 67.5 mmol, 2.25 eq.) and THF (22.0 mL) were added to the reaction vessel. The reaction mixture was cooled to 5 °C. β -Methallyl chloride (4.38 mL, 45.0 mmol, 1.5 eq.) was added dropwise to the mixture, which was kept at 5 °C during the addition. After stirring at room temperature for 1 h, the mixture was refluxed for 2 h. A THF (12.0 mL) solution of benzophenone (5.47 g, 30.0 mmol, 1.0 eq.) was added dropwise to the reaction mixture over 15 min at 0 °C. After stirring at room temperature for 16 h, saturated NH₄Cl aq. (23 mL) was added. After separation, the aqueous layer was extracted with ethyl acetate (20 mL × 4). The collected organic layer was dried over Na₂SO₄. After filtration and concentration under vacuum, the residue was purified by silica gel column chromatography (hexane/ethyl acetate = 12/1) to afford compound **1s** as a white solid (4.98 g, 20.9 mmol, 70% yield). The NMR spectral data for **1s** were in accordance with those reported in the literature.⁹

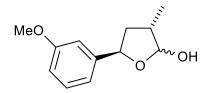
Synthesis of 2-Hydroxytetrahydrofurans 2

Synthesis of 2-hydroxy-3-methyltetrahydrofuran (2a)


To a reaction vessel, PdCl₂(MeCN)₂ (13.0 mg, 0.050 mmol) and BQ (5.4 mg, 0.050 mmol) were added, and O₂ was purged. H₂O (2.0 mL) was added to the mixture. After bubbling NO gas (2.24 mL, 0.10 mmol), the mixture was stirred and warmed up to 40 °C. Substrate **1a** (50.5 μ L, 0.50 mmol) was added to the mixture over 10 h by a syringe pump, and the reaction mixture was stirred for an additional 8 h (18 h in total). The reaction mixture was extracted with CHCl₃ (2.0 mL × 5), and the combined organic layer was dried over Na₂SO₄. After filtration, the filtrate was concentrated under vacuum carefully. Compound **2a** was obtained as a yellow oil (45.8 mg, 0.45 mmol, 90% yield). The ¹H and ¹³C NMR data were in accordance with those reported previously.¹⁰

Synthesis of 2-hydroxy-3-methyl-5-phenyltetrahydrofuran (2b)

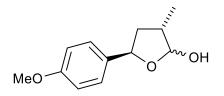
To a reaction vessel, PdCl₂(MeCN)₂ (13.0 mg, 0.050 mmol) and BQ (5.4 mg, 0.050 mmol) were added, and O₂ was purged. DMF (0.40 mL) and H₂O (1.60 mL) were added to the mixture. After bubbling NO gas (2.24 mL, 0.10 mmol), the mixture was stirred and warmed up to 40 °C. Substrate **1b** (82.8 μ L, 0.50 mmol) was added to the mixture over 10 h by a syringe pump, and the reaction mixture was stirred for an additional 8 h (18 h in total). The reaction mixture was extracted with CDCl₃ (0.70 mL × 3). The combined organic layer was evaporated under vacuum. Purification by silica gel column chromatography (hexane/ethyl acetate = 9/1) afforded **2b** as a pale yellow oil (53.7 mg, 0.30 mmol, 60% yield, *trans:cis* = 92:8).


¹H NMR for *trans*-major diastereomer (300 MHz, CDCl₃) δ 7.46–7.18 (m, 5H), 5.23 (d, J = 2.5 Hz, 1H), 5.17 (dd, J = 6.8, 9.0 Hz, 1H), 2.81 (d, J = 3.3 Hz, 1H), 2.45–1.83 (m, 3H), 1.10 (d, J = 7.1 Hz, 3H). ¹H NMR for *trans*-minor diastereomer (300 MHz, CDCl₃) δ 7.46–7.18 (m, 5H), 5.52 (t, J = 3.6 Hz, 1H), 5.31 (dd, J = 3.3, 8.5 Hz, 1H), 2.51 (d, J = 3.2 Hz, 1H), 2.45–1.83 (m, 3H), 1.08 (d, J = 5.5 Hz, 3H). ¹³C{¹H} NMR for *trans*-major diastereomer (75 MHz, CDCl₃) δ 143.3, 128.5 (2C), 127.5, 126.4 (2C), 104.6, 81.6, 41.3, 40.0, 16.5. ¹³C{¹H} NMR for *trans*-minor diastereomer (75 MHz, CDCl₃) δ 144.0, 128.5 (2C), 127.4, 125.5 (2C), 100.2, 79.4, 39.3, 37.4, 12.9. HRMS (ESI): *m/z* calcd for C₁₁H₁₄NaO₂ [M+Na]⁺ 201.0892, found 201.0893.

Synthesis of 2-hydroxy-5-(2-methoxyphenyl)-3-methyltetrahydrofuran (2c)

To a reaction vessel, $PdCl_2(MeCN)_2$ (13.0 mg, 0.050 mmol), BQ (5.4 mg, 0.050 mmol) were added, and O₂ was purged. DMF (0.50 mL) and H₂O (1.50 mL) were added to the mixture. After bubbling NO gas (2.24 mL, 0.10 mmol), the mixture was stirred and warmed up to 40 °C. A DMF solution of **1c** (2.5 M, 200 µL, 0.50 mmol) was added to the mixture over 15 h by a syringe pump, and the reaction mixture was stirred for an additional 3 h (18 h in total). The reaction mixture was extracted with CDCl₃ (0.70 mL × 3). The combined organic layer was evaporated under vacuum. Purification by silica gel column chromatography (hexane/ethyl acetate = 9/1) afforded **2c** as a yellow oil (46.1 mg, 0.22 mmol, 44% yield, *trans:cis* = 93:7).

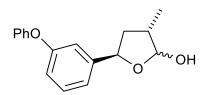
¹H NMR for *trans*-major diastereomer (300 MHz, CDCl₃) δ 7.66–7.12 (m, 2H), 7.03–6.73 (m, 2H), 5.46 (t, J = 7.7 Hz, 1H), 5.21 (d, J = 4.2 Hz, 1H), 3.82 (s, 3H), 3.16 (d, J = 4.5 Hz, 1H), 2.48–1.74 (m, 3H), 1.09 (d, J = 7.2 Hz, 3H). ¹H NMR for *trans*-minor diastereomer (300 MHz, CDCl₃) δ 7.66–7.12 (m, 2H), 7.03–6.73 (m, 2H), 5.58–5.51 (m, 2H), 3.82 (s, 3H), 2.75 (d, J = 3.2 Hz, 1H), 2.48–1.74 (m, 3H), 1.05 (d, J = 5.9 Hz, 3H). ¹³C{¹H} NMR for *trans*-major diastereomer (75 MHz, CDCl₃) δ 156.2, 131.7, 128.3, 127.1, 120.8, 110.3, 104.8, 75.3, 55.4, 41.0, 38.1, 16.5. ¹³C{¹H} NMR for *trans*-minor diastereomer (75 MHz, CDCl₃) δ 156.0, 132.3, 128.0, 125.6, 120.3, 110.1, 100.1, 77.4, 55.4, 37.9, 36.9, 12.8. HRMS (ESI): m/z calcd for C₁₂H₁₆NaO₃ [M+Na]⁺ 231.0997, found 231.0987.



Synthesis of 2-hydroxy-5-(3-methoxyphenyl)-3-methyltetrahydrofuran (2d)

To a reaction vessel, PdCl₂(MeCN)₂ (13.0 mg, 0.050 mmol) and BQ (5.4 mg, 0.050 mmol) were added, and O₂ was purged. DMF (0.50 mL) and H₂O (1.50 mL) were added to the mixture. After bubbling NO gas (2.24 mL, 0.10 mmol), the mixture was stirred and warmed up to 40 °C. Substrate **1d** (94.5 μ L, 0.50 mmol) was added to the mixture over 15 h by a syringe pump, and the reaction mixture was stirred for an additional 3 h (18 h in total). The reaction mixture was extracted with CDCl₃ (0.7 mL × 3). The combined organic layer was evaporated under vacuum. Purification by silica gel column chromatography (hexane/ethyl acetate = 9/1) afforded **2d** as a yellow oil (48.2 mg, 0.23 mmol, 46% yield, *trans:cis* = 94:6).

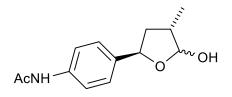
¹H NMR for *trans*-major diastereomer (300 MHz, CDCl₃) δ 7.32–6.68 (m, 4H), 5.21 (d, J = 2.0 Hz, 1H), 5.14 (dd, J = 8.9, 6.8 Hz, 1H), 3.79 (s, 3H), 3.26 (d, J = 3.1 Hz, 1H), 2.41–1.87 (m, 3H), 1.08 (d, J = 7.1 Hz, 3H). ¹H NMR for *trans*-minor diastereomer (300 MHz, CDCl₃) δ 7.32–6.68 (m, 4H), 5.50


(t, J = 3.4 Hz, 1H), 5.28 (dd, J = 3.2, 8.4 Hz, 1H), 3.79 (s, 3H), 2.94 (d, J = 2.7 Hz, 1H), 2.41–1.87 (m, 3H), 1.06 (d, J = 6.5 Hz, 3H). ¹³C{¹H} NMR for *trans*-major diastereomer (75 MHz, CDCl₃) δ 159.8, 145.1, 129.5, 118.7, 113.0, 111.9, 104.6, 81.4, 55.3, 41.1, 40.0, 16.5. ¹³C{¹H} NMR for *trans*-minor diastereomer (75 MHz, CDCl₃) δ 159.8, 145.7, 129.5, 117.8, 113.0, 112.5, 100.2, 79.2, 55.3, 39.3, 37.2, 12.8. HRMS (ESI): m/z calcd for C₁₂H₁₆NaO₃ [M+Na]⁺ 231.0997, found 231.0997.

Synthesis of 2-hydroxy-5-(4-methoxyphenyl)-3-methyltetrahydrofuran (2e)

To a reaction vessel, PdCl₂(MeCN)₂ (13.0 mg, 0.050 mmol) and BQ (5.4 mg, 0.050 mmol) were added, and O₂ was purged. DMF (0.40 mL) and H₂O (1.60 mL) were added to the mixture. After bubbling NO gas (2.24 mL, 0.10 mmol), the mixture was stirred and warmed up to 40 °C. Substrate **1e** (94.5 μ L, 0.50 mmol) was added to the mixture over 10 h by a syringe pump, and the reaction mixture was stirred for an additional 5 h (18 h in total). The reaction mixture was extracted with CDCl₃ (0.70 mL × 3). The combined organic layer was evaporated under vacuum. Purification by silica gel column chromatography (hexane/ethyl acetate = 9/1) afforded **2e** as a brown solid (54.1 mg, 0.26 mmol, 52% yield, *trans:cis* = 57:43).

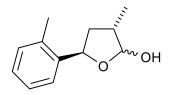
¹H NMR for *trans*-major diastereomer (300 MHz, CDCl₃) δ 7.46–7.05 (m, 2H), 7.00–6.68 (m, 2H), 5.18 (d, J = 2.3 Hz, 1H), 5.11 (dd, J = 6.6, 9.2 Hz, 1H), 3.78 (s, 3H), 3.20 (d, J = 3.1 Hz, 1H), 2.41–1.87 (m, 3H), 1.07 (d, J = 8.7 Hz, 3H). ¹H NMR for other three diastereomers (300 MHz, CDCl₃) δ 7.46–7.05 (m, 2H), 7.00–6.68 (m, 2H), 5.57–4.84 (m, 2H), 3.78 (s, 3H), 3.14–2.76 (m, 1H), 2.54–1.37 (m, 3H), 1.18–1.01 (m, 3H). ¹³C{¹H} NMR for *trans*-major diastereomer (75 MHz, CDCl₃) δ 159.1, 135.2, 127.9 (2C), 113.8 (2C), 104.3, 81.3, 55.4, 41.1, 40.0, 16.5. ¹³C{¹H} NMR for other three diastereomers (75 MHz, CDCl₃) δ 159.1, 158.8, 135.9, 135.0, 134.0, 127.3 (2C), 126.8 (2C), 113.9 (2C), 113.8 (2C), 104.9, 100.0, 99.4, 82.1, 79.8, 79.0, 55.4, 42.4, 42.0, 40.2, 40.1, 39.3, 37.4, 17.8, 12.9, 12.7. HRMS (ESI): *m*/*z* calcd for C₁₂H₁₆NaO₃ [M+Na]⁺ 231.0997, found 231.0988.



Synthesis of 2-hydroxy-3-methyl-5-(3-phenoxyphenyl)tetrahydrofuran (2f)

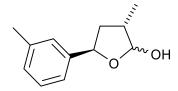
To a reaction vessel, $PdCl_2(MeCN)_2$ (13.0 mg, 0.050 mmol) and BQ (162.1 mg, 1.50 mmol) were added, and O_2 was purged. DMF (1.0 mL) and H_2O (1.0 mL) were added to the mixture. The mixture was stirred and warmed up to 40 °C. Substrate **1f** (117.8 µL, 0.50 mmol) was added to the mixture over 15 h by a syringe pump, and the reaction mixture was stirred for an additional 3 h (18 h in total).

The reaction mixture was extracted with CHCl₃ (2.0 mL \times 3). The combined organic layer was washed with NaOH aq. (1.0 M, 2.0 mL \times 3), and was dried over Na₂SO₄. After filtration, the filtrate was evaporated under vacuum. Purification by silica gel column chromatography (hexane/ethyl acetate = 9/1) afforded **2f** as a yellow solid (52.9 mg, 0.20 mmol, 39% yield, *trans:cis* = 89:11).


¹H NMR for *trans*-major diastereomer (300 MHz, CDCl₃) δ 7.37–7.21 (m, 3H), 7.18–6.80 (m, 6H), 5.20 (d, J = 1.7 Hz, 1H), 5.13 (dd, J = 6.7, 9.0 Hz, 1H), 2.67 (d, J = 3.3 Hz, 1H), 2.40–2.10 (m, 2H), 2.05–1.89 (m, 1H), 1.07 (d, J = 7.2 Hz, 3H). ¹H NMR for *trans*-minor diastereomer (300 MHz, CDCl₃) δ 7.37–7.21 (m, 3H), 7.18–6.80 (m, 6H), 5.47 (d, J = 1.4 Hz, 1H), 5.27 (dd, J = 3.0, 8.3 Hz, 1H), 2.43 (d, J = 2.9 Hz, 1H), 2.40–2.10 (m, 2H), 2.05–1.89 (m, 1H), 1.06 (d, J = 6.5 Hz, 3H). ¹³C{¹H} NMR for *trans*-major diastereomer (75 MHz, CDCl₃) δ 157.4, 157.3, 145.7, 129.8, 129.8, 123.3, 121.2, 119.0, 117.8, 116.9, 104.6, 81.1, 41.1, 40.0, 16.5. ¹³C{¹H} NMR for *trans*-minor diastereomer (75 MHz, CDCl₃) δ 157.4, 157.3, 146.3, 129.9, 129.8, 123.3, 120.4, 118.9, 117.5, 116.1, 100.2, 79.1, 39.3, 37.2, 12.8. HRMS (ESI): m/z calcd for C₁₇H₁₈NaO₃ [M+Na]⁺ 293.1154, found 293.1158.

Synthesis of 5-(4-acetamidophenyl)-2-hydroxy-3-methyltetrahydrofuran (2g)

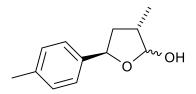
To a reaction vessel, PdCl₂(MeCN)₂ (13.0 mg, 0.050 mmol) and BQ (5.4 mg, 0.050 mmol) were added, and O₂ was purged. DMF (0.33 mL) and H₂O (1.67 mL) were added to the mixture. After bubbling NO gas (2.24 mL, 0.10 mmol), the mixture was stirred and warmed up to 40 °C. Substrate **1g** (3.3 M, 150.6 μ L, 0.50 mmol) was added to the mixture over 15 h by a syringe pump, and the reaction mixture was stirred for an additional 3 h (18 h in total). The reaction mixture was extracted with CDCl₃ (0.70 mL × 3). The combined organic layer was evaporated under vacuum. Purification by silica gel column chromatography (hexane/ethyl acetate = 1/1.5) afforded **2g** as a brown oil (58.4 mg, 0.25 mmol, 50% yield, *trans:cis* = 92:8).


¹H NMR for *trans*-major diastereomer (300 MHz, CDCl₃) δ 7.49–7.18 (m, 4H), 5.22 (d, J = 2.7 Hz, 1H), 5.12 (dd, J = 6.8, 9.0 Hz, 1H), 3.21 (d, J = 3.1 Hz, 1H), 2.43–1.82 (m, 3H), 2.15 (s, 3H), 1.08 (d, J = 7.2 Hz, 3H). ¹H NMR for *trans*-minor diastereomer (300 MHz, CDCl₃) δ 7.49–7.18 (m, 4H), 5.50 (t, J = 3.9 Hz, 1H), 5.26 (dd, J = 3.2, 8.6 Hz, 1H), 2.64 (d, J = 3.2 Hz, 1H), 2.43–1.82 (m, 3H), 2.15 (s, 3H), 1.07 (d, J = 6.6 Hz, 3H). ¹³C{¹H} NMR for *trans*-major diastereomer (75 MHz, CDCl₃) δ 169.3, 139.1, 137.2, 127.0 (2C), 120.3 (2C), 104.4, 81.0, 41.1, 40.0, 24.4, 16.4. ¹³C{¹H} NMR for *trans*-minor diastereomer (75 MHz, CDCl₃) δ 169.2, 139.8, 137.0, 126.1 (2C), 120.3 (2C), 100.0, 78.9, 39.3, 37.2, 24.4, 12.9. HRMS (ESI): m/z calcd for C₁₃H₁₇NNaO₃ [M+Na]⁺ 258.1106, found 258.1096.

Synthesis of 2-hydroxy-3-methyl-5-(2-methylphenyl)tetrahydrofuran (2h)

To a reaction vessel, PdCl₂(MeCN)₂ (13.0 mg, 0.050 mmol) and BQ (5.4 mg, 0.050 mmol) were added, and O₂ was purged. DMF (0.50 mL) and H₂O (1.50 mL) were added to the mixture. After bubbling NO gas (2.24 mL, 0.10 mmol), the mixture was stirred and warmed up to 40 °C. Substrate **1h** (90.7 μ L, 0.50 mmol) was added to the mixture over 15 h by a syringe pump, and the reaction mixture was stirred for an additional 3 h (18 h in total). The reaction mixture was extracted with CDCl₃ (0.70 mL × 3). The combined organic layer was evaporated under vacuum. Purification by silica gel column chromatography (hexane/ethyl acetate = 9/1) afforded **2h** as an orange oil (44.3 mg, 0.23 mmol, 46% yield, *trans:cis* = 94:6).

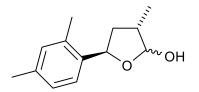
¹H NMR for *trans*-major diastereomer (300 MHz, CDCl₃) δ 7.73–7.01 (m, 4H), 5.40 (dd, J = 7.6, 11.7 Hz, 1H), 5.24 (s, 1H), 3.29 (s, 1H), 2.40–2.01 (m, 3H), 2.29 (s, 3H), 1.11 (d, J = 7.2 Hz, 3H). ¹H NMR for *trans*-minor diastereomer (300 MHz, CDCl₃) δ 7.73–7.01 (m, 4H), 5.57 (d, J = 3.8 Hz, 1H), 5.48 (dd, J = 3.1, 8.2 Hz, 1H), 2.97 (s, 1H), 2.40–2.01 (m, 3H), 2.27 (s, 3H), 1.07 (d, J = 6.4 Hz, 3H). ¹³C{¹H} NMR for *trans*-major diastereomer (75 MHz, CDCl₃) δ 142.1, 134.1, 130.1, 127.0, 126.4, 125.6, 104.6, 78.1, 40.9, 38.7, 19.3, 16.4. ¹³C{¹H} NMR for *trans*-minor diastereomer (75 MHz, CDCl₃) δ 141.6, 133.9, 130.3, 126.9, 126.0, 124.3, 100.2, 76.9, 38.0, 37.0, 19.3, 12.8. HRMS (ESI): m/z calcd for C₁₂H₁₆NaO₂ [M+Na]⁺ 215.1048, found 215.1055.



Synthesis of 2-hydroxy-3-methyl-5-(3-methylphenyl)tetrahydrofuran (2i)

To a reaction vessel, PdCl₂(MeCN)₂ (13.0 mg, 0.050 mmol) and BQ (5.4 mg, 0.050 mmol) were added, and O₂ was purged. DMF (0.40 mL) and H₂O (1.60 mL) were added to the mixture. After bubbling NO gas (2.24 mL, 0.10 mmol), the mixture was stirred and warmed up to 40 °C. Substrate **1i** (90.9 μ L, 0.50 mmol) was added to the mixture over 15 h by a syringe pump, and the reaction mixture was stirred for an additional 3 h (18 h in total). The reaction mixture was extracted with CDCl₃ (0.70 mL × 3). The combined organic layer was evaporated under vacuum. Purification by silica gel column chromatography (hexane/ethyl acetate = 9/1) afforded **2i** as an orange oil (32.9 mg, 0.17 mmol, 34% yield, *trans:cis* = 88:12).

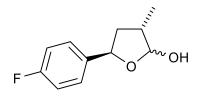
¹H NMR for *trans*-major diastereomer (300 MHz, CDCl₃) δ 7.28–7.01 (m, 4H), 5.22 (d, J = 2.4 Hz, 1H), 5.14 (dd, J = 6.6, 9.2 Hz, 1H), 2.91 (d, J = 3.4 Hz, 1H), 2.43–1.89 (m, 3H), 2.34 (s, 3H), 1.09 (d, J = 7.2 Hz, 3H). ¹H NMR for *trans*-minor diastereomer (300 MHz, CDCl₃) δ 7.28–7.01 (m, 4H), 5.52


(t, J = 3.8, 3.9 Hz, 1H), 5.28 (dd, J = 3.3, 8.5 Hz, 1H), 2.62 (d, J = 3.2 Hz, 1H), 2.43–1.89 (m, 3H), 2.33 (s, 3H), 1.07 (d, J = 6.7 Hz, 3H). ¹³C{¹H} NMR for *trans*-major diastereomer (75 MHz, CDCl₃) δ 143.2, 138.1, 128.4, 128.3, 127.1, 123.5, 104.6, 81.6, 41.3, 39.9, 21.6, 16.5. ¹³C{¹H} NMR for *trans*-minor diastereomer (75 MHz, CDCl₃) δ 143.9, 138.1, 128.4, 128.0, 126.2, 122.6, 100.2, 79.4, 39.3, 37.4, 21.6, 12.9. HRMS (ESI): m/z calcd for C₁₂H₁₆NaO₂ [M+Na]⁺ 215.1048, found 215.1048.

Synthesis of 2-hydroxy-3-methyl-5-(4-methylphenyl)tetrahydrofuran (2j)

To a reaction vessel, PdCl₂(MeCN)₂ (13.0 mg, 0.050 mmol) and BQ (5.4 mg, 0.050 mmol) were added, and O₂ was purged. DMF (0.40 mL) and H₂O (1.60 mL) were added to the mixture. After bubbling NO gas (2.24 mL, 0.10 mmol), the mixture was stirred and warmed up to 40 °C. Substrate **1j** (90.7 μ L, 0.50 mmol) was added to the mixture over 15 h by a syringe pump, and the reaction mixture was stirred for an additional 3 h (18 h in total). The reaction mixture was extracted with CDCl₃ (0.70 mL × 3). The combined organic layer was evaporated under vacuum. Purification by silica gel column chromatography (hexane/ethyl acetate = 9/1) afforded **2j** as a yellow solid (31.3 mg, 0.16 mmol, 33% yield, *trans:cis* = 86:14).

¹H NMR for *trans*-major diastereomer (300 MHz, CDCl₃) δ 7.34–7.08 (m, 4H), 5.19 (d, J = 1.6 Hz, 1H), 5.13 (dd, J = 6.6, 9.1 Hz, 1H), 3.30 (d, J = 3.1 Hz, 1H), 2.45–2.07 (m, 2H), 2.33 (s, 3H), 2.02–1.87 (m, 1H), 1.08 (d, J = 7.1 Hz, 3H). ¹H NMR for *trans*-minor diastereomer (300 MHz, CDCl₃) δ 7.34–7.08 (m, 4H), 5.49 (dd, J = 2.3, 4.1 Hz, 1H), 5.28 (dd, J = 3.3, 8.5 Hz, 1H), 2.99 (d, J = 2.5 Hz, 1H), 2.45–2.07 (m, 2H), 2.32 (s, 3H), 2.02–1.87 (m, 1H), 1.06 (d, J = 6.7 Hz, 3H). ¹³C{¹H} NMR for *trans*-major diastereomer (75 MHz, CDCl₃) δ 140.2, 137.2, 129.2 (2C), 126.5 (2C), 104.4, 81.5, 41.2, 40.0, 21.2, 16.5. ¹³C{¹H} NMR for *trans*-minor diastereomer (75 MHz, CDCl₃) δ 140.9, 136.9, 129.1 (2C), 125.5 (2C), 100.1, 79.3, 39.3, 37.3, 21.2, 12.9. HRMS (ESI): *m/z* calcd for C₁₂H₁₆NaO₂ [M+Na]⁺ 215.1048, found 215.1039.

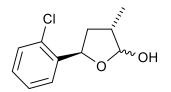


Synthesis of 2-hydroxy-3-methyl-5-(2,4-dimethylphenyl)tetrahydrofuran (2k)

To a reaction vessel, $PdCl_2(MeCN)_2(13.0 \text{ mg}, 0.050 \text{ mmol})$ and BQ (81.1 mg, 0.75 mmol) were added, and O_2 was purged. DMF (0.67 mL) and H_2O (1.33 mL) were added to the mixture. The mixture was stirred and warmed up to 40 °C. Substrate **1k** (98.8 µL, 0.50 mmol) was added to the mixture over 10 h by a syringe pump, and the reaction mixture was stirred for an additional 8 h (18 h in total). The

reaction mixture was extracted with CHCl₃ (2.0 mL \times 3). The combined organic layer was washed with NaOH aq. (1 M, 2.0 mL \times 3), and was dried over Na₂SO₄. The combined organic layer was evaporated under vacuum. Purification by silica gel column chromatography (hexane/ethyl acetate = 6/1) afforded **2k** as a brown oil (49.1 mg, 0.24 mmol, 48% yield, *trans:cis* = 90:10).

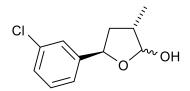
¹H NMR for *trans*-major diastereomer (300 MHz, CDCl₃) δ 7.54 (d, J = 5.9 Hz, 1H), 7.01 (dd, J = 5.9, 11.6 Hz, 1H), 6.95 (d, J = 6.5 Hz, 1H), 5.38 (t, J = 5.7 Hz, 1H), 5.22 (d, J = 0.93 Hz, 1H), 3.53 (s, 1H), 2.48–1.92 (m, 2H), 2.29 (s, 3H), 2.27 (s, 3H), 2.14–1.91 (m, 1H), 1.10 (d, J = 5.4 Hz, 3H). ¹H NMR for *trans*-minor diastereomer (300 MHz, CDCl₃) δ 7.25 (d, J = 5.5 Hz, 1H), 7.01 (dd, J = 5.9, 11.6 Hz, 1H), 6.95 (d, J = 6.5 Hz, 1H), 5.56 (t, J = 2.4 Hz, 1H), 5.49–5.43 (m, 1H), 3.22 (s, 1H), 2.48–1.92 (m, 2H), 2.29 (s, 3H), 2.24 (s, 3H), 2.14–1.91 (m, 1H), 1.07 (d, J = 4.8 Hz, 3H). ¹³C {¹H} NMR for *trans*-major diastereomer (75 MHz, CDCl₃) δ 138.5, 136.6, 134.1, 131.2, 126.6, 125.7, 104.6, 76.9, 40.9, 38.8, 21.0, 19.2, 16.4. ¹³C {¹H} NMR for *trans*-minor diastereomer (75 MHz, CDCl₃) δ 138.1, 37.0, 21.1, 19.2, 12.8. HRMS (ESI): *m*/*z* calcd for C₁₃H₁₈NaO₂ [M+Na]⁺ 229.1205, found 229.1212.



Synthesis of 5-(4-fluorophenyl)-2-hydroxy-3-methyltetrahydrofuran (21)

Procedure A: To a reaction vessel, $PdCl_2(MeCN)_2$ (13.0 mg, 0.050 mmol) and BQ (5.4 mg, 0.050 mmol) were added, and O₂ was purged. DMF (0.40 mL) and H₂O (1.60 mL) were added to the mixture. After bubbling NO gas (2.24 mL, 0.10 mmol), the mixture was stirred and warmed up to 40 °C. Substrate **11** (84.6 µL, 0.50 mmol) was added to the mixture over 15 h by a syringe pump, and the reaction mixture was stirred for an additional 3 h (18 h in total). The reaction mixture was extracted with CDCl₃ (0.70 mL × 3). The combined organic layer was evaporated under vacuum. Purification by silica gel column chromatography (hexane/ethyl acetate = 9/1) afforded **21** as a pale yellow oil (36.8 mg, 0.19 mmol, 37% yield, *trans:cis* = 97:3).

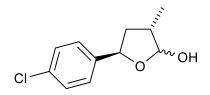
Procedure B: To a reaction vessel, PdCl₂(MeCN)₂ (13.0 mg, 0.050 mmol) and BQ (81.1 mg, 0.75 mmol) were added, and O₂ was purged. DMF (0.40 mL) and H₂O (1.60 mL) were added to the mixture. The mixture was stirred and warmed up to 40 °C. Substrate **11** (84.6 µL, 0.50 mmol) was added to the mixture over 15 h by a syringe pump, and the reaction mixture was stirred for an additional 8 h (18 h in total). The reaction mixture was extracted with CHCl₃ (2.0 mL × 3). The combined organic layer was washed with NaOH aq. (1 M, 2.0 mL × 3), and was dried over Na₂SO₄. The combined organic layer was evaporated under vacuum. Purification by silica gel column chromatography (hexane/ethyl acetate = 9/1) afforded **21** as a pale yellow oil (50.8 mg, 0.26 mmol, 52% yield, *trans:cis* = 96:4). ¹H NMR for *trans*-major diastereomer (300 MHz, CDCl₃) δ 7.47–7.16 (m, 2H), 7.13–6.96 (m, 2H), 5.20 (d, *J* = 2.7 Hz, 1H), 5.14 (dd, *J* = 6.9, 9.0 Hz, 1H), 3.10 (d, *J* = 3.1 Hz, 1H), 2.44–2.06 (m, 2H),


2.04–1.89 (m, 1H), 1.08 (d, J = 7.2 Hz, 3H). ¹H NMR for *trans*-minor diastereomer (300 MHz, CDCl₃) δ 7.47–7.16 (m, 2H), 7.13–6.96 (m, 2H), 5.49 (t, J = 3.7 Hz, 1H), 5.27 (dd, J = 3.3, 8.4 Hz, 1H), 2.75 (d, J = 3.2 Hz, 1H), 2.44–2.06 (m, 2H), 2.04–1.89 (m, 1H), 1.07 (d, J = 6.4 Hz, 3H). ¹³C{¹H} NMR for *trans*-major diastereomer (75 MHz, CDCl₃) δ 162.3 (d, ¹ J_{CF} = 244 Hz), 139.0 (d, ⁴ J_{CF} = 3.1 Hz), 128.2 (d, ³ J_{CF} = 8.1 Hz, 2C), 115.3 (d, ² J_{CF} = 21.2 Hz, 2C), 104.4, 81.0, 41.1, 40.1, 16.5. ¹³C{¹H} NMR for *trans*-minor diastereomer (75 MHz, CDCl₃) δ 162.2 (d, ¹ J_{CF} = 243 Hz), 139.6 (d, ⁴ J_{CF} = 3.1 Hz), 127.1 (d, ³ J_{CF} = 7.9 Hz, 2C), 115.3 (d, ² J_{CF} = 14.2 Hz, 2C), 100.1, 78.8, 39.4, 37.3, 12.9. HRMS (ESI): m/z calcd for C₁₁H₁₃FNaO₂ [M+Na]⁺ 219.0797, found 219.0801.

Synthesis of 5-(2-chlorophenyl)-2-hydroxy-3-methyltetrahydrofuran (2m)

To a reaction vessel, PdCl₂(MeCN)₂ (13.0 mg, 0.050 mmol), BQ (81.1 mg, 0.75 mmol) were added, and O₂ was purged. DMF (0.50 mL) and H₂O (1.50 mL) were added to the mixture. The mixture was stirred and warmed up to 40 °C. Substrate **1m** (88.6 μ L, 0.50 mmol) was added to the mixture over 15 h by a syringe pump, and the reaction mixture was stirred for an additional 3 h (18 h in total). The reaction mixture was extracted with CHCl₃ (2.0 mL × 3). The combined organic layer was washed with NaOH aq. (1 M, 2.0 mL × 3), and was dried over Na₂SO₄. The combined organic layer was evaporated under vacuum. Purification by silica gel column chromatography (hexane/ethyl acetate = 9/1) afforded **2m** as an orange oil (38.8 mg, 0.18 mmol, 36% yield, *trans:cis* = 95:5).

¹H NMR for *trans*-major diastereomer (300 MHz, CDCl₃) δ 7.84–7.07 (m, 4H), 5.63–5.46 (m, 1H), 5.26 (s, 1H), 3.56 (d, J = 3.5 Hz, 1H), 2.43–1.83 (m, 3H), 1.10 (d, J = 7.0 Hz, 3H). ¹H NMR for *trans*-minor diastereomer (300 MHz, CDCl₃) δ 7.84–7.07 (m, 4H), 5.63–5.46 (m, 2H), 3.19 (s, 1H), 2.43–1.83 (m, 3H), 1.06 (d, J = 6.6 Hz, 3H). ¹³C{¹H} NMR for *trans*-major diastereomer (75 MHz, CDCl₃) δ 141.3, 131.6, 129.2, 128.3, 127.5, 126.3, 105.0, 78.2, 40.5, 38.7, 16.3. ¹³C{¹H} NMR for *trans*-minor diastereomer (75 MHz, CDCl₃) δ 141.5, 131.5, 129.5, 128.2, 127.1, 126.8, 100.4, 77.0, 38.0, 36.7, 12.6. HRMS (ESI): m/z calcd for C₁₁H₁₃ClNaO₂ [M+Na]⁺ 235.0502, found 235.0501.

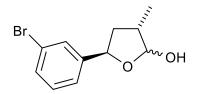


Synthesis of 5-(3-chlorophenyl)-2-hydroxy-3-methyltetrahydrofuran (2n)

To a reaction vessel, $PdCl_2(MeCN)_2$ (13.0 mg, 0.050 mmol), BQ (162.1 mg, 1.50 mmol) were added, and O₂ was purged. DMF (0.50 mL) and H₂O (1.50 mL) were added to the mixture. The mixture was stirred and warmed up to 40 °C. Substrate **1n** (88.6 µL, 0.50 mmol) was added to the mixture over 15

h by a syringe pump, and the reaction mixture was stirred for an additional 3 h (18 h in total). The reaction mixture was extracted with CHCl₃ (2.0 mL × 3). The combined organic layer was washed with NaOH aq. (1 M, 2.0 mL × 3), and was dried over Na₂SO₄. The combined organic layer was evaporated under vacuum. Purification by silica gel column chromatography (hexane/ethyl acetate = 9/1) afforded **2n** as an orange oil (55.3 mg, 0.26 mmol, 52% yield, *trans:cis* = 96:4).

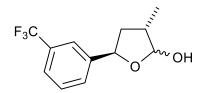
¹H NMR for *trans*-major diastereomer (300 MHz, CDCl₃) δ 7.53–7.07 (m, 4H), 5.24 (d, J = 2.7 Hz, 1H), 5.13 (dd, J = 7.0, 8.8 Hz, 1H), 2.81 (d, J = 3.2 Hz, 1H), 2.42–1.85 (m, 3H), 1.09 (d, J = 7.2 Hz, 3H). ¹H NMR for *trans*-minor diastereomer (300 MHz, CDCl₃) δ 7.53–7.07 (m, 4H), 5.52 (t, J = 3.5 Hz, 1H), 5.34–5.20 (m, 1H), 2.49 (d, J = 3.1 Hz, 1H), 2.42–1.85 (m, 3H), 1.08 (d, J = 6.3 Hz, 3H). ¹³C{¹H} NMR for *trans*-major diastereomer (75 MHz, CDCl₃) δ 145.6, 134.4, 129.8, 127.6, 126.6, 124.5, 104.6, 80.8, 41.0, 40.1, 16.4. ¹³C{¹H} NMR for *trans*-minor diastereomer (75 MHz, CDCl₃) δ 145.6, 134.4, 129.8, 127.6, 126.6, 146.1, 134.4, 129.7, 127.3, 125.6, 123.7, 100.2, 78.7, 39.3, 37.1, 12.7. HRMS (ESI): *m/z* calcd for C₁₁H₁₃ClNaO₂ [M+Na]⁺ 235.0502, found 235.0511.


Synthesis of 5-(4-chlorophenyl)-2-hydroxy-3-methyltetrahydrofuran (20)

Procedure A: To a reaction vessel, $PdCl_2(MeCN)_2$ (13.0 mg, 0.050 mmol) and BQ (5.4 mg, 0.050 mmol) were added, and O₂ was purged. DMF (0.50 mL) and H₂O (1.50 mL) were added to the mixture. After bubbling NO gas (2.24 mL, 0.10 mmol), the mixture was stirred and warmed up to 40 °C. Substrate **10** (88.6 µL, 0.50 mmol) was added to the mixture over 15 h by a syringe pump, and the reaction mixture was stirred for an additional 3 h (18 h in total). The reaction mixture was extracted with CDCl₃ (0.70 mL × 3). The combined organic layer was evaporated under vacuum. Purification by silica gel column chromatography (hexane/ethyl acetate = 9/1) afforded **20** as a yellow solid (34.4 mg, 0.18 mmol, 35% yield, *trans:cis* = 93:7).

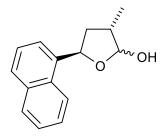
Procedure B: To a reaction vessel, $PdCl_2(MeCN)_2$ (13.0 mg, 0.050 mmol) and BQ (81.1 mg, 0.75 mmol) were added, and O₂ was purged. DMF (0.50 mL) and H₂O (1.50 mL) were added to the mixture. The mixture was stirred and warmed up to 40 °C. Substrate **10** (88.6 µL, 0.50 mmol) was added to the mixture over 15 h by a syringe pump, and the reaction mixture was stirred for an additional 8 h (18 h in total). The reaction mixture was extracted with CHCl₃ (2.0 mL × 3). The combined organic layer was washed with NaOH aq. (1 M, 2.0 mL × 3), and was dried over Na₂SO₄. The combined organic layer was evaporated under vacuum. Purification by silica gel column chromatography (hexane/ethyl acetate = 9/1) afforded **20** as a yellow solid (42.3 mg, 0.20 mmol, 40% yield, *trans:cis* = 93:7).

¹H NMR for *trans*-major diastereomer (300 MHz, CDCl₃) δ 7.43–7.12 (m, 4H), 5.20 (d, J = 2.4 Hz, 1H), 5.13 (dd, J = 6.8, 9.1 Hz, 1H), 3.24 (d, J = 3.2 Hz, 1H), 2.36–2.05 (m, 2H), 2.05–1.82 (m, 1H), 1.07 (d, J = 7.2 Hz, 3H). ¹H NMR for *trans*-minor diastereomer (300 MHz, CDCl₃) δ 7.43–7.12 (m,


4H), 5.49 (t, J = 3.6 Hz, 1H), 5.26 (dd, J = 3.5, 8.2 Hz, 1H), 2.90 (d, J = 3.2 Hz, 1H), 2.36–2.05 (m, 2H), 2.05–1.82 (m, 1H), 1.06 (d, J = 6.4 Hz, 3H). ¹³C{¹H} NMR for *trans*-major diastereomer (75 MHz, CDCl₃) δ 141.9, 133.2, 128.6 (2C), 127.9 (2C), 104.5, 80.9, 41.1, 40.1, 16.4. ¹³C{¹H} NMR for *trans*-minor diastereomer (75 MHz, CDCl₃) δ 142.5, 132.9, 128.6 (2C), 126.9 (2C), 100.2, 78.7, 39.3, 37.2, 12.8. HRMS (ESI): m/z calcd for C₁₁H₁₃ClNaO₂ [M+Na]⁺ 235.0502, found 235.0499.

Synthesis of 5-(3-bromophenyl)-2-hydroxy-3-methyltetrahydrofuran (2p)

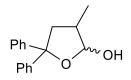
To a reaction vessel, PdCl₂(MeCN)₂ (13.0 mg, 0.050 mmol) and BQ (81.1 mg, 0.75 mmol) were added, and O₂ was purged. DMF (0.50 mL) and H₂O (1.50 mL) were added to the mixture. The mixture was stirred and warmed up to 40 °C. Substrate **1p** (90.6 μ L, 0.50 mmol) was added to the mixture over 15 h by a syringe pump, and the reaction mixture was stirred for an additional 3 h (18 h in total). The reaction mixture was extracted with CHCl₃ (2.0 mL × 3). The combined organic layer was washed with NaOH aq. (1 M, 2.0 mL × 3), and was dried over Na₂SO₄. The combined organic layer was evaporated under vacuum. Purification by silica gel column chromatography (hexane/ethyl acetate = 6/1) afforded **2p** as a yellow solid (48.5 mg, 0.19 mmol, 38% yield, *trans:cis* = 93:7).


¹H NMR for *trans*-major diastereomer (300 MHz, CDCl₃) δ 7.62–7.11 (m, 4H), 5.49 (s, 1H), 5.11 (dd, J = 8.6, 10.4 Hz, 1H), 3.65 (d, J = 3.0 Hz, 1H), 2.40–2.07 (m, 2H), 2.05–1.81 (m, 1H), 1.06 (d, J = 7.2 Hz, 3H). ¹H NMR for *trans*-minor diastereomer (300 MHz, CDCl₃) δ 7.62–7.11 (m, 4H), 5.26 (dd, J = 3.0, 8.1 Hz, 1H), 5.20 (d, J = 1.7 Hz, 1H), 3.29 (d, J = 2.8 Hz, 1H), 2.40–2.07 (m, 2H), 2.05–1.81 (m, 1H), 1.05 (d, J = 6.1 Hz, 3H). ¹³C{¹H} NMR for *trans*-major diastereomer (75 MHz, CDCl₃) δ 145.9, 130.1, 130.0, 129.5, 125.0, 122.6, 104.5, 80.8, 41.0, 40.1, 16.4. ¹³C{¹H} NMR for *trans*-minor diastereomer (75 MHz, CDCl₃) δ 146.4, 130.5, 130.3, 128.5, 124.1, 122.7, 100.2, 78.6, 39.3, 37.1, 12.7. HRMS (ESI): m/z calcd for C₁₁H₁₃ClNaO₂ [M+Na]⁺ 278.9997, found 278.9990.

Synthesis of 2-hydroxy-3-methyl-5-(3-trifluoromethylphenyl)tetrahydrofuran (2q)

To a reaction vessel, $PdCl_2(MeCN)_2$ (13.0 mg, 0.050 mmol), BQ (162.1 mg, 1.50 mmol) were added, and O₂ was purged. DMF (0.50 mL) and H₂O (1.50 mL) were added to the mixture. The mixture was stirred and warmed up to 40 °C. Substrate **1q** (99.2 µL, 0.50 mmol) was added to the mixture over 15 h by a syringe pump, and the reaction mixture was stirred for an additional 3 h (18 h in total). The reaction mixture was extracted with CHCl₃ (2.0 mL × 3). The combined organic layer was washed with NaOH aq. (1 M, 2.0 mL \times 3) and was dried over Na₂SO₄. After filtration, the filtrate was concentrated under vacuum. Purification by silica gel column chromatography (hexane/ethyl acetate = 9/1) afforded **2q** as an orange oil (44.4 mg, 0.18 mmol, 36% yield, *trans:cis* = 93:7).

¹H NMR for *trans*-major diastereomer (300 MHz, CDCl₃) δ 7.73–7.36 (m, 4H), 5.25 (s, 1H), 5.21 (dd, J = 7.1, 9.2 Hz, 1H), 3.18 (d, J = 2.6 Hz, 1H), 2.47–1.90 (m, 3H), 1.09 (d, J = 7.2 Hz, 3H). ¹H NMR for *trans*-minor diastereomer (300 MHz, CDCl₃) δ 7.73–7.36 (m, 4H), 5.53 (s, 1H), 5.34 (dd, J = 3.2, 8.1 Hz, 1H), 2.81 (s, 1H), 2.47–1.90 (m, 3H), 1.08 (d, J = 6.4 Hz, 3H). ¹³C {¹H} NMR for *trans*-major diastereomer (75 MHz, CDCl₃) δ 144.6, 130.8 (q, ² $_{JCF} = 32.1$ Hz), 129.8, 129.0, 124.3 (q, ¹ $_{JCF} = 270.5$ Hz), 124.3 (q, ³ $_{JCF} = 3.7$ Hz), 123.2 (q, ³ $_{JCF} = 3.8$ Hz), 104.7, 80.9, 41.3, 40.2, 16.4. ¹³C {¹H} NMR for *trans*-minor diastereomer (75 MHz, CDCl₃) δ 145.1, 130.8 (q, ² $_{JCF} = 32.1$ Hz), 129.8, 128.9,124.3 (q, ¹ $_{JCF} = 270.5$ Hz), 124.1 (q, ³ $_{JCF} = 3.9$ Hz), 122.2 (q, ³ $_{JCF} = 3.9$ Hz), 100.2, 78.7, 39.3, 37.2, 12.8. HRMS (ESI): m/z calcd for C₂₄H₂₄F₆NaO₃ [2M-H₂O+Na]⁺ 497.1527, found 497.1546.


Synthesis of 2-hydroxy-3-methyl-5-(1-naphthyl)tetrahydrofuran (2r)

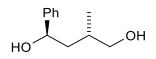
Procedure A: To a reaction vessel, $PdCl_2(MeCN)_2$ (13.0 mg, 0.050 mmol) and BQ (5.4 mg, 0.050 mmol) were added, and O₂ was purged. DMF (0.67 mL) and H₂O (1.33 mL) were added to the mixture. After bubbling NO gas (2.24 mL, 0.10 mmol), the mixture was stirred and warmed up to 40 °C. Substrate **1r** (2.7 M, 183.2 µL, 0.50 mmol) was added to the mixture over 10 h by a syringe pump, and the reaction mixture was stirred for an additional 5 h (18 h in total). The reaction mixture was extracted with CDCl₃ (0.70 mL × 3). The combined organic layer was evaporated under vacuum. Purification by silica gel column chromatography (hexane/ethyl acetate = 9/1) afforded **2r** as an orange solid (37.9 mg, 0.17 mmol, 33% yield, *trans:cis* = 93:7).

Procedure B: To a reaction vessel, $PdCl_2(MeCN)_2$ (13.0 mg, 0.050 mmol) and BQ (81.1 mg, 0.75 mmol) were added, and O_2 was purged. DMF (0.67 mL) and H_2O (1.33 mL) were added to the mixture. The mixture was stirred and warmed up to 40 °C. Substrate **1r** (2.7 M, 183.2 µL, 0.50 mmol) was added to the mixture over 10 h by a syringe pump, and the reaction mixture was stirred for an additional 8 h (18 h in total). The reaction mixture was extracted with CHCl₃ (2.0 mL × 3). The combined organic layer was washed with NaOH aq. (1 M, 2.0 mL × 3), and was dried over Na₂SO₄. The combined organic layer was evaporated under vacuum. Purification by silica gel column chromatography (hexane/ethyl acetate = 9/1) afforded **2r** as an orange solid (47.1 mg, 0.21 mmol, 41% yield, *trans:cis* = 95:5).

¹H NMR for *trans*-major diastereomer (300 MHz, CDCl₃) δ 8.02–7.39 (m, 7H), 5.95 (t, J = 7.3 Hz,

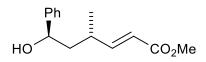
1H), 5.65 (d, J = 4.3 Hz, 1H), 2.90 (s, 1H), 2.52–2.15 (m, 2H), 2.08–1.97 (m, 1H), 1.18 (d, J = 6.9 Hz, 3H). ¹H NMR for *trans*-minor diastereomer (300 MHz, CDCl₃) δ 8.02–7.39 (m, 7H), 6.03 (dd, J = 2.6, 8.9 Hz, 1H), 5.33 (s, 1H), 3.18 (d, J = 3.8 Hz, 1H), 2.52–2.15 (m, 2H), 2.08–1.97 (m, 1H), 1.09 (d, J = 6.7 Hz, 3H). ¹³C{¹H} NMR for *trans*-major diastereomer (75 MHz, CDCl₃) δ 139.2, 133.8, 130.3, 129.0, 127.6, 126.0, 125.6, 125.5, 123.3, 121.6, 100.2, 77.0, 38.5, 37.2, 12.7. ¹³C{¹H} NMR for *trans*-minor diastereomer (75 MHz, CDCl₃) δ 139.4, 16.4. HRMS (ESI): m/z calcd for C₁₅H₁₆NaO₂ [M+Na]⁺ 251.1048, found 251.1050.

Synthesis of 5,5-diphenyl-2-hydroxy-3-methyltetrahydrofuran (2s)

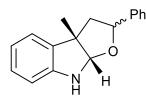

To a reaction vessel, PdCl₂(MeCN)₂ (13.0 mg, 0.050 mmol), BQ (81.1 mg, 0.75 mmol) were added, and O₂ was purged. DMF (1.00 mL) and H₂O (1.00 mL) were added to the mixture. The mixture was stirred and warmed up to 40 °C. A DMF solution of **1s** (3.4 M, 146.2 μ L, 0.50 mmol) was added to the mixture over 15 h by a syringe pump, and the reaction mixture was stirred for an additional 3 h (18 h in total). The reaction mixture was extracted with CHCl₃ (2.0 mL × 3). The combined organic layer was washed with NaOH aq. (1 M, 2.0 mL × 3) and was dried over Na₂SO₄. After filtration, the filtrate was concentrated under vacuum. Purification by silica gel column chromatography (hexane/ethyl acetate = 9/1) afforded **2s** as a pale yellow oil (46.3 mg, 0.18 mmol, 36% yield).

¹H NMR for major diastereomer (300 MHz, CDCl₃) δ 7.60–7.11 (m, 10H), 5.52 (t, *J* = 4.0 Hz, 1H), 2.75–2.61 (m, 2H), 2.43 (t, *J* = 12.4 Hz, 1H), 2.33–2.08 (m, 1H), 1.08 (d, *J* = 6.7 Hz, 3H). ¹H NMR for minor diastereomer (300 MHz, CDCl₃) δ 7.60–7.11 (m, 10H), 5.26 (t, *J* = 5.5 Hz, 1H), 3.03–2.87 (m, 2H), 2.29 (t, *J* = 10.9 Hz, 1H), 2.33–2.08 (m, 1H), 1.05 (d, *J* = 6.7 Hz, 3H). ¹³C{¹H} NMR for major diastereomer (75 MHz, CDCl₃) δ 147.3, 146.6, 128.3 (2C), 128.2 (2C), 126.9 (2C), 126.8 (2C), 126.2 (2C), 125.7 (2C), 99.7, 88.9, 44.1, 38.2, 12.5. ¹³C{¹H} NMR for minor diastereomer (75 MHz, CDCl₃) δ 147.5, 147.3, 128.3 (2C), 128.2 (2C), 126.8 (2C), 125.9 (2C), 125.5 (2C), 105.7, 88.3 46.0, 41.7, 16.1. HRMS (ESI): *m/z* calcd for C₁₇H₁₈NaO₂ [M+Na]⁺ 277.1205, found 277.1195.

Synthesis of 3-6


Synthesis of 3-methyl-5-phenyltetrahydrofuran-2-one (3)

To a reaction vessel, **2b** (66.2 mg, 0.37 mmol) and pyridinium dichromate (278.4 mg, 0.74 mmol) were added. To the mixture, CH_2Cl_2 (2.3 mL) was added and the reaction mixture was stirred for 24 h. Purification by silica gel column chromatography (hexane/ethyl acetate = 4/1) afforded **3** as a pale yellow oil (61.9 mg, 0.35 mmol, 95% yield, *trans:cis* = 90:10). The ¹H and ¹³C NMR data were in accordance with those reported previously.¹¹


Synthesis of 3-methyl-1-phenyl-1,4-butanediol (4)

To a reaction vessel, **2b** (37.2 mg, 0.21 mmol) and NaBH₄ (16.1 mg, 0.43 mmol) were added. To the mixture, MeOH (0.27 mL) and THF (0.83 mL) were added and the reaction mixture was stirred for 26 h. The reaction was quenched with H₂O (4.8 mL). The resulting mixture was extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄. The solvent was evaporated under vacuum. Purification by silica gel column chromatography (hexane/ethyl acetate = 6/1) afforded **4** as a pale yellow oil (30.9 mg, 0.17 mmol, 82% yield, *trans:cis* = 90:10). The ¹H and ¹³C NMR data were in accordance with those reported previously.¹²

Synthesis of methyl 6-hydroxy-4-methyl-6-phenyl-2-hexenoate (5)

To a reaction vessel, **2b** (36.1 mg, 0.20 mmol) and (carbomethoxymethylene)triphenyl phosphorene (202.8 mg, 0.61 mmol) were added. To the mixture, CH_2Cl_2 (4.0 mL) was added and the reaction mixture was stirred for 47 h. The reaction mixture was evaporated under vacuum. Purification by silica gel column chromatography (hexane/ethyl acetate = 4/1) afforded **5** as a yellow oil (42.2 mg, 0.18 mmol, 89% yield, *trans:cis* = 91:9). The ¹H and ¹³C NMR data were in accordance with those reported previously.¹³

Synthesis of 6

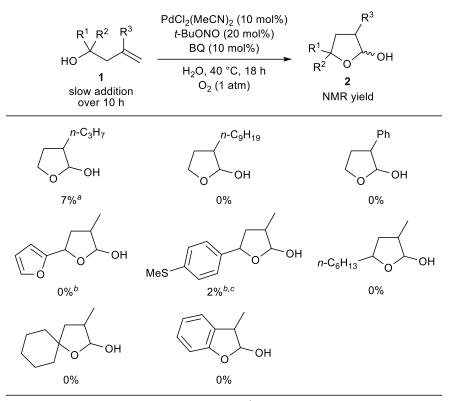
To a reaction vessel, **2b** (47.4 mg, 0.27 mmol) and CH₃CO₂H/H₂O (1:1, 1.3 mL) were added. Phenylhydrazine (26.4 μ L, 0.27 mmol) was added to the solution, and the reaction mixture was stirred at 60 °C for 5 h. After cooling to room temperature, saturated NaHCO₃ aq. (3.3 mL) was added to the reaction mixture. The mixture was extracted with ethyl acetate, and the organic layer was dried over MgSO₄. After filtration and concentration under vacuum, the residue was purified by silica gel column chromatography (hexane/ethyl acetate = 9/1) to afford **6** as a brown oil (35.9 mg, 0.14 mmol, 54% yield, diastereomer ratio = 63:37).

¹H NMR for major diastereomer (300 MHz, CDCl₃) δ 7.37–7.00 (m, 7H), 6.83–6.69 (m, 1H), 6.68– 6.59 (m, 1H), 5.30 (s, 1H), 5.02 (dd, J = 6.4, 9.1 Hz, 1H), 4.80 (br s, 1H), 2.49 (dd, J = 6.4, 12.4 Hz, 1H), 2.19 (dd, J = 9.1, 12.5 Hz, 1H), 1.45 (s, 3H). ¹H NMR for minor diastereomer (300 MHz, CDCl₃) δ 7.37–7.00 (m, 7H), 6.83–6.69 (m, 1H), 6.68–6.59 (m, 1H), 5.48 (s, 1H), 4.76 (dd, J = 4.5, 11.2 Hz, 1H), 4.66 (br s, 1H), 2.53 (dd, J = 4.6, 11.9 Hz, 1H), 2.02 (dd, J = 11.3, 12.0 Hz, 1H), 1.51 (s, 3H). ¹³C{¹H} NMR for major diastereomer (75 MHz, CDCl₃) δ 147.5, 141.6, 136.0, 128.3, 128.0, 127.6, 126.2 (2C), 123.1, 119.4, 109.6, 101.2, 79.0, 54.1, 49.0, 24.2. ¹³C{¹H} NMR for minor diastereomer (75 MHz, CDCl₃) δ 149.3, 141.2, 134.1, 128.5, 128.3, 127.7, 126.0 (2C), 123.2, 119.1, 108.5, 99.7, 80.7, 54.8, 50.3, 25.0. HRMS (ESI): *m/z* calcd for C₁₇H₁₇NNaO [M+Na]⁺ 274.1208, found 274.1216.

Table S1 Optimization of reaction conditions using 1a as a substrate.^a

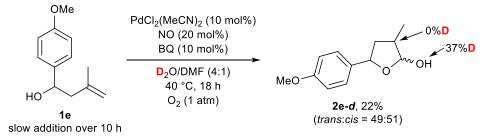
l	PdCl ₂ (MeCN) ₂ (10 mol%) NO (20 mol%) BQ (10 mol%)	\square
HO 1a slow addition over 10 h	H ₂ O, 40 °C, 18 h O ₂ (1 atm)	о_ ОН 2а

entry	change from standard conditions	conv. of 1a (%) ^b	yield of 2a (%) ^b
1	None	100	90
2	No PdCl ₂ (MeCN) ₂	0	0
3	No NO	73	13
4	No BQ	67	25
5	No NO, 300 mol% of BQ	100	79
6	No slow addition of 1a	100	25
7	Air instead of O ₂	93	56
8^c	t-BuONO instead of NO	100	78
9	NO ₂ instead of NO	100	86
10	CuCl instead of NO	50	9
11	CuCl ₂ instead of NO	99	64
12	PdCl ₂ instead of PdCl ₂ (MeCN) ₂	93	66
13	PdCl ₂ (PhCN) ₂ instead of PdCl ₂ (MeCN) ₂	91	41
14	PdCl ₂ (cod) instead of PdCl ₂ (MeCN) ₂	61	1
15	Pd(OAc) ₂ instead of PdCl ₂ (MeCN) ₂	86	36
16 ^d	t-BuONO (10 mol%) instead of NO	85	49
17	AgNO ₂ (10 mol%) instead of NO	63	11
18	NaNO ₂ (10 mol%) instead of NO	83	13
19 ^c	rt	97	28
20^{c}	50 °C	100	55
21^{d}	slow addition 5 h, total 6 h	71	29
22^{d}	acetone instead of H ₂ O, H ₂ O 5.0 eq.	24	0
23^d	1,4-dioxane instead of H ₂ O, H ₂ O 5.0 eq.	97	0
24^d	DMF instead of H ₂ O, H ₂ O 5.0 eq.	100	0
25^d	MeOH instead of H ₂ O, H ₂ O 5.0 eq.	25	0
26^d	<i>t</i> -BuOH instead of H ₂ O, H ₂ O 5.0 eq.	58	13
27^d	MeBQ instead of BQ	79	32
28^d	2,6-Me ₂ BQ instead of BQ	62	16
29 ^{<i>d</i>}	F ₄ BQ instead of BQ	70	23
30^d	2-ClBQ instead of BQ	77	36
31 ^{<i>d</i>}	2,5-Cl ₂ BQ instead of BQ	88	29
32^d	maleimide instead of BQ	72	24

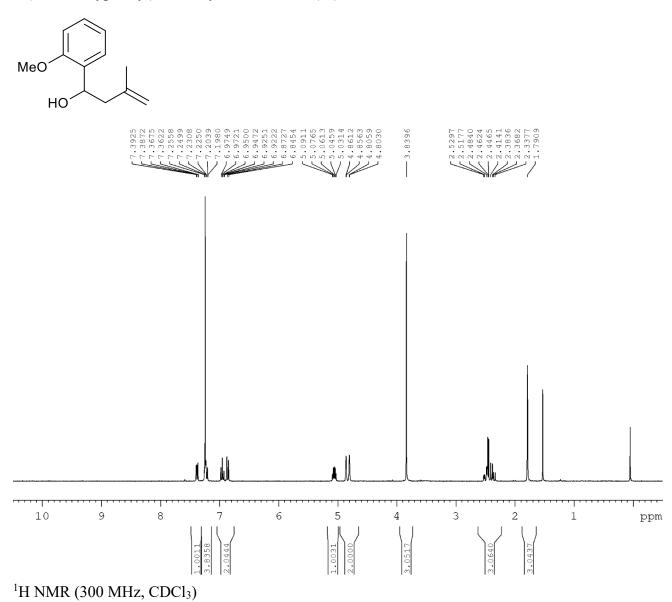

^{*a*} Reaction conditions: **1a** (0.50 mmol), PdCl₂(MeCN)₂ (0.050 mmol), NO (0.10 mmol), BQ (0.050 mmol), H₂O (2.0 mL), 40 °C, O₂ (1 atm). **1a** was added over 10 h by a syringe pump, and the reaction mixture was stirred for an additional 8 h (18 h in total). ^{*b*} Determined by ¹H NMR. ^{*c*} *t*-BuONO (20 mol%) was used instead of NO. ^{*d*} *t*-BuONO (10 mol%) was used instead of NO.

	Ph 	NO (20 mol%) BQ (10 mol%)		
	HO 1b slow addition over 10 h	H ₂ O, 40 °C, 18 h O ₂ (1 atm)	Ph O OH 2b	
entry	change from standard conditions		conv. of 1b (%) ^b	yield of 2b $(\%)^b$
1	none		65	37
2	n-BuONO instead of NO		66	17
3 ^c	t-BuONO instead of NO		60	24
4	NO ₂ instead of NO		43	17
5^c	no slow addition		53	1
6 ^{<i>c</i>}	no slow addition, total 1 h		30	1
7^c	slow addition over 15 h		49	42
8^c	H_2O /hexane (3:1)		59	20
9^c	H_2O /toluene (3:1)		43	5
10^{c}	H ₂ O/dichloromethane (3:1)		38	8
11 ^c	$H_2O/1,2$ -dichloroethane (3:1)		40	1
12^{c}	H ₂ O/acetone (10:1)		61	32
13	$H_2O/acetone$ (5:1)		56	26
14^c	$H_2O/acetone$ (1:1)		43	17
15	H ₂ O/1,4-dioxane (5:1)		92	38
16	H ₂ O/acetonitrile (5:1)		81	40
17	H ₂ O/DMF (5:1)		98	47
18	H_2O/DMF (4:1), slow addition over 15 h		99	$70 \ (60)^d$
19	H ₂ O/DMF (3:1), slow addition over 15 h		84	59
20	H_2O/DMF (2:1), slow addition over 15 h		68	46

PdCl₂(MeCN)₂ (10 mol%) NO (20 mol%)

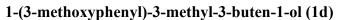

Table S2 Optimization of reaction conditions using 1b as a substrate.^a

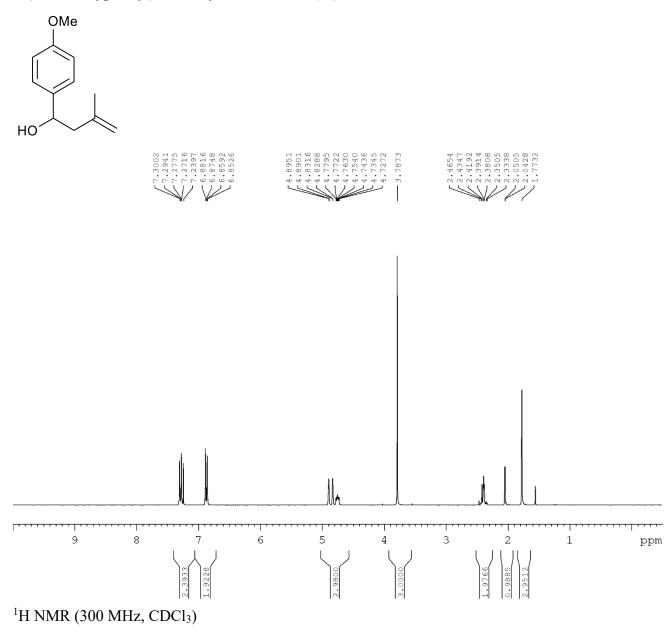
^a Reaction conditions: 1b (0.50 mmol), PdCl₂(MeCN)₂ (0.050 mmol), NO (0.10 mmol), BQ (0.050 mmol), H₂O (2.0 mL), 40 °C, O₂ (1 atm). 1b was added over 10 h by a syringe pump, and the reaction mixture was stirred for an additional 8 h (18 h in total). ^b Determined by ¹H NMR. ^c t-BuONO (20 mol%) was used instead of NO. ^d Isolated yield is shown in parentheses.

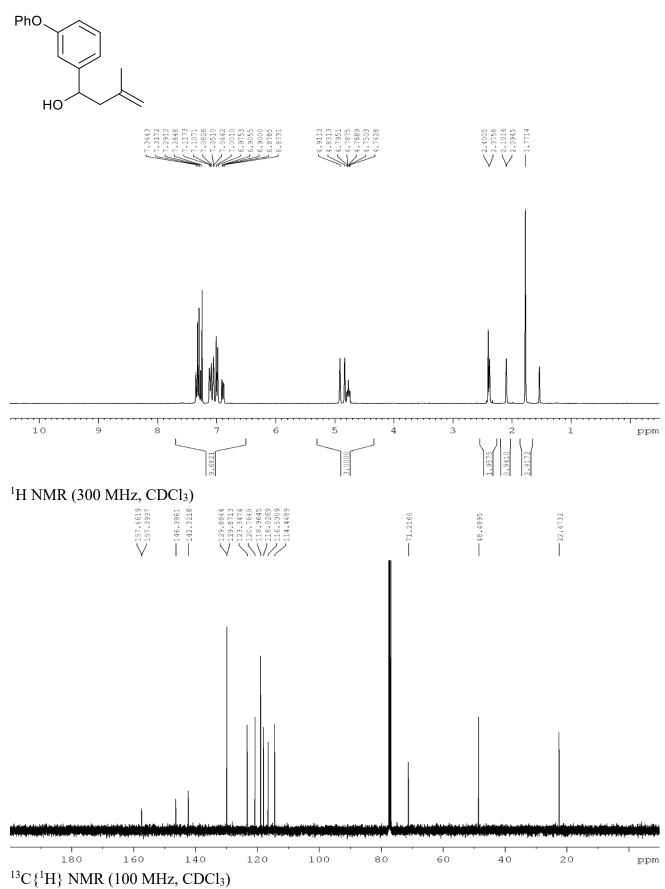


^aNO₂ (20 mol%) was used instead of *t*-BuONO. ^{*b*}H₂O/DMF (4:1). NO (20 mol%) was used instead of *t*-BuONO. ^{*c*}I was added over 15 h by a syringe pump.

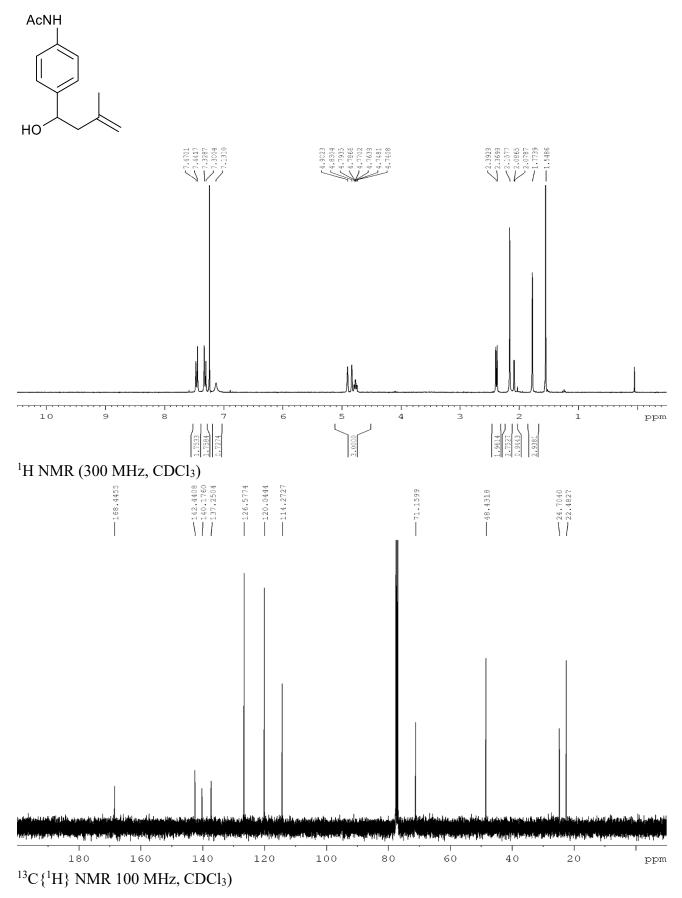
Scheme S1 Limitation of substrates.

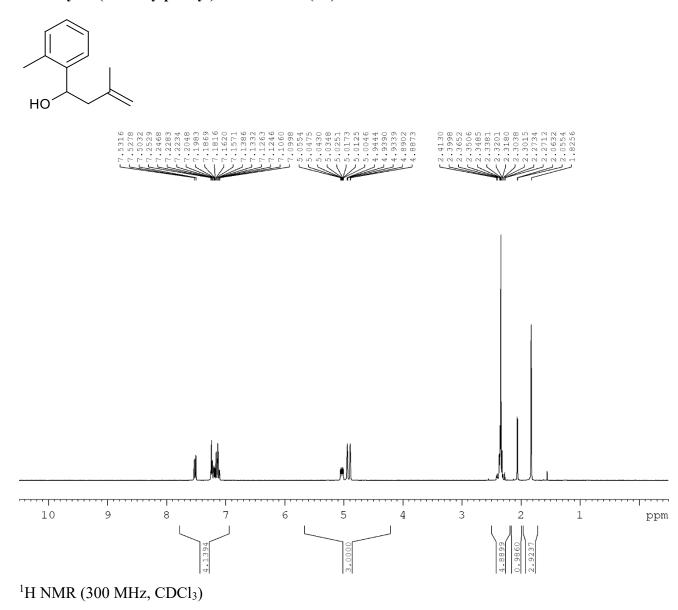


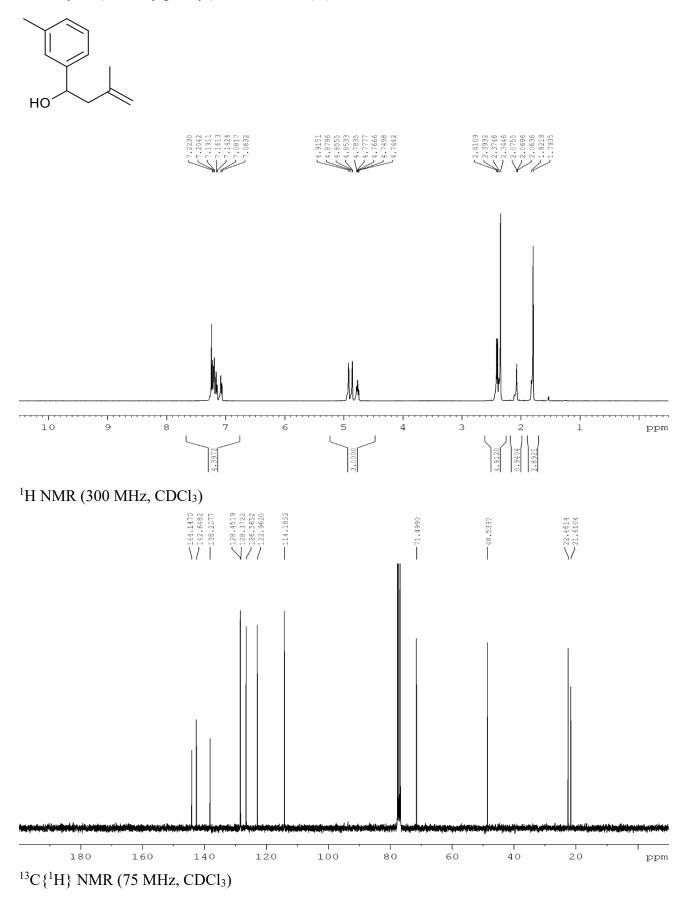

Scheme S2 Control experiment using 1e as a substrate in D₂O/DMF.

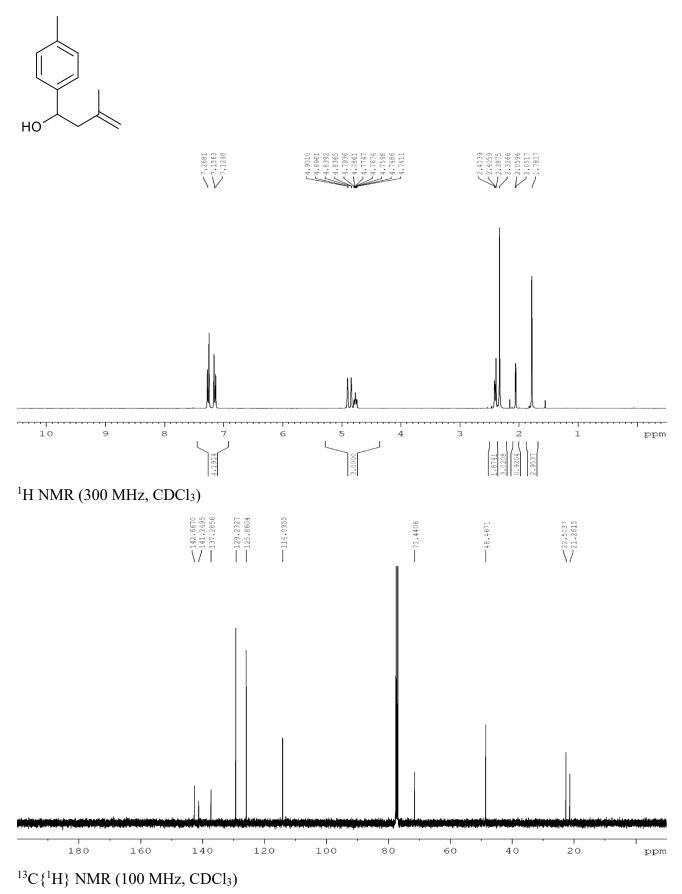

1-(2-methoxyphenyl)-3-methyl-3-buten-1-ol (1c)

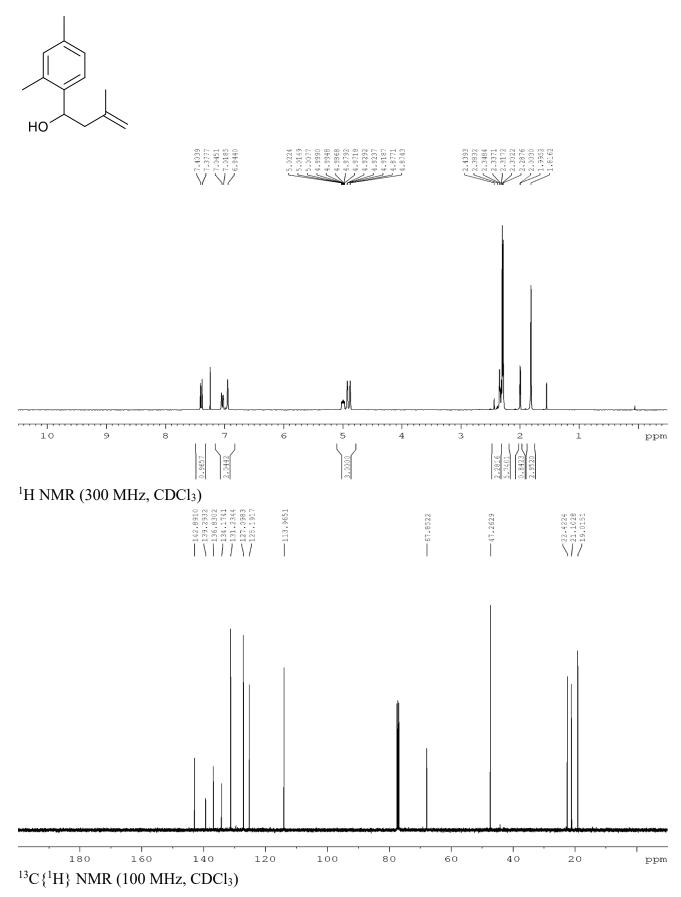
MeO. НΟ 2.4557 2.4342 2.2063 -1.8320 77.3171 77.3171 77.2104 77.22850 77.22782 77.2782 77.2789 77.2789 6.9878 6.9878 6.9878 6.9878 6.9878 6.8581 6.8581 6.8581 6.8581 6.85318 6.85318 6.8235 7.4235 7.2257 6.8235 6.8255 6.8255 6.8255 6.8255 6.82556 7.825566 7.825566 7.825566 7.825566 7.825566 7.825566 7.825566 7. MA т 7 3 10 5 1 ppm 9 8 6 2 4 4.1652 2.9109 ¹H NMR (300 MHz, CDCl₃) 118.2247 114.2318 113.1238 111.3600 71.4728 180 160 140 120 100 40 80 60 20 ppm ¹³C{¹H} NMR (100 MHz, CDCl₃)

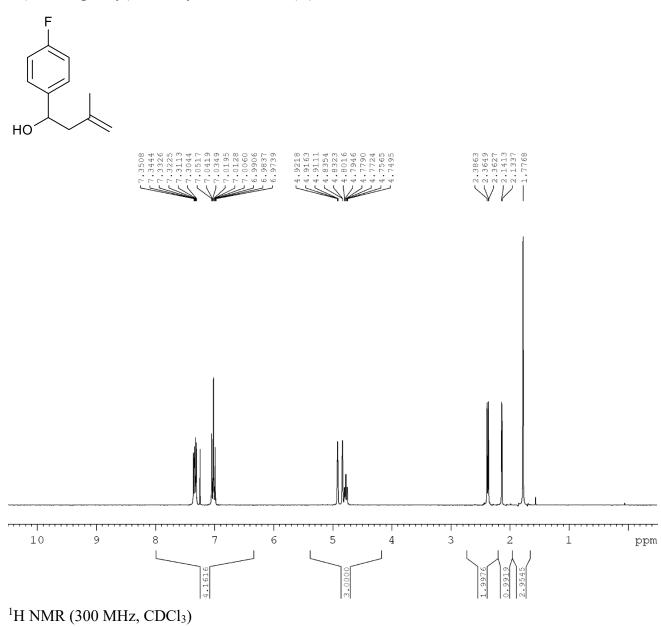


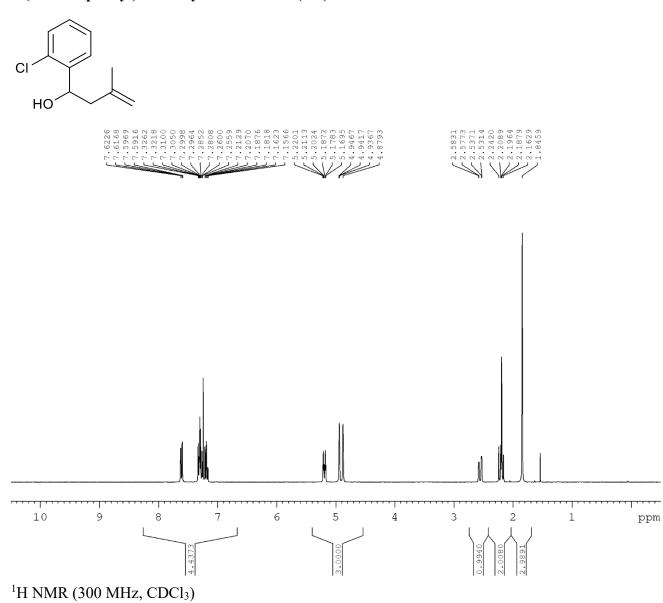

1-(4-methoxyphenyl)-3-methyl-3-buten-1-ol (1e)

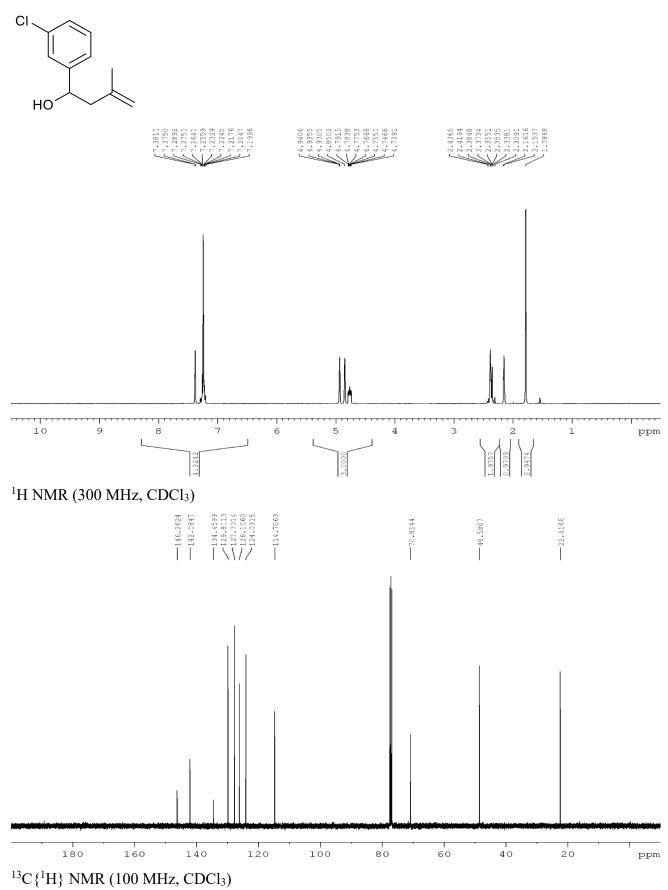

3-methyl-1-(3-phenoxyphenyl)-3-buten-1-ol (1f)

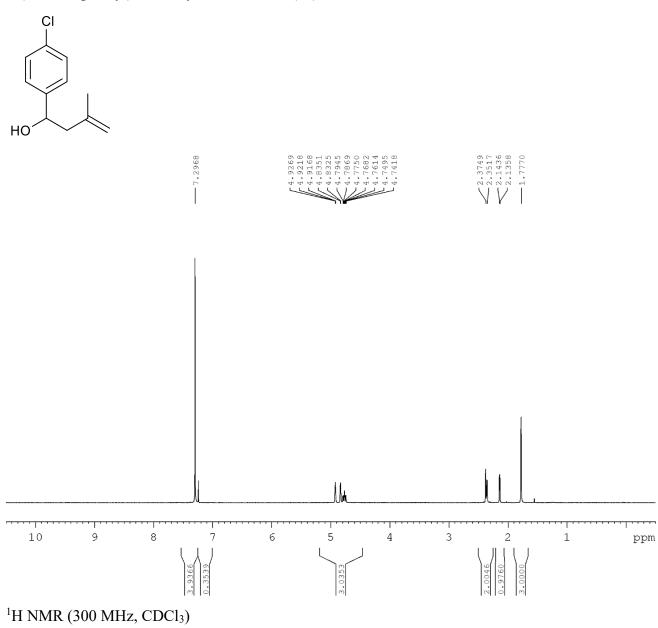

1-(4-acetamidophenyl)-3-methyl-3-buten-1-ol (1g)

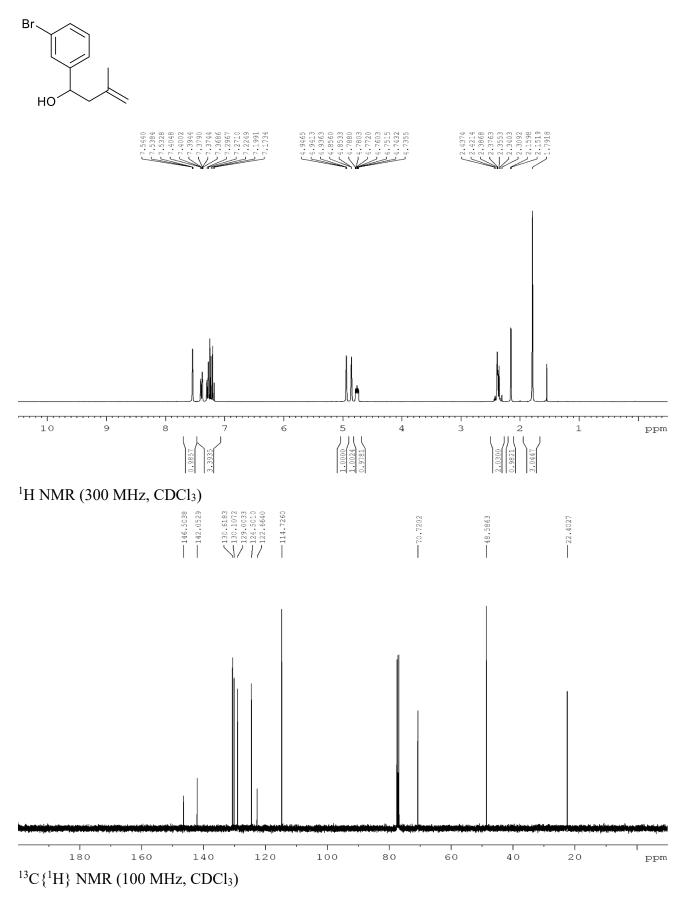

3-methyl-1-(2-methylphenyl)-3-buten-1-ol (1h)

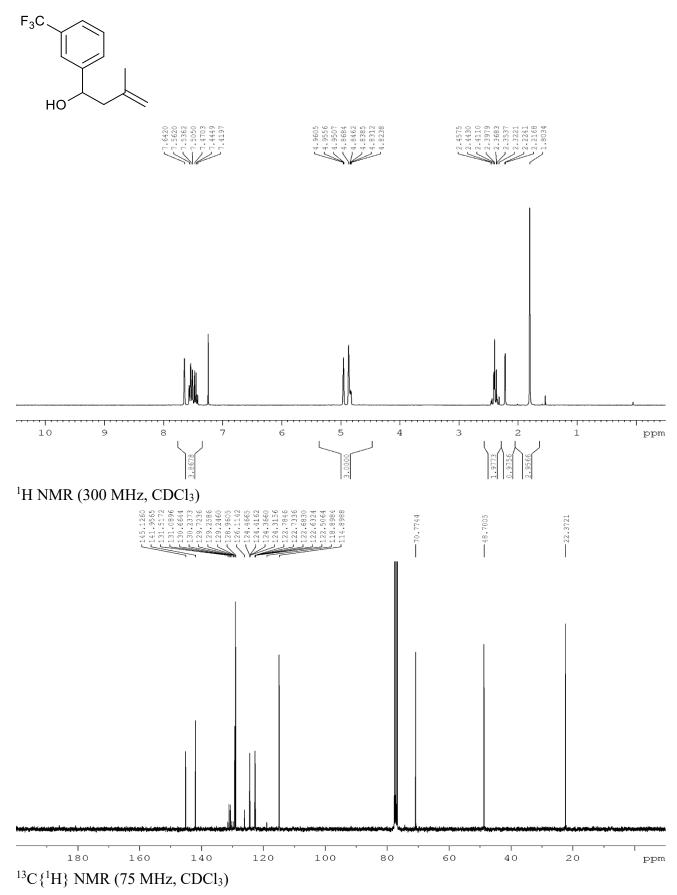

3-methyl-1-(3-methylphenyl)-3-buten-1-ol (1i)


3-methyl-1-(4-methylphenyl)-3-buten-1-ol (1j)

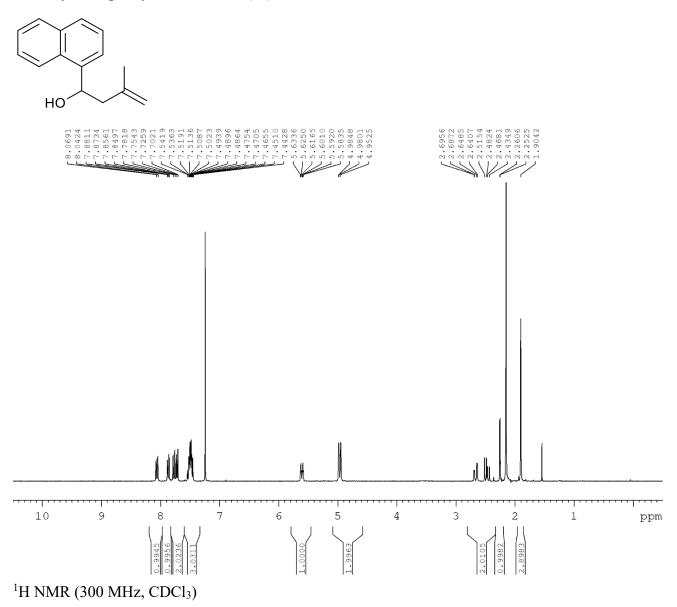

3-methyl-1-(2,4-dimethylphenyl)-3-buten-1-ol (1k)

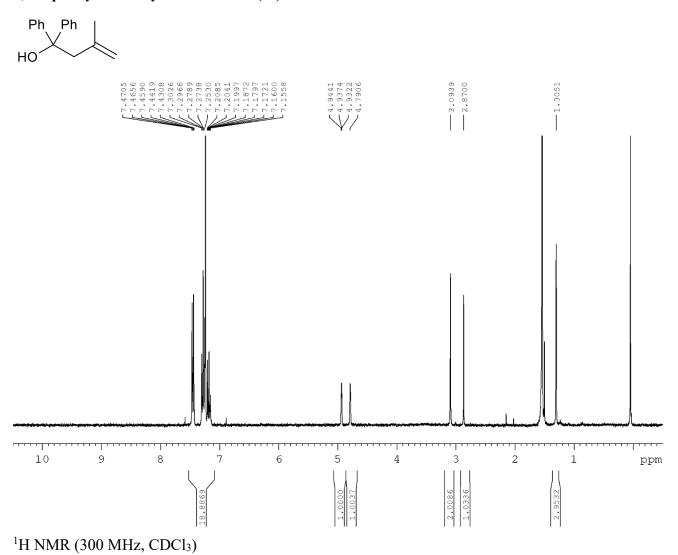

1-(4-fluorophenyl)-3-methyl-3-buten-1-ol (11)


1-(2-chlorophenyl)-3-methyl-3-buten-1-ol (1m)


1-(3-chlorophenyl)-3-methyl-3-buten-1-ol (1n)

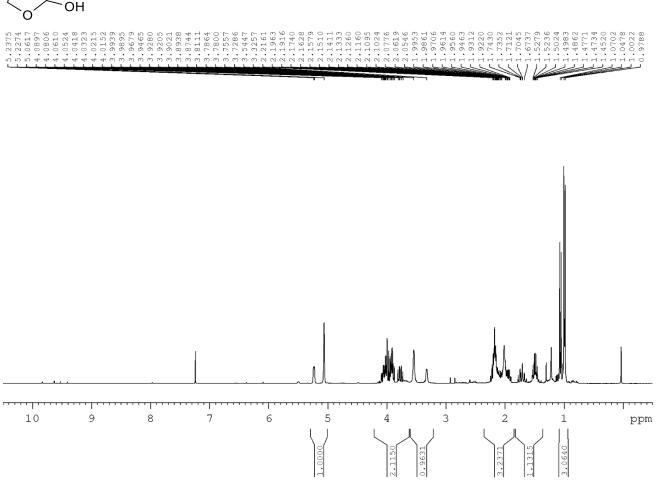
1-(4-chlorophenyl)-3-methyl-3-buten-1-ol (10)

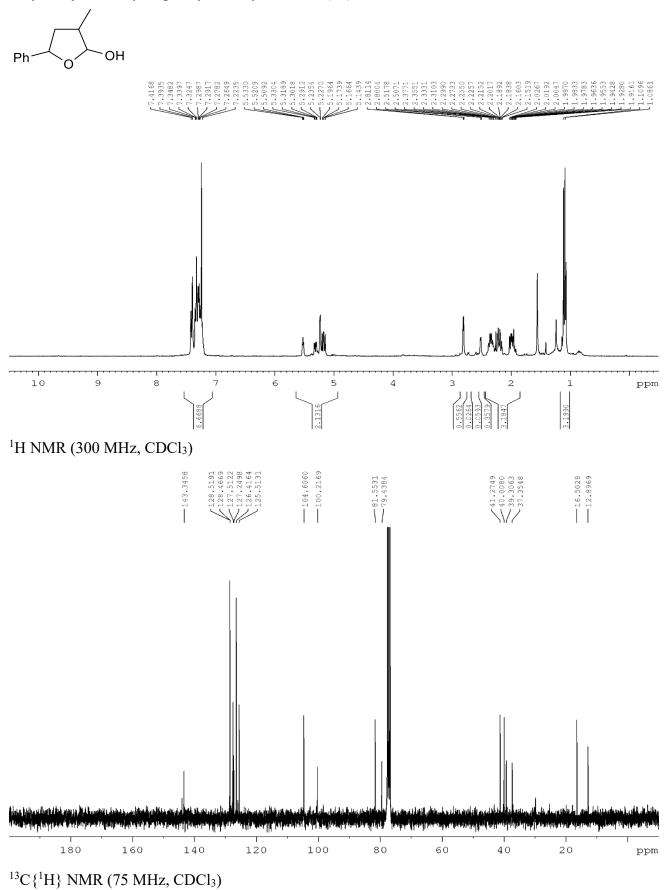



1-(3-bromophenyl)-3-methyl-3-buten-1-ol (1p)

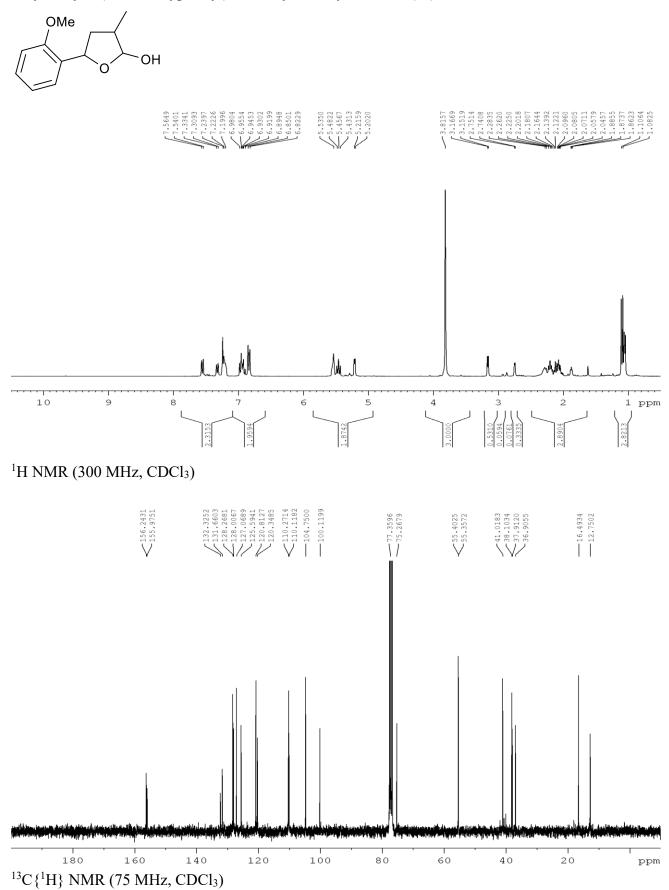
3-methyl-1-(3-trifluoromethylphenyl)-3-buten-1-ol (1q)

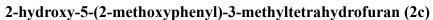
3-methyl-1-naphthyl-3-buten-1-ol (1r)

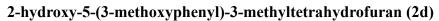


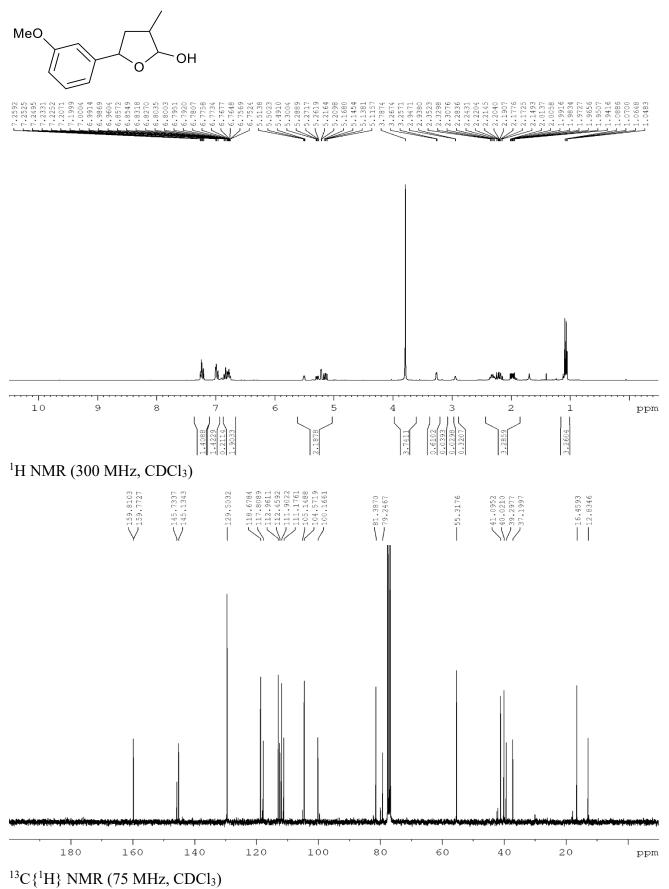

1,1-diphenyl-3-methyl-3-buten-1-ol (1s)

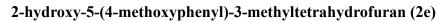
2-hydroxy-3-methyltetrahydrofuran (2a)

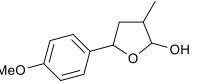


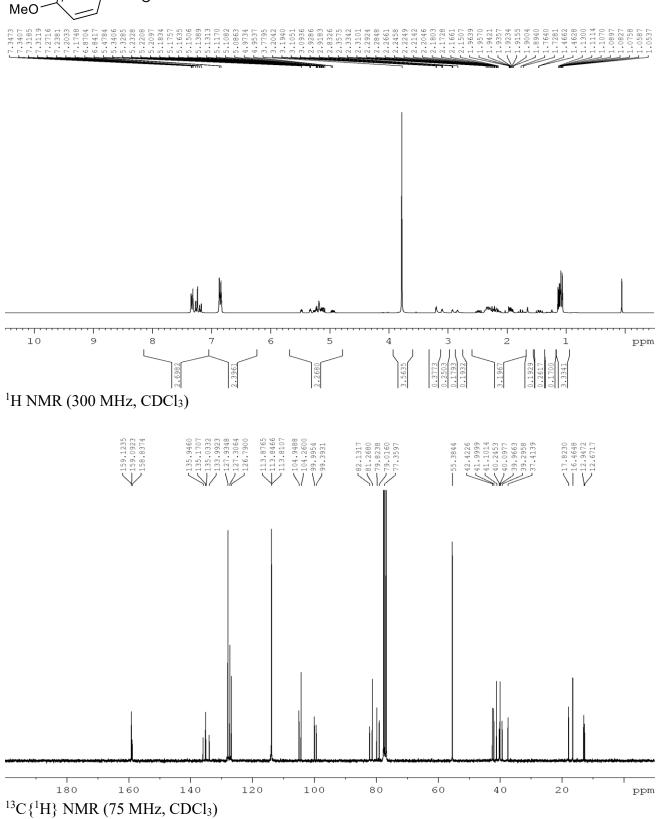


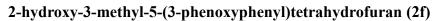

¹H NMR (300 MHz, CDCl₃)

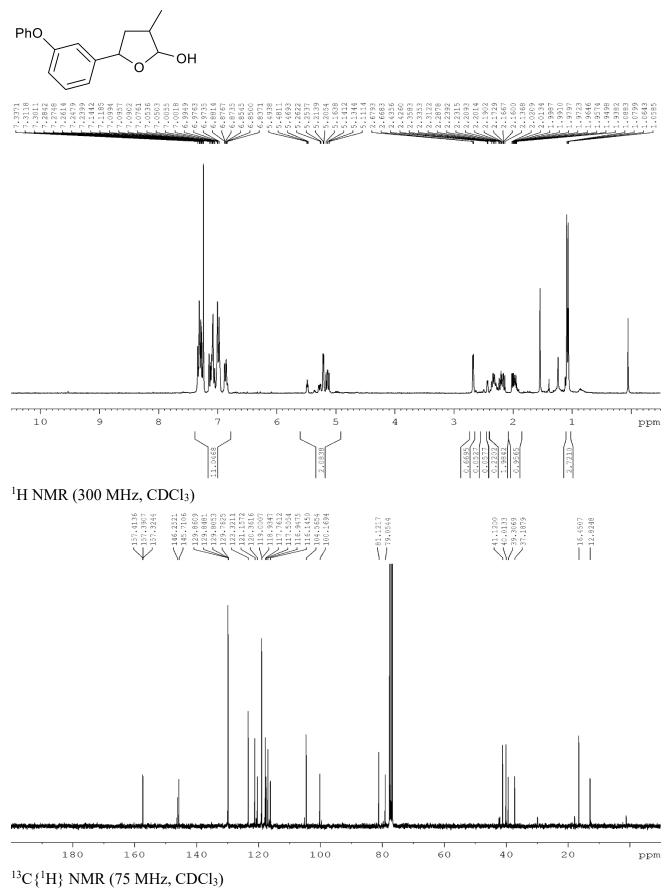


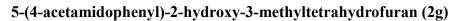

2-hydroxy-3-methyl-5-phenyltetrahydrofuran (2b)

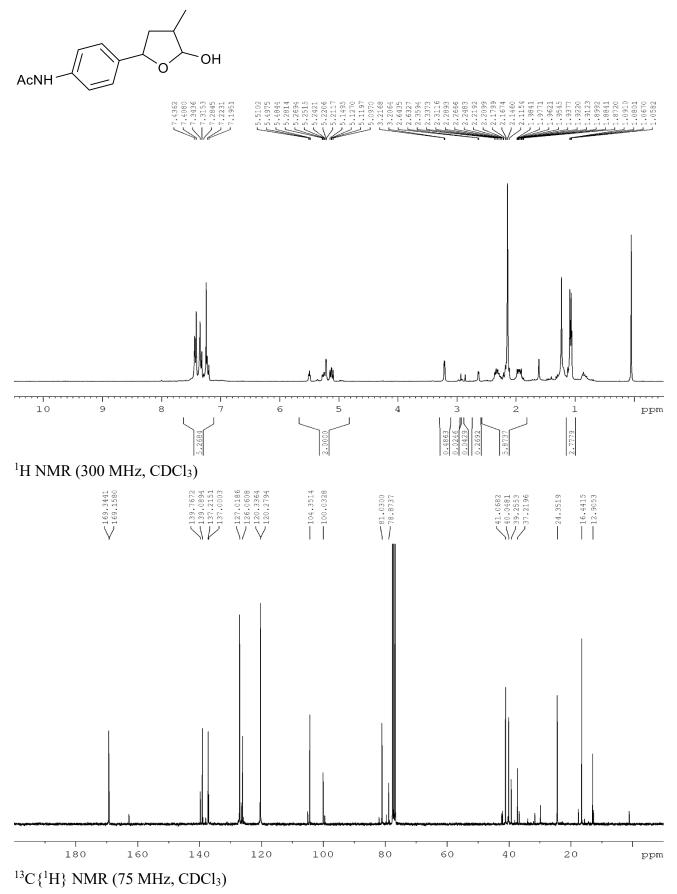


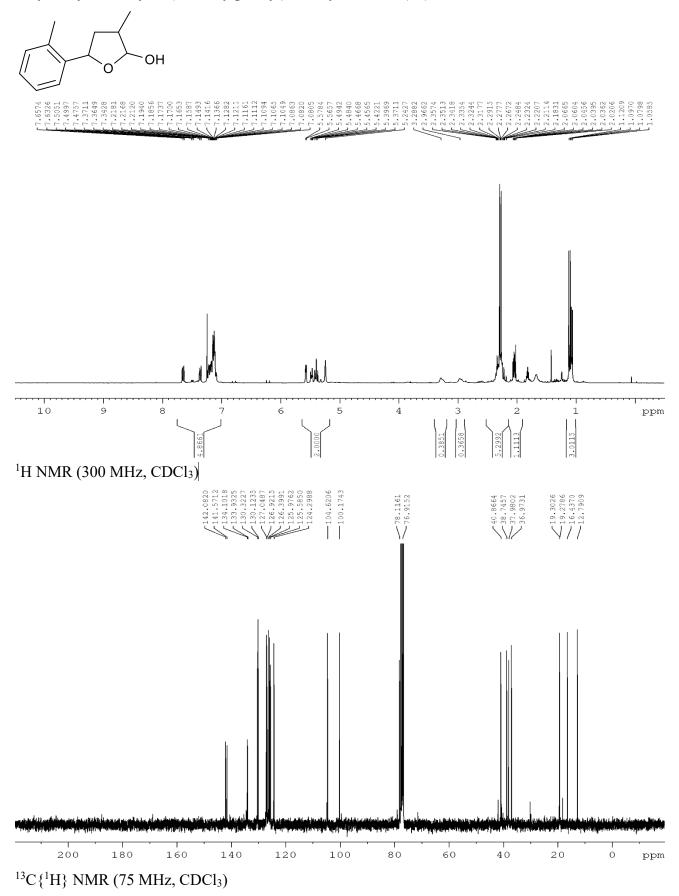


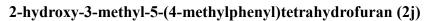


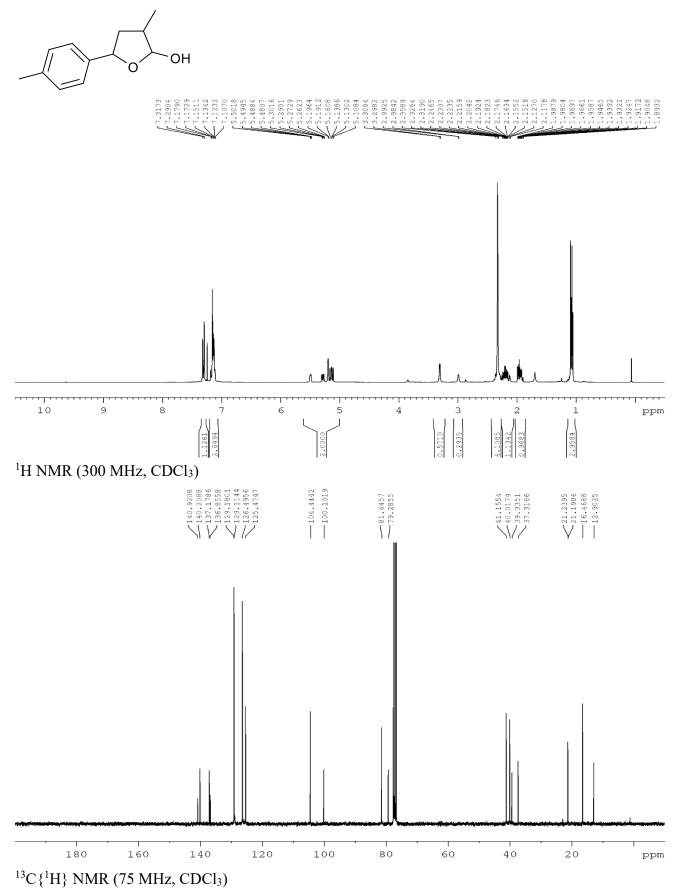


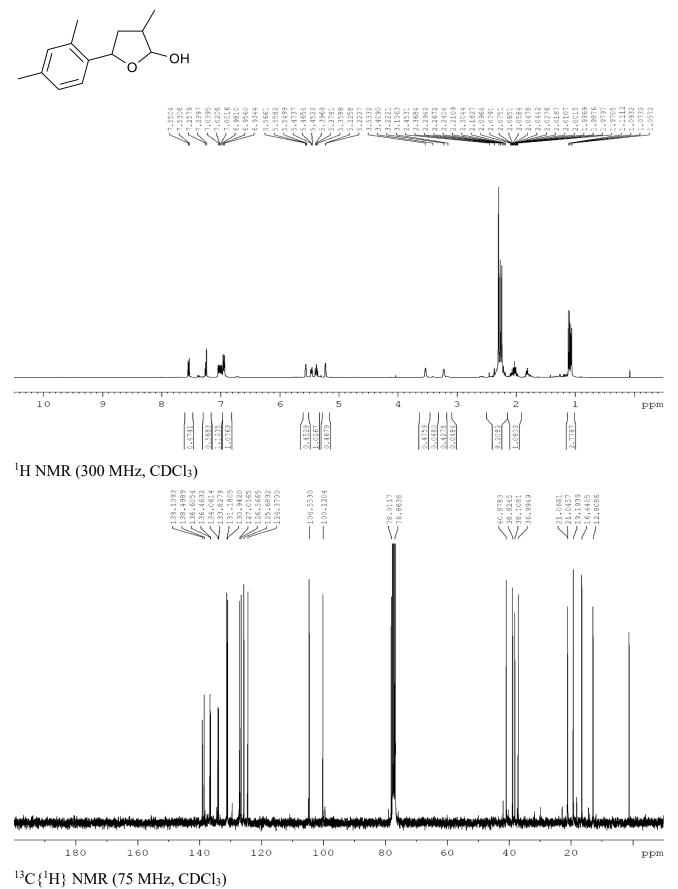


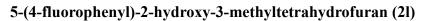


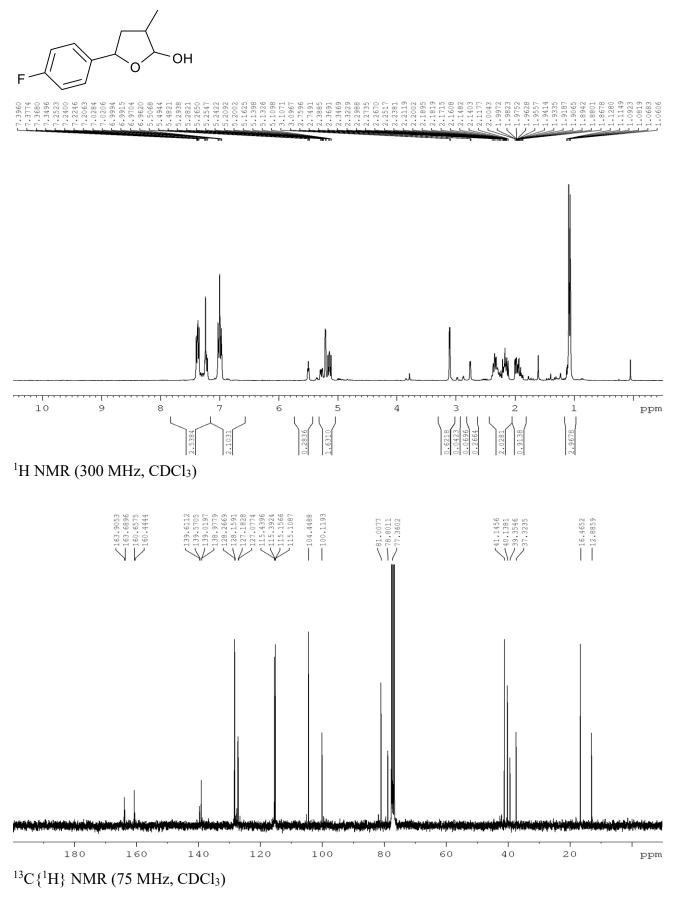


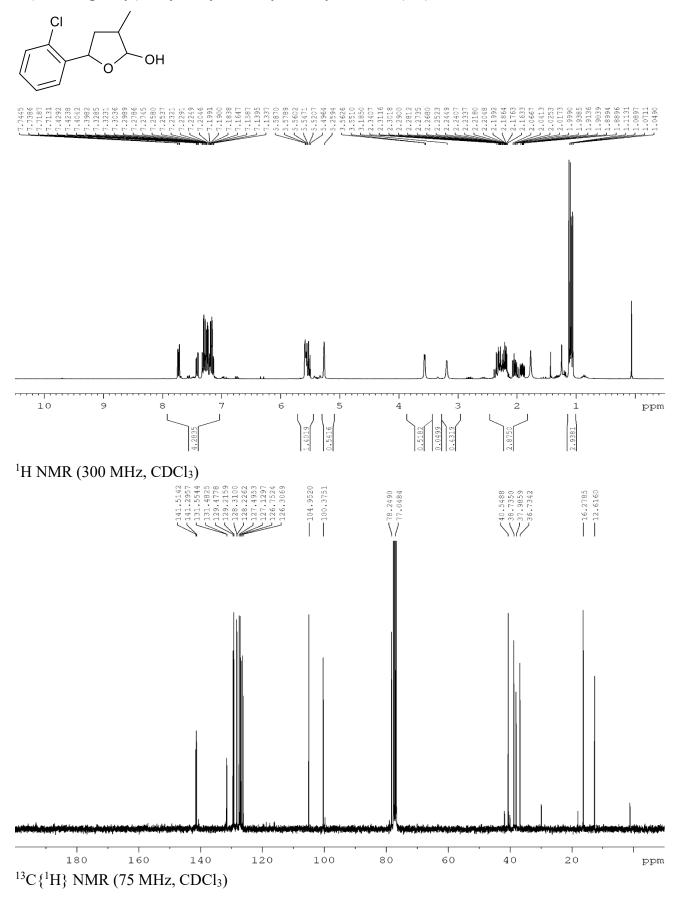


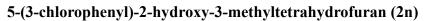

2-hydroxy-3-methyl-5-(2-methylphenyl)tetrahydrofuran (2h)

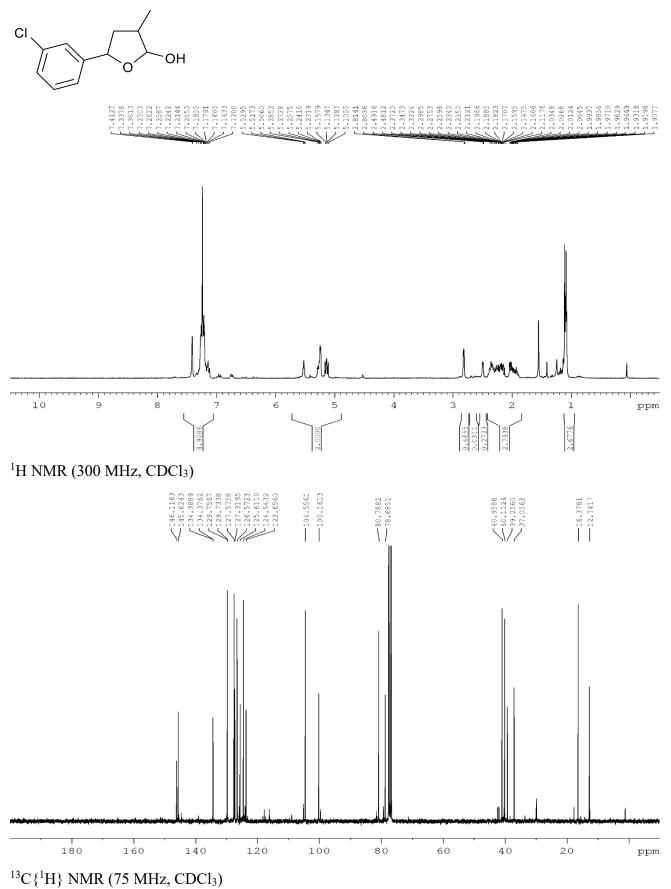

2-hydroxy-3-methyl-5-(3-methylphenyl)tetrahydrofuran (2i)

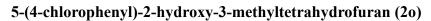


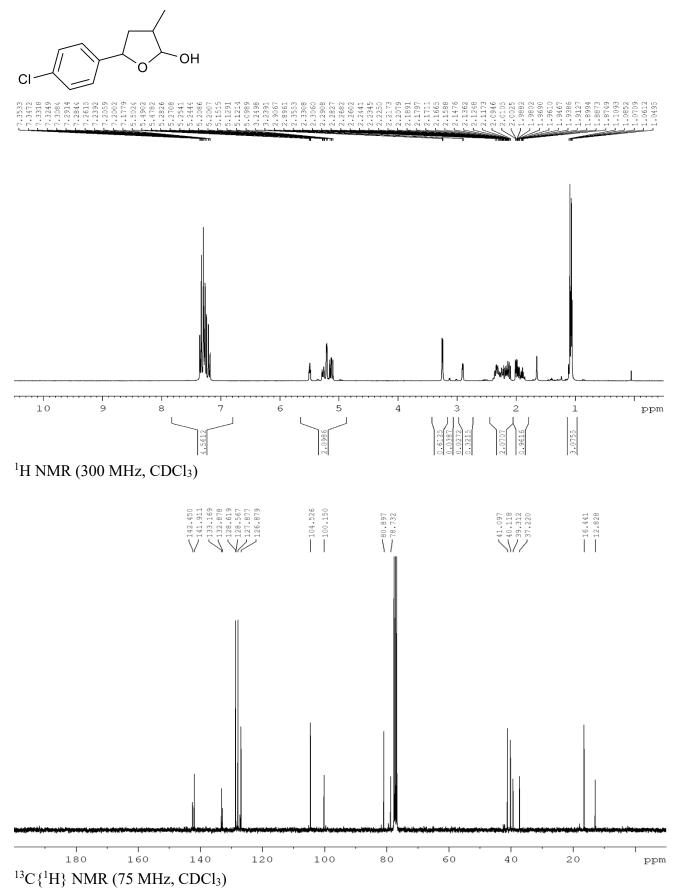


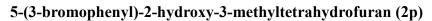

2-hydroxy-3-methyl-5-(2,4-dimethylphenyl)tetrahydrofuran (2k)

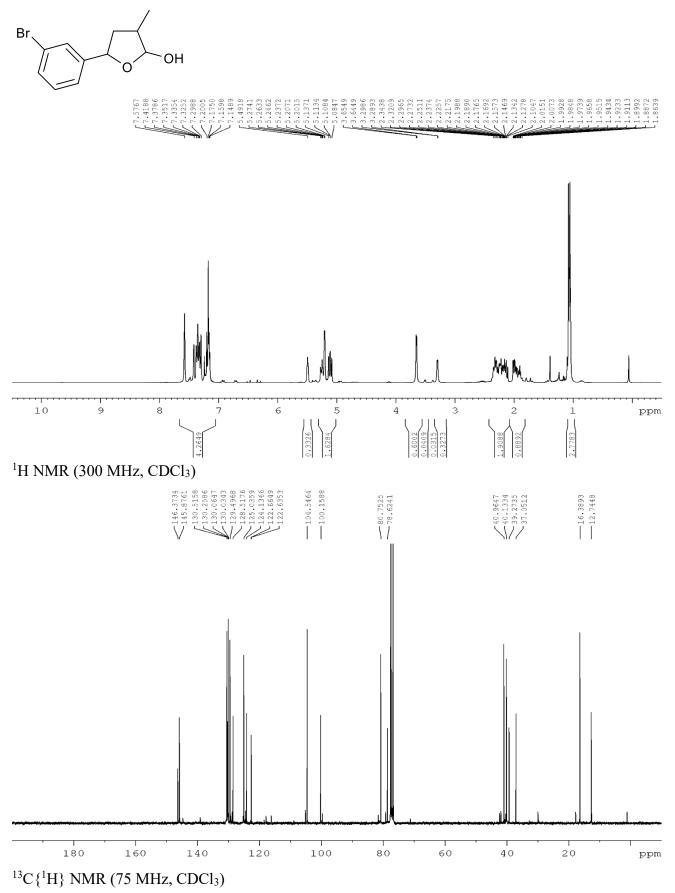


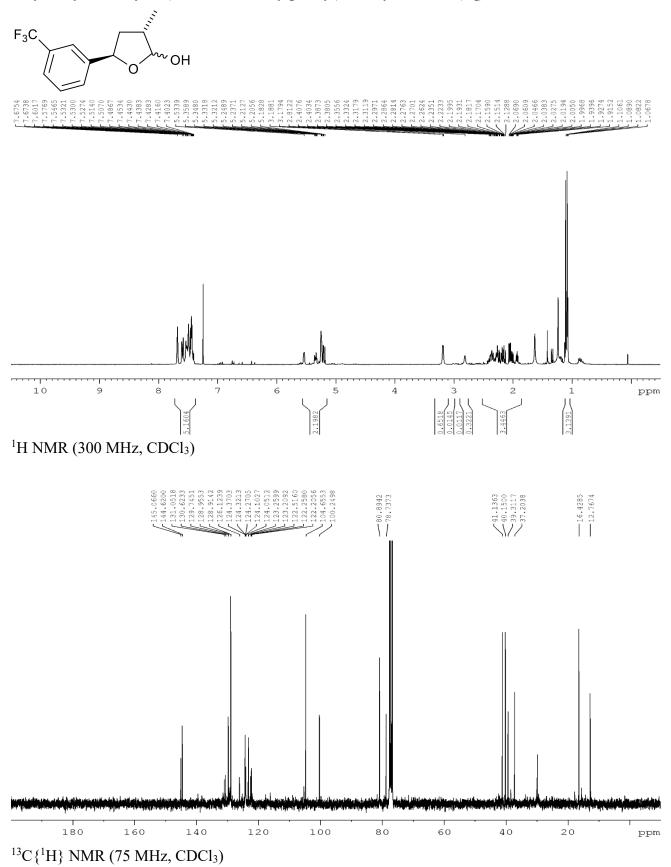


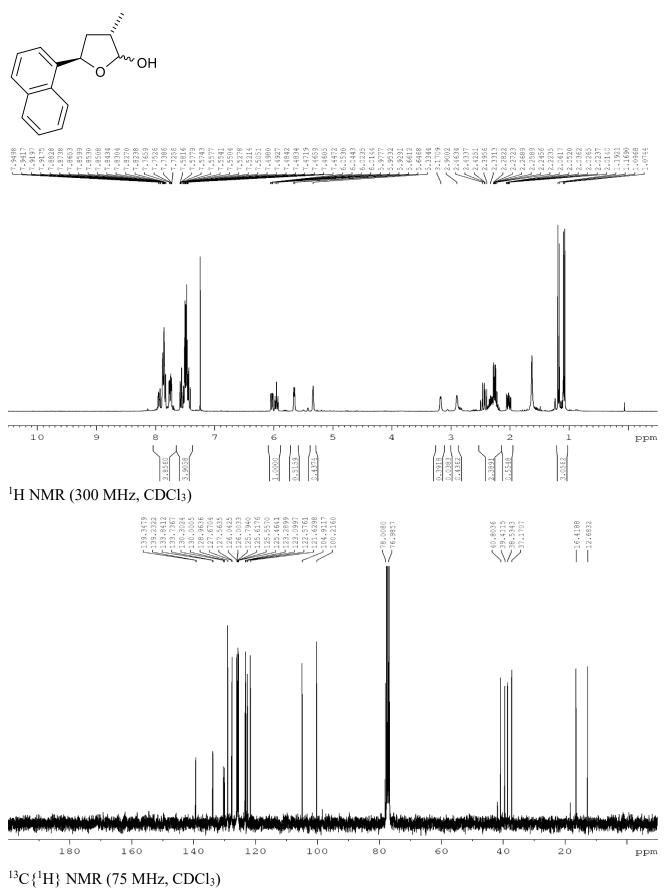


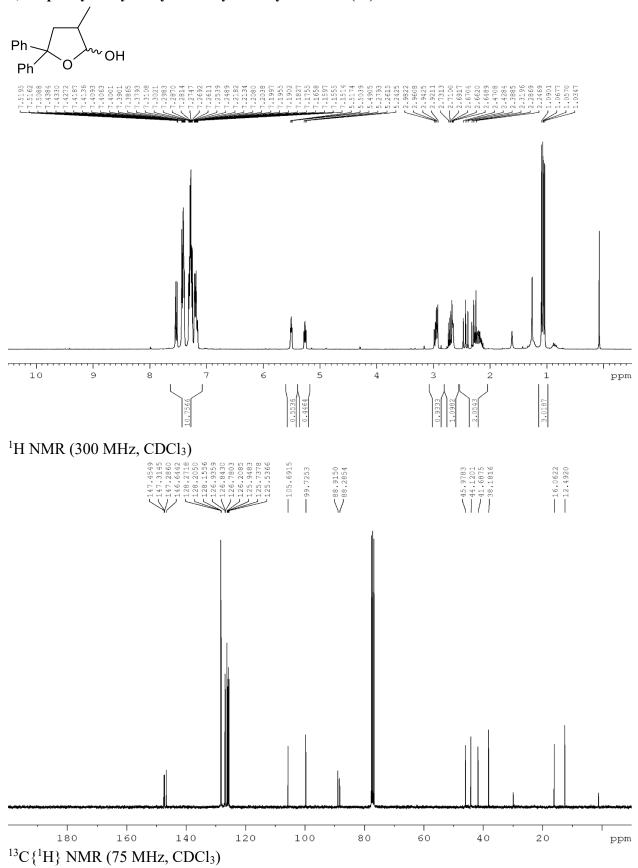

5-(2-chlorophenyl)-2-hydroxy-3-methyltetrahydrofuran (2m)



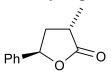


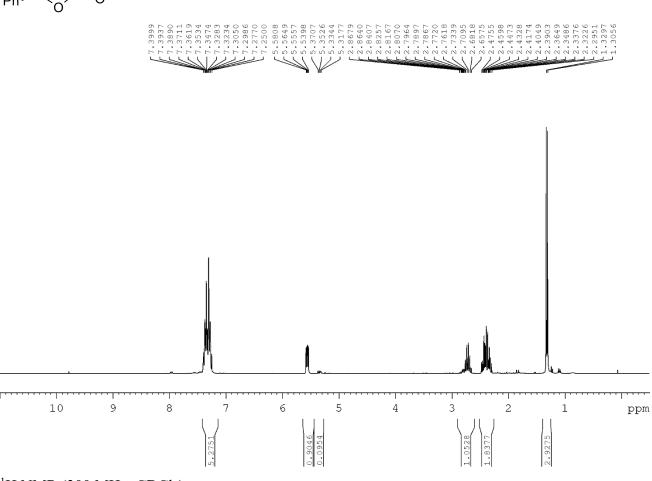




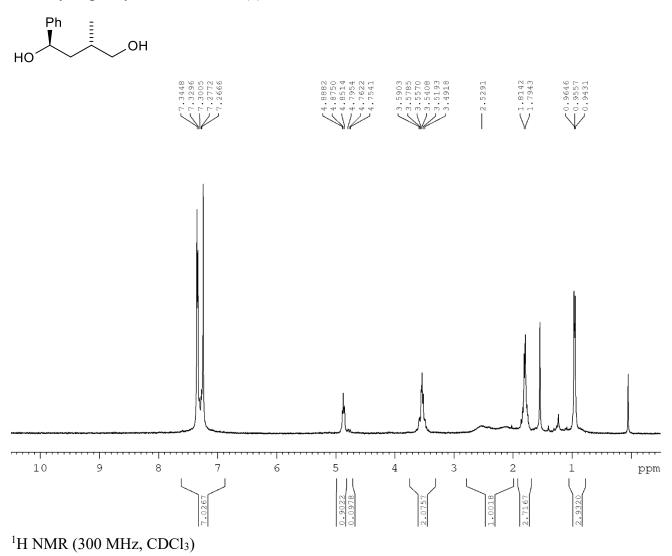


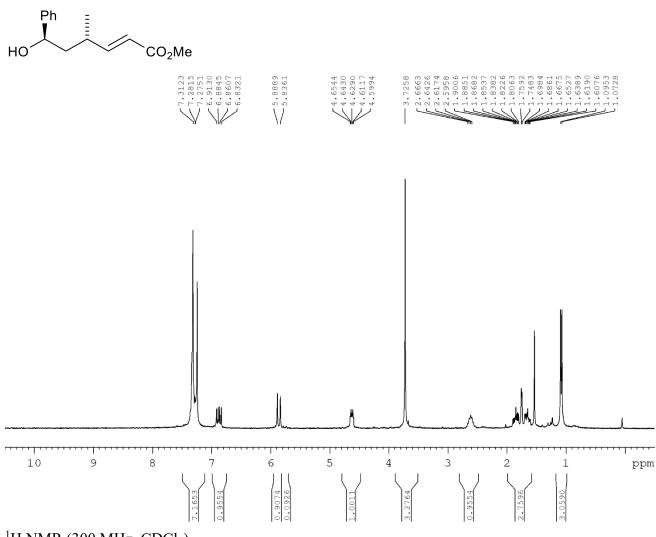
2-hydroxy-3-methyl-5-(3-trifluoromethylphenyl)tetrahydrofuran (2q)


2-hydroxy-3-methyl-5-(1-naphthyl)tetrahydrofuran (2r)

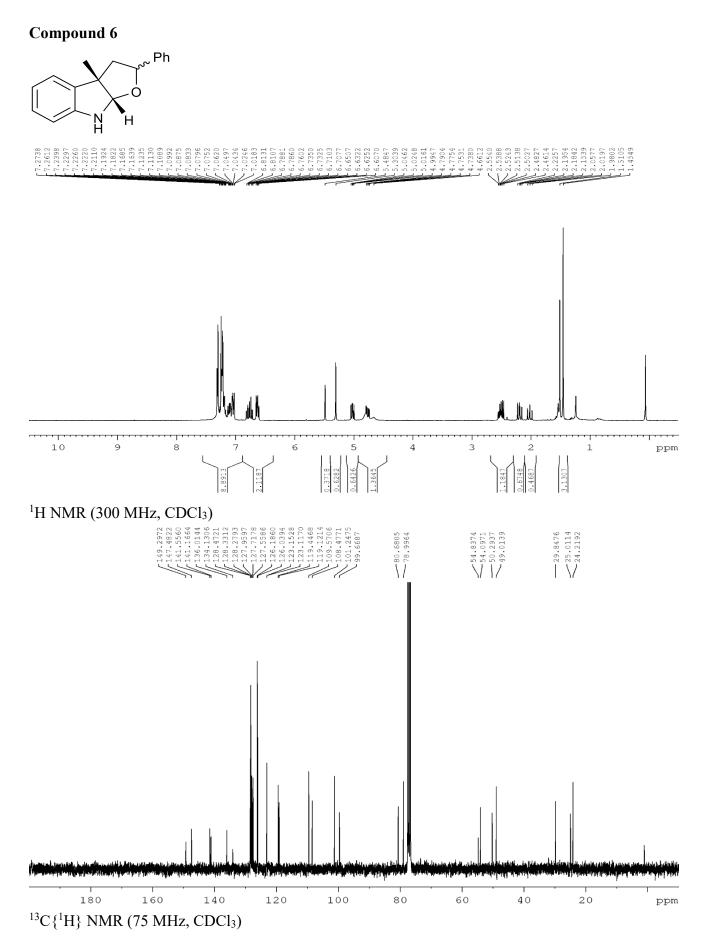


5,5-diphenyl-2-hydroxy-3-methyltetrahydrofuran (2s)


3-methyl-5-phenyltetrahydrofuran-2-one (3)



¹H NMR (300 MHz, CDCl₃)


3-methyl-1-phenyl-1,4-butanediol (4)

methyl 6-hydroxy-4-methyl-6-phenyl-2-hexenoate (5)

¹H NMR (300 MHz, CDCl₃)

S67

References

- 1 R. A. Michelin, G. Facchin and P. Uguagliati, Inorg. Chem., 1984, 23, 961-969.
- 2 T. Imai and S. Nishida, Synthesis, 1993, 395-399.
- 3 (a) W. H. Bunnelle, M. A. Rafferty and S. L. Hodges, J. Org. Chem., 1987, 52, 1603-1605; (b) K. P.
- Reber, J. Xu and C. A. Guerrero, J. Org. Chem., 2015, 80, 2397-2406.
- 4 Y. Ueki, H. Ito, I. Usui and B. Breit, Chem. Eur. J., 2011, 17, 8555-8558.
- 5 M. Sai, H. Yorimitsu and K. Oshima, Angew. Chem., Int. Ed., 2011, 50, 3294-3298.
- 6 J. G. Román and J. A. Soderquist, J. Org. Chem., 2007, 72, 9772-9775.
- 7 H. Zhao and M.-Z. Cai, Chin. J. Chem., 2006, 24, 1669-1673.
- 8 M. Nakajima, S. Kotani, T. Ishizuka and S. Hashimoto, Tetrahedron Lett., 2005, 46, 157-159.
- 9 M. Jang, S. Hayashi, K. Hirano, H. Yorimitsu and K. Oshima, *Tetrahedron Lett.*, 2007, 48, 4003-4005.
- 10 B. W. Boal, A. W. Schammel and N. K. Garg, Org. Lett., 2009, 11, 3458-3461.
- 11 L. Huang, H. Jiang, C. Qi and X. Liu, J. Am. Chem. Soc., 2010, 132, 17652-17654.
- 12 R. Shchepin, C. Xu and P. Dussault, Org. Lett., 2010, 12, 4772-4775.
- 13 M. P. Paudyal, N. P. Rath and C. D. Spilling, Org. Lett., 2010, 12, 2954-2957.